51
|
Safhi MM, Alam MF, Sivakumar SM, Anwer T. Hepatoprotective Potential of Sargassum muticum against STZ-Induced Diabetic Liver Damage in Wistar Rats by Inhibiting Cytokines and the Apoptosis Pathway. Anal Cell Pathol (Amst) 2019; 2019:7958701. [PMID: 30937278 PMCID: PMC6415279 DOI: 10.1155/2019/7958701] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/11/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
Liver inflammation and necrosis are the foremost problems interlinked with diabetes mellitus (DM). The methanolic extract of Sargassum muticum (MESM) plays a hepatoprotective role in streptozotocin- (STZ-) induced hepatic injury. In this study, STZ exposure induced diabetes that augmented hepatic damage, which was reflected in serum enzyme markers, the cytokine network, and caspase-3 and caspase-9 levels in Group 2. Exposure to the MESM tremendously modulated the levels of hepatic enzyme markers ALP, ACP, ALT, and AST in Groups 3 and 4. The cytokine network was well regulated by suppressing the release of cytokines, and the levels of caspase-3 and caspase-9 were also reduced in Groups 3 and 4. The present study suggests that MESM treatment at 200 and 500 mg protected the liver and also minimizes the glucose level. Thus, the MESM plays a key role in rejuvenating the liver and can modulate diabetes's pathogenic effect by reducing the glucose level.
Collapse
Affiliation(s)
- Mohammed M. Safhi
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammad Firoz Alam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | | | - Tarique Anwer
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
52
|
El-Naggar ME, Al-Joufi F, Anwar M, Attia MF, El-Bana MA. Curcumin-loaded PLA-PEG copolymer nanoparticles for treatment of liver inflammation in streptozotocin-induced diabetic rats. Colloids Surf B Biointerfaces 2019; 177:389-398. [PMID: 30785036 DOI: 10.1016/j.colsurfb.2019.02.024] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 12/11/2022]
Abstract
This report focused on loading curcumin (CUR) drug into biodegradable Polylactide-poly(ethylene glycol) (PLA-PEG) copolymer nanoparticles as an effective anti-inflammatory agent in vivo to overcome the limitations resulted from the free CUR. By a simple nano-emulsification technique, hydrophobic CUR was loaded into hydrophobic polymer's segments and stabilized by cationic surfactant. They were then characterized by DLS, TEM, and SEM techniques providing monodispersed and spherical nanoparticles with an average diameter of 117 nm and high surface charge of +35 mV. Thereafter, they were orally administrated into five groups of rats, typically, control (healthy rats), streptozotocin (STZ)-induced diabetic rats, diabetics treated with free CUR, diabetics treated with PLA-PEG NPs, and diabetics treated with CUR-encapsulated PLA-PEG NPs. Next, complete blood analyses were assessed including alanine aminotransferase (ALT), aspartate aminotransferase (AST), and nuclear factor kappa B (NF-ҡB), reduced glutathione (GSH), malondialdehyde (MDA), nitric oxide (NO), cyclooxygenase (COX-2), Peroxisome proliferator-activated receptors (PPAR-γ) and transforming growth factor-β1 (TGF-β1). The obtained results demonstrated that diabetes initially produced liver inflammation in rats manifested by leveraging the mean levels of serum AST, ALT inducing oxidative stress resulting in a clear increase in the levels of hepatic MDA and NO concomitant with a remarkable decrease in GSH. Moreover, diabetes significantly increased serum NF-ҡB, hepatic COX-2 and TGF-β1, while highly reduced hepatic PPAR-γ. In contrast, both CUR free and CUR-encapsulated NPs ameliorated the negative changes in diabetes but CUR-encapsulated NPs showed more pronounced treated effect than free CUR. In addition, histopathological investigations were performed on the liver tissues of all groups, showing a mitigation in inflammation while treating with CUR-NPs.
Collapse
Affiliation(s)
- Mehrez E El-Naggar
- Department of Pre-Treatment and Finishing of Cellulosic Fabric, Textile Research Division, National Research Centre, Giza, Egypt.
| | - Fakhria Al-Joufi
- Department of Pharmacology, Aljouf University, Sakaka, Saudi Arabia
| | - Mona Anwar
- Research on Children with Special Needs Department, National Research Centre, Giza, Egypt; Department of Basic Sciences and Biomechanics, College of Physical Therapy, Heliopolis University, Cairo, Egypt
| | - Mohamed F Attia
- Department of Pre-Treatment and Finishing of Cellulosic Fabric, Textile Research Division, National Research Centre, Giza, Egypt; Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA.
| | - Mona A El-Bana
- Department of Medical Biochemistry, National Research Centre, Giza, Egypt
| |
Collapse
|
53
|
Constantin SM, Buron F, Routier S, Vasincu IM, Apotrosoaei M, Lupașcu F, Confederat L, Tuchilus C, Constantin MT, Sava A, Profire L. Formulation and Characterization of New Polymeric Systems Based on Chitosan and Xanthine Derivatives with Thiazolidin-4-One Scaffold. MATERIALS 2019; 12:ma12040558. [PMID: 30781782 PMCID: PMC6416560 DOI: 10.3390/ma12040558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/02/2019] [Accepted: 02/07/2019] [Indexed: 12/22/2022]
Abstract
In the past many research studies have focused on the thiazolidine-4-one scaffold, due to the important biological effects associated with its heterocycle. This scaffold is present in the structure of many synthetic compounds, which showed significant biological effects such as antimicrobial, antifungal, antioxidant, anti-inflammatory, analgesic, antidiabetic effects. It was also identified in natural compounds, such as actithiazic acid, isolated from Streptomyces strains. Starting from this scaffold new xanthine derivatives have been synthetized and evaluated for their antibacterial and antifungal effects. The antibacterial action was investigated against Gram positive (Staphyloccoccus aureus ATCC 25923, Sarcina lutea ATCC 9341) and Gram negative (Escherichia coli ATCC 25922) bacterial strains. The antifungal potential was investigated against Candida spp. (Candida albicans ATCC 10231, Candida glabrata ATCC MYA 2950, Candida parapsilosis ATCC 22019). In order to improve the antimicrobial activity, the most active xanthine derivatives with thiazolidine-4-one scaffold (XTDs: 6c, 6e, 6f, 6k) were included in a chitosan based polymeric matrix (CS). The developed polymeric systems (CS-XTDs) were characterized in terms of morphological (aspect, particle size), physic-chemical properties (swelling degree), antibacterial and antifungal activities, toxicity, and biological functions (bioactive compounds loading, entrapment efficiency). The presence of xanthine-thiazolidine-4-one derivatives into the chitosan matrix was confirmed using Fourier transform infrared (FT-IR) analysis. The size of developed polymeric systems, CS-XTDs, ranged between 614 µm and 855 µm, in a dry state. The XTDs were encapsulated into the chitosan matrix with very good loading efficiency, the highest entrapment efficiency being recorded for CS-6k, which ranged between 87.86 ± 1.25% and 93.91 ± 1.41%, depending of the concentration of 6k. The CS-XTDs systems showed an improved antimicrobial effect with respect to the corresponding XTDs. Good results were obtained for CS-6f, for which the effects on Staphylococcus aureus ATCC 25923 (21.2 ± 0.43 mm) and Sarcina lutea ATCC 9341 (25.1 ± 0.28 mm) were comparable with those of ciprofloxacin (25.1 ± 0.08 mm/25.0 ± 0.1 mm), which were used as the control. The CS-6f showed a notable antifungal effect, especially on Candida parapsilosis ATCC 22019 (18.4 ± 0.42 mm), the effect being comparable to those of nystatin (20.1 ± 0.09 mm), used as the control. Based on the obtained results these polymeric systems, consisting of thiazolidine-4-one derivatives loaded with chitosan microparticles, could have important applications in the food field as multifunctional (antimicrobial, antifungal, antioxidant) packaging materials.
Collapse
Affiliation(s)
- Sandra Madalina Constantin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa", 16 University Street, 700115 Iasi, Romania.
| | - Frederic Buron
- Institut de Chimie Organique et Analytique, Univ Orleans, CNRS, ICOA, UMR 7311, F-45067 Orléans, France.
| | - Sylvain Routier
- Institut de Chimie Organique et Analytique, Univ Orleans, CNRS, ICOA, UMR 7311, F-45067 Orléans, France.
| | - Ioana Mirela Vasincu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa", 16 University Street, 700115 Iasi, Romania.
| | - Maria Apotrosoaei
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa", 16 University Street, 700115 Iasi, Romania.
| | - Florentina Lupașcu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa", 16 University Street, 700115 Iasi, Romania.
| | - Luminița Confederat
- Department of Microbiology, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa", 16 University Street, 700115 Iasi, Romania.
| | - Cristina Tuchilus
- Department of Microbiology, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa", 16 University Street, 700115 Iasi, Romania.
| | | | - Alexandru Sava
- Department of Analytical Chemistry; Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa", 16 University Street, 700115 Iasi, Romania.
| | - Lenuţa Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa", 16 University Street, 700115 Iasi, Romania.
| |
Collapse
|
54
|
Rahmani AH, Almatroudi A, Babiker AY, Khan AA, Alsahli MA. Thymoquinone, an Active Constituent of Black Seed Attenuates CCl4 Induced Liver Injury in Mice via Modulation of Antioxidant Enzymes, PTEN, P53 and VEGF Protein. Open Access Maced J Med Sci 2019; 7:311-317. [PMID: 30833993 PMCID: PMC6390143 DOI: 10.3889/oamjms.2019.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
AIM: The present study was undertaken to evaluate the possible protective role of thymoquinone on CCl4-induced hepatotoxicity. METHODS: The activities of liver function enzymes and antioxidant enzymes were measured. Haematoxylin-Eosin staining was performed to analyze the live tissue alterations. Additionally, expression pattern of different proteins was evaluated through immunohistochemistry staining. RESULTS: The antioxidants enzymes activities were decreased significantly in the CCl4 induced group whereas recovery/increase of antioxidant enzymes was observed when thymoquinone was given to the mice. Moreover, thymoquinone administration significantly decrease the serum levels of alanine aminotransferase (ALT), alkaline phosphatase (ALP), and serum aspartate aminotransferase (AST). Liver tissue alterations were noted in CCl4 treated group whereas treatment with thymoquinone significantly prevented the CCl4-induced histological alteration. The expression of PTEN protein was high in CCl4 plus thymoquinone treated group while the loss of PTEN protein expression was observed in CCl4 treated group. Moreover, high expression of P53 protein was noticed in CCl4 treated the group as compared to CCl4 plus thymoquinone group. Difference in expression pattern of PTEN and p53 protein in CCl4 group and thymoquinone plus CCl4 treated group was statically significant (p < 0.05). Besides, expression of VEGF was high in CCl4 treated group as well as thymoquinone plus CCl4 treated group and difference in expression pattern was statically insignificant (p > 0.05). CONCLUSION: Our results suggest that thymoquinone can protect CCl4 induced liver damage and could be a preventive drug in the development of novel therapeutic agents for liver diseases.
Collapse
Affiliation(s)
- Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
55
|
Ghosh S, Chowdhury S, Das AK, Sil PC. Taurine ameliorates oxidative stress induced inflammation and ER stress mediated testicular damage in STZ-induced diabetic Wistar rats. Food Chem Toxicol 2019; 124:64-80. [PMID: 30496779 DOI: 10.1016/j.fct.2018.11.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/16/2018] [Accepted: 11/24/2018] [Indexed: 12/20/2022]
Abstract
One of the major consequences of diabetes is reproductive dysfunction but the fundamental mechanisms are still poorly known. The objective of the present study was to explore the beneficial role of taurine against streptozotocin induced testicular dysfunctions in diabetic male Wister rats and understanding the underlying intricate molecular mechanisms. Exposure to streptozotocin (50 mg kg-1 body weight, i.p., once) elevated blood glucose level, induced testicular histological alterations and reduced testis-to-body weight ratio, serum testosterone, testicular markers and activity of antioxidant enzymes. Generation of ER stress (increased expression of calpain-1, caspase-12 and upregulation of CHOP, GRP78 via eIF2α signaling), translocation of NF κB in the nucleus (leading to the upregulation in the levels of inflammatory cytokines), activation of mitochondria dependent apoptotic pathway and DNA fragmentation were revealed from this study. However, administration of taurine at a dose of 100 mg kg-1 body weight for 6 weeks post diabetic induction, successfully ameliorated all these adverse effects. Thus, taurine, as a potential therapeutic agent, may hold promise in preventing oxidative and ER stress mediated diabetic testicular complications in rats.
Collapse
Affiliation(s)
- Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sayantani Chowdhury
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Abhishek Kumar Das
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
56
|
Sadhukhan P, Kundu M, Rana S, Kumar R, Das J, Sil PC. Microwave induced synthesis of ZnO nanorods and their efficacy as a drug carrier with profound anticancer and antibacterial properties. Toxicol Rep 2019; 6:176-185. [PMID: 30809470 PMCID: PMC6374700 DOI: 10.1016/j.toxrep.2019.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 02/01/2023] Open
Abstract
In the present study, we report the microwave-induced synthesis of fluorescent zinc oxide nanorods (ZnO) and their usage as a cargo material to carry hydrophobic drug, quercetin. TEM and SEM showed the rod-shape morphology of our synthesized ZnO. XRD showed several diffraction peaks correspond to a hexagonal wurtzite structure. The optical and chemical natures of these nanorods were also confirmed from the UV-vis (showed a distinct absorption bands from 361 to 395 nm) and FTIR spectrum (showed absorption band specific to Zn-O stretching). The synthesized ZnO also showed fluorescence emission at around 550 nm when excited under UV irradiation. Quercetin was loaded onto ZnO surface via employing a metal ion-ligand coordination bond, (ZnO/QR), which exhibit pH-sensitive release behavior. ZnO/QR displayed superior drug loading content (42%) and loading efficiency (72.4%). in vitro assays showed that ZnO/QR exhibited higher anticancer, as well as antibacterial activities compared with free quercetin and ZnO. All these results highlight the synthesis of ZnO nanorods under microwave irradiation, which can be used as a plausible therapeutic option for bioimaging and drug delivery purpose.
Collapse
Affiliation(s)
- Pritam Sadhukhan
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Mousumi Kundu
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Shallu Rana
- Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan- 173229 (HP), India
| | - Raj Kumar
- Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan- 173229 (HP), India
| | - Joydeep Das
- Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan- 173229 (HP), India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| |
Collapse
|
57
|
Gutierres VO, Assis RP, Arcaro CA, Oliveira JO, Lima TFO, Beretta ALRZ, Costa PI, Baviera AM, Brunetti IL. Curcumin improves the effect of a reduced insulin dose on glycemic control and oxidative stress in streptozotocin-diabetic rats. Phytother Res 2019; 33:976-988. [PMID: 30656757 DOI: 10.1002/ptr.6291] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 12/14/2022]
Abstract
Insulin with natural antioxidants is emerging as a combination treatment for diabetes mellitus that attempts to exert effective glycemic control without adverse effects. The present study aimed to investigate the additive effects on metabolic disturbances, oxidative damage, and antioxidant defenses in streptozotocin-diabetic rats treated with curcumin and a reduced insulin dose. The best results were obtained in the treatment of diabetic rats with 4-U/day insulin; however, the glycemia levels in these rats were lower than those in normal rats, indicating a risk of hypoglycemia. Isolated treatments using curcumin or insulin in a reduced dose (1 U/day) decreased glycemia, dyslipidemia, and biomarkers of liver and kidney damage and increased the activity of hepatic antioxidants (superoxide dismutase and glutathione peroxidase), however, only to a lesser extent than 4-U/day insulin, without improvements in catalase activity or plasma lipid peroxidation. Decreases in glycemia, dyslipidemia, and tissue damage markers were more evident in the curcumin + 1-U/day insulin treatment than those seen in isolated treatments. The activity of hepatic antioxidants, including catalase, was further increased, and biomarkers of oxidative damage were decreased. Curcumin with a reduced insulin dose appears to be a promising strategy for combating the complications associated with diabetes and oxidative stress.
Collapse
Affiliation(s)
- Vânia Ortega Gutierres
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.,Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, 7 Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP
| | - Renata Pires Assis
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Carlos Alberto Arcaro
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Juliana Oriel Oliveira
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Tayra Ferreira Oliveira Lima
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Ana Laura Remédio Zeni Beretta
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, 7 Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP
| | - Paulo Inácio Costa
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Amanda Martins Baviera
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Iguatemy Lourenço Brunetti
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| |
Collapse
|
58
|
Al Syaad KM, Elsaid FG, Abdraboh ME, Al-Doaiss AA. Effect of Graviola (Annona Muricata l.) and Ginger (Zingiber Officinale Roscoe) on Diabetes Mellitus Induced in Male Wistar Albino Rats. Folia Biol (Praha) 2019; 65:275-284. [PMID: 32362311 DOI: 10.14712/fb2019065050275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Annona and ginger have prominent uses in traditional medicine; their therapeutic properties have not been sufficiently explored. The ameliorative effect of Annona or ginger extracts on hyperglycaemia associated with oxidative stress, inflammation, and apoptosis in experimentally induced diabetes was addressed. Type 1 diabetes in male rats was induced by a single injection of streptozotocin (STZ; 40 mg/kg, i.p.), then Annona (100 mg/kg) or ginger (200 mg/kg) extracts were orally administered daily for 30 days. The Annona and ginger extracts ameliorated hyperglycaemia, insulin level, glycosylated haemoglobin (HbA1c) and insulin resistance (HOMA-IR) levels in the diabetic rats. The treatments significantly ameliorated liver function enzymes and total proteins; this was confirmed by histopathological examination of liver sections. Annona and ginger extracts significantly reduced elevated malondialdehyde (MDA) and restored activity of antioxidant enzymes in the liver such as glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT) and the hepatic content of reduced glutathione (GSH). The oxidative stressdependent inflammation was regulated by both Annona and ginger extracts, which was indicated by down-regulation of TNF-α, NF-κB, pro-apoptotic proteins Bax, p53, and anti-apoptotic protein Bcl-2. Moreover, the expression of insulin receptor (INSR) and glucose transporter 2 (GLUT2) genes was markedly regulated by both these extracts. The results suggest that Annona and ginger extracts ameliorate the hepatic damage resulting from diabetes by advocating antioxidants and modulating apoptotic mediator proteins in the liver of diabetic rats. In conclusion, Annona and ginger extracts have a potential therapeutic effect in the treatment of diabetes and its complications.
Collapse
Affiliation(s)
- K M Al Syaad
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - F G Elsaid
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - M E Abdraboh
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - A A Al-Doaiss
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Anatomy and Histology Department, Faculty of Medicine, Sana'a University, Sana'a, Republic of Yemen
| |
Collapse
|
59
|
Mahalanobish S, Saha S, Dutta S, Ghosh S, Sil PC. Anti-inflammatory efficacy of some potentially bioactive natural products against rheumatoid arthritis. DISCOVERY AND DEVELOPMENT OF ANTI-INFLAMMATORY AGENTS FROM NATURAL PRODUCTS 2019:61-100. [DOI: 10.1016/b978-0-12-816992-6.00003-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
60
|
Pathophysiological mechanisms of diabetic cardiomyopathy and the therapeutic potential of epigallocatechin-3-gallate. Biomed Pharmacother 2018; 109:2155-2172. [PMID: 30551473 DOI: 10.1016/j.biopha.2018.11.086] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular complications are considered one of the leading causes of morbidity and mortality among diabetic patients. Diabetic cardiomyopathy (DCM) is a type of cardiovascular damage presents in diabetic patients independent of the coexistence of ischemic heart disease or hypertension. It is characterized by impaired diastolic relaxation time, myocardial dilatation and hypertrophy and reduced systolic and diastolic functions of the left ventricle. Molecular mechanisms underlying these pathological changes in the diabetic heart are most likely multifactorial and include, but not limited to, oxidative/nitrosative stress, increased advanced glycation end products, mitochondrial dysfunction, inflammation and cell death. The aim of this review is to address the major molecular mechanisms implicated in the pathogenesis of DCM. In addition, this review provides studies conducted to determine the pharmacological effects of (-)-epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, focusing on its therapeutic potential against the processes involved in the pathogenesis and progression of DCM. EGCG has been shown to exert several potential therapeutic properties both in vitro and in vivo. Given its therapeutic potential, EGCG might be a promising drug candidate to decrease the morbidity and mortality associated with DCM and other diabetes complications.
Collapse
|
61
|
Senyigit A, Durmus S, Mirzatas EB, Ozsobacı NP, Gelisgen R, Tuncdemir M, Ozcelik D, Simsek G, Uzun H. Effects of Quercetin on Lipid and Protein Damage in the Liver of Streptozotocin-Induced Experimental Diabetic Rats. J Med Food 2018; 22:52-56. [PMID: 30285538 DOI: 10.1089/jmf.2018.0030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Quercetin (QR) is part of a subclass of flavonoids called flavonols. We aimed to investigate the effect of QR on malondialdehyde (MDA), advanced oxidation protein products (AOPPs), and glutathione peroxidase (GSH-Px) activity in the liver of diabetic rats. We compared four groups of male adult Wistar albino rats: a control group, an untreated diabetic group, diabetic groups treated with QR, and QR group. Diabetes was induced by a single injection of streptozotocin (STZ) (50 mg/kg). Animals were kept in standard condition. On the 31st day of the study, the liver tissue was removed for biochemical parameters and histopathological evaluations. In an untreated diabetic group, liver MDA and AOPP levels were significantly higher than all groups. QR treatment significantly decreased the increased MDA, AOPP levels, and increased the decreased GSH-Px enzyme activity in liver tissues. The QR-treated rats in the diabetic group showed an improved histological appearance. Lesser vesicular vacuolization and fibrotic areas were observed in the QR-treated diabetic group than in the diabetic group. The STZ-induced liver injury is associated with oxidative stress, and coadministration of QR may reduce this damage effectively in a rat model. Our results are also supported by morphological improvement in liver tissue. Therefore, we think QR may be effective in treating hyperglycemia and oxidative damage in diabetes.
Collapse
Affiliation(s)
- Abdulhalim Senyigit
- 1 Department of Internal Medicine, Istanbul Medicine Hospital, Medical School, University of Biruni, Istanbul, Turkey
| | - Sinem Durmus
- 2 Department of Biochemistry, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Eda Buyukcolpan Mirzatas
- 3 Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nural Pastacı Ozsobacı
- 4 Department of Biophysics, and Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Remise Gelisgen
- 2 Department of Biochemistry, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Matem Tuncdemir
- 3 Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Dervis Ozcelik
- 4 Department of Biophysics, and Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gonul Simsek
- 5 Department of Physiology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hafize Uzun
- 2 Department of Biochemistry, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
62
|
Kim Y, Clifton P. Curcumin, Cardiometabolic Health and Dementia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102093. [PMID: 30250013 PMCID: PMC6210685 DOI: 10.3390/ijerph15102093] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/15/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
Current research indicates curcumin [diferuloylmethane; a polyphenolic compound isolated from the rhizomes of the dietary spice turmeric (Curcuma longa)] exerts a beneficial effect on health which may be partly attributable to its anti-oxidative and anti-inflammatory properties. The aim of this review is to examine potential mechanisms of the actions of curcumin in both animal and human studies. Curcumin modulates relevant molecular target pathways to improve glucose and lipid metabolism, suppress inflammation, stimulate antioxidant enzymes, facilitate insulin signalling and reduce gut permeability. Curcumin also inhibits Aβ and tau accumulation in animal models and enhances mitochondria and synaptic function. In conclusion, in high-dose animal studies and in vitro, curcumin exerts a potential beneficial effect on cardiometabolic disease. However, human studies are relatively unconvincing. More intervention studies should be conducted with the new curcumin formulation with improved oral bioavailability.
Collapse
Affiliation(s)
- Yoona Kim
- Department of Food and Nutrition/Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Peter Clifton
- School of Pharmacy and Medical Sciences, University of South Australia, General Post Office Box 2471, Adelaide, SA 5001, Australia.
| |
Collapse
|
63
|
Samie A, Sedaghat R, Baluchnejadmojarad T, Roghani M. Hesperetin, a citrus flavonoid, attenuates testicular damage in diabetic rats via inhibition of oxidative stress, inflammation, and apoptosis. Life Sci 2018; 210:132-139. [PMID: 30179627 DOI: 10.1016/j.lfs.2018.08.074] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/15/2018] [Accepted: 08/31/2018] [Indexed: 01/07/2023]
Abstract
AIM This study was designed to assess the beneficial effect of hesperetin on diabetes-associated testicular injury in the rat. MAIN METHODS Oral treatment with hesperetin started 10 days after diabetes induction by streptozotocin (60 mg/kg, i.p.) for 46 days. Testicular damage was evaluated by histological evaluation of seminiferous tubules in addition to assessment of epididymal sperm count, motility, and viability. In addition, testicular biomarkers of apoptosis, inflammation, and oxidative stress were also determined. KEY FINDINGS Hesperetin treatment of diabetic group prevented body weight loss and reduced serum glucose in addition to improvement of serum testosterone. Additionally, hesperetin-treated diabetic group had lower levels of malondialdehyde (MDA), reactive oxygen species (ROS), protein carbonyl, DNA fragmentation, and caspase 3 activity as specific biomarkers of oxidative stress and/or apoptosis. Furthermore, hesperetin augmented testicular antioxidant system as shown by higher levels of glutathione (GSH), mitochondrial membrane potential (MMP), and ferric reducing antioxidant power (FRAP) in addition to improvement of superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx). Moreover, hesperetin administration to diabetic rats attenuated testicular indices of inflammation consisting of tumor necrosis factor α (TNFα) and interleukin 17 (IL-17) and prevented damage of seminiferous tubules as revealed by higher levels of sperm count, motility, and viability in diabetic rats. SIGNIFICANCE Collectively, hesperetin could alleviate testicular damage in DM, at least through inhibition of apoptosis, oxidative stress, and inflammation in addition to its up-regulation of endogenous enzymatic and non-enzymatic antioxidants.
Collapse
Affiliation(s)
| | - Reza Sedaghat
- Department of Anatomy and Pathology, School of Medicine, Shahed University, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Department of Physiology, Shahed University, Tehran, Iran.
| |
Collapse
|
64
|
Mohammed A, Islam MS. Spice-Derived Bioactive Ingredients: Potential Agents or Food Adjuvant in the Management of Diabetes Mellitus. Front Pharmacol 2018; 9:893. [PMID: 30186162 PMCID: PMC6113848 DOI: 10.3389/fphar.2018.00893] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/23/2018] [Indexed: 01/31/2023] Open
Abstract
Spices possess tremendous therapeutic potential including hypoglycemic action, attributed to their bioactive ingredients. However, there is no study that critically reviewed the hypoglycemic potency, safety and the bioavailability of the spice-derived bioactive ingredients (SDBI). Therefore, the aim of the study was to comprehensively review all published studies regarding the hypoglycemic action of SDBI with the purpose to assess whether the ingredients are potential hypoglycemic agents or adjuvant. Factors considered were concentration/dosages used, the extent of blood glucose reduction, the IC50 values, and the safety concern of the SDBI. From the results, cinnamaldehyde, curcumin, diosgenin, thymoquinone (TQ), and trigonelline were showed the most promising effects and hold future potential as hypoglycemic agents. Conclusively, future studies should focus on improving the tissue and cellular bioavailability of the promising SDBI to achieve greater potency. Additionally, clinical trials and toxicity studies are with these SDBI are warranted.
Collapse
Affiliation(s)
- Aminu Mohammed
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Md. Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
65
|
Ghosh S, Chowdhury S, Sarkar P, Sil PC. Ameliorative role of ferulic acid against diabetes associated oxidative stress induced spleen damage. Food Chem Toxicol 2018; 118:272-286. [PMID: 29758315 DOI: 10.1016/j.fct.2018.05.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/03/2018] [Accepted: 05/10/2018] [Indexed: 01/19/2023]
Abstract
Spleen, a secondary lymphoid organ, is the site of initiation of most of the immune responses. The present study is centered on the ameliorative role of ferulic acid against diabetic complications in the spleen of male Wistar rats. Induction of diabetes by STZ (at a dose of 50 mg kg-1 body wt, i.p.) reduced the spleen size, plasma insulin level, enhanced the blood glucose level and disrupted the intracellular antioxidant machineries along with the depletion of splenic white pulp. Induction of oxidative stress mediated inflammation and apoptosis (upregulation in the levels of inflammatory cytokines, translocation of NF ĸB in the nucleus, alteration in Bax/Bcl-2 ratio, release of cytochrome c from mitochondria, activation of caspase-9 and 3, PARP cleavage and DNA fragmentation) were evidenced from immunoblot analyses, DNA fragmentation and TUNEL assay. However, ferulic acid administration post diabetes induction, (at a dose of 50 mg kg-1 body wt, orally for eight weeks) could reverse such adverse effects. Therefore, ferulic acid, as a potential therapeutic agent may hold promise in evading oxidative stress mediated diabetic splenotoxicity in rats.
Collapse
Affiliation(s)
- Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sayantani Chowdhury
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Poulami Sarkar
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
66
|
Khalaji N, Namyari M, Rasmi Y, Pourjabali M, Chodari L. Protective effect of curcumin on fertility of rats after exposure to compact fluorescent lamps: An experimental study. Int J Reprod Biomed 2018. [DOI: 10.29252/ijrm.16.7.447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
67
|
Khalaji N, Namyari M, Rasmi Y, Pourjabali M, Chodari L. Protective effect of curcumin on fertility of rats after exposure to compact fluorescent lamps: An experimental study. Int J Reprod Biomed 2018; 16:447-454. [PMID: 30234185 PMCID: PMC6129376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/08/2018] [Accepted: 06/20/2018] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Testicular function is modified by maturational gonadostatic control highly susceptible to negative physiologic niche-altering factors like UV-rays. OBJECTIVE This study was performed in order to uncover new aspects of Compact Florescent Lamps (CFLs) induced damages on the testicular tissue of rats and evaluating the effect of curcumin on testis of rats after exposure to compact florescent Lamps. MATERIALS AND METHODS Twenty-four adult male Albino rats were randomly divided into three groups: control group (ethyl oleate 0.2 ml, IP, for 45 days, without CFLs exposure), fluorescent group (ethyl oleate 0.2 ml, IP, daily and treated with 12 hr CFLs exposure for 45 days) and curcumin group (curcumin 20 µ M, IP along with 12 hr CFLs exposure for 45 days). The rats were anesthetized at the end of the experiment. Gonadotropin hormones and prolactin levels were measured; Histopathological and histomorphometrical analysis of the testis was carried out. RESULTS Results of this study showed that CFLs significantly decreased serum levels of follicle stimulating hormone, prolactin, testicular weight, sperm motility, TDI, and SPI. Furthermore, CFLs had no effect on serum levels of luteinizing hormone and sperm count and also, increased abnormal sperm shapes. Our results also showed that curcumin supplementation following CFLs reversed these alterations. CONCLUSION These results strongly suggest that CFLs severely impairs testis while curcumin as an antioxidant had protective effects on undesirable effects in testis induced by CFLs.
Collapse
Affiliation(s)
- Naser Khalaji
- Department of Physiology, Urmia University of Medical Sciences, Urmia, Iran.
| | | | - Yousef Rasmi
- Department of Clinical Biochemistry, Urmia University Medical Sciences, Urmia, Iran.
| | | | - Leila Chodari
- Department of Physiology, Urmia University of Medical Sciences, Urmia, Iran.
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
68
|
Maiti P, Dunbar GL. Use of Curcumin, a Natural Polyphenol for Targeting Molecular Pathways in Treating Age-Related Neurodegenerative Diseases. Int J Mol Sci 2018; 19:E1637. [PMID: 29857538 PMCID: PMC6032333 DOI: 10.3390/ijms19061637] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/02/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022] Open
Abstract
Progressive accumulation of misfolded amyloid proteins in intracellular and extracellular spaces is one of the principal reasons for synaptic damage and impairment of neuronal communication in several neurodegenerative diseases. Effective treatments for these diseases are still lacking but remain the focus of much active investigation. Despite testing several synthesized compounds, small molecules, and drugs over the past few decades, very few of them can inhibit aggregation of amyloid proteins and lessen their neurotoxic effects. Recently, the natural polyphenol curcumin (Cur) has been shown to be a promising anti-amyloid, anti-inflammatory and neuroprotective agent for several neurodegenerative diseases. Because of its pleotropic actions on the central nervous system, including preferential binding to amyloid proteins, Cur is being touted as a promising treatment for age-related brain diseases. Here, we focus on molecular targeting of Cur to reduce amyloid burden, rescue neuronal damage, and restore normal cognitive and sensory motor functions in different animal models of neurodegenerative diseases. We specifically highlight Cur as a potential treatment for Alzheimer's, Parkinson's, Huntington's, and prion diseases. In addition, we discuss the major issues and limitations of using Cur for treating these diseases, along with ways of circumventing those shortcomings. Finally, we provide specific recommendations for optimal dosing with Cur for treating neurological diseases.
Collapse
Affiliation(s)
- Panchanan Maiti
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI 48604, USA.
- Department of Biology, Saginaw Valley State University, Saginaw, MI 48610, USA.
- Brain Research Laboratory, Saginaw Valley State University, Saginaw, MI 48610, USA.
| | - Gary Leo Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI 48604, USA.
| |
Collapse
|
69
|
Abdel-Mageid AD, Abou-Salem MES, Salaam NMHA, El-Garhy HAS. The potential effect of garlic extract and curcumin nanoparticles against complication accompanied with experimentally induced diabetes in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 43:126-134. [PMID: 29747745 DOI: 10.1016/j.phymed.2018.04.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 02/07/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Modified herbal medicines implicate the combination of several therapeutic practices of native systems of medicine that may extend many earlier generations, which frequently afford valuable therapeutic benefits. PURPOSE In this study, the role of nano-curcumin and aged garlic extract (AGE) as two modified phytomedicines on alleviating both of advanced glycation end products (AGEPs) and oxidative stress (OS) in streptozotocin (STZ) induced diabetic rats were investigated during this study. METHOD Nano-curcumin and AGE suspension were orally administrated at a dose of 300, 500 mg/kg body weight respectively. Serum glucose, insulin, total cholesterol, triglycerides and myocardial enzyme activities including creatine kinase-isoenzyme (CK-MB), lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) were determined biochemically, while quantitative real-time polymerase chain reaction (qRT-PCR)-test had been used to determine relative of manganese-superoxide dismutase (Mn-SOD) and receptor for advanced glycation end products (RAGE) gene expressions in the heart tissue of rats. Structure of rat's heart tissue was examined by histopathological analysis (H&E). RESULTS AGE increased the body weight and insulin concentration, while, it decreased serum glucose concentration, CK-MB, and LDH enzyme activities in comparing with the diabetic group. In addition, total cholesterol, triglycerides, and AST didn't show any significant changes in serum values of AGE compared to diabetic rats. Nano-curcumin suspension decreased the serum levels of triglycerides, CK- MB, LDH, and AST. While, there were non-significant changes in the body weight, glucose, insulin, and total cholesterol level of the same group compared with the STZ- untreated induced diabetic rats. The transcript quantity of manganese-superoxide dismutase gene (Mn-SOD) was highly accumulated (3.25 and 3.87-fold) in the heart tissue sample of the induced diabetic rats in response to both nano-Curcumin and AGE suspension respectively. While AGE was the most potent treatment where it caused down regulation of the receptor for advanced glycation end products gene (RAGE) expression (1.79-fold). Results of histopathological analyses under the light microscope showed restoring the structural integrity of the myocytes towards normalization in diabetic hearts treated with each of nano-curcumin and AGE suspension compared with the untreated diabetic heart samples. CONCLUSION Nano-curcumin and AGE suspension have a great therapeutic potential in the treatment of DCM, Diabetic cardiomyopathy, by attenuating cardiac inflammation, myocardial fibrosis, and programmed myocardial cell deaths through inhibiting OS and AGEPs accumulation in diabetic heart tissue. Furthermore, the hypoglycemic antioxidant properties of AGE resulted in more potent therapeutic effect than nano-curcumin in the treatment of diabetic hearts.
Collapse
Affiliation(s)
- Afaf D Abdel-Mageid
- Biochemistry Department, Faculty of Vet. Med., Benha Universtiy, Moshtohor, Tukh, Qalubia, Egypt
| | - Mohamed E S Abou-Salem
- Department of Forensic Medicine and Toxicology, Faculty of Vet. Med., Benha University, Moshtohor, Tukh, Qalubia, Egypt
| | - Nancy M H A Salaam
- Biochemistry Department, Faculty of Vet. Med., Benha Universtiy, Moshtohor, Tukh, Qalubia, Egypt
| | - Hoda A S El-Garhy
- Genetics Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Qalubia, Egypt.
| |
Collapse
|
70
|
Banerjee S, Sinha K, Chowdhury S, Sil PC. Unfolding the mechanism of cisplatin induced pathophysiology in spleen and its amelioration by carnosine. Chem Biol Interact 2018; 279:159-170. [PMID: 29191451 DOI: 10.1016/j.cbi.2017.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/17/2017] [Accepted: 11/26/2017] [Indexed: 12/27/2022]
Abstract
cis-Diamminedichloroplatinum (cisplatin) is an effective chemotherapeutic and is widely used for the treatment of various types of solid tumors. Bio-distribution of cisplatin to other organs due to poor targeting towards only cancer cells constitutes the backbone of cisplatin-induced toxicity. The adverse effect of this drug on spleen is not well characterized so far. Therefore, we have set our goal to explore the mechanism of the cisplatin-induced pathophysiology of the spleen and would also like to evaluate whether carnosine, an endogenous neurotransmitter and antioxidant, can ameliorate this pathophysiological response. We found a dose and time-dependent increase of the pro-inflammatory cytokine, TNF-α, in the spleen tissue of the experimental mice exposed to 10 and 20 mg/kg body weight of cisplatin. The increase in inflammatory cytokine can be attributed to the activation of the transcription factor, NF-ĸB. This also aids in the transcription of other pro-inflammatory cytokines and cellular adhesion molecules. Exposure of animals to cisplatin at both the doses resulted in ROS and NO production leading to oxidative stress. The MAP Kinase pathway, especially JNK activation, was also triggered by cisplatin. Eventually, the persistence of inflammatory response and oxidative stress lead to apoptosis through extrinsic pathway. Carnosine has been found to restore the expression of inflammatory molecules and catalase to normal levels through inhibition of pro-inflammatory cytokines, oxidative stress, NF-ĸB and JNK. Carnosine also protected the splenic cells from apoptosis. Our study elucidated the detailed mechanism of cisplatin-induced spleen toxicity and use of carnosine as a protective agent against this cytotoxic response.
Collapse
Affiliation(s)
- Sharmistha Banerjee
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Krishnendu Sinha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sayantani Chowdhury
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
71
|
Sarkar P, Basak P, Ghosh S, Kundu M, Sil PC. Prophylactic role of taurine and its derivatives against diabetes mellitus and its related complications. Food Chem Toxicol 2017; 110:109-121. [PMID: 29050977 DOI: 10.1016/j.fct.2017.10.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 02/08/2023]
Abstract
Taurine is a conditionally essential amino acid present in the body in free form. Mammalian taurine is synthesized in the pancreas via the cysteine sulfinic acid pathway. Anti-oxidation and anti-inflammation are two main properties through which it exerts its therapeutic effects. Many studies have shown its excellent therapeutic potential against diabetes mellitus and related complications like diabetic neuropathy, retinopathy, nephropathy, hematological dysfunctions, reproductive dysfunctions, liver and pancreas related complications etc. Not only taurine, a number of its derivatives have also been reported to be important in ameliorating diabetic complications. The present review has been aimed to describe the importance of taurine and its derivatives against diabetic metabolic syndrome and related complications.
Collapse
Affiliation(s)
- Poulami Sarkar
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Priyanka Basak
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Mousumi Kundu
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India.
| |
Collapse
|
72
|
Rashid K, Chowdhury S, Ghosh S, Sil PC. Curcumin attenuates oxidative stress induced NFκB mediated inflammation and endoplasmic reticulum dependent apoptosis of splenocytes in diabetes. Biochem Pharmacol 2017; 143:140-155. [PMID: 28711624 DOI: 10.1016/j.bcp.2017.07.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022]
Abstract
The present study was aimed to determine the curative role of curcumin against diabetes induced oxidative stress and its associated splenic complications. Diabetes was induced in the experimental rats via the intraperitoneal administration of a single dose of STZ (65mgkg-1body weight). Increased blood glucose and intracellular ROS levels along with decreased body weight, the activity of cellular antioxidant enzymes and GSH/GSSG ratio were observed in the diabetic animals. Histological assessment showed white pulp depletion and damaged spleen anatomy in these animals. Oral administration of curcumin at a dose of 100mgkg-1 body weight daily for 8weeks, however, restored these alterations. Investigation of the mechanism of hyperglycemia induced oxidative stress mediated inflammation showed upregulation of inflammatory cytokines, chemokines, adhesion molecules and increased translocation of NFκB into the nucleus. Moreover, ER stress dependent cell death showed induction of eIF2α and CHOP mediated signalling pathways as well as increment in the expression of GRP78, Caspase-12, Calpain-1, phospho JNK, phospho p38 and phospho p53 in the diabetic group. Alteration of Bax/Bcl-2 ratio; disruption of mitochondrial membrane potential, release of cytochrome-C from mitochondria and upregulation of caspase 3 along with the formation of characteristic DNA ladder in the diabetic animals suggest the involvement of mitochondria dependent apoptotic pathway in the splenic cells. Treatment with curcumin could, however, protect cells from inflammatory damage and ER as well as mitochondrial apoptotic death by restoring the alterations of these parameters. Our results suggest that curcumin has the potential to act as an anti-diabetic, anti-oxidant, anti-inflammatory and anti-apoptotic therapeutic against diabetes mediated splenic damage.
Collapse
Affiliation(s)
- Kahkashan Rashid
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sayantani Chowdhury
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
73
|
Kim S, Requejo KI, Nakamatsu J, Gonzales KN, Torres FG, Cavaco-Paulo A. Modulating antioxidant activity and the controlled release capability of laccase mediated catechin grafting of chitosan. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
74
|
Basak P, Sadhukhan P, Sarkar P, Sil PC. Perspectives of the Nrf-2 signaling pathway in cancer progression and therapy. Toxicol Rep 2017; 4:306-318. [PMID: 28959654 PMCID: PMC5615147 DOI: 10.1016/j.toxrep.2017.06.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/18/2017] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
The Nuclear factor erythroid2-related factor2 (Nrf2), a master regulator of redox homoeostasis, is a key transcription factor regulating a wide array of genes for antioxidant and detoxification enzymes. It protects organs from various kinds of toxic insults. On the other hand, activation of Nrf2 is also correlated with cancer progression and chemoresistance. Downregulation of Nrf2 activity has attracted an increasing amount of attention as it may provide an alternative cancer therapy. In this review, we examine recent studies on roles of Nrf2 in several pathophysiological conditions emphasising cancer. We discuss elaborately the current knowledge on Nrf2 regulation including KEAP1-dependent and KEAP1-independent cascades. KEAP1/Nrf2 system is a master regulator of cellular response against a variety of environmental stresses. We also highlight several tightly controlled regulations of Nrf2 by numerous proteins, small molecules, toxic metals, etc. In addition, we evaluate the possible therapeutic approaches of increasing chemosensitivity via modulating Nrf2 signaling.
Collapse
Affiliation(s)
| | | | | | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal 700054, India
| |
Collapse
|
75
|
Pandey V, Gilhotra RM, Kohli S. Granulated colloidal silicon dioxide-based self-microemulsifying tablets, as a versatile approach in enhancement of solubility and therapeutic potential of anti-diabetic agent: formulation design and in vitro/in vivo evaluation. Drug Dev Ind Pharm 2017; 43:1023-1032. [PMID: 28276787 DOI: 10.1080/03639045.2017.1291668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The current research work was executed with an aim to explore and promote the potential of self-microemusifying drug delivery systems (SMEDDS) in the form of tablets, in order to enhance solubility and oral bioavailability of poorly aqueous soluble drug Repaglinide (RPG). RPG-loaded liquid SMEDDS were developed consisting Labrafil M 1944CS, Kolliphor EL and Propylene glycol, which were then characterized on various parameters. After characterization and optimization, liquid SMEDDS were converted into solid form by adsorbing on Aeroperl® 300 pharma and polyplasdoneTM XL. Further, selection of suitable excipients was done and mixed with prepared solidified SMEDDS powder followed by the preparation of self-microemulsifying tablets (SMET's) wet granulation-compression method. SMET's were subjected to differential scanning calorimetry (DSC) and particle X-ray diffraction (RXRD) studies, results of which indicated transformation of crystalline structure of RPG because of dispersion of RPG at molecular level in liquid SMEDDS. This was further assured by micrographs obtained from scanning electron microscope. SMET's shown more than 85% (30 min) of in vitro drug release in contrast to conventional marketed tablets (13.2%) and pure RPG drug (3.2%). Results of in vivo studies furnished that SMET's had shown marked decrease in the blood glucose level and prolonged duration of action (up to 8 h) in comparison with conventional marketed tablets and pure RPG drug. In conclusion, SMET's serves as a promising tool for successful oral delivery of poorly aqueous soluble drug(s) such as RPG.
Collapse
Affiliation(s)
- Vikas Pandey
- a Department of Pharmaceutics , Suresh Gyan Vihar University , Jaipur , Rajasthan , India
| | - Ritu M Gilhotra
- a Department of Pharmaceutics , Suresh Gyan Vihar University , Jaipur , Rajasthan , India
| | - Seema Kohli
- b Department of Pharmaceutical Sciences , Kalaniketan Polytechnic College , Jabalpur , Madhya Pradesh , India
| |
Collapse
|
76
|
Strycharz J, Drzewoski J, Szemraj J, Sliwinska A. Is p53 Involved in Tissue-Specific Insulin Resistance Formation? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9270549. [PMID: 28194257 PMCID: PMC5282448 DOI: 10.1155/2017/9270549] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023]
Abstract
p53 constitutes an extremely versatile molecule, primarily involved in sensing the variety of cellular stresses. Functional p53 utilizes a plethora of mechanisms to protect cell from deleterious repercussions of genotoxic insults, where senescence deserves special attention. While the impressive amount of p53 roles has been perceived solely by the prism of antioncogenic effect, its presence seems to be vastly connected with metabolic abnormalities underlain by cellular aging, obesity, and inflammation. p53 has been found to regulate multiple biochemical processes such as glycolysis, oxidative phosphorylation, lipolysis, lipogenesis, β-oxidation, gluconeogenesis, and glycogen synthesis. Notably, p53-mediated metabolic effects are totally up to results of insulin action. Accumulating amount of data identifies p53 to be a factor activated upon hyperglycemia or excessive calorie intake, thus contributing to low-grade chronic inflammation and systemic insulin resistance. Prominent signs of its actions have been observed in muscles, liver, pancreas, and adipose tissue being associated with attenuation of insulin signalling. p53 is of crucial importance for the regulation of white and brown adipogenesis simultaneously being a repressor for preadipocyte differentiation. This review provides a profound insight into p53-dependent metabolic actions directed towards promotion of insulin resistance as well as presenting experimental data regarding obesity-induced p53-mediated metabolic abnormalities.
Collapse
Affiliation(s)
- Justyna Strycharz
- Diabetes Student Scientific Society at the Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Jozef Drzewoski
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Sliwinska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
77
|
Chowdhury S, Ghosh S, Rashid K, Sil PC. Deciphering the role of ferulic acid against streptozotocin-induced cellular stress in the cardiac tissue of diabetic rats. Food Chem Toxicol 2016; 97:187-198. [PMID: 27621051 DOI: 10.1016/j.fct.2016.09.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 12/24/2022]
Abstract
The cardiomyocytes are one of the major sources of hyperglycemia induced ROS generation. The present study focuses on the ameliorative role of ferulic acid in combating cardiac complications in diabetic rats. Induction of diabetes by STZ in male Wistar rats (at a dose of 50 mg kg-1 body wt, i.p.) reduced body weight and plasma insulin level, enhanced blood glucose, disturbed the intra-cellular antioxidant machineries and disintegrated the normal radiation pattern of cardiac muscle fibers. Induction of ER stress (up-regulation in the levels of CHOP, GRP78, eIF2α signaling, increased calpain-1 expression), caspase-3 activation, PARP cleavage and DNA fragmentation were evidenced from immunoblot analyses and DNA fragmentation assay. However, ferulic acid administration, (at a dose of 50 mg kg-1 body wt, orally for eight weeks) in post-hyperglycemia could reverse such adverse effects. Also, the molecule increased GLUT-4 translocation to the cardiac membrane by enhanced phosphorylation of PI3Kinase, AKT and inactivation of GSK-3β thereby altering the hyperglycemic condition in the cardiac tissue of diabetic rats. Therefore, as a potential therapeutic, ferulic acid, exhibiting antioxidant and hypoglycemic effects, may hold promise in circumventing stress mediated diabetic cardiomyopathy in rats.
Collapse
Affiliation(s)
- Sayantani Chowdhury
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal, 700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal, 700054, India
| | - Kahkashan Rashid
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
78
|
Anti-diabetic activity of Holothuria thomasi saponin. Biomed Pharmacother 2016; 84:1472-1487. [PMID: 27810340 DOI: 10.1016/j.biopha.2016.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/21/2016] [Accepted: 10/01/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Diabetes mellitus represents a global health problem. It characterized by hyperglycemia that induces oxidative stress leading to a generation of free radicals. A wide variety of natural products in plants and other marine animals represent antioxidant activity and other health benefits like those of sea cucumber. Therefore, this study aimed to investigate the antidiabetic activity of glycosidic compound - saponin - derived from the Egyptian sea cucumber, Holothuria thomasi. MATERIALS AND METHODS Saponin has been extracted from the Egyptian sea cucumber and confirmed by hemolysis, Salkowski tests, FT/IR, UV and GC-MS analysis. Eighty white female albino rats were divided into four equal groups. The first two groups of rats; control normal and control normal saponin-treated groups. The last two groups which were made diabetic by intraperitoneal injection of streptozotocin had one diabetic control and the other diabetic group that got 300mg/kg B.wt. of saponin extract after Thirty-five days after diabetes induction and lasted for six weeks. RESULTS The functional group of saponin extract which established with FT/IR spectroscopy demonstrated the presence of saponin in the extracted materials as shown in the peak of the functional group in relevance to the standard one. The UV spectra revealed that λmax of saponin extract was 282nm which in accordance to the standard saponin. Also, GC-MS analysis indicated that the aglycone part of saponin was methyl esters of octadecanoic acid. Saponin extract significantly decreased serum glucose, α-amylase activity, adiponectin, IL-6, TNF-α concentrations and liver L-MDA. However, serum insulin and liver glycogen levels were significantly increased as compared with the diabetic non-treated groups. The histopathological results supported that saponin extract markedly reduced the degenerative change in β-cells. CONCLUSIONS This study, therefore, depicts that the Egyptian Holothuria thomasi, sea cucumber saponin as a hypoglycemic agent with the potential to normalize aberrant biochemical parameters and preserved the normal histological architecture of the islets cells of pancreatic tissues.
Collapse
|
79
|
Ganeshkumar M, Ponrasu T, Subamekala MK, Janani M, Suguna L. Curcumin loaded on pullulan acetate nanoparticles protects the liver from damage induced by DEN. RSC Adv 2016. [DOI: 10.1039/c5ra18989f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Curcumin loaded nanoparticles protect liver from damage induced by DEN.
Collapse
Affiliation(s)
- Moorthy Ganeshkumar
- Department of Biochemistry
- CSIR-Central Leather Research Institute
- Council of Scientific and Industrial Research
- Chennai 600020
- India
| | - Thangavel Ponrasu
- Department of Biochemistry
- CSIR-Central Leather Research Institute
- Council of Scientific and Industrial Research
- Chennai 600020
- India
| | | | - Murthy Janani
- Department of Biopharmaceutics
- Anna University
- Chennai
- India
| | - Lonchin Suguna
- Department of Biochemistry
- CSIR-Central Leather Research Institute
- Council of Scientific and Industrial Research
- Chennai 600020
- India
| |
Collapse
|
80
|
Mahmood K, Zia KM, Zuber M, Salman M, Anjum MN. Recent developments in curcumin and curcumin based polymeric materials for biomedical applications: A review. Int J Biol Macromol 2015; 81:877-90. [PMID: 26391597 DOI: 10.1016/j.ijbiomac.2015.09.026] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/05/2015] [Accepted: 09/16/2015] [Indexed: 01/15/2023]
Abstract
Turmeric (Curcuma longa) is a popular Indian spice that has been used for centuries in herbal medicines for the treatment of a variety of ailments such as rheumatism, diabetic ulcers, anorexia, cough and sinusitis. Curcumin (diferuloylmethane) is the main curcuminoid present in turmeric and responsible for its yellow color. Curcumin has been shown to possess significant anti-inflammatory, anti-oxidant, anti-carcinogenic, anti-mutagenic, anticoagulant and anti-infective effects. This review summarizes and discusses recently published papers on the key biomedical applications of curcumin based materials. The highlighted studies in the review provide evidence of the ability of curcumin to show the significant vitro antioxidant, diabetic complication, antimicrobial, neuroprotective, anti-cancer activities and detection of hypochlorous acid, wound healing, treatment of major depression, healing of paracentesis, and treatment of carcinoma and optical detection of pyrrole properties. Hydrophobic nature of this polyphenolic compound along with its rapid metabolism, physicochemical and biological instability contribute to its poor bioavailability. To redress these problems several approaches have been proposed like encapsulation of curcumin in liposomes and polymeric micelles, inclusion complex formation with cyclodextrin, formation of polymer-curcumin conjugates, etc.
Collapse
Affiliation(s)
- Kashif Mahmood
- Institute of Chemistry, Government College University, Faisalabad, Pakistan
| | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad, Pakistan.
| | - Mohammad Zuber
- Institute of Chemistry, Government College University, Faisalabad, Pakistan
| | - Mahwish Salman
- Institute of Chemistry, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
81
|
Pal S, Ghosh M, Ghosh S, Bhattacharyya S, Sil PC. Atorvastatin induced hepatic oxidative stress and apoptotic damage via MAPKs, mitochondria, calpain and caspase12 dependent pathways. Food Chem Toxicol 2015; 83:36-47. [PMID: 26051349 DOI: 10.1016/j.fct.2015.05.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 01/05/2023]
Abstract
Atorvastatin (ATO), a 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor, is used widely for the treatment of hypercholesterolemia and hypertriglyceridemia. Application of this drug has now been made somehow limited because of ATO associated several acute and chronic side effects. The present study has been carried out to investigate the dose-dependent hepatic tissue toxicity in ATO induced oxidative impairment and cell death in mice. Administration of ATO enhanced ALT, ALP level, increased reactive oxygen species (ROS) production and altered the pro oxidant-antioxidant status of liver by reducing intracellular GSH level, anti-oxidant enzymes activities and increasing intracellular lipid peroxidation. Our experimental evidence suggests that ATO markedly decreased mitochondrial membrane potential, disturbed the Bcl-2 family protein balance, enhanced cytochrome c release in the cytosol, increased the levels of Apaf1, caspase-9, -3, cleaved PARP protein and ultimately led to apoptotic cell death. Besides, ATO distinctly increased the phosphorylation of p38, JNK, and ERK MAPKs, enhanced Caspase12 and calpain level. Histological studies also support the dose-dependent toxic effect of ATO in these organs pathophysiology. These results reveal that ATO induces hepatic tissue toxicity via MAPKs, mitochondria and ER dependent signaling pathway, in which calcium ions and ROS act as the pivotal mediators of the apoptotic signaling.
Collapse
Affiliation(s)
- Sankhadeep Pal
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Manoranjan Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Shatadal Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sudip Bhattacharyya
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
82
|
Ghosh S, Banerjee S, Sil PC. The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: A recent update. Food Chem Toxicol 2015; 83:111-124. [PMID: 26066364 DOI: 10.1016/j.fct.2015.05.022] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 02/06/2023]
Abstract
The concept of using phytochemicals has ushered in a new revolution in pharmaceuticals. Naturally occurring polyphenols (like curcumin, morin, resveratrol, etc.) have gained importance because of their minimal side effects, low cost and abundance. Curcumin (diferuloylmethane) is a component of turmeric isolated from the rhizome of Curcuma longa. Research for more than two decades has revealed the pleiotropic nature of the biological effects of this molecule. More than 7000 published articles have shed light on the various aspects of curcumin including its antioxidant, hypoglycemic, anti-inflammatory and anti-cancer activities. Apart from these well-known activities, this natural polyphenolic compound also exerts its beneficial effects by modulating different signalling molecules including transcription factors, chemokines, cytokines, tumour suppressor genes, adhesion molecules, microRNAs, etc. Oxidative stress and inflammation play a pivotal role in various diseases like diabetes, cancer, arthritis, Alzheimer's disease and cardiovascular diseases. Curcumin, therefore, could be a therapeutic option for the treatment of these diseases, provided limitations in its oral bioavailability can be overcome. The current review provides an updated overview of the metabolism and mechanism of action of curcumin in various organ pathophysiologies. The review also discusses the potential for multifunctional therapeutic application of curcumin and its recent progress in clinical biology.
Collapse
Affiliation(s)
- Shatadal Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Sharmistha Banerjee
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India.
| |
Collapse
|