51
|
do Rosário Rosa V, Farias Dos Santos AL, Alves da Silva A, Peduti Vicentini Sab M, Germino GH, Barcellos Cardoso F, de Almeida Silva M. Increased soybean tolerance to water deficiency through biostimulant based on fulvic acids and Ascophyllum nodosum (L.) seaweed extract. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:228-243. [PMID: 33218845 DOI: 10.1016/j.plaphy.2020.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 11/05/2020] [Indexed: 05/01/2023]
Abstract
To meet the growing demand for soybean it is necessary to increase crop yield, even in low water availability conditions. To circumvent the negative effects of water deficit, application of biostimulants with anti-stress effect has been adopted, including products based on fulvic acids and Ascophyllum nodosum (L.) seaweed extracts. In this study, we determined which formulation and dosage of a biostimulant is more efficient in promoting the recovery of soybean plants after stress due to water deficit. The experiment was conducted in a greenhouse, in a double-factorial randomized block design with two additional factors, four repetitions and eleven treatments consisting of three biostimulant formulations (F1, F2 and F3), and three dosages (0.25; 0.50 and 1.0 kg ha-1); a control with water deficit and a control without water deficit. Soybean plants were kept at 50% of the pot's water capacity for three days, then rehydrated and submitted to the application of treatments with biostimulant. After two days of recovery, growth, physiological, biochemical and yield parameters were evaluated. All plants that received the application of the biostimulant produced more than the water-stressed control plants. The biostimulant provided higher photosynthetic rates, more efficient mechanisms for dissipating excess energy and higher activities of antioxidant enzymes. Plants treated with biostimulant were more efficient in the recovery of the metabolic activities after rewatering, resulting in increased soybean tolerance to water deficit and reduced yield losses. The best result obtained was through the application of formulation 2 of the biostimulant at a dosage of 0.25 kg ha-1.
Collapse
Affiliation(s)
- Vanessa do Rosário Rosa
- Laboratory of Ecophysiology Applied to Agriculture, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Anna Luiza Farias Dos Santos
- Laboratory of Ecophysiology Applied to Agriculture, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Adinan Alves da Silva
- Laboratory of Ecophysiology and Crop Production, Federal Goianian Institute (IF Goiano), Campus Rio Verde, GO, Brazil.
| | - Mariana Peduti Vicentini Sab
- Laboratory of Ecophysiology Applied to Agriculture, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Gabriel Henrique Germino
- Laboratory of Ecophysiology Applied to Agriculture, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | | | - Marcelo de Almeida Silva
- Laboratory of Ecophysiology Applied to Agriculture, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
52
|
Ma M, Liu Y, Bai C, Yang Y, Sun Z, Liu X, Zhang S, Han X, Yong JWH. The Physiological Functionality of PGR5/PGRL1-Dependent Cyclic Electron Transport in Sustaining Photosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:702196. [PMID: 34305990 PMCID: PMC8294387 DOI: 10.3389/fpls.2021.702196] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/07/2021] [Indexed: 05/07/2023]
Abstract
The cyclic electron transport (CET), after the linear electron transport (LET), is another important electron transport pathway during the light reactions of photosynthesis. The proton gradient regulation 5 (PGR5)/PRG5-like photosynthetic phenotype 1 (PGRL1) and the NADH dehydrogenase-like complex pathways are linked to the CET. Recently, the regulation of CET around photosystem I (PSI) has been recognized as crucial for photosynthesis and plant growth. Here, we summarized the main biochemical processes of the PGR5/PGRL1-dependent CET pathway and its physiological significance in protecting the photosystem II and PSI, ATP/NADPH ratio maintenance, and regulating the transitions between LET and CET in order to optimize photosynthesis when encountering unfavorable conditions. A better understanding of the PGR5/PGRL1-mediated CET during photosynthesis might provide novel strategies for improving crop yield in a world facing more extreme weather events with multiple stresses affecting the plants.
Collapse
Affiliation(s)
- Mingzhu Ma
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yifei Liu
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Yifei Liu, ; Xiaori Han,
| | - Chunming Bai
- National Sorghum Improvement Center, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Yunhong Yang
- Professional Technology Innovation Center of Magnesium Nutrition, Yingkou Magnesite Chemical Ind Group Co., Ltd., Yingkou, China
| | - Zhiyu Sun
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xinyue Liu
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Siwei Zhang
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xiaori Han
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Yifei Liu, ; Xiaori Han,
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
53
|
Divergence of photosynthetic strategies amongst marine diatoms. PLoS One 2020; 15:e0244252. [PMID: 33370327 PMCID: PMC7769462 DOI: 10.1371/journal.pone.0244252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022] Open
Abstract
Marine phytoplankton, and in particular diatoms, are responsible for almost half of all primary production on Earth. Diatom species thrive from polar to tropical waters and across light environments that are highly complex to relatively benign, and so have evolved highly divergent strategies for regulating light capture and utilization. It is increasingly well established that diatoms have achieved such successful ecosystem dominance by regulating excitation energy available for generating photosynthetic energy via highly flexible light harvesting strategies. However, how different light harvesting strategies and downstream pathways for oxygen production and consumption interact to balance excitation pressure remains unknown. We therefore examined the responses of three diatom taxa adapted to inherently different light climates (estuarine Thalassioisira weissflogii, coastal Thalassiosira pseudonana and oceanic Thalassiosira oceanica) during transient shifts from a moderate to high growth irradiance (85 to 1200 μmol photons m-2 s-1). Transient high light exposure caused T. weissflogii to rapidly downregulate PSII with substantial nonphotochemical quenching, protecting PSII from inactivation or damage, and obviating the need for induction of O2 consuming (light-dependent respiration, LDR) pathways. In contrast, T. oceanica retained high excitation pressure on PSII, but with little change in RCII photochemical turnover, thereby requiring moderate repair activity and greater reliance on LDR. T. pseudonana exhibited an intermediate response compared to the other two diatom species, exhibiting some downregulation and inactivation of PSII, but high repair of PSII and induction of reversible PSII nonphotochemical quenching, with some LDR. Together, these data demonstrate a range of strategies for balancing light harvesting and utilization across diatom species, which reflect their adaptation to sustain photosynthesis under environments with inherently different light regimes.
Collapse
|
54
|
Yadav RM, Aslam SM, Madireddi SK, Chouhan N, Subramanyam R. Role of cyclic electron transport mutations pgrl1 and pgr5 in acclimation process to high light in Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2020; 146:247-258. [PMID: 32350701 DOI: 10.1007/s11120-020-00751-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/15/2020] [Indexed: 05/19/2023]
Abstract
Light is crucial for photosynthesis, but the amount of light that exceeds an organism's assimilation efficacy can lead to photo-oxidative damage and even cell death. In Chlamydomonas (C). reinhardtii cyclic electron flow (CEF) is very important for the elicitation of non-photochemical quenching (NPQ) by controlling the acidification of thylakoid lumen. This process requires the cooperation of proton gradient regulation (PGR) proteins, PGRL1 and PGR5. Here, we compared the growth pattern and photosynthetic activity between wild type (137c, t222+) and mutants impaired in CEF (pgrl1 and pgr5) under photoautotrophic and photoheterotrophic conditions. We have observed the discriminative expression of NPQ in the mutants impaired in CEF of pgrl1 and pgr5. The results obtained from the mutants showed reduced cell growth and density, Chl a/b ratio, fluorescence, electron transport rate, and yield of photosystem (PS)II. These mutants have reduced capability to develop a strong NPQ indicating that the role of CEF is very crucial for photoprotection. Moreover, the CEF mutant exhibits increased photosensitivity compared with the wild type. Therefore, we suggest that besides NPQ, the fraction of non-regulated non-photochemical energy loss (NO) also plays a crucial role during high light acclimation despite a low growth rate. This low NPQ rate may be due to less influx of protons coming from the CEF in cases of pgrl1 and pgr5 mutants. These results are discussed in terms of the relative photoprotective benefit, related to the thermal dissipation of excess light in photoautotrophic and photoheterotrophic conditions.
Collapse
Affiliation(s)
- Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, 500046, India
| | - Sabit Mohammad Aslam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, 500046, India
| | - Sai Kiran Madireddi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, 500046, India
| | - Nisha Chouhan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
55
|
Emerging research in plant photosynthesis. Emerg Top Life Sci 2020; 4:137-150. [PMID: 32573736 DOI: 10.1042/etls20200035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022]
Abstract
Photosynthesis involves capturing light energy and, most often, converting it to chemical energy stored as reduced carbon. It is the source of food, fuel, and fiber and there is a resurgent interest in basic research on photosynthesis. Plants make excellent use of visible light energy; leaves are ideally suited to optimize light use by having a large area per amount of material invested and also having leaf angles to optimize light utilization. It is thought that plants do not use green light but in fact they use green light better than blue light under some conditions. Leaves also have mechanisms to protect against excess light and how these work in a stochastic light environment is currently a very active area of current research. The speed at which photosynthesis can begin when leaves are first exposed to light and the speed of induction of protective mechanisms, as well as the speed at which protective mechanisms dissipate when light levels decline, have recently been explored. Research is also focused on reducing wasteful processes such as photorespiration, when oxygen instead of carbon dioxide is used. Some success has been reported in altering the path of carbon in photorespiration but on closer inspection there appears to be unforeseen effects contributing to the good news. The stoichiometry of interaction of light reactions with carbon metabolism is rigid and the time constants vary tremendously presenting large challenges to regulatory mechanisms. Regulatory mechanisms will be the topic of photosynthesis research for some time to come.
Collapse
|
56
|
Cheng X, Fang T, Zhao E, Zheng B, Huang B, An Y, Zhou P. Protective roles of salicylic acid in maintaining integrity and functions of photosynthetic photosystems for alfalfa (Medicago sativa L.) tolerance to aluminum toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:570-578. [PMID: 32846392 DOI: 10.1016/j.plaphy.2020.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Aluminum (Al) can be detrimental to plant growth in areas with Al contamination. The objective of this study was to determine whether salicylic acid (SA) can improve plant tolerance to Al stress by mitigating Al toxicity for chloroplasts and photosynthetic systems in alfalfa (Medicago sativa L.). Plants were treated with Al (100 μM) for 3 d in a hydroponic system. The content of Al increased in leaves treated with Al, resulting in damage and deformation of chloroplasts. In Al-damaged leaves, chloroplast envelopes and starch granules disappeared; the lamellae and stroma lamella were loosely arranged and indistinguishable, and the number of grana was reduced; a large number of small plastoglobules appeared. Foliar spraying of 15 μM SA reduced Al content in roots and leaves and alleviated Al damages in chloroplasts. With 15 μM SA treatments, the chloroplast shape returned to a flat ellipsoid, thylakoids were arranged closely and regularly, chloroplasts had intact starch granules, and small plastoglobules disappeared. SA-treated plants had significantly higher aboveground biomass than the untreated control exposed to Al stress. Photosynthetic index and gene expression analyses demonstrated that SA could alleviate adverse effects of Al toxicity by increasing light capture efficiency, promoting electron transport in the photosynthetic electron transport chain and thylakoid lumen deacidification, and promoting synthesis of aenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). SA played protective roles in maintaining integrity and functions of photosystems in photosynthesis for plant tolerance to Al stress.
Collapse
Affiliation(s)
- Xiaoqing Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tingyu Fang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Enhua Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baogang Zheng
- Zealquest Scientific Technology Co., Ltd., Shanghai, 200062, China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Jersey, NJ, 08901, USA
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 201101, China.
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
57
|
Nikkanen L, Santana Sánchez A, Ermakova M, Rögner M, Cournac L, Allahverdiyeva Y. Functional redundancy between flavodiiron proteins and NDH-1 in Synechocystis sp. PCC 6803. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1460-1476. [PMID: 32394539 DOI: 10.1111/tpj.14812] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 05/09/2023]
Abstract
In oxygenic photosynthetic organisms, excluding angiosperms, flavodiiron proteins (FDPs) catalyze light-dependent reduction of O2 to H2 O. This alleviates electron pressure on the photosynthetic apparatus and protects it from photodamage. In Synechocystis sp. PCC 6803, four FDP isoforms function as hetero-oligomers of Flv1 and Flv3 and/or Flv2 and Flv4. An alternative electron transport pathway mediated by the NAD(P)H dehydrogenase-like complex (NDH-1) also contributes to redox hemostasis and the photoprotection of photosynthesis. Four NDH-1 types have been characterized in cyanobacteria: NDH-11 and NDH-12 , which function in respiration; and NDH-13 and NDH-14 , which function in CO2 uptake. All four types are involved in cyclic electron transport. Along with single FDP mutants (∆flv1 and Δflv3) and the double NDH-1 mutants (∆d1d2, which is deficient in NDH-11,2 and ∆d3d4, which is deficient in NDH-13,4 ), we studied triple mutants lacking one of Flv1 or Flv3, and NDH-11,2 or NDH-13,4 . We show that the presence of either Flv1/3 or NDH-11,2 , but not NDH-13,4 , is indispensable for survival during changes in growth conditions from high CO2 /moderate light to low CO2 /high light. Our results show functional redundancy between FDPs and NDH-11,2 under the studied conditions. We suggest that ferredoxin probably functions as a primary electron donor to both Flv1/3 and NDH-11,2 , allowing their functions to be dynamically coordinated for efficient oxidation of photosystem I and for photoprotection under variable CO2 and light availability.
Collapse
Affiliation(s)
- Lauri Nikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Anita Santana Sánchez
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Maria Ermakova
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Matthias Rögner
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Laurent Cournac
- Eco&Sols, University of Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
58
|
Laughlin TG, Savage DF, Davies KM. Recent advances on the structure and function of NDH-1: The complex I of oxygenic photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148254. [PMID: 32645407 DOI: 10.1016/j.bbabio.2020.148254] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/07/2020] [Accepted: 06/22/2020] [Indexed: 12/29/2022]
Abstract
Photosynthetic NADH dehydrogenase-like complex type-1 (a.k.a, NDH, NDH-1, or NDH-1L) is a multi-subunit, membrane-bound oxidoreductase related to the respiratory complex I. Although originally discovered 30 years ago, a number of recent advances have revealed significant insight into the structure, function, and physiology of NDH-1. Here, we highlight progress in understanding the function of NDH-1 in the photosynthetic light reactions of both cyanobacteria and chloroplasts from biochemical and structural perspectives. We further examine the cyanobacterial-specific forms of NDH-1 that possess vectorial carbonic anhydrase (vCA) activity and function in the CO2-concentrating mechanism (CCM). We compare the proposed mechanism for the cyanobacterial NDH-1 vCA-activity to that of the DAB (DABs accumulates bicarbonate) complex, another putative vCA. Finally, we discuss both new and remaining questions pertaining to the mechanisms of NDH-1 complexes in light of these recent advances.
Collapse
Affiliation(s)
- Thomas G Laughlin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David F Savage
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Karen M Davies
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
59
|
Saccon F, Giovagnetti V, Shukla MK, Ruban AV. Rapid regulation of photosynthetic light harvesting in the absence of minor antenna and reaction centre complexes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3626-3637. [PMID: 32149343 PMCID: PMC7307847 DOI: 10.1093/jxb/eraa126] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/02/2020] [Indexed: 05/25/2023]
Abstract
Plants are subject to dramatic fluctuations in the intensity of sunlight throughout the day. When the photosynthetic machinery is exposed to high light, photons are absorbed in excess, potentially leading to oxidative damage of its delicate membrane components. A photoprotective molecular process called non-photochemical quenching (NPQ) is the fastest response carried out in the thylakoid membranes to harmlessly dissipate excess light energy. Despite having been intensely studied, the site and mechanism of this essential regulatory process are still debated. Here, we show that the main NPQ component called energy-dependent quenching (qE) is present in plants with photosynthetic membranes largely enriched in the major trimeric light-harvesting complex (LHC) II, while being deprived of all minor LHCs and most photosystem core proteins. This fast and reversible quenching depends upon thylakoid lumen acidification (ΔpH). Enhancing ΔpH amplifies the extent of the quenching and restores qE in the membranes lacking PSII subunit S protein (PsbS), whereas the carotenoid zeaxanthin modulates the kinetics and amplitude of the quenching. These findings highlight the self-regulatory properties of the photosynthetic light-harvesting membranes in vivo, where the ability to switch reversibly between the harvesting and dissipative states is an intrinsic property of the major LHCII.
Collapse
Affiliation(s)
- Francesco Saccon
- Queen Mary University of London, School of Biological and Chemical Sciences, London, UK
| | - Vasco Giovagnetti
- Queen Mary University of London, School of Biological and Chemical Sciences, London, UK
| | - Mahendra K Shukla
- Queen Mary University of London, School of Biological and Chemical Sciences, London, UK
| | - Alexander V Ruban
- Queen Mary University of London, School of Biological and Chemical Sciences, London, UK
| |
Collapse
|
60
|
Alipour S, Wojciechowska N, Stolarska E, Bilska K, Kalemba EM. NAD(P)-Driven Redox Status Contributes to Desiccation Tolerance in Acer seeds. PLANT & CELL PHYSIOLOGY 2020; 61:1158-1167. [PMID: 32267948 DOI: 10.1093/pcp/pcaa044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Desiccation tolerance is a developmental program enabling seed survival in a dry state and is common in seeds categorized as orthodox. We focused on NAD and its phosphorylated form (NADP) because their continual switching between reduced (NAD(P)H) and oxidized (NAD(P)+) forms is involved in the modulation of redox signaling and the determination of the reducing power and further antioxidant responses. Norway maple and sycamore seeds representing the orthodox and recalcitrant categories, respectively, were used as models in a comparison of responses to water loss. The process of desiccation up to 10% water content (WC) was monitored in Norway maple seeds, while dehydration up to 30% WC was monitored in desiccation-sensitive sycamore seeds. Norway maple and sycamore seeds, particularly their embryonic axes, exhibited a distinct redox status during dehydration and desiccation. High NADPH levels, NAD+ accumulation, low and stable NAD(P)H/NAD(P)+ ratios expressed as reducing power and high NADPH-dependent enzyme activity were reported in Norway maple seeds and were considered attributes of orthodox-type seeds. The contrasting results of sycamore seeds contributed to their low antioxidant capacity and high sensitivity to desiccation. NADPH deficiency, low NADPH-dependent enzyme activity and lack of NAD+ accumulation were primary features of sycamore seeds, with implications for their NAD(P)H/NAD(P)+ ratios and reducing power and with effects on many seed traits. Thus, we propose that the distinct levels of pyridine nucleotides and their redox status contribute to orthodox and recalcitrant phenotype differentiation in seeds by affecting cellular redox signaling, metabolism and the antioxidant system.
Collapse
Affiliation(s)
- Shirin Alipour
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
- Department of Forestry, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran
| | - Natalia Wojciechowska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Ewelina Stolarska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Karolina Bilska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Ewa Marzena Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| |
Collapse
|
61
|
Tan Y, Zhang QS, Zhao W, Liu Z, Ma MY, Zhong MY, Wang MX. The highly efficient NDH-dependent photosystem I cyclic electron flow pathway in the marine angiosperm Zostera marina. PHOTOSYNTHESIS RESEARCH 2020; 144:49-62. [PMID: 32152819 DOI: 10.1007/s11120-020-00732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 03/03/2020] [Indexed: 05/13/2023]
Abstract
Zostera marina, a fully submerged marine angiosperm with a unique evolutionary history associated with its terrestrial origin, has distinct photochemical characteristics caused by its oxygen-evolving complex (OEC) being prone to deactivation in visible light. Based on the present phylogenetic analysis, the chloroplast NADPH dehydrogenase-like (NDH) complex was found to be completed in of Z. marina, unlike other marine plants, suggesting its crucial role. Thus, the responses of electron transport to irradiation were investigated through multiple chlorophyll fluorescence techniques and Western blot analysis. Moreover, the respective contribution of the two photosystem I cyclic electron flow (PSI-CEF) pathways to the generation of trans-thylakoid proton gradient (∆pH) was also examined using inhibitors. The contributions of the two PSI-CEF pathways to ∆pH were similar; furthermore, there was a trade-off between the two pathways under excess irradiation: the PGR5/L1-dependent PSI-CEF decreased gradually following its activation during the initial illumination, while NDH-dependent PSI-CEF was activated gradually with exposure duration. OEC inactivation was continuously under excess irradiation, which exhibits a positive linear correlation with the activation of NDH-dependent PSI-CEF. We suggest that PGR5/L1-dependent PSI-CEF was preferentially activated to handle the excess electron caused by the operation of OEC during the initial illumination. Subsequently, the increasing OEC inactivation with exposure duration resulted in a deficit of electrons. Limited electrons from PSI might preferentially synthesize NADPH, which could support the function of NDH-dependent PSI-CEF to generate ∆pH and ATP via reducing ferredoxin, thereby maintaining OEC stability.
Collapse
Affiliation(s)
- Ying Tan
- Ocean School, Yantai University, Yantai, 264005, People's Republic of China
| | - Quan Sheng Zhang
- Ocean School, Yantai University, Yantai, 264005, People's Republic of China.
| | - Wei Zhao
- Ocean School, Yantai University, Yantai, 264005, People's Republic of China
| | - Zhe Liu
- Ocean School, Yantai University, Yantai, 264005, People's Republic of China
| | - Ming Yu Ma
- Ocean School, Yantai University, Yantai, 264005, People's Republic of China
| | - Ming Yu Zhong
- Ocean School, Yantai University, Yantai, 264005, People's Republic of China
| | - Meng Xin Wang
- Ocean School, Yantai University, Yantai, 264005, People's Republic of China
| |
Collapse
|
62
|
Yang YJ, Zhang SB, Wang JH, Huang W. The decline in photosynthetic rate upon transfer from high to low light is linked to the slow kinetics of chloroplast ATP synthase in Bletilla striata. PHOTOSYNTHESIS RESEARCH 2020; 144:13-21. [PMID: 32166520 DOI: 10.1007/s11120-020-00725-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Upon a sudden transition from high to low light, the rate of CO2 assimilation (AN) in some plants first decreases to a low level before gradually becoming stable. However, the underlying mechanisms remain controversial. The activity of chloroplast ATP synthase (gH+) is usually depressed under high light when compared with low light. Therefore, we hypothesize that upon a sudden transfer from high to low light, the relatively low gH+ restricts ATP synthesis and thus causes a reduction in AN. To test this hypothesis, we measured gas exchange, chlorophyll fluorescence, P700 redox state, and electrochromic shift signals in Bletilla striata (Orchidaceae). After the transition from saturating to lower irradiance, AN and ETRII decreased first to a low level and then gradually increased to a stable value. Within the first seconds after transfer from high to low light, gH+ was maintained at low levels. During further exposure to low light, gH+ gradually increased to a stable value. Interestingly, a tight positive relationship was found between gH+ and ETRII. These results suggested that upon a sudden transition from high to low light, AN was restricted by gH+ at the step of ATP synthesis. Taken together, we propose that the decline in AN upon sudden transfer from high to low light is linked to the slow kinetics of chloroplast ATP synthase.
Collapse
Affiliation(s)
- Ying-Jie Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ji-Hua Wang
- Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China.
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
63
|
Molecular Mechanism of Oxidation of P700 and Suppression of ROS Production in Photosystem I in Response to Electron-Sink Limitations in C3 Plants. Antioxidants (Basel) 2020; 9:antiox9030230. [PMID: 32168828 PMCID: PMC7139980 DOI: 10.3390/antiox9030230] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 02/01/2023] Open
Abstract
Photosynthesis fixes CO2 and converts it to sugar, using chemical-energy compounds of both NADPH and ATP, which are produced in the photosynthetic electron transport system. The photosynthetic electron transport system absorbs photon energy to drive electron flow from Photosystem II (PSII) to Photosystem I (PSI). That is, both PSII and PSI are full of electrons. O2 is easily reduced to a superoxide radical (O2-) at the reducing side, i.e., the acceptor side, of PSI, which is the main production site of reactive oxygen species (ROS) in photosynthetic organisms. ROS-dependent inactivation of PSI in vivo has been reported, where the electrons are accumulated at the acceptor side of PSI by artificial treatments: exposure to low temperature and repetitive short-pulse (rSP) illumination treatment, and the accumulated electrons flow to O2, producing ROS. Recently, my group found that the redox state of the reaction center of chlorophyll P700 in PSI regulates the production of ROS: P700 oxidation suppresses the production of O2- and prevents PSI inactivation. This is why P700 in PSI is oxidized upon the exposure of photosynthesis organisms to higher light intensity and/or low CO2 conditions, where photosynthesis efficiency decreases. In this study, I introduce a new molecular mechanism for the oxidation of P700 in PSI and suppression of ROS production from the robust relationship between the light and dark reactions of photosynthesis. The accumulated protons in the lumenal space of the thylakoid membrane and the accumulated electrons in the plastoquinone (PQ) pool drive the rate-determining step of the P700 photo-oxidation reduction cycle in PSI from the photo-excited P700 oxidation to the reduction of the oxidized P700, thereby enhancing P700 oxidation.
Collapse
|
64
|
Batista-Silva W, da Fonseca-Pereira P, Martins AO, Zsögön A, Nunes-Nesi A, Araújo WL. Engineering Improved Photosynthesis in the Era of Synthetic Biology. PLANT COMMUNICATIONS 2020; 1:100032. [PMID: 33367233 PMCID: PMC7747996 DOI: 10.1016/j.xplc.2020.100032] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/20/2020] [Accepted: 02/08/2020] [Indexed: 05/08/2023]
Abstract
Much attention has been given to the enhancement of photosynthesis as a strategy for the optimization of crop productivity. As traditional plant breeding is most likely reaching a plateau, there is a timely need to accelerate improvements in photosynthetic efficiency by means of novel tools and biotechnological solutions. The emerging field of synthetic biology offers the potential for building completely novel pathways in predictable directions and, thus, addresses the global requirements for higher yields expected to occur in the 21st century. Here, we discuss recent advances and current challenges of engineering improved photosynthesis in the era of synthetic biology toward optimized utilization of solar energy and carbon sources to optimize the production of food, fiber, and fuel.
Collapse
Affiliation(s)
- Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Paula da Fonseca-Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Wagner L. Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| |
Collapse
|
65
|
Growth under Fluctuating Light Reveals Large Trait Variation in a Panel of Arabidopsis Accessions. PLANTS 2020; 9:plants9030319. [PMID: 32138306 PMCID: PMC7154841 DOI: 10.3390/plants9030319] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/18/2020] [Indexed: 11/21/2022]
Abstract
The oxidation of P700 in photosystem I (PSI) is a robust mechanism that suppresses the production of reactive oxygen species. We researched the contribution of photorespiration to the oxidation of P700 in wheat leaves. We analyzed the effects of changes in partial pressures of CO2 and O2 on photosynthetic parameters. The electron flux in photosynthetic linear electron flow (LEF) exhibited a positive linear relationship with an origin of zero against the dissipation rate (vH+) of electrochromic shift (ECS; ΔpH across thylakoid membrane), indicating that cyclic electron flow around PSI did not contribute to H+ usage in photosynthesis/photorespiration. The vH+ showed a positive linear relationship with an origin of zero against the H+ consumption rates in photosynthesis/photorespiration (JgH+). These two linear relationships show that the electron flow in LEF is very efficiently coupled with H+ usage in photosynthesis/photorespiration. Lowering the intercellular partial pressure of CO2 enhanced the oxidation of P700 with the suppression of LEF. Under photorespiratory conditions, the oxidation of P700 and the reduction of the plastoquinone pool were stimulated with a decrease in JgH+, compared to non-photorespiratory conditions. These results indicate that the reduction-induced suppression of electron flow (RISE) suppresses the reduction of oxidized P700 in PSI under photorespiratory conditions. Furthermore, under photorespiratory conditions, ECS was larger and H+ conductance was lower against JgH+ than those under non-photorespiratory conditions. These results indicate that photorespiration enhances RISE and ΔpH formation by lowering H+ conductance, both of which contribute to keeping P700 in a highly oxidized state.
Collapse
|
66
|
Walker BJ, Kramer DM, Fisher N, Fu X. Flexibility in the Energy Balancing Network of Photosynthesis Enables Safe Operation under Changing Environmental Conditions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E301. [PMID: 32121540 PMCID: PMC7154899 DOI: 10.3390/plants9030301] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022]
Abstract
Given their ability to harness chemical energy from the sun and generate the organic compounds necessary for life, photosynthetic organisms have the unique capacity to act simultaneously as their own power and manufacturing plant. This dual capacity presents many unique challenges, chiefly that energy supply must be perfectly balanced with energy demand to prevent photodamage and allow for optimal growth. From this perspective, we discuss the energy balancing network using recent studies and a quantitative framework for calculating metabolic ATP and NAD(P)H demand using measured leaf gas exchange and assumptions of metabolic demand. We focus on exploring how the energy balancing network itself is structured to allow safe and flexible energy supply. We discuss when the energy balancing network appears to operate optimally and when it favors high capacity instead. We also present the hypothesis that the energy balancing network itself can adapt over longer time scales to a given metabolic demand and how metabolism itself may participate in this energy balancing.
Collapse
Affiliation(s)
- Berkley J. Walker
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA; (D.M.K.); (N.F.); (X.F.)
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - David M. Kramer
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA; (D.M.K.); (N.F.); (X.F.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Nicholas Fisher
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA; (D.M.K.); (N.F.); (X.F.)
| | - Xinyu Fu
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA; (D.M.K.); (N.F.); (X.F.)
| |
Collapse
|
67
|
Davis GA, Kramer DM. Optimization of ATP Synthase c-Rings for Oxygenic Photosynthesis. FRONTIERS IN PLANT SCIENCE 2020; 10:1778. [PMID: 32082344 PMCID: PMC7003800 DOI: 10.3389/fpls.2019.01778] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 05/10/2023]
Abstract
The conversion of sunlight into useable cellular energy occurs via the proton-coupled electron transfer reactions of photosynthesis. Light is absorbed by photosynthetic pigments and transferred to photochemical reaction centers to initiate electron and proton transfer reactions to store energy in a redox gradient and an electrochemical proton gradient (proton motive force, pmf), composed of a concentration gradient (ΔpH) and an electric field (Δψ), which drives the synthesis of ATP through the thylakoid FoF1-ATP synthase. Although ATP synthase structure and function are conserved across biological kingdoms, the number of membrane-embedded ion-binding c subunits varies between organisms, ranging from 8 to 17, theoretically altering the H+/ATP ratio for different ATP synthase complexes, with profound implications for the bioenergetic processes of cellular metabolism. Of the known c-ring stoichiometries, photosynthetic c-rings are among the largest identified stoichiometries, and it has been proposed that decreasing the c-stoichiometry could increase the energy conversion efficiency of photosynthesis. Indeed, there is strong evidence that the high H+/ATP of the chloroplast ATP synthase results in a low ATP/nicotinamide adenine dinucleotide phosphate (NADPH) ratio produced by photosynthetic linear electron flow, requiring secondary processes such as cyclic electron flow to support downstream metabolism. We hypothesize that the larger c subunit stoichiometry observed in photosynthetic ATP synthases was selected for because it allows the thylakoid to maintain pmf in a range where ATP synthesis is supported, but avoids excess Δψ and ΔpH, both of which can lead to production of reactive oxygen species and subsequent photodamage. Numerical kinetic simulations of the energetics of chloroplast photosynthetic reactions with altered c-ring size predicts the energy storage of pmf and its effects on the photochemical reaction centers strongly support this hypothesis, suggesting that, despite the low efficiency and suboptimal ATP/NADPH ratio, a high H+/ATP is favored to avoid photodamage. This has important implications for the evolution and regulation of photosynthesis as well as for synthetic biology efforts to alter photosynthetic efficiency by engineering the ATP synthase.
Collapse
Affiliation(s)
- Geoffry A. Davis
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - David M. Kramer
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
68
|
Wang F, Yan J, Ahammed GJ, Wang X, Bu X, Xiang H, Li Y, Lu J, Liu Y, Qi H, Qi M, Li T. PGR5/PGRL1 and NDH Mediate Far-Red Light-Induced Photoprotection in Response to Chilling Stress in Tomato. FRONTIERS IN PLANT SCIENCE 2020; 11:669. [PMID: 32547581 PMCID: PMC7270563 DOI: 10.3389/fpls.2020.00669] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 04/29/2020] [Indexed: 05/19/2023]
Abstract
Plants experience low ambient temperature and low red to far-red ratios (L-R/FR) of light due to vegetative shading and longer twilight durations in cool seasons. Low temperature induce photoinhibition through inactivation of the photosynthetic apparatus, however, the role of light quality on photoprotection during cold stress remains poorly understood. Here, we report that L-R/FR significantly prevents the overreduction of the entire intersystem electron transfer chain and the limitation of photosystem I (PSI) acceptor side, eventually alleviating the cold-induced photoinhibition. During cold stress, L-R/FR activated cyclic electron flow (CEF), enhanced protonation of PSII subunit S (PsbS) and de-epoxidation state of the xanthophyll cycle, and promoted energy-dependent quenching (qE) component of non-photochemical quenching (NPQ), enzyme activity of Foyer-Halliwell-Asada cycle and D1 proteins accumulation. However, L-R/FR -induced photoprotection pathways were compromised in tomato PROTON GRADIENT REGULATION5 (PGR5) and PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1A (PGRL1A) co-silenced plants and NADH DEHYDROGENASE-LIKE COMPLEX M (NDHM) -silenced plants during cold stress. Our results demonstrate that both PGR5/PGRL1- and NDH-dependent CEF mediate L-R/FR -induced cold tolerance by enhancing the thermal dissipation and the repair of photodamaged PSII, thereby mitigating the overreduction of electron carriers and the accumulation of reactive oxygen species. The study indicates that there is an anterograde link between photoreception and photoprotection in tomato plants during cold stress.
Collapse
Affiliation(s)
- Feng Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, China
- *Correspondence: Feng Wang, ;
| | - Jiarong Yan
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang, China
| | - Xiujie Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xin Bu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hengzuo Xiang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yanbing Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jiazhi Lu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yufeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, China
- Tianlai Li,
| |
Collapse
|
69
|
Yang YJ, Ding XX, Huang W. Stimulation of cyclic electron flow around photosystem I upon a sudden transition from low to high light in two angiosperms Arabidopsis thaliana and Bletilla striata. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110166. [PMID: 31481226 DOI: 10.1016/j.plantsci.2019.110166] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/20/2019] [Accepted: 06/06/2019] [Indexed: 06/10/2023]
Abstract
In angiosperms, cyclic electron flow (CEF) around photosystem I (PSI) is more important for photoprotection under fluctuating light than under constant light. However, the underlying mechanism is not well known. In the present study, we measured the CEF activity, P700 redox state and electrochromic shift signal upon a sudden transition from low to high light in wild-type plants of Arabidopsis thaliana and Bletilla striata (Orchidaceae). Within the first 20 s after transition from low to high light, P700 was highly reduced in both species, which was accompanied with a sufficient proton gradient (ΔpH) across the thylakoid membranes. Meanwhile, the level of CEF activation was elevated. After transition from low to high light for 60 s, the plants generated an optimal ΔpH. Under such condition, PSI was highly oxidized and the level of CEF activation decreased to the steady state. Furthermore, the CEF activation was positively correlated to the P700 reduction ratio. These results indicated that upon a sudden transition from low to high light, the insufficient ΔpH led to the over-reduction of PSI electron carriers, which in turn stimulated the CEF around PSI. This transient stimulation of CEF not only favored the rapid ΔpH formation but also accepted electrons from PSI, thus protecting PSI at donor and acceptor sides. These findings provide new insights into the important role of CEF in regulation of photosynthesis under fluctuating light.
Collapse
Affiliation(s)
- Ying-Jie Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Xi Ding
- Kunming Forest Resources Administration, Kunming, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|
70
|
Gul MM, Ahmad KS. Bioelectrochemical systems: Sustainable bio-energy powerhouses. Biosens Bioelectron 2019; 142:111576. [DOI: 10.1016/j.bios.2019.111576] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 01/08/2023]
|
71
|
Yang YJ, Zhang SB, Wang JH, Huang W. Photosynthetic regulation under fluctuating light in field-grown Cerasus cerasoides: A comparison of young and mature leaves. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148073. [PMID: 31473302 DOI: 10.1016/j.bbabio.2019.148073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 11/15/2022]
Abstract
Photosystem I (PSI) is a potential target of photoinhibition under fluctuating light. However, photosynthetic regulation under fluctuating light in field-grown plants is little known. Furthermore, it is unclear how young leaves protect PSI against fluctuating light under natural field conditions. In the present study, we examined chlorophyll fluorescence, P700 redox state and the electrochromic shift signal in the young and mature leaves of field-grown Cerasus cerasoides (Rosaceae). Within the first seconds after any increase in light intensity, young leaves showed higher proton gradient (ΔpH) across the thylakoid membranes than the mature leaves, preventing over-reduction of PSI in the young leaves. As a result, PSI was more tolerant to fluctuating light in the young leaves than in the mature leaves. Interestingly, after transition from low to high light, the activity of cyclic electron flow (CEF) in young leaves increased first to a high level and then decreased to a stable value, while this rapid stimulation of CEF was not observed in the mature leaves. Furthermore, the over-reduction of PSI significantly stimulated CEF in the young leaves but not in the mature leaves. Taken together, within the first seconds after any increase in illumination, the stimulation of CEF favors the rapid lumen acidification and optimizes the PSI redox state in the young leaves, protecting PSI against photoinhibition under fluctuating light in field-grown plants.
Collapse
Affiliation(s)
- Ying-Jie Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ji-Hua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China.
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
72
|
Figueroa FL, Celis-Plá PS, Martínez B, Korbee N, Trilla A, Arenas F. Yield losses and electron transport rate as indicators of thermal stress in Fucus serratus (Ochrophyta). ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
73
|
Hashida SN, Kawai-Yamada M. Inter-Organelle NAD Metabolism Underpinning Light Responsive NADP Dynamics in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:960. [PMID: 31404160 PMCID: PMC6676473 DOI: 10.3389/fpls.2019.00960] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/09/2019] [Indexed: 05/24/2023]
Abstract
Upon illumination, photosystem I in chloroplasts catalyzes light-driven electron transport from plastocyanin to ferredoxin, followed by the reduction of NADP+ to NADPH by ferredoxin:NADP+ reductase for CO2 fixation. At the beginning of photosynthesis, NADP+ supply control is dominated by de novo NADP+ synthesis rather than being recycled from the Calvin cycle. Importantly, ferredoxin distributes electrons to NADP+ as well as to thioredoxins for light-dependent regulatory mechanisms, to cyclic electron flow for more adenosine triphosphate (ATP) production, and to several metabolites for reductive reactions. We previously demonstrated that the NADP+ synthesis activity and the amount of the NADP pool size, namely the sum of NADP+ and NADPH, varies depending on the light conditions and the ferredoxin-thioredoxin system. In addition, the regulatory mechanism of cytoplasmic NAD+ supply is also involved in the chloroplastic NADP+ supply control because NAD+ is an essential precursor for NADP+ synthesis. In this mini-review, we summarize the most recent advances on our understanding of the regulatory mechanisms of NADP+ production, focusing on the interactions, crosstalk, and co-regulation between chloroplasts and the cytoplasm at the level of NAD+ metabolism and molecular transport.
Collapse
Affiliation(s)
- Shin-nosuke Hashida
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
74
|
Nitric Oxide Increases the Physiological and Biochemical Stability of Soybean Plants under High Temperature. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9080412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Thermal stress reduces plant growth and development, resulting in considerable economic losses in crops such as soybeans. Nitric oxide (NO) in plants is associated with tolerance to various abiotic stresses. Nevertheless, there are few studies of the range of observed effects of NO in modulating physiological and metabolic functions in soybean plants under high temperature. In the present study, we investigated the effects of sodium nitroprusside (SNP, NO donor), on anatomical, physiological, biochemical, and metabolic processes of soybean plants exposed to high temperature. Soybean plants were grown in soil: sand (2:1) substrate in acclimatized growth chambers. At developmental V3 stage, plants were exposed to two temperatures (25 °C and 40 °C) and SNP (0 and 100 μM), in a randomized block experimental design, with five replicates. After six days, we quantified NO concentration, leaf anatomy, gas exchange, chlorophyll a fluorescence, photosynthetic pigments, lipid peroxidation, antioxidant enzyme activity, and metabolite profiles. Higher NO concentration in soybean plants exposed to high temperature and SNP showed increased effective quantum yields of photosystem II (PSII) and photochemical dissipation, thereby maintaining the photosynthetic rate. Under high temperature, NO also promoted greater activity of ascorbate peroxidase and peroxidase activity, avoiding lipid peroxidation of cell membranes, in addition to regulating amino acid and organic compound levels. These results suggest that NO prevented damage caused by high temperature in soybean plants, illustrating the potential to mitigate thermal stress in cultivated plants.
Collapse
|
75
|
Johnson MP, Wientjes E. The relevance of dynamic thylakoid organisation to photosynthetic regulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148039. [PMID: 31228404 DOI: 10.1016/j.bbabio.2019.06.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 12/11/2022]
Abstract
The higher plant chloroplast thylakoid membrane system performs the light-dependent reactions of photosynthesis. These provide the ATP and NADPH required for the fixation of CO2 into biomass by the Calvin-Benson cycle and a range of other metabolic reactions in the stroma. Land plants are frequently challenged by fluctuations in their environment, such as light, nutrient and water availability, which can create a mismatch between the amounts of ATP and NADPH produced and the amounts required by the downstream metabolism. Left unchecked, such imbalances can lead to the production of reactive oxygen species that damage the plant and harm productivity. Fortunately, plants have evolved a complex range of regulatory processes to avoid or minimize such deleterious effects by controlling the efficiency of light harvesting and electron transfer in the thylakoid membrane. Generally the regulation of the light reactions has been studied and conceptualised at the microscopic level of protein-protein and protein-ligand interactions, however in recent years dynamic changes in the thylakoid macrostructure itself have been recognised to play a significant role in regulating light harvesting and electron transfer. Here we review the evidence for the involvement of macrostructural changes in photosynthetic regulation and review the techniques that brought this evidence to light.
Collapse
Affiliation(s)
- Matthew P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom.
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
76
|
Doltchinkova V, Andreeva T, Georgieva K, Mihailova G, Balashev K. Desiccation-induced alterations in surface topography of thylakoids from resurrection plant Haberlea rhodopensis studied by atomic force microscopy, electrokinetic and optical measurements. PHYSIOLOGIA PLANTARUM 2019; 166:585-595. [PMID: 30043985 DOI: 10.1111/ppl.12807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
With their ability to survive complete desiccation, resurrection plants are a suitable model system for studying the mechanisms of drought tolerance. In the present study, we investigated desiccation-induced alterations in surface topography of thylakoids isolated from well-hydrated, moderately dehydrated, severely desiccated and rehydrated Haberlea rhodopensis plants by means of atomic force microscopy (AFM), electrokinetic and optical measurements. According to our knowledge, so far, there were no reports on the characterization of surface topography and polydispersity of thylakoid membranes from resurrection plants using AFM and dynamic light scattering. To study the physicochemical properties of thylakoids from well-hydrated H. rhodopensis plants, we used spinach thylakoids for comparison as a classical model from higher plants. The thylakoids from well-hydrated H. rhodopensis had a grainy surface, significantly different from the well-structured spinach thylakoids with distinct grana and lamella, they had twice smaller cross-sectional area and were 1.5 times less voluminous than that of spinach. Significant differences in their physicochemical properties were observed. The dehydration and subsequent rehydration of plants affected the size, shape, morphology, roughness and therefore the structure of the studied thylakoids. Drought resulted in significant enhancement of negative charges on the outer surface of thylakoid membranes which correlated with the increased roughness of thylakoid surface. This enhancement in surface charge density could be due to the partial unstacking of thylakoids exposing more negatively charged groups from protein complexes on the membrane surface that prevent from possible aggregation upon drought stress.
Collapse
Affiliation(s)
- Virjinia Doltchinkova
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria
| | - Tonya Andreeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Katya Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Gergana Mihailova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Konstantin Balashev
- Laboratory of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry and Pharmacia, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria
| |
Collapse
|
77
|
Benkov MA, Yatsenko AM, Tikhonov AN. Light acclimation of shade-tolerant and sun-resistant Tradescantia species: photochemical activity of PSII and its sensitivity to heat treatment. PHOTOSYNTHESIS RESEARCH 2019; 139:203-214. [PMID: 29926255 DOI: 10.1007/s11120-018-0535-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
In this work, we have compared photosynthetic characteristics of photosystem II (PSII) in Tradescantia leaves of two contrasting ecotypes grown under the low light (LL) and high light (HL) regimes during their entire growth period. Plants of the same genus, T. fluminensis (shade-tolerant) and T. sillamontana (sun-resistant), were cultivated at 50-125 µmol photons m-2 s-1 (LL) or at 875-1000 µmol photons m-2 s-1 (HL). Analyses of intrinsic PSII efficiency was based on measurements of fast chlorophyll (Chl) a fluorescence kinetics (the OJIP test). The fluorescence parameters Fv/Fm (variable fluorescence) and F0 (the initial level of fluorescence) in dark-adapted leaves were used to quantify the photochemical properties of PSII. Plants of different ecotypes showed different sustainability with respect to changes in the environmental light intensity and temperature treatment. The sun-resistant species T. sillamontana revealed the tolerance to variations in irradiation intensity, demonstrating constancy of maximum quantum efficiency of PSII upon variations of the growth light. In contrast to T. sillamontana, facultative shade species T. fluminensis demonstrated variability of PSII photochemical activity, depending on the growth light intensity. The susceptibility of T. fluminensis to solar stress was documented by a decrease in Fv/Fm and a rise of F0 during the long-term exposition of T. fluminensis to HL, indicating the loss of photochemical activity of PSII. The short-term (10 min) heat treatment of leaf cuttings caused inactivation of PSII. The temperature-dependent heating effects were different in T. fluminensis and T. sillamontana. Sun-resistant plants T. sillamontana acclimated to LL and HL displayed the same plots of Fv/Fm versus the treatment temperature (t), demonstrating a decrease in Fv/Fm at t ≥ 45 °C. The leaves of shadow-tolerant species T. fluminensis grown under the LL and HL conditions revealed different sensitivities to heat treatment. Plants grown under the solar stress conditions (HL) demonstrated a gradual decline of Fv/Fm at lower heating temperatures (t ≥ 25 °C), indicating the "fragility" of their PSII as compared to T. fluminensis grown at LL. Different responses of sun and shadow species of Tradescantia to growth light and heat treatment are discussed in the context of their biochemical and ecophysiological properties.
Collapse
Affiliation(s)
- Michael A Benkov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Anton M Yatsenko
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexander N Tikhonov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
78
|
Éva C, Oszvald M, Tamás L. Current and possible approaches for improving photosynthetic efficiency. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:433-440. [PMID: 30824023 DOI: 10.1016/j.plantsci.2018.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/09/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
One of the most important tasks laying ahead today's biotechnology is to improve crop productivity with the aim of meeting increased food and energy demands of humankind. Plant productivity depends on many genetic factors, including life cycle, harvest index, stress tolerance and photosynthetic activity. Many approaches were already tested or suggested to improve either. Limitations of photosynthesis have also been uncovered and efforts been taken to increase its efficiency. Examples include decreasing photosynthetic antennae size, increasing the photosynthetically available light spectrum, countering oxygenase activity of Rubisco by implementing C4 photosynthesis to C3 plants and altering source to sink transport of metabolites. A natural and effective photosynthetic adaptation, the sugar alcohol metabolism got however remarkably little attention in the last years, despite being comparably efficient as C4, and can be considered easier to introduce to new species. We also propose root to shoot carbon-dioxide transport as a means to improve photosynthetic performance and drought tolerance at the same time. Different suggestions and successful examples are covered here for improving plant photosynthesis as well as novel perspectives are presented for future research.
Collapse
Affiliation(s)
- Csaba Éva
- Applied Genomics Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár 2462, Hungary.
| | - Mária Oszvald
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - László Tamás
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Budapest 1117, Hungary
| |
Collapse
|
79
|
Ptushenko VV, Zhigalova TV, Avercheva OV, Tikhonov AN. Three phases of energy-dependent induction of [Formula: see text] and Chl a fluorescence in Tradescantia fluminensis leaves. PHOTOSYNTHESIS RESEARCH 2019. [PMID: 29516232 DOI: 10.1007/s11120-018-0494-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In plants, the short-term regulation (STR, seconds to minute time scale) of photosynthetic apparatus is associated with the energy-dependent control in the chloroplast electron transport, the distribution of light energy between photosystems (PS) II and I, activation/deactivation of the Calvin-Benson cycle (CBC) enzymes, and relocation of chloroplasts within the plant cell. In this work, using a dual-PAM technique for measuring the time-courses of P700 photooxidation and Chl a fluorescence, we have investigated the STR events in Tradescantia fluminensis leaves. The comparison of Chl a fluorescence and [Formula: see text] induction allowed us to investigate the contribution of the trans-thylakoid pH difference (ΔpH) to the STR events. Two parameters were used as the indicators of ΔpH generation: pH-dependent component of non-photochemical quenching of Chl a fluorescence, and pHin-dependent rate of electron transfer from plastoquinol (PQH2) to [Formula: see text] (via the Cyt b6f complex and plastocyanin). In dark-adapted leaves, kinetics of [Formula: see text] induction revealed three phases. Initial phase is characterized by rapid electron flow to [Formula: see text] (τ1/2 ~ 5-10 ms), which is likely related to cyclic electron flow around PSI, while the outflow of electrons from PSI is restricted by slow consumption of NADPH in the CBC. The light-induced generation of ΔpH and activation of the CBC promote photooxidation of P700 and concomitant retardation of [Formula: see text] reduction (τ1/2 ~ 20 ms). Prolonged illumination induces additional slowing down of electron transfer to [Formula: see text] (τ1/2 ≥ 30-35 ms). The latter effect is not accompanied by changes in the Chl a fluorescence parameters which are sensitive to ΔpH generation. We suggest the tentative explanation of the latter results by the reversal of Q-cycle, which causes the deceleration of PQH2 oxidation due to the back pressure of stromal reductants.
Collapse
Affiliation(s)
- Vasily V Ptushenko
- A.N.Belozersky Institute of Physical-Chemical Biology, M.V.Lomonosov Moscow State University, Moscow, Russia
- N.M.Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia
| | | | - Olga V Avercheva
- Faculty of Biology, M.V.Lomonosov Moscow State University, Moscow, Russia
| | - Alexander N Tikhonov
- N.M.Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.
- Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
80
|
Huang W, Suorsa M, Zhang SB. In vivo regulation of thylakoid proton motive force in immature leaves. PHOTOSYNTHESIS RESEARCH 2018; 138:207-218. [PMID: 30056561 DOI: 10.1007/s11120-018-0565-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
In chloroplast, proton motive force (pmf) is critical for ATP synthesis and photoprotection. To prevent photoinhibition of photosynthetic apparatus, proton gradient (ΔpH) across the thylakoid membranes needs to be built up to minimize the production of reactive oxygen species (ROS) in thylakoid membranes. However, the regulation of thylakoid pmf in immature leaves is little known. In this study, we compared photosynthetic electron sinks, P700 redox state, non-photochemical quenching (NPQ), and electrochromic shift (ECS) signal in immature and mature leaves of a cultivar of Camellia. The immature leaves displayed lower linear electron flow and cyclic electron flow, but higher levels of NPQ and P700 oxidation ratio under high light. Meanwhile, we found that pmf and ΔpH were higher in the immature leaves. Furthermore, the immature leaves showed significantly lower thylakoid proton conductivity than mature leaves. These results strongly indicated that immature leaves can build up enough ΔpH by modulating proton efflux from the lumenal side to the stromal side of thylakoid membranes, which is essential to prevent photoinhibition via thermal energy dissipation and photosynthetic control of electron transfer. This study highlights that the activity of chloroplast ATP synthase is a key safety valve for photoprotection in immature leaves.
Collapse
Affiliation(s)
- Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | | | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| |
Collapse
|
81
|
Albanese P, Manfredi M, Re A, Marengo E, Saracco G, Pagliano C. Thylakoid proteome modulation in pea plants grown at different irradiances: quantitative proteomic profiling in a non-model organism aided by transcriptomic data integration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:786-800. [PMID: 30118564 DOI: 10.1111/tpj.14068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/03/2018] [Accepted: 08/13/2018] [Indexed: 05/02/2023]
Abstract
Plant thylakoid membranes contain hundreds of proteins that closely interact to cope with ever-changing environmental conditions. We investigated how Pisum sativum L. (pea) grown at different irradiances optimizes light-use efficiency through the differential accumulation of thylakoid proteins. Thylakoid membranes from plants grown under low (LL), moderate (ML) and high (HL) light intensity were characterized by combining chlorophyll fluorescence measurements with quantitative label-free proteomic analysis. Protein sequences retrieved from available transcriptomic data considerably improved thylakoid proteome profiling, increasing the quantifiable proteins from 63 to 194. The experimental approach used also demonstrates that this integrative omics strategy is powerful for unravelling protein isoforms and functions that are still unknown in non-model organisms. We found that the different growth irradiances affect the electron transport kinetics but not the relative abundance of photosystems (PS) I and II. Two acclimation strategies were evident. The behaviour of plants acclimated to LL was compared at higher irradiances: (i) in ML, plants turn on photoprotective responses mostly modulating the PSII light-harvesting capacity, either accumulating Lhcb4.3 or favouring the xanthophyll cycle; (ii) in HL, plants reduce the pool of light-harvesting complex II and enhance the PSII repair cycle. When growing at ML and HL, plants accumulate ATP synthase, boosting both cyclic and linear electron transport by finely tuning the ΔpH across the membrane and optimizing protein trafficking by adjusting the thylakoid architecture. Our results provide a quantitative snapshot of how plants coordinate light harvesting, electron transport and protein synthesis by adjusting the thylakoid membrane proteome in a light-dependent manner.
Collapse
Affiliation(s)
- Pascal Albanese
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144, Torino, Italy
| | - Marcello Manfredi
- ISALIT-Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
- Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Angela Re
- Center for Sustainable Future Technologies-CSFT@POLITO, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino, Italy
| | - Emilio Marengo
- Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Guido Saracco
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144, Torino, Italy
| | - Cristina Pagliano
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144, Torino, Italy
| |
Collapse
|
82
|
Huang W, Tikkanen M, Cai YF, Wang JH, Zhang SB. Chloroplastic ATP synthase optimizes the trade-off between photosynthetic CO2 assimilation and photoprotection during leaf maturation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1067-1074. [DOI: 10.1016/j.bbabio.2018.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/03/2018] [Accepted: 06/08/2018] [Indexed: 11/24/2022]
|
83
|
Wang C, Takahashi H, Shikanai T. PROTON GRADIENT REGULATION 5 contributes to ferredoxin-dependent cyclic phosphorylation in ruptured chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1173-1179. [DOI: 10.1016/j.bbabio.2018.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
|
84
|
Kouřil R, Nosek L, Semchonok D, Boekema EJ, Ilík P. Organization of Plant Photosystem II and Photosystem I Supercomplexes. Subcell Biochem 2018; 87:259-286. [PMID: 29464563 DOI: 10.1007/978-981-10-7757-9_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
In nature, plants are continuously exposed to varying environmental conditions. They have developed a wide range of adaptive mechanisms, which ensure their survival and maintenance of stable photosynthetic performance. Photosynthesis is delicately regulated at the level of the thylakoid membrane of chloroplasts and the regulatory mechanisms include a reversible formation of a large variety of specific protein-protein complexes, supercomplexes or even larger assemblies known as megacomplexes. Revealing their structures is crucial for better understanding of their function and relevance in photosynthesis. Here we focus our attention on the isolation and a structural characterization of various large protein supercomplexes and megacomplexes, which involve Photosystem II and Photosystem I, the key constituents of photosynthetic apparatus. The photosystems are often attached to other protein complexes in thylakoid membranes such as light harvesting complexes, cytochrome b 6 f complex, and NAD(P)H dehydrogenase. Structural models of individual supercomplexes and megacomplexes provide essential details of their architecture, which allow us to discuss their function as well as physiological significance.
Collapse
Affiliation(s)
- Roman Kouřil
- Department of Biophysics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czech Republic.
| | - Lukáš Nosek
- Department of Biophysics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czech Republic
| | - Dmitry Semchonok
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Egbert J Boekema
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Petr Ilík
- Department of Biophysics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
85
|
Li L, Gu W, Li J, Li C, Xie T, Qu D, Meng Y, Li C, Wei S. Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:35-55. [PMID: 29793181 DOI: 10.1016/j.plaphy.2018.05.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 05/21/2023]
Abstract
Drought stress (DS) is a major environmental factor limiting plant growth and crop productivity worldwide. It has been established that exogenous spermidine (Spd) stimulates plant tolerance to DS. The effects of exogenous Spd on plant growth, photosynthetic performance, and chloroplast ultrastructure as well as changes in endogenous polyamines (PAs) and phytohormones were investigate in DS-resistant (Xianyu 335) and DS-sensitive (Fenghe 1) maize seedlings under well-watered and DS treatments. Exogenous Spd alleviated the stress-induced reduction in growth, photosynthetic pigment content, photosynthesis rate (Pn) and photochemical quenching (qP) parameters, including the maximum photochemistry efficiency of photosystem II (PSII) (Fv/Fm), PSII operating efficiency (ФPSII), and qP coefficient. Exogenous Spd further enhanced stress-induced elevation in non-photochemical quenching (NPQ) and the de-epoxidation state of the xanthophyll cycle (DEPS). Microscopic analysis revealed that seedlings displayed a more ordered arrangement of chloroplast ultrastructure upon Spd application during DS. Exogenous Spd increased the endogenous PA concentrations in the stressed plants. Additionally, exogenous Spd increased indoleacetic acid (IAA), zeatin riboside (ZR) and gibberellin A3 (GA3) and decreased salicylic acid (SA) and jasmonate (JA) concentrations under DS. These results indicate that exogenous Spd can alleviate the growth inhibition and damage to the structure and function of the photosynthetic apparatus caused by DS and that this alleviation may be associated with changes in endogenous PAs and phytohormones. This study contributes to advances in the knowledge of Spd-induced drought tolerance.
Collapse
Affiliation(s)
- Lijie Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Wanrong Gu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Jing Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Congfeng Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 10081, China
| | - Tenglong Xie
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Danyang Qu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Yao Meng
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150038, Heilongjiang, China
| | - Caifeng Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Shi Wei
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| |
Collapse
|
86
|
Virlouvet L, Avenson TJ, Du Q, Zhang C, Liu N, Fromm M, Avramova Z, Russo SE. Dehydration Stress Memory: Gene Networks Linked to Physiological Responses During Repeated Stresses of Zea mays. FRONTIERS IN PLANT SCIENCE 2018; 9:1058. [PMID: 30087686 PMCID: PMC6066539 DOI: 10.3389/fpls.2018.01058] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/28/2018] [Indexed: 05/19/2023]
Abstract
Stress memory refers to the observation that an initial, sub-lethal stress alters plants' responses to subsequent stresses. Previous transcriptome analyses of maize seedlings exposed to a repeated dehydration stress has revealed the existence of transcriptional stress memory in Zea mays. Whether drought-related physiological responses also display memory and how transcriptional memory translates into physiological memory are fundamental questions that are still unanswered. Using a systems-biology approach we investigate whether/how transcription memory responses established in the genome-wide analysis of Z. mays correlate with 14 physiological parameters measured during a repeated exposure of maize seedlings to dehydration stress. Co-expression network analysis revealed ten gene modules correlating strongly with particular physiological processes, and one module displaying strong, yet divergent, correlations with several processes suggesting involvement of these genes in coordinated responses across networks. Two processes key to the drought response, stomatal conductance and non-photochemical quenching, displayed contrasting memory patterns that may reflect trade-offs related to metabolic costs versus benefits of cellular protection. The main contribution of this study is the demonstration of coordinated changes in transcription memory responses at the genome level and integrated physiological responses at the cellular level upon repetitive stress exposures. The results obtained by the network-based systems analysis challenge the commonly held view that short-term physiological responses to stress are primarily mediated biochemically.
Collapse
Affiliation(s)
- Laetitia Virlouvet
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | | | - Qian Du
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| | - Ning Liu
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Michael Fromm
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
| | - Zoya Avramova
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| | - Sabrina E. Russo
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
87
|
Huang W, Cai YF, Wang JH, Zhang SB. Chloroplastic ATP synthase plays an important role in the regulation of proton motive force in fluctuating light. JOURNAL OF PLANT PHYSIOLOGY 2018; 226:40-47. [PMID: 29698911 DOI: 10.1016/j.jplph.2018.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
The proton motive force (pmf) across the thylakoid membranes plays a key role for photosynthesis in fluctuating light. However, the mechanisms underlying the regulation of pmf in fluctuating light are not well known. In this study, we aimed to identify the roles of chloroplastic ATP synthase and cyclic electron flow (CEF) around photosystem I (PSI) in the regulation of the pmf in fluctuating light. To do this, we measured chlorophyll fluorescence, P700 parameters, and the electrochromic shift signal in the fluctuating light alternating between 918 (high light) and 89 (low light) μmol photons m-2 s-1 every 5 min. We found that the activity of chloroplastic ATP synthase (gH+), pmf, CEF activity, non-photochemical quenching (NPQ), and the P700 redox state changed rapidly in fluctuating light. During transition from low to high light, the decreased gH+ and the stimulation of CEF both contributed to the rapid formation of pmf, activating NPQ and optimizing the redox state of P700 in PSI. During the low-light phases, gH+ rapidly increased and the pmf declined sharply, leading to the relaxation of NPQ and down-regulation of photosynthetic control. These findings indicate that in fluctuating light the gH+ and CEF are finely regulated to modulate the pmf formation, avoiding the over-accumulation of reactive intermediates and maximizing energy use efficiency.
Collapse
Affiliation(s)
- Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yan-Fei Cai
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Ji-Hua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China.
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
88
|
Lu T, Shi JW, Sun ZP, Qi MF, Liu YF, Li TL. Response of linear and cyclic electron flux to moderate high temperature and high light stress in tomato. J Zhejiang Univ Sci B 2018; 18:635-648. [PMID: 28681588 DOI: 10.1631/jzus.b1600286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To evaluate the possible photoprotection mechanisms of cyclic and linear electron flux (CEF and LEF) under specific high temperature and high light (HH) stress. METHODS Six-leaf-stage tomato seedlings ("Liaoyuanduoli", n=160) were divided into four parts: Part 1, served as control under 25 °C, 500 µmol/(m2·s); Part 2, spayed with distilled water (H2O) under 35 °C, 1000 µmol/(m2·s) (HH); Part 3, spayed with 100 µmol/L diuron (DCMU, CEF inhibitor) under HH; Part 4, spayed with 60 µmol/L methyl viologen (MV, LEF inhibitor) under HH. Energy conversion, photosystem I (PSI), and PSII activity, and trans-thylakoid membrane proton motive force were monitored during the treatment of 5 d and of the recovering 10 d. RESULTS HH decreased photochemical reaction dissipation (P) and the maximal photochemical efficiency of PSII (Fv/Fm), and increased the excitation energy distribution coefficient of PSII (β); DCMU and MV aggravated the partition imbalance of the excitation energy (γ) and the photoinhibition degree. With prolonged DCMU treatment time, electron transport rate and quantum efficiency of PSI (ETRI and YI) significantly decreased whereas acceptor and donor side limitation of PSI (YNA and YND) increased. MV led to a significant decline and accession of yield of regulated and non-regulated energy YNPQ and YNO, respectively. Membrane integrity and ATPase activity were reduced by HH stress, and DCMU and MV enhanced inhibitory actions. CONCLUSIONS The protective effects of CEF and LEF were mediated to a certain degree by meliorations in energy absorption and distribution as well as by maintenance of thylakoid membrane integrity and ATPase activity.
Collapse
Affiliation(s)
- Tao Lu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.,Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, China.,Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang 110866, China
| | - Jie-Wei Shi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.,Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, China.,Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang 110866, China
| | - Zhou-Ping Sun
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.,Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, China.,Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang 110866, China
| | - Ming-Fang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.,Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, China.,Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang 110866, China
| | - Yu-Feng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.,Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, China.,Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang 110866, China
| | - Tian-Lai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.,Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang 110866, China.,Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang 110866, China
| |
Collapse
|
89
|
Shimakawa G, Shaku K, Miyake C. Reduction-Induced Suppression of Electron Flow (RISE) Is Relieved by Non-ATP-Consuming Electron Flow in Synechococcus elongatus PCC 7942. Front Microbiol 2018; 9:886. [PMID: 29867800 PMCID: PMC5949335 DOI: 10.3389/fmicb.2018.00886] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/18/2018] [Indexed: 01/13/2023] Open
Abstract
Photosynthetic organisms oxidize P700 to suppress the production of reactive oxygen species (ROS) in photosystem I (PSI) in response to the lower efficiency of photosynthesis under high light and low CO2 conditions. Previously, we found a positive relationship between reduction of plastoquinone (PQ) pool and oxidation of P700, which we named reduction-induced suppression of electron flow (RISE). In the RISE model, we proposed that the highly reduced state of the PQ pool suppresses Q-cycle turnover to oxidize P700 in PSI. Here, we tested whether RISE was relieved by the oxidation of the PQ pool, but not by the dissipation of the proton gradient (ΔpH) across the thylakoid membrane. Formation of ΔpH can also suppress electron flow to P700, because acidification on the luminal side of the thylakoid membrane lowers oxidation of reduced PQ in the cytochrome b6/f complex. We drove photosynthetic electron transport using H2O2-scavenging peroxidase reactions. Peroxidase reduces H2O2 with electron donors regenerated along the photosynthetic electron transport system, thereby promoting the formation of ΔpH. Addition of H2O2 to the cyanobacterium Synechococcus elongatus PCC 7942 under low CO2 conditions induced photochemical quenching of chlorophyll fluorescence, enhanced NADPH fluorescence and reduced P700. Thus, peroxidase reactions relieved the RISE mechanism, indicating that P700 oxidation can be induced only by the reduction of PQ to suppress the production of ROS in PSI. Overall, our data suggest that RISE regulates the redox state of P700 in PSI in cooperation with ΔpH regulation.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Keiichiro Shaku
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Kobe, Japan.,Core Research for Environmental Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
90
|
Metabolic regulation of photosynthetic membrane structure tunes electron transfer function. Biochem J 2018; 475:1225-1233. [DOI: 10.1042/bcj20170526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 11/17/2022]
Abstract
The photosynthetic chloroplast thylakoid membrane of higher plants is a complex three-dimensional structure that is morphologically dynamic on a timescale of just a few minutes. The membrane dynamics are driven by the phosphorylation of light-harvesting complex II (LHCII) by the STN7 kinase, which controls the size of the stacked grana region relative to the unstacked stromal lamellae region. Here, I hypothesise that the functional significance of these membrane dynamics is in controlling the partition of electrons between photosynthetic linear and cyclic electron transfer (LET and CET), which determines the ratio of NADPH/ATP produced. The STN7 kinase responds to the metabolic state of the chloroplast by sensing the stromal redox state. A high NADPH/ATP ratio leads to reduction of thioredoxin f (TRXf), which reduces a CxxxC motif in the stromal domain of STN7 leading to its inactivation, whereas a low NADPH/ATP ratio leads to oxidation of TRXf and STN7 activation. Phosphorylation of LHCII leads to smaller grana, which favour LET by speeding up diffusion of electron carriers plastoquinone (PQ) and plastocyanin (PC) between the domains. In contrast, dephosphorylation of LHCII leads to larger grana that slow the diffusion of PQ and PC, leaving the PQ pool in the stroma more oxidised, thus enhancing the efficiency of CET. The feedback regulation of electron transfer by the downstream metabolism is crucial to plant fitness, since perturbations in the NADPH/ATP ratio can rapidly lead to the inhibition of photosynthesis and photo-oxidative stress.
Collapse
|
91
|
McKie-Krisberg ZM, Laurens LM, Huang A, Polle JE. Comparative energetics of carbon storage molecules in green algae. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
92
|
Cherepanov DA, Milanovsky GE, Petrova AA, Tikhonov AN, Semenov AY. Electron Transfer through the Acceptor Side of Photosystem I: Interaction with Exogenous Acceptors and Molecular Oxygen. BIOCHEMISTRY (MOSCOW) 2018; 82:1249-1268. [PMID: 29223152 DOI: 10.1134/s0006297917110037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review considers the state-of-the-art on mechanisms and alternative pathways of electron transfer in photosynthetic electron transport chains of chloroplasts and cyanobacteria. The mechanisms of electron transport control between photosystems (PS) I and II and the Calvin-Benson cycle are considered. The redistribution of electron fluxes between the noncyclic, cyclic, and pseudocyclic pathways plays an important role in the regulation of photosynthesis. Mathematical modeling of light-induced electron transport processes is considered. Particular attention is given to the electron transfer reactions on the acceptor side of PS I and to interactions of PS I with exogenous acceptors, including molecular oxygen. A kinetic model of PS I and its interaction with exogenous electron acceptors has been developed. This model is based on experimental kinetics of charge recombination in isolated PS I. Kinetic and thermodynamic parameters of the electron transfer reactions in PS I are scrutinized. The free energies of electron transfer between quinone acceptors A1A/A1B in the symmetric redox cofactor branches of PS I and iron-sulfur clusters FX, FA, and FB have been estimated. The second-order rate constants of electron transfer from PS I to external acceptors have been determined. The data suggest that byproduct formation of superoxide radical in PS I due to the reduction of molecular oxygen in the A1 site (Mehler reaction) can exceed 0.3% of the total electron flux in PS I.
Collapse
Affiliation(s)
- D A Cherepanov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russia.
| | | | | | | | | |
Collapse
|
93
|
Abstract
This chapter presents an overview of structural properties of the cytochrome (Cyt) b 6 f complex and its functioning in chloroplasts. The Cyt b 6 f complex stands at the crossroad of photosynthetic electron transport pathways, providing connectivity between Photosystem (PSI) and Photosysten II (PSII) and pumping protons across the membrane into the thylakoid lumen. After a brief review of the chloroplast electron transport chain, the consideration is focused on the structural organization of the Cyt b 6 f complex and its interaction with plastoquinol (PQH2, reduced form of plastoquinone), a mediator of electron transfer from PSII to the Cyt b 6 f complex. The processes of PQH2 oxidation by the Cyt b 6 f complex have been considered within the framework of the Mitchell's Q-cycle. The overall rate of the intersystem electron transport is determined by PQH2 turnover at the quinone-binding site Qo of the Cyt b 6 f complex. The rate of PQH2 oxidation is controlled by the intrathylakoid pHin, which value determines the protonation/deprotonation events in the Qo-center. Two other regulatory mechanisms associated with the Cyt b 6 f complex are briefly overviewed: (i) redistribution of electron fluxes between alternative (linear and cyclic) pathways, and (ii) "state transitions" related to redistribution of solar energy between PSI and PSII.
Collapse
|
94
|
Abstract
Measurements of in vivo photosynthesis are powerful tools that probe the largest fluxes of carbon and energy in an illuminated leaf, but often the specific techniques used are so varied and specialized that it is difficult for researchers outside the field to select and perform the most useful assays for their research questions. The goal of this chapter is to provide a broad overview of the current tools available for the study of in vivo photosynthesis so as to provide a foundation for selecting appropriate techniques, many of which are presented in detail in subsequent chapters. This chapter also organizes current methods into a comparative framework and provides examples of how they have been applied to research questions of broad agronomical, ecological, or biological importance. The chapter closes with an argument that the future of in vivo measurements of photosynthesis lies in the ability to use multiple methods simultaneously and discusses the benefits of this approach to currently open physiological questions. This chapter, combined with the relevant methods chapters, could serve as a laboratory course in methods in photosynthesis research or as part of a more comprehensive laboratory course in general plant physiology methods.
Collapse
|
95
|
Su F, Villaume S, Rabenoelina F, Crouzet J, Clément C, Vaillant-Gaveau N, Dhondt-Cordelier S. Different Arabidopsis thaliana photosynthetic and defense responses to hemibiotrophic pathogen induced by local or distal inoculation of Burkholderia phytofirmans. PHOTOSYNTHESIS RESEARCH 2017; 134:201-214. [PMID: 28840464 DOI: 10.1007/s11120-017-0435-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Pathogen infection of plant results in modification of photosynthesis and defense mechanisms. Beneficial microorganisms are known to improve plant tolerance to stresses. Burkholderia phytofirmans PsJN (Bp), a beneficial endophytic bacterium, promotes growth of a wide range of plants and induces plant resistance against abiotic and biotic stresses such as coldness and infection by a necrotrophic pathogen. However, mechanisms underlying its role in plant tolerance towards (hemi)biotrophic invaders is still lacking. We thus decipher photosynthetic and defense responses during the interaction between Arabidopsis, Bp and the hemibiotrophic bacterium Pseudomonas syringae pv. tomato DC3000 (Pst). Different Bp inoculations allowed analyzes at both systemic and local levels. Despite no direct antibacterial action, our results showed that only local presence of Bp alleviates Pst growth in planta during the early stage of infection. Molecular investigations showed that seed inoculation of Bp, leading to a restricted presence in the root system, transiently primed PR1 expression after challenge with Pst but continuously primed PDF1.2 expression. Bacterization with Bp reduced Y(ND) but had no impact on PSII activity or RuBisCO accumulation. Pst infection caused an increase of Y(NA) and a decrease in ΦPSI, ETRI and in PSII activity, showed by a decrease in Fv/Fm, Y(NPQ), ΦPSII, and ETRII values. Inoculation with both bacteria did not display any variation in photosynthetic activity compared to plants inoculated with only Pst. Our findings indicated that the role of Bp here is not multifaceted, and relies only on priming of defense mechanisms but not on improving photosynthetic activity.
Collapse
Affiliation(s)
- Fan Su
- Unité de Recherche Vignes et Vins de Champagne - EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687, Reims, France
| | - Sandra Villaume
- Unité de Recherche Vignes et Vins de Champagne - EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687, Reims, France
| | - Fanja Rabenoelina
- Unité de Recherche Vignes et Vins de Champagne - EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687, Reims, France
| | - Jérôme Crouzet
- Unité de Recherche Vignes et Vins de Champagne - EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687, Reims, France
| | - Christophe Clément
- Unité de Recherche Vignes et Vins de Champagne - EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687, Reims, France
| | - Nathalie Vaillant-Gaveau
- Unité de Recherche Vignes et Vins de Champagne - EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687, Reims, France
| | - Sandrine Dhondt-Cordelier
- Unité de Recherche Vignes et Vins de Champagne - EA 4707, SFR Condorcet FR CNRS 3417, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51687, Reims, France.
| |
Collapse
|
96
|
Spetea C, Herdean A, Allorent G, Carraretto L, Finazzi G, Szabo I. An update on the regulation of photosynthesis by thylakoid ion channels and transporters in Arabidopsis. PHYSIOLOGIA PLANTARUM 2017; 161:16-27. [PMID: 28332210 DOI: 10.1111/ppl.12568] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/08/2017] [Accepted: 02/20/2017] [Indexed: 05/07/2023]
Abstract
In natural, variable environments, plants rapidly adjust photosynthesis for optimal balance between light absorption and utilization. There is increasing evidence suggesting that ion fluxes across the chloroplast thylakoid membrane play an important role in this regulation by affecting the proton motive force and consequently photosynthesis and thylakoid membrane ultrastructure. This article presents an update on the thylakoid ion channels and transporters characterized in Arabidopsis thaliana as being involved in these processes, as well as an outlook at the evolutionary conservation of their functions in other photosynthetic organisms. This is a contribution to shed light on the thylakoid network of ion fluxes and how they help plants to adjust photosynthesis in variable light environments.
Collapse
Affiliation(s)
- Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Andrei Herdean
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Guillaume Allorent
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut National Recherche Agronomique (INRA), Institut de Biosciences et Biotechnologie de Grenoble (BIG), Université Grenoble Alpes (UGA), Grenoble, 38100, France
| | - Luca Carraretto
- Department of Biology, University of Padova, Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut National Recherche Agronomique (INRA), Institut de Biosciences et Biotechnologie de Grenoble (BIG), Université Grenoble Alpes (UGA), Grenoble, 38100, France
| | - Ildikò Szabo
- Department of Biology, University of Padova, Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
97
|
Ahmad RA, Dietzel L. Relaxation of cellular K + gradients by valinomycin induces diatoxanthin accumulation in Cyclotella meneghiniana cells and alters FCPa fluorescence yield in vitro. PHYSIOLOGIA PLANTARUM 2017; 161:171-180. [PMID: 28664565 DOI: 10.1111/ppl.12599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/14/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Regulation of photosynthetic light harvesting involves all major thylakoid membrane complexes. One important factor is the proton motive force (pmf) driving ATP production. Its proton gradient (ΔpH) component regulates the high energy quenching. Potassium ions largely contribute to the formation of the electric field (ΔΨ). ΔΨ and ΔpH partially compensate each other to form pmf. Whilst in plants considerable progress has been made in analyzing the interplay of H+ and K+ gradients, in diatoms knowledge in this field is still scarce. We relaxed cellular K+ gradients by valinomycin in Cyclotella meneghiniana. We observed a slow decrease of PSII maximum quantum yield in the dark upon valinomycin addition correlating with diatoxanthin accumulation which we attribute to the breakdown of organellar K+ gradients (either plastid or mitochondria) which might compensate for the loss of the K+ gradient by adjustment of the thylakoid pH in a secondary step. This response is reversible when ΔpH is relaxed. Similarly, we found higher non-photochemical quenching (NPQ) caused by higher DT accumulation in the steady state in valinomycin-treated cells. In vitro fucoxanthin chlorophyll a (FCPa) antenna complexes in liposomes with natural lipid composition showed a decrease in fluorescence yield if a K+ gradient is built up. The effect reversed by relaxing the gradient. We interpret these fluorescence changes with surface charge dynamics and FCPa organization in the membrane rather than a direct influence of K+ gradients on FCPa complexes. Both experiments reveal that K+ gradients might contribute to fine tuning of light harvesting capacity in relation to pmf in diatoms.
Collapse
Affiliation(s)
- Rana A Ahmad
- Institute of Molecular Biosciences, Department of Plant Cell Physiology, Goethe University Frankfurt, Frankfurt 60438, Germany
| | - Lars Dietzel
- Institute of Molecular Biosciences, Department of Plant Cell Physiology, Goethe University Frankfurt, Frankfurt 60438, Germany
| |
Collapse
|
98
|
Takagi D, Amako K, Hashiguchi M, Fukaki H, Ishizaki K, Goh T, Fukao Y, Sano R, Kurata T, Demura T, Sawa S, Miyake C. Chloroplastic ATP synthase builds up a proton motive force preventing production of reactive oxygen species in photosystem I. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:306-324. [PMID: 28380278 DOI: 10.1111/tpj.13566] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 05/19/2023]
Abstract
Over-reduction of the photosynthetic electron transport (PET) chain should be avoided, because the accumulation of reducing electron carriers produces reactive oxygen species (ROS) within photosystem I (PSI) in thylakoid membranes and causes oxidative damage to chloroplasts. To prevent production of ROS in thylakoid membranes the H+ gradient (ΔpH) needs to be built up across the thylakoid membranes to suppress the over-reduction state of the PET chain. In this study, we aimed to identify the critical component that stimulates ΔpH formation under illumination in higher plants. To do this, we screened ethyl methane sulfonate (EMS)-treated Arabidopsis thaliana, in which the formation of ΔpH is impaired and the PET chain caused over-reduction under illumination. Subsequently, we isolated an allelic mutant that carries a missense mutation in the γ-subunit of chloroplastic CF0 CF1 -ATP synthase, named hope2. We found that hope2 suppressed the formation of ΔpH during photosynthesis because of the high H+ efflux activity from the lumenal to stromal side of the thylakoid membranes via CF0 CF1 -ATP synthase. Furthermore, PSI was in a more reduced state in hope2 than in wild-type (WT) plants, and hope2 was more vulnerable to PSI photoinhibition than WT under illumination. These results suggested that chloroplastic CF0 CF1 -ATP synthase adjusts the redox state of the PET chain, especially for PSI, by modulating H+ efflux activity across the thylakoid membranes. Our findings suggest the importance of the buildup of ΔpH depending on CF0 CF1 -ATP synthase to adjust the redox state of the reaction center chlorophyll P700 in PSI and to suppress the production of ROS in PSI during photosynthesis.
Collapse
Affiliation(s)
- Daisuke Takagi
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Katsumi Amako
- Faculty of Nutrition, Kobe Gakuin University, Kobe, 651-2180, Japan
| | - Masaki Hashiguchi
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Tatsuaki Goh
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Yoichiro Fukao
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, 630-0192, Japan
| | - Ryosuke Sano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, 630-0192, Japan
| | - Tetsuya Kurata
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, 630-0192, Japan
- Graduate School of Life Sciences, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 980-8578, Japan
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, 630-0192, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Tyuou-ku, Kumamoto, 860-8555, Japan
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| |
Collapse
|
99
|
Ünnep R, Zsiros O, Hörcsik Z, Markó M, Jajoo A, Kohlbrecher J, Garab G, Nagy G. Low-pH induced reversible reorganizations of chloroplast thylakoid membranes - As revealed by small-angle neutron scattering. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2017; 1858:360-365. [PMID: 28237493 DOI: 10.1016/j.bbabio.2017.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/20/2022]
Abstract
Energization of thylakoid membranes brings about the acidification of the lumenal aqueous phase, which activates important regulatory mechanisms. Earlier Jajoo and coworkers (2014 FEBS Lett. 588:970) have shown that low pH in isolated plant thylakoid membranes induces changes in the excitation energy distribution between the two photosystems. In order to elucidate the structural background of these changes, we used small-angle neutron scattering on thylakoid membranes exposed to low p2H (pD) and show that gradually lowering the p2H from 8.0 to 5.0 causes small but well discernible reversible diminishment of the periodic order and the lamellar repeat distance and an increased mosaicity - similar to the effects elicited by light-induced acidification of the lumen. Our data strongly suggest that thylakoids dynamically respond to the membrane energization and actively participate in different regulatory mechanisms.
Collapse
Affiliation(s)
- Renáta Ünnep
- Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, H-1121 Budapest, Hungary; Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, 5232 Villigen PSI, Switzerland
| | - Ottó Zsiros
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, POB 521, H-6701 Szeged, Hungary
| | - Zsolt Hörcsik
- College of Nyíregyháza, Institute of Environmental Science, H-4400 Nyíregyháza, Hungary
| | - Márton Markó
- Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, H-1121 Budapest, Hungary
| | - Anjana Jajoo
- School of Life Science, Devi Ahilya University, Khandwa Road, Indore 452 001, India
| | - Joachim Kohlbrecher
- Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, 5232 Villigen PSI, Switzerland
| | - Győző Garab
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, POB 521, H-6701 Szeged, Hungary; Department of Physics, Faculty of Science, Ostrava University, Chittussiho 10, CZ-710 0 Ostrava - Slezská Ostrava, Czech Republic.
| | - Gergely Nagy
- Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, 5232 Villigen PSI, Switzerland; Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, H-1121 Budapest, Hungary.
| |
Collapse
|
100
|
Jin Y, Chen S, Fan X, Song H, Li X, Xu J, Qian H. Diuron treatment reveals the different roles of two cyclic electron transfer pathways in photosystem II in Arabidopsis thaliana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 137:15-20. [PMID: 28364799 DOI: 10.1016/j.pestbp.2016.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/02/2016] [Accepted: 09/11/2016] [Indexed: 05/11/2023]
Abstract
Three ecotypes of Arabidopsis thaliana, ecotype Columbia (Wild type, Wt) and two mutants (pgr5 and ndf4), were used to evaluate the effects of diuron on photosynthetic activity of A. thaliana. It was found that diuron adversely affected the fresh weight and chlorophyll content of the plants. Chlorophyll fluorescence studies determined that the pgr5 mutant was more sensitive to diuron than Wt and the ndf4 mutant. Gene expression analysis revealed different roles for the two cyclic electron transfer (CET) pathways, NAD(P)H dehydrogenase (NDH) and proton gradient regulation (PGR5) pathways, in the plant after diuron treatment. For example, a gene in the NDH pathway, lhca5, was activated in the low dose (LD) group in the pgr5 mutant, but was down-regulated in the moderate dose (MD) group, along with two other NDH-related genes (ppl2 and ndhH). In the PGR5 pathway, the pgr5 gene was functional under conditions of increased stress (MD group), and was up-regulated to a greater extent in the ndf4 mutant than that in the Wt and pgr5 mutant. Our results suggest that the PGR5 pathway in plants is more important than the NDH pathway during resistance to environmental stress. Deficiencies in the PGR5 pathway could not be counteracted by the NDH pathway, but deficiencies in the NDH pathway could be overcome by stimulating PGR5.
Collapse
Affiliation(s)
- Yujian Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Si Chen
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Xiaoji Fan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Hao Song
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Xingxing Li
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jiahui Xu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|