51
|
Gan LH, Yan ZR, Ma YF, Zhu YY, Li XY, Xu J, Zhang W. pH dependence of the binding interactions between humic acids and bisphenol A - A thermodynamic perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113292. [PMID: 31597112 DOI: 10.1016/j.envpol.2019.113292] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/27/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
The wide application of bisphenol A (BPA) leads to the emergence of BPA residuals in natural water environments. Dissolved organic matter (DOM) existed in water can bind with BPA, hence influencing the migration and transformation of BPA in aquatic environments. pH is a crucial factor governing the binding interactions between DOM and BPA. However, the mechanisms driven the binding process under different pH conditions are still unclear. In this study, the interactions between BPA and humic acids (HA), a primary component of DOM, are investigated over a wide pH range of 3-12 by integrating fluorescence quenching, dynamic light scattering and microcalorimetry. pH dependence of the binding interactions between HA and BPA are interpreted from a thermodynamic perspective. The results indicate that HA can spontaneously interact with BPA to form a stable HA-BPA complex. With the increasing pH, the binding interactions change from entropy driven to entropy-enthalpy co-driven. Hydrophobic force dominate the binding interactions under acidic condition. The synergy of hydrophobic force and hydrogen bond promotes the binding process under neutral condition. Under alkaline conditions, electrostatic repulsion participates the binding process in addition to hydrophobic force and hydrogen bond, weakening the binding strength. Therefore, neutral pH is favorable for HA to bind with BPA, consequently enhancing the dissolution of BPA in natural water bodies. The results are beneficial to better understand the pH dependent distribution of BPA in aquatic environments.
Collapse
Affiliation(s)
- Li-Hong Gan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Zi-Run Yan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - You-Fei Ma
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yu-Ying Zhu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiu-Yan Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Juan Xu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming (IEC), No. 20 Cuiniao Road, ChenJiazhen, Shanghai, 202162, China.
| | - Wei Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
52
|
Levels of NP and BPA in the Pearl River Estuary, China: Fluctuations with Country Policy Changes over the Past 40 Years. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16214100. [PMID: 31653046 PMCID: PMC6862134 DOI: 10.3390/ijerph16214100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/02/2019] [Accepted: 10/23/2019] [Indexed: 02/01/2023]
Abstract
Sediment cores were collected from four outlets in the Pearl River Estuary (Guangdong Province, China) and dated using the 210Pb method to investigate the pollution history of the area due to its relatively stable sedimentation status and hydrographic conditions in recent decades. The ages of the sediment cores were dated over 40 years (1968–2015). The concentrations at the four outlets ranged from 2.21 to 48.52 ng g−1 dw for nonylphenol and were non-detectable for 23.64 ng g−1 dw for bisphenol A (BPA), which exhibited a decreasing trend from north to south as well as seaward. The fluxes (2.84 to 112.91 ng cm−2 yr−1 and non-detectable to 59.33 ng cm−2 yr−1 for nonylphenol and bisphenol A, respectively) stabilized in the 1980s to 1990s due to the construction of sewage treatment systems. The fluxes increased again in the 21st century, which reached a peak ca. 2010 but declined in recent years due to the establishment of regulations and the decreasing number of industrial enterprises. Fluctuations in the pollution composition coincided with industrial development and governmental policies.
Collapse
|
53
|
Deng ZH, Li N, Jiang HL, Lin JM, Zhao RS. Pretreatment techniques and analytical methods for phenolic endocrine disrupting chemicals in food and environmental samples. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
54
|
|
55
|
Ohoro CR, Adeniji AO, Okoh AI, Okoh AOO. Distribution and Chemical Analysis of Pharmaceuticals and Personal Care Products (PPCPs) in the Environmental Systems: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3026. [PMID: 31438569 PMCID: PMC6747491 DOI: 10.3390/ijerph16173026] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/21/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022]
Abstract
PPCPs are found almost everywhere in the environment especially at an alarming rate and at very low concentration in the aquatic systems. Many methods-including pressurized hot water extraction (PHWE), pressurized liquid extraction (PLE), ultrasound-assisted extraction (UAE), and micro-assisted extraction (MAE)-have been employed for their extraction from both surface waters and biota. Solid-phase extraction (SPE) proved to be the best extraction method for these polar, non-volatile, and thermally unstable compounds in water. However, ultrasonic extraction works better for their isolation from sediment because it is cheap and consumes less solvent, even though SPE is preferred as a clean-up method for sediment samples. PPCPs are in groups of-acidic (e.g., diclofenac, ibuprofen, naproxen), neutral (e.g., caffeine, carbamazepine, fluoxetine), and basic pharmaceuticals, as well as antibiotics and estrogens amongst others. PPCPs which are present in trace levels (ng/L) are more often determined by liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS), and high-performance liquid chromatography-ultraviolent (HPLC-UV). Of these, LC-MS and LC-MS-MS are mostly employed for the analysis of this class of compounds, though not without a draw-back of matrix effect. GC-MS and GC-MS-MS are considered as alternative cost-effective methods that can also give better results after derivatization.
Collapse
Affiliation(s)
- C R Ohoro
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa.
- Department of Chemistry, University of Fort Hare, Alice 5700, South Africa.
| | - A O Adeniji
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
- Department of Chemistry, University of Fort Hare, Alice 5700, South Africa
| | - A I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - And O O Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
- Department of Chemistry, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
56
|
Wolecki D, Caban M, Pazdro K, Mulkiewicz E, Stepnowski P, Kumirska J. Simultaneous determination of non-steroidal anti-inflammatory drugs and natural estrogens in the mussels Mytilus edulis trossulus. Talanta 2019; 200:316-323. [DOI: 10.1016/j.talanta.2019.03.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 11/30/2022]
|
57
|
Ismail NAH, Wee SY, Kamarulzaman NH, Aris AZ. Quantification of multi-classes of endocrine-disrupting compounds in estuarine water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:1019-1028. [PMID: 31146308 DOI: 10.1016/j.envpol.2019.03.089] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/13/2019] [Accepted: 03/21/2019] [Indexed: 05/22/2023]
Abstract
Emerging pollutants known as endocrine-disrupting compounds (EDCs) are a contemporary global issue, especially in aquatic ecosystems. As aquaculture production through mariculture activities in Malaysia supports food production, the concentration and distribution of EDCs in estuarine water ecosystems may have changed. Therefore, this current study aims to prepare a suitable and reliable method for application on environmental samples. Besides, this study also presented the occurrence of EDCs pollutant in Pulau Kukup, Johor, where the biggest and most active mariculture site in Malaysia takes place. Analytical methods based on a combination of solid-phase extraction with liquid chromatography tandem mass spectrometry (Solid-phase extraction (SPE)-LC-MS/MS) have been modified and optimised to examine the level of targeted EDCs contaminant. In the current study, this method displays high extraction recovery for targeted EDCs, ranging from 92.02% to 132.32%. The highest concentration detected is diclofenac (<0.47-79.89 ng/L) followed by 17β-estradiol (E2) (<5.28-31.43 ng/L) and 17α-ethynylestradiol (EE2) (<0.30-7.67 ng/L). The highest percentage distribution for the targeted EDCs in the current study is diclofenac, followed by EE2 and dexamethasone with the percentages of 99.44%, 89.53% and 73.23%, respectively. This current study can be a baseline assessment to understand the pollution profile of EDCs and their distribution in the estuarine water of the mariculture site throughout the world, especially in Malaysia. Owing to the significant concentration of targeted EDCs detected in water samples, the need for further monitoring in the future is required.
Collapse
Affiliation(s)
- Nur Afifah Hanun Ismail
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sze Yee Wee
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nitty Hirawaty Kamarulzaman
- Department of Agribusiness and Bioresource Economics, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
58
|
Omar TFT, Aris AZ, Yusoff FM, Mustafa S. Occurrence and level of emerging organic contaminant in fish and mollusk from Klang River estuary, Malaysia and assessment on human health risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:763-773. [PMID: 30851586 DOI: 10.1016/j.envpol.2019.02.060] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/02/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
The occurrence, level, and distribution of multiclass emerging organic contaminants (EOCs) in fish and mollusks from the Klang River estuary were examined. The targeted EOCs for this assessment were phenolic endocrine disrupting compounds (bisphenol A, 4-OP, and 4-NP), organophosphorous pesticides (quinalphos, chlorpyrifos, and diazinon), estrogenic hormones (E2, E1, and EE2), and pharmaceutically active chemicals (primidone, sulfamethoxazole, dexamethasone, diclofenac, amoxicillin, progesterone, and testosterone). Results from this study showed that the prevalent contamination of the Klang River estuary by EOCs with diclofenac, bisphenol A, progesterone, and amoxicillin were predominantly detected in fish and mollusks. Among the EOCs, diclofenac and progesterone had the highest concentrations in fish and mollusk samples, respectively. The concentrations of diclofenac and progesterone in fish and mollusk samples range from 1.42 ng/g to 10.76 ng/g and from 0.73 ng/g to 9.57 ng/g, respectively. Bisphenol A should also be highlighted because of its significant presence in both fish and mollusks. The concentration of bisphenol A in both matrices range from 0.92 ng/g to 5.79 ng/g. The calculated hazard quotient (HQ) for diclofenac, bisphenol A, and progesterone without consideration to their degradation byproduct were less than one, thus suggesting that the consumption of fish and mollusks from the Klang River estuary will unlikely pose any health risk to consumers on the basis of the current assessment. Nonetheless, this preliminary result is an important finding for pollution studies in Malaysian tropical coastal ecosystems, particularly for organic micropollutant EOCs, and can serve as a baseline database for future reference.
Collapse
Affiliation(s)
- T F T Omar
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Laboratory of Halal Science Research, Halal Product Research Institute, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Fatimah Md Yusoff
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Shuhaimi Mustafa
- Laboratory of Halal Science Research, Halal Product Research Institute, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
59
|
Er EÖ, Çağlak A, Engin GÖ, Bakirdere S. Ultrasound-assisted dispersive solid phase extraction based on Fe3O4/reduced graphene oxide nanocomposites for the determination of 4-tert octylphenol and atrazine by gas chromatography–mass spectrometry. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
60
|
Analysis of Environmental Protection Agency priority endocrine disruptor hormones and bisphenol A in tap, surface and wastewater by online concentration liquid chromatography tandem mass spectrometry. J Chromatogr A 2019; 1591:87-98. [DOI: 10.1016/j.chroma.2019.01.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/19/2018] [Accepted: 01/07/2019] [Indexed: 11/22/2022]
|
61
|
Wang L, Xiao H, He N, Sun D, Duan S. Biosorption and Biodegradation of the Environmental Hormone Nonylphenol By Four Marine Microalgae. Sci Rep 2019; 9:5277. [PMID: 30918322 PMCID: PMC6437302 DOI: 10.1038/s41598-019-41808-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 03/14/2019] [Indexed: 01/26/2023] Open
Abstract
Microalgae are the most abundant microorganisms in aquatic environments, and many possess the ability to remove organic contaminants. The presence of endocrine disruption compounds (EDCs) in many coastal marine systems and their associated risks have elicited great concern, especially in the case of nonylphenol (NP), which is classified as a priority contaminate by the U.S. EPA. In this context, batch experiments were conducted to investigate the intracellular absorption, extracellular adsorption and biodegradation of NP by four species of marine microalgae: Phaeocystis globosa, Nannochloropsis oculata, Dunaliella salina and Platymonas subcordiformis. The results showed a sharp reduction of NP in medium containing the four microalgal species during the first 24 h of incubation, and the four species exhibited the greatest capacity for NP adsorption and absorption within 24 h of culture. However, the amount of NP absorbed and adsorbed by all four microalgae decreased with increasing time in culture, and intracellular absorption was greater than extracellular adsorption. After 120 h of exposure to NP, the four species could biodegrade most of the NP in the medium, with efficiencies ranging from 43.43 to 90.94%. In sum, we found that the four microalgae have high biodegradation percentages and can thus improve the bioremediation of NP-contaminated water.
Collapse
Affiliation(s)
- Luyun Wang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Jinan University, Guangzhou, P.R. China
| | - Han Xiao
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Jinan University, Guangzhou, P.R. China
| | - Ning He
- College of Life Science and Resources and Environment, Yichun University, Yichun, 336000, Jiangxi, China
| | - Dong Sun
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Jinan University, Guangzhou, P.R. China.
| | - Shunshan Duan
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Jinan University, Guangzhou, P.R. China.
| |
Collapse
|
62
|
Wang X, Huang P, Ma X, Du X, Lu X. Enhanced in-out-tube solid-phase microextraction by molecularly imprinted polymers-coated capillary followed by HPLC for Endocrine Disrupting Chemicals analysis. Talanta 2019; 194:7-13. [DOI: 10.1016/j.talanta.2018.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 11/24/2022]
|
63
|
Abou-Elwafa Abdallah M, Nguyen KH, Ebele AJ, Atia NN, Ali HRH, Harrad S. A single run, rapid polarity switching method for determination of 30 pharmaceuticals and personal care products in waste water using Q-Exactive Orbitrap high resolution accurate mass spectrometry. J Chromatogr A 2019; 1588:68-76. [DOI: 10.1016/j.chroma.2018.12.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 08/09/2018] [Accepted: 12/16/2018] [Indexed: 11/26/2022]
|
64
|
Omar TFT, Aris AZ, Yusoff FM, Mustafa S. Risk assessment of pharmaceutically active compounds (PhACs) in the Klang River estuary, Malaysia. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:211-223. [PMID: 30051257 DOI: 10.1007/s10653-018-0157-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
The concentration profile, distribution and risk assessment of pharmaceutically active compounds (PhACs) in the coastal surface water from the Klang River estuary were measured. Surface coastal water samples were extracted using offline solid phase, applying polymeric C18 cartridges as extraction sorbent and measuring with liquid chromatography mass spectrometry-mass spectrometry (LC MS-MS) technique. Extraction method was optimized for its recovery, sensitivity and linearity. Excellent recoveries were obtained from the optimized method with percentage of recoveries ranging from 73 to 126%. The optimized analytical method achieved good sensitivity with limit of detection ranging from 0.05 to 0.15 ng L-1, while linearity of targeted compounds in the LC MS-MS system was more than 0.990. The results showed that amoxicillin has the highest concentration (102.31 ng L-1) followed by diclofenac (10.80 ng L-1) and primidone (7.74 ng L-1). The percentage of contribution (% of total concentration) for the targeted PhACs is in the following order; amoxicillin (92.90%) > diclofenac (3.95%) > primidone (1.23%) > dexamethasone (0.75%) > testosterone (0.70%) > sulfamethoxazole (0.33%) > progesterone (0.14%). Environmental risk assessment calculated based on deterministic approach (the RQ method), showed no present risk from the presence of PhACs in the coastal water of Klang River estuary. Nonetheless, this baseline assessment can be used for better understanding on PhACs pollution profile and distribution in the tropical coastal and estuarine ecosystem as well as for future comparative studies.
Collapse
Affiliation(s)
- Tuan Fauzan Tuan Omar
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
- Laboratory of Halal Science Research, Halal Product Research Institute, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Fatimah M Yusoff
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Shuhaimi Mustafa
- Laboratory of Halal Science Research, Halal Product Research Institute, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
65
|
Huysman S, Van Meulebroek L, Janssens O, Vanryckeghem F, Van Langenhove H, Demeestere K, Vanhaecke L. Targeted quantification and untargeted screening of alkylphenols, bisphenol A and phthalates in aquatic matrices using ultra-high-performance liquid chromatography coupled to hybrid Q-Orbitrap mass spectrometry. Anal Chim Acta 2019; 1049:141-151. [DOI: 10.1016/j.aca.2018.10.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 10/28/2022]
|
66
|
Wang X, Wang J, Du T, Kou H, Du X, Lu X. Application of ZIF-8–graphene oxide sponge to a solid phase extraction method for the analysis of sex hormones in milk and milk products by high-performance liquid chromatography. NEW J CHEM 2019. [DOI: 10.1039/c8nj05940c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A zeolitic imidazolate framework-8 (ZIF-8) incorporating a graphene oxide sponge (GOS) nanocomposite (ZIF-8–GOS) was synthesized successfully by a simple one-pot preparation method.
Collapse
Affiliation(s)
- Xuemei Wang
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- P. R. China
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- Lanzhou 730070
| | - Juan Wang
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- P. R. China
| | - Tongtong Du
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- P. R. China
| | - Haixia Kou
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- P. R. China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- P. R. China
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- Lanzhou 730070
| | - Xiaoquan Lu
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- P. R. China
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- Lanzhou 730070
| |
Collapse
|
67
|
Zhao X, Liu S, Peng J, Li X, Niu H, Zhang H, Wang L, Wu R. Facile one-pot synthesized hydrothermal carbon from cyclodextrin: A stationary phase for hydrophilic interaction liquid chromatography. J Chromatogr A 2019; 1585:144-151. [DOI: 10.1016/j.chroma.2018.11.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 11/30/2022]
|
68
|
Florea A, Feier B, Cristea C. In situ analysis based on molecularly imprinted polymer electrochemical sensors. COMPREHENSIVE ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/bs.coac.2019.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
69
|
Rucins M, Baron D, Plotniece A, Petr J. Determination of Hormone Antagonists in Waste-Water Samples by Micellar Electrokinetic Chromatography. Chromatographia 2018. [DOI: 10.1007/s10337-018-3631-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
70
|
Janicki T, Długoński J, Krupiński M. Detoxification and simultaneous removal of phenolic xenobiotics and heavy metals with endocrine-disrupting activity by the non-ligninolytic fungus Umbelopsis isabellina. JOURNAL OF HAZARDOUS MATERIALS 2018; 360:661-669. [PMID: 30219529 DOI: 10.1016/j.jhazmat.2018.08.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/21/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Organic and inorganic pollutants well known to interfere with the major functions of the endocrine system co-occur widely in contaminated ecosystems. The aim of the study was to evaluate the ability of Umbelopsis isabellina fungus to simultaneously remove and detoxify multiple environmentally significant endocrine disruptors: the heavy metals Cd(II), Zn(II), Mn(II), Pb(II) and Ni(II) and the phenolic xenobiotics nonylphenol (t-NP), 4-cumylphenol (CP) and 4-tert-octylphenol (4-t-OP). The effects of the metals on fungal growth and efficiency of single-metal uptake were also investigated. U. isabellina exhibited considerable tolerance to Zn(II), Mn(II), Pb(II) and Ni(II), with IC50/24 values ranging from 5.08 for Ni(II) to 13.1 mM for Zn(II). In the presence of CP, the maximum efficiency of Pb(II) removal increased 25% relative to that of the control. Supplementation with Mn(II) or Zn(II) enhanced the 4-t-OP degradation by 18 or 9%, respectively, after 6 h of cultivation. Ecotoxicological assays monitoring bioindicators from different aquatic ecosystems revealed detoxification coinciding with the removal of metals and organic xenobiotics from binary mixtures. This work indicates the potential of a single microorganism, U. isabellina, to remove both heavy metals and organic xenobiotics from co-contaminated sites, making it a suitable candidate for the development of bioremediation strategies.
Collapse
Affiliation(s)
- Tomasz Janicki
- Department of Industrial Microbiology and Biotechnology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Jerzy Długoński
- Department of Industrial Microbiology and Biotechnology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Mariusz Krupiński
- Department of Industrial Microbiology and Biotechnology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| |
Collapse
|
71
|
Awfa D, Ateia M, Fujii M, Johnson MS, Yoshimura C. Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO 2 composites: A critical review of recent literature. WATER RESEARCH 2018; 142:26-45. [PMID: 29859390 DOI: 10.1016/j.watres.2018.05.036] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/09/2018] [Accepted: 05/19/2018] [Indexed: 05/14/2023]
Abstract
The high concentrations of pharmaceuticals and personal care products (PPCP) that found in water in many locations are of concern. Among the available water treatment methods, heterogeneous photocatalysis using TiO2 is an emerging and viable technology to overcome the occurrence of PPCP in natural and waste water. The combination of carbonaceous materials (e.g., activated carbon, carbon nanotubes and graphene nanosheets) with TiO2, a recent development, gives significantly improved performance. In this article, we present a critical review of the development and fabrication of carbonaceous-TiO2 and its application to PPCP removal including its influence on water chemistry, and the relevant operational parameters. Finally, we present an analysis of current priorities in the ongoing research and development of carbonaceous-TiO2 for the photodegradation of PPCP.
Collapse
Affiliation(s)
- Dion Awfa
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, M1-4, Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Mohamed Ateia
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, M1-4, Ookayama, Meguro-ku, Tokyo, 152-8552, Japan; Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, United States; PSIPW Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Saudi Arabia.
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, M1-4, Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Matthew S Johnson
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, M1-4, Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| |
Collapse
|
72
|
Kang YM, Kim MK, Zoh KD. Effect of nitrate, carbonate/bicarbonate, humic acid, and H 2O 2 on the kinetics and degradation mechanism of Bisphenol-A during UV photolysis. CHEMOSPHERE 2018; 204:148-155. [PMID: 29655107 DOI: 10.1016/j.chemosphere.2018.04.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/13/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
In this study, the effects of natural water components (nitrate, carbonate/bicarbonate, and humic acid) on the kinetics and degradation mechanisms of bisphenol A (BPA) during UV-C photolysis and UV/H2O2 reaction were examined. The presence of NO3- (0.04-0.4 mM) and CO32-/HCO3- (0.4-4 mM) ions increased BPA degradation during UV photolysis. Humic acid less than 3 mg/L promoted BPA degradation, but greater than 3 mg/L of humic acid inhibited BPA degradation. During the UV/H2O2 reaction, all water matrix components acted as radical scavengers in the order of humic acid > CO32-/HCO3- > NO3-. All of the degradation reactions agreed with the pseudo-first-order kinetics. While eight byproducts (m/z = 122, 136, 139, 164, 181, 244, 273, 289) were identified in UV-C/NO3- photolysis reaction, four (m/z = 122, 136, 164, 244) and three byproducts (m/z = 122, 136, 164) were observed during UV-C/NO3-/CO32-/HCO3- and UV-C/CO32-/HCO3- reactions. Nitrogenated and hydrogenated byproducts were first observed during the UV-C/NO3- photolysis, but only hydrogenated byproducts as adducts were detected during the UV-C/NO3-/CO32-/HCO3- photolysis. Nitrogenated and hydrogenated byproducts were formed in the early stage of degradation by OH or NO2 radicals, and these byproducts were subsequently degraded into smaller compounds with further reaction during UV-C/NO3- and UV-C/NO3-/CO32-/HCO3- reactions. In contrast, BPA was directly degraded into smaller compounds by β-scission of the isopropyl group by CO3-/HCO3 radicals during UV-C/CO32-/HCO3- reaction. Our results imply that the water components can change the degradation mechanism of BPA during UV photolysis.
Collapse
Affiliation(s)
- Young-Min Kang
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Moon-Kyung Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea.
| |
Collapse
|
73
|
Screening and risk management solutions for steroidal estrogens in surface and wastewater. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.02.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
74
|
New fluorescent labeling reagent Benzimidazo[2,1-b]quinazoline-12(6H) -one-5-ethylimidazole ester and its application in the analysis of endocrine disrupting compounds in milk by high performance liquid chromatography with fluorescence detection. Microchem J 2018. [DOI: 10.1016/j.microc.2018.01.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
75
|
Niu S, Zhang C. Endocrine Disrupting Compounds from the Source Water of the Huai River (Huainan City), China. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 74:471-483. [PMID: 28889278 DOI: 10.1007/s00244-017-0445-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
The occurrence and environmental risk of eight endocrine disrupting compounds (EDCs), namely dimethyl phthalate (DMP), diethyl phthalate (DEP), benzyl butyl phthalate (BBP), dibutyl phthalate (DBP), nonyl phenol (NP), bisphenol A (BPA), 17α-ethinylestradiol (EE2) and estrone (E1), from four water sources (Pingshantou, Wanfenggang, Shisi, and Shiyi) of Huai River (Huainan section) were investigated in this study. Except for DMP only found in Pingshantou, all of the selected EDCs existed widely in the source water. DMP, DEP, BBP, DBP, NP, BPA, EE2, and E1 had the ranges of nd (cannot be detected)-130 ng/L, 25-310, 76-1351, 431-1299, 215-627, 23-107, nd-0.174, and 0.143-0.334 ng/L, respectively. Therefore, the studied water sources were associated with notable levels of EDCs, wherein the concentrations of BBP, DBP, and NP were much higher than the other five chemicals. The selected EDCs appeared to be higher in upstream than in downstream (p < 0.05) for each water source, suggesting that EDCs were subjected to a decreasing with water flow. Correlation analysis suggests that DEP-BP-DBP, NP-BPA, and EE2-E1 might have the same sources, respectively; and the source of NP, EE2, and E1 was different from that of BBP, BEP and BBP, and DEP, respectively. It was observed that both the TAS (total ambient severity) and RQ (risk quotient) were less than 1, indicating that EDCs in Huai River (Huainan section) posed little or no thread to the health of local inhabitants and ecological environmental.
Collapse
Affiliation(s)
- Siping Niu
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Maanshan, People's Republic of China
| | - Cunliang Zhang
- Environmental Monitoring Central Station of Shandong Province, Jinan, People's Republic of China.
| |
Collapse
|
76
|
Bedoya-Ríos DF, Lara-Borrero JA, Duque-Pardo V, Madera-Parra CA, Jimenez EM, Toro AF. Study of the occurrence and ecosystem danger of selected endocrine disruptors in the urban water cycle of the city of Bogotá, Colombia. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:317-325. [PMID: 29281496 DOI: 10.1080/10934529.2017.1401372] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/21/2017] [Indexed: 06/07/2023]
Abstract
Endocrine disruptors have been studied for their high occurrence in different environments including aquatic; however, in the context of developing countries, their occurrence, magnitude and potential threat have little information. This study involved the analysis of various components of the urban water cycle in the city of Bogotá, Colombia. As a result, it was found that the compounds with the highest occurrence are plasticizers such as phthalates and bisphenol A, whereas among the drugs, carbamazepine presented the highest concentrations (0.68-31.45 µg L-1); the analysis of the threat coefficient (HQ) showed the importance of bis(2-ethylhexyl) phthalate (BEHP) and estrone (E1) that can reach surface waters from domestic and industrial discharges.
Collapse
Affiliation(s)
- Diego F Bedoya-Ríos
- a Departamento de Ingeniería Civil, Facultad de Ingeniería , Pontificia Universidad Javeriana , Bogotá, D.C. , Colombia
| | - Jaime A Lara-Borrero
- a Departamento de Ingeniería Civil, Facultad de Ingeniería , Pontificia Universidad Javeriana , Bogotá, D.C. , Colombia
| | - Verónica Duque-Pardo
- a Departamento de Ingeniería Civil, Facultad de Ingeniería , Pontificia Universidad Javeriana , Bogotá, D.C. , Colombia
| | - Carlos A Madera-Parra
- b Escuela de Ingeniería de los Recursos Naturales y del Ambiente - EIDENAR, Facultad de Ingeniería , Universidad del Valle , Cali , Colombia
| | - Eliana M Jimenez
- b Escuela de Ingeniería de los Recursos Naturales y del Ambiente - EIDENAR, Facultad de Ingeniería , Universidad del Valle , Cali , Colombia
| | - Andrés F Toro
- b Escuela de Ingeniería de los Recursos Naturales y del Ambiente - EIDENAR, Facultad de Ingeniería , Universidad del Valle , Cali , Colombia
| |
Collapse
|
77
|
Removal and Biodegradation of 17β-Estradiol and Diethylstilbestrol by the Freshwater Microalgae Raphidocelis subcapitata. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15030452. [PMID: 29510598 PMCID: PMC5876997 DOI: 10.3390/ijerph15030452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 11/17/2022]
Abstract
Natural steroidal and synthetic non-steroidal estrogens such as 17β-estradiol (E2) and diethylstilbestrol (DES) have been found in natural water, which can potentially endanger public health and aquatic ecosystems. The removal and biodegradation of E2 and DES by Raphidocelis subcapitata were studied in bacteria-free cultures exposed to single and mixture treatments at different concentrations for 96 h. The results showed that R. subcapitata exhibited a rapid and strong ability to remove E2 and DES in both single and mixture treatments by biodegradation. At the end of 96 h, the removal percentage of single E2 and DES achieved 82.0%, 80.4%, 74.6% and 89.9%, 73.4%, 54.1% in 0.1, 0.5, and 1.5 mg·L-1, respectively. With the exception of the 0.1 mg·L-1 treatment at 96 h, the removal capacity of E2 was more efficient than that of DES by R. subcapitata. Furthermore, the removal percentage of mixture E2 and DES achieved 88.5%, 82.9%, 84.3% and 87.2%, 71.8%, 51.1% in 0.1, 0.5, and 1.5 mg·L-1, respectively. The removal percentage of mixed E2 was significantly higher than that of the single E2. The presence of DES could accelerate the removal of E2 from the mixture treatments in equal concentrations. In addition, the removal was mainly attributed to the biodegradation or biotransformation process by the microalgae cells rather than simple sorption and accumulation in the cells. The microalgae R. subcapitata demonstrated a high capability for the removal of the E2 and DES indicating future prospects for its application.
Collapse
|
78
|
Trujillo-Rodríguez MJ, Nan H, Anderson JL. Expanding the use of polymeric ionic liquids in headspace solid-phase microextraction: Determination of ultraviolet filters in water samples. J Chromatogr A 2018; 1540:11-20. [DOI: 10.1016/j.chroma.2018.01.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 12/15/2022]
|
79
|
La Spina R, Ferrero VEV, Aiello V, Pedotti M, Varani L, Lettieri T, Calzolai L, Haasnoot W, Colpo P. Label-Free Biosensor Detection of Endocrine Disrupting Compounds Using Engineered Estrogen Receptors. BIOSENSORS 2017; 8:E1. [PMID: 29271936 PMCID: PMC5872049 DOI: 10.3390/bios8010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 01/28/2023]
Abstract
Endocrine Disrupting Compounds (EDCs) are chemical substances shown to interfere with endogenous hormones affecting the endocrine, immune and nervous systems of mammals. EDCs are the causative agents of diseases including reproductive disorders and cancers. This highlights the urgency to develop fast and sensitive methods to detect EDCs, which are detrimental even at very low concentrations. In this work, we propose a label-free surface plasmon resonance (SPR) biosensor method to detect specific EDCs (17 β-estradiol (E2), ethinyl-estradiol, 4-nonylphenol, tamoxifen) through their binding to estrogen receptor alpha (ERα). We show that the use of rationally designed ERα (as bio-recognition element) in combination with conformation-sensitive peptides (as amplification agent, resulting in increased responses) enables the detection of low parts per billion (ppb) levels of E2. As a proof of concept, this bioassay was used to detect E2 in (spiked) real water samples from fish farms, rivers and the sea at low ppb levels after concentration by solid phase extraction. In addition, the present SPR assay that combines a conformation-sensitive peptide with an array of ERα mutants is very promising for the assessment of the risk of potential estrogenic activity for chemical substances.
Collapse
Affiliation(s)
- Rita La Spina
- European Commission-DG Joint Research Centre, Directorate Health Consumer and Reference Materials, 21027 Ispra, Italy.
| | - Valentina E V Ferrero
- European Commission-DG Joint Research Centre, Directorate Sustainable Resources, 21027 Ispra, Italy.
| | - Venera Aiello
- European Commission-DG Joint Research Centre, Directorate Health Consumer and Reference Materials, 21027 Ispra, Italy.
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland.
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland.
| | - Teresa Lettieri
- European Commission-DG Joint Research Centre, Directorate Sustainable Resources, 21027 Ispra, Italy.
| | - Luigi Calzolai
- European Commission-DG Joint Research Centre, Directorate Health Consumer and Reference Materials, 21027 Ispra, Italy.
| | - Willem Haasnoot
- Authenticity & Bioassays, RIKILT Wageningen University & Research, Wageningen University, 6708 WB Wageningen, The Netherlands.
| | - Pascal Colpo
- European Commission-DG Joint Research Centre, Directorate Health Consumer and Reference Materials, 21027 Ispra, Italy.
| |
Collapse
|
80
|
Cunha DL, de Araujo FG, Marques M. Psychoactive drugs: occurrence in aquatic environment, analytical methods, and ecotoxicity-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24076-24091. [PMID: 28942593 DOI: 10.1007/s11356-017-0170-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
This review focused on seven psychoactive drugs being six benzodiazepines (alprazolam, bromazepam, clonazepam, diazepam, lorazepam, and oxazepam) and one antidepressant (citalopram) widely consumed by modern society and detected in different aqueous matrices (drinking water, surface water, groundwater, seawater, estuary water, influent and effluent of wastewater treatment plants). The review included 219 selected scientific papers from which 1642 data/entries were obtained, each entry corresponding to one target compound in one aqueous matrix. Concentrations of all investigated drugs in all aqueous matrices varied from 0.14 to 840,000 ng L-1. Citalopram presented the highest concentrations in the aqueous matrices. Based on the Wilcoxon-Mann-Whitney test, differences between wastewater influents and effluents were not significant for most wastewater categories, suggesting that conventional wastewater treatment systems as such do not remove or remove partially these compounds. High-income countries showed much lower concentrations in surface water than the group formed by upper-middle-, lower-middle-, and low-income countries. Regarding analytical methods, solid-phase extraction (SPE) was by far the most used extraction method (83%) and performance liquid chromatography (HPLC) (73%) coupled to mass spectrometry (99%) the most common analytical method. Changes in behavior and in survival rates were the most common effects reported on bioindicators (aquatic species) due to the presence of these drugs in water. Concentrations of psychoactive drugs found in surface waters were most of the time within the range that caused measurable toxic effects in ecotoxicity assays.
Collapse
Affiliation(s)
- Deivisson Lopes Cunha
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University (UERJ), R. São Francisco Xavier, 524, CEP, Rio de Janeiro, RJ, 20550-900, Brazil
- Post-Graduation Program in Environment (PPGMA), UERJ, Rio de Janeiro, Brazil
| | - Frederico Goytacazes de Araujo
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University (UERJ), R. São Francisco Xavier, 524, CEP, Rio de Janeiro, RJ, 20550-900, Brazil
- Post-Graduation Program in Chemistry (PPGQ), UERJ, Rio de Janeiro, Brazil
| | - Marcia Marques
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University (UERJ), R. São Francisco Xavier, 524, CEP, Rio de Janeiro, RJ, 20550-900, Brazil.
| |
Collapse
|
81
|
Omar TFT, Aris AZ, Yusoff FM, Mustafa S. An improved SPE-LC-MS/MS method for multiclass endocrine disrupting compound determination in tropical estuarine sediments. Talanta 2017; 173:51-59. [DOI: 10.1016/j.talanta.2017.05.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 11/26/2022]
|
82
|
Cecinato A, Romagnoli P, Perilli M, Balducci C. Pharmaceutical substances in ambient particulates: A preliminary assessment. CHEMOSPHERE 2017; 183:62-68. [PMID: 28535462 DOI: 10.1016/j.chemosphere.2017.05.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Till now, no attention has been paid to pharmaceuticals (PCs) in the air, though they are known to affect waters, soils, foods and biota. This paper describes the first attempt to characterize the PC occurrence in the air. Airborne particulates (PM10 or PM2.5 fractions, from Amsterdam, Netherland, Rome and Rende, Italy) were sampled on quartz fiber filter by means of pumping systems operating at medium-volume conditions (16 or 38.5 L min-1). The samples were solvent extracted through sonication with a dichloromethane:acetone:methanol mixture and reduced close to dryness; three fractions of the residue were separated through column chromatography; they comprised non polar, low polar and very polar organic compounds, respectively, and PCs were in the third one. Chemical analysis was performed by means of gas chromatography coupled with mass spectrometric detection (GC-MSD), after treatment of solutions with methyl,tertzbutylsilyl-trifluoroacetamide (MTBSTFA) to form silyl derivatives of most PCs. The following substances were investigated: acetaminophenol, ibuprofen, ketoprofen, fenoprefen, naproxen, fenofibrate, diclofenac, acetylcysteine and sulfanilamide; p-hydroxybenzoic acid and salicylic acid; and parabens (methyl, ethyl and propyl). Except aspirin, acetamidophenol, acetylcysteine and sulfanilamide, the target compounds could be quantified with good repeatability, reproducibility and percent recoveries (on the average, ∼7.5%, ∼7.1% and 91%, respectively). The PC concentrations ranged <0.1-8.6 ng m-3; season dependent drug profiles could be observed in Rome and Rende.
Collapse
Affiliation(s)
- Angelo Cecinato
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), via Salaria, km 29.3, P. O. Box 10, 00015 Monterotondo RM, Italy.
| | - Paola Romagnoli
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), via Salaria, km 29.3, P. O. Box 10, 00015 Monterotondo RM, Italy
| | - Mattia Perilli
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), via Salaria, km 29.3, P. O. Box 10, 00015 Monterotondo RM, Italy
| | - Catia Balducci
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), via Salaria, km 29.3, P. O. Box 10, 00015 Monterotondo RM, Italy
| |
Collapse
|
83
|
Corazza G, Merib J, Magosso HA, Bittencourt OR, Carasek E. A hybrid material as a sorbent phase for the disposable pipette extraction technique enhances efficiency in the determination of phenolic endocrine-disrupting compounds. J Chromatogr A 2017; 1513:42-50. [DOI: 10.1016/j.chroma.2017.07.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 11/30/2022]
|
84
|
Voltammetric determination of 17β-estradiol in human urine and buttermilk samples using a simple copper(II) oxide-modified carbon paste electrode. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3690-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
85
|
Diao P, Chen Q, Wang R, Sun D, Cai Z, Wu H, Duan S. Phenolic endocrine-disrupting compounds in the Pearl River Estuary: Occurrence, bioaccumulation and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:1100-1107. [PMID: 28185731 DOI: 10.1016/j.scitotenv.2017.01.169] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 01/12/2017] [Accepted: 01/25/2017] [Indexed: 05/20/2023]
Abstract
Three phenolic endocrine-disrupting compounds, 4-nonylphenol, 4-tert-octylphenol and bisphenol A, were determined in water, sediment and biota (fish, shrimp and mollusk) collected from sites along the Pearl River Estuary, China. The 4-nonylphenol, 4-tert-octylphenol and bisphenol A concentrations ranged from 1.20-3352.86ng/L in the water, <0.17-20.80ng/g dw in the sediment and <1.49-237.12ng/g dw in the biota. The concentrations of 4-nonylphenol were higher than those of 4-tert-octylphenol and bisphenol A in the water, sediment and organisms. Moreover, the bioconcentration factors (BCFs) and biota-sediment accumulation factors (BSAFs) of 4-nonylphenol and bisphenol A were calculated, and were found to be higher for 4-nonylphenol and in demersal organisms. To assess co-exposure to phenolic endocrine-disrupting compounds, the 4-nonylphenol equivalent was employed to evaluate the potential risks to aquatic organisms and human health, and the results indicated a low risk.
Collapse
Affiliation(s)
- Panpan Diao
- Research Center of Hydrobiology, Jinan University, P.R. China.
| | - Qi Chen
- Research Center of Hydrobiology, Jinan University, P.R. China
| | - Rui Wang
- Research Center of Hydrobiology, Jinan University, P.R. China
| | - Dong Sun
- Research Center of Hydrobiology, Jinan University, P.R. China
| | - Zhuoping Cai
- Research Center of Hydrobiology, Jinan University, P.R. China
| | - Hao Wu
- Research Center of Hydrobiology, Jinan University, P.R. China
| | - Shunshan Duan
- Research Center of Hydrobiology, Jinan University, P.R. China.
| |
Collapse
|