51
|
The Current Host Range of Hepatitis E Viruses. Viruses 2019; 11:v11050452. [PMID: 31108942 PMCID: PMC6563279 DOI: 10.3390/v11050452] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 01/01/2023] Open
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen transmitting both human to human via the fecal oral route and from animals to humans through feces, direct contact, and consumption of contaminated meat products. Understanding the host range of the virus is critical for determining where potential threats to human health may be emerging from and where potential reservoirs for viral persistence in the environment may be hiding. Initially thought to be a human specific disease endemic to developing countries, the identification of swine as a primary host for genotypes 3 and 4 HEV in industrialized countries has begun a long journey of discovering novel strains of HEV and their animal hosts. As we continue identifying new strains of HEV in disparate animal species, it is becoming abundantly clear that HEV has a broad host range and many of these HEV strains can cross between differing animal species. These cross-species transmitting strains pose many unique challenges to human health as they are often unrecognized as sources of viral transmission.
Collapse
|
52
|
Murphy EG, Williams NJ, Jennings D, Chantrey J, Verin R, Grierson S, McElhinney LM, Bennett M. First detection of Hepatitis E virus (Orthohepevirus C) in wild brown rats (Rattus norvegicus) from Great Britain. Zoonoses Public Health 2019; 66:686-694. [PMID: 31033238 PMCID: PMC6767579 DOI: 10.1111/zph.12581] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/21/2019] [Accepted: 04/06/2019] [Indexed: 12/20/2022]
Abstract
In the United Kingdom, there has been an increase in the number of hepatitis E virus (HEV) infections in people annually since 2010. Most of these are thought to be indigenously acquired Orthohepevirus A genotype 3 (HEV G3), which has been linked to pork production and consumption. However, the dominant subgroup circulating in British pigs differs from that which is found in people; therefore, an alternative, potentially zoonotic, source is suspected as a possible cause of these infections. Rodents, brown rats (Rattus norvegicus) in particular, have been shown to carry HEV, both the swine HEV G3 genotype and Orthohepevirus C, genotype C1 (rat HEV). To investigate the prevalence of HEV in British rodents, liver tissue was taken from 307 rodents collected from pig farms (n = 12) and other locations (n = 10). The RNA from these samples was extracted and tested using a pan‐HEV nested RT‐PCR. Limited histopathology was also performed. In this study, 8/61 (13%, 95% CI, 5–21) of brown rat livers were positive for HEV RNA. Sequencing of amplicons demonstrated all infections to be rat HEV with 87%–92% nucleotide identity to other rat HEV sequences circulating within Europe and China (224 nt ORF‐1). Lesions and necrosis were observed histologically in 2/3 samples examined. No rat HEV RNA was detected in any other species, and no HEV G3 RNA was detected in any rodent in this study. This is the first reported detection of rat HEV in Great Britain. A human case of rat HEV infection has recently been reported in Asia, suggesting that rat HEV could pose a risk to public health.
Collapse
Affiliation(s)
- Ellen G Murphy
- NIHR Health Protection Research Unit in Emerging Zoonotic Infections, Institute of Infection and Global Health, NCZR, Neston, UK.,Epidemiology and Population Health, Institute of Global Health, NCZR, Neston, UK
| | - Nicola J Williams
- NIHR Health Protection Research Unit in Emerging Zoonotic Infections, Institute of Infection and Global Health, NCZR, Neston, UK.,Epidemiology and Population Health, Institute of Global Health, NCZR, Neston, UK
| | - Daisy Jennings
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Weybridge, UK
| | - Julian Chantrey
- Department of Veterinary Pathology & Public Health, School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Ranieri Verin
- Department of Veterinary Pathology & Public Health, School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Sylvia Grierson
- Department of Virology, Animal and Plant Health Agency, Addlestone, UK
| | - Lorraine M McElhinney
- NIHR Health Protection Research Unit in Emerging Zoonotic Infections, Institute of Infection and Global Health, NCZR, Neston, UK.,Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Weybridge, UK
| | - Malcolm Bennett
- School of Veterinary Science, University of Nottingham, Leicestershire, UK
| |
Collapse
|
53
|
Schlosser J, Dähnert L, Dremsek P, Tauscher K, Fast C, Ziegler U, Gröner A, Ulrich RG, Groschup MH, Eiden M. Different Outcomes of Experimental Hepatitis E Virus Infection in Diverse Mouse Strains, Wistar Rats, and Rabbits. Viruses 2018; 11:v11010001. [PMID: 30577433 PMCID: PMC6356764 DOI: 10.3390/v11010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/11/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) is the causative agent of acute hepatitis E in humans in developing countries, but autochthonous cases of zoonotic genotype 3 (HEV-3) infection also occur in industrialized countries. In contrast to swine, rats, and rabbits, natural HEV infections in mice have not yet been demonstrated. The pig represents a well-established large animal model for HEV-3 infection, but a suitable small animal model mimicking natural HEV-3 infection is currently missing. Therefore, we experimentally inoculated C57BL/6 mice (wild-type, IFNAR−/−, CD4−/−, CD8−/−) and BALB/c nude (nu/nu) mice, Wistar rats, and European rabbits with a wild boar-derived HEV-3 strain and monitored virus replication and shedding, as well as humoral immune responses. HEV RNA and anti-HEV antibodies were detected in one and two out of eight of the rats and all rabbits inoculated, respectively, but not in any of the mouse strains tested. Remarkably, immunosuppressive dexamethasone treatment of rats did not enhance their susceptibility to HEV infection. In rabbits, immunization with recombinant HEV-3 and ratHEV capsid proteins induced protection against HEV-3 challenge. In conclusion, the rabbit model for HEV-3 infection may serve as a suitable alternative to the non-human primate and swine models, and as an appropriate basis for vaccine evaluation studies.
Collapse
Affiliation(s)
- Josephine Schlosser
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| | - Lisa Dähnert
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| | - Paul Dremsek
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| | - Kerstin Tauscher
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Christine Fast
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| | | | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel, 17493 GreifswaldInsel Riems, Germany.
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel, 17493 GreifswaldInsel Riems, Germany.
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
54
|
Kurucz K, Hederics D, Bali D, Kemenesi G, Horváth G, Jakab F. Hepatitis E virus in Common voles (Microtus arvalis) from an urban environment, Hungary: Discovery of a Cricetidae-specific genotype of Orthohepevirus C. Zoonoses Public Health 2018; 66:259-263. [PMID: 30499180 DOI: 10.1111/zph.12543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/25/2018] [Accepted: 11/03/2018] [Indexed: 01/11/2023]
Abstract
Hepatitis E virus is a major causative agent of acute hepatitis worldwide. Despite its zoonotic potential, there is limited information about the natural chain of hepevirus infection in wildlife, and the potential reservoir species. In this study, we performed a HEV survey by heminested RT-PCR on rodent samples from an urban environment (in the city of Pécs, Hungary) and investigated the prevalence of the virus among these native rodent species (Apodemus agrarius, Apodemus flavicollis, Apodemus sylvaticus, Microtus arvalis and Myodes glareolus). HEV was detected exclusively in Common voles (M. arvalis), in 10.2% of screened voles, and 3.2% of all investigated samples from all species. Based on the phylogenetic analysis, our strain showed the closest homology with European Orthohepevirus C strains detected previously in faecal samples of birds of prey and Red fox, supporting the possibility of the dietary origin of these strains. In addition, our samples showed close phylogenetic relation with a South American strain detected in Necromys lasiurus (Cricetidae), but separated clearly from other Muridae-associated strains, suggesting the presence of a Cricetidae-specific genotype in Europe and South-America. Based on these results, we hypothesize the reservoir role of M. arvalis rodents for the European Cricetidae-specific Orthohepevirus C genotype.
Collapse
Affiliation(s)
- Kornélia Kurucz
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Dávid Hederics
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Dominika Bali
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Gábor Kemenesi
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Győző Horváth
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Ferenc Jakab
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| |
Collapse
|
55
|
King NJ, Hewitt J, Perchec-Merien AM. Hiding in Plain Sight? It's Time to Investigate Other Possible Transmission Routes for Hepatitis E Virus (HEV) in Developed Countries. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:225-252. [PMID: 29623595 DOI: 10.1007/s12560-018-9342-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Historically in developed countries, reported hepatitis E cases were typically travellers returning from countries where hepatitis E virus (HEV) is endemic, but now there are increasing numbers of non-travel-related ("autochthonous") cases being reported. Data for HEV in New Zealand remain limited and the transmission routes unproven. We critically reviewed the scientific evidence supporting HEV transmission routes in other developed countries to inform how people in New Zealand may be exposed to this virus. A substantial body of indirect evidence shows domesticated pigs are a source of zoonotic human HEV infection, but there is an information bias towards this established reservoir. The increasing range of animals in which HEV has been detected makes it important to consider other possible animal reservoirs of HEV genotypes that can or could infect humans. Foodborne transmission of HEV from swine and deer products has been proven, and a large body of indirect evidence (e.g. food surveys, epidemiological studies and phylogenetic analyses) support pig products as vehicles of HEV infection. Scarce data from other foods suggest we are neglecting other potential sources of foodborne HEV infection. Moreover, other transmission routes are scarcely investigated in developed countries; the role of infected food handlers, person-to-person transmission via the faecal-oral route, and waterborne transmission from recreational contact or drinking untreated or inadequately treated water. People have become symptomatic after receiving transfusions of HEV-contaminated blood, but it is unclear how important this is in the overall hepatitis E disease burden. There is need for broader research efforts to support establishing risk-based controls.
Collapse
Affiliation(s)
- Nicola J King
- Institute of Environmental Science and Research, 34 Kenepuru Drive, Kenepuru, Porirua, 5022, New Zealand
| | - Joanne Hewitt
- Institute of Environmental Science and Research, 34 Kenepuru Drive, Kenepuru, Porirua, 5022, New Zealand.
| | - Anne-Marie Perchec-Merien
- New Zealand Ministry for Primary Industries, Pastoral House, 25 The Terrace, Wellington, New Zealand
| |
Collapse
|
56
|
Strakova P, Kubankova M, Vasickova P, Juricova Z, Rudolf I, Hubalek Z. Hepatitis E virus in archived sera from wild boars (Sus scrofa
), Czech Republic. Transbound Emerg Dis 2018; 65:1770-1774. [DOI: 10.1111/tbed.12950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/25/2018] [Accepted: 06/08/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Petra Strakova
- Institute of Vertebrate Biology; The Czech Academy of Sciences; Brno Czech Republic
| | | | | | - Zina Juricova
- Institute of Vertebrate Biology; The Czech Academy of Sciences; Brno Czech Republic
| | - Ivo Rudolf
- Institute of Vertebrate Biology; The Czech Academy of Sciences; Brno Czech Republic
| | - Zdenek Hubalek
- Institute of Vertebrate Biology; The Czech Academy of Sciences; Brno Czech Republic
| |
Collapse
|
57
|
Simanavicius M, Juskaite K, Verbickaite A, Jasiulionis M, Tamosiunas PL, Petraityte-Burneikiene R, Zvirbliene A, Ulrich RG, Kucinskaite-Kodze I. Detection of rat hepatitis E virus, but not human pathogenic hepatitis E virus genotype 1-4 infections in wild rats from Lithuania. Vet Microbiol 2018; 221:129-133. [PMID: 29981698 DOI: 10.1016/j.vetmic.2018.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 12/27/2022]
Abstract
Rat hepatitis E virus (HEV) is an orthohepevirus which is related to other HEV found in humans and other mammals. It was first identified in Norway rats (Rattus norvegicus) from Germany in 2010, and later it has been detected in Black rats (Rattus rattus) and Norway rats from USA, China, Indonesia, Vietnam and many European countries. In this study, we describe molecular and serological investigations of Black and Norway rats trapped in Lithuania, Eastern Europe, for infections with rat HEV and human HEV genotypes 1-4. Rat HEV-specific real-time reverse transcription-PCR (RT-qPCR) analysis of rat liver samples revealed the presence of rat HEV in 9 of 109 (8.3%) samples. In contrast, a RT-qPCR specific for HEV genotypes 1-4 did not reveal any positive samples. A nested broad spectrum RT-PCR was used for a confirmation of rat HEV infection with a subsequent sequencing of the amplified rat HEV genome fragment. Phylogenetic analysis revealed a clustering of all newly identified rat HEV sequences with Norway rat-derived rat HEV sequences from Germany within the species Orthohepevirus C. An indirect ELISA using a yeast-expressed truncated rat HEV capsid protein variant revealed 31.2% seropositive samples indicating a high rate of rat HEV circulation in the rat population examined. In conclusion, the current investigation confirms rat HEV infections in Norway and Black rats in Lithuania, Eastern Europe, and the non-persistent nature of HEV infection.
Collapse
Affiliation(s)
| | - Karolina Juskaite
- Vilnius University Life Sciences Center Institute of Biotechnology, Lithuania.
| | - Arune Verbickaite
- Vilnius University Life Sciences Center Institute of Biotechnology, Lithuania.
| | | | | | | | - Aurelija Zvirbliene
- Vilnius University Life Sciences Center Institute of Biotechnology, Lithuania.
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Germany; German Center for Infection Research (DZIF), Partner site Hamburg-Luebeck-Borstel-Insel Riems, Germany.
| | | |
Collapse
|
58
|
Tanggis, Kobayashi T, Takahashi M, Jirintai S, Nishizawa T, Nagashima S, Nishiyama T, Kunita S, Hayama E, Tanaka T, Mulyanto, Okamoto H. An analysis of two open reading frames (ORF3 and ORF4) of rat hepatitis E virus genome using its infectious cDNA clones with mutations in ORF3 or ORF4. Virus Res 2018; 249:16-30. [DOI: 10.1016/j.virusres.2018.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 01/13/2023]
|
59
|
Ryll R, Eiden M, Heuser E, Weinhardt M, Ziege M, Höper D, Groschup MH, Heckel G, Johne R, Ulrich RG. Hepatitis E virus in feral rabbits along a rural-urban transect in Central Germany. INFECTION GENETICS AND EVOLUTION 2018; 61:155-159. [PMID: 29597055 DOI: 10.1016/j.meegid.2018.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/01/2018] [Accepted: 03/22/2018] [Indexed: 12/27/2022]
Abstract
Rabbit associated genotype 3 hepatitis E virus (HEV) strains were detected in feral, pet and farm rabbits in different parts of the world since 2009 and recently also in human patients. Here, we report a serological and molecular survey on 72 feral rabbits, collected along a rural-urban transect in and next to Frankfurt am Main, Central Germany. ELISA investigations revealed in 25 of 72 (34.7%) animals HEV-specific antibodies. HEV derived RNA was detected in 18 of 72 (25%) animals by reverse transcription-polymerase chain reaction assay. The complete genomes from two rabbitHEV-strains, one from a rural site and the other from an inner-city area, were generated by a combination of high-throughput sequencing, a primer walking approach and 5'- and 3'- rapid amplification of cDNA ends. Phylogenetic analysis of open reading frame (ORF)1-derived partial and complete ORF1/ORF2 concatenated coding sequences indicated their similarity to rabbit-associated HEV strains. The partial sequences revealed one cluster of closely-related rabbitHEV sequences from the urban trapping sites that is well separated from several clusters representing rabbitHEV sequences from rural trapping sites. The complete genome sequences of the two novel strains indicated similarities of 75.6-86.4% to the other 17 rabbitHEV sequences; the amino acid sequence identity of the concatenated ORF1/ORF2-encoded proteins reached 89.0-93.1%. The detection of rabbitHEV in an inner-city area with a high human population density suggests a high risk of potential human infection with the zoonotic rabbitHEV, either by direct or indirect contact with infected animals. Therefore, future investigations on the occurrence and frequency of human infections with rabbitHEV are warranted in populations with different contact to rabbits.
Collapse
Affiliation(s)
- René Ryll
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Martin Eiden
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Elisa Heuser
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Markus Weinhardt
- Department of Zoology, State Museum of Natural History, Stuttgart, Germany
| | - Madlen Ziege
- Department of Ecology and Evolution, University of Frankfurt, Frankfurt am Main, Germany; University of Potsdam, Plant Ecology and Nature Conservation, Potsdam (Golm), Germany
| | - Dirk Höper
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Gerald Heckel
- University of Bern, Institute of Ecology and Evolution, Bern, Switzerland; Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Genopode, Lausanne, Switzerland
| | - Reimar Johne
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Insel Riems, Germany.
| |
Collapse
|
60
|
Primadharsini PP, Mulyanto, Wibawa IDN, Anggoro J, Nishizawa T, Takahashi M, Jirintai S, Okamoto H. The identification and characterization of novel rat hepatitis E virus strains in Bali and Sumbawa, Indonesia. Arch Virol 2018; 163:1345-1349. [DOI: 10.1007/s00705-018-3736-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/25/2017] [Indexed: 12/21/2022]
|
61
|
Wang B, Li W, Zhou JH, Li B, Zhang W, Yang WH, Pan H, Wang LX, Bock CT, Shi ZL, Zhang YZ, Yang XL. Chevrier's Field Mouse (Apodemus chevrieri) and Père David's Vole (Eothenomys melanogaster) in China Carry Orthohepeviruses that form Two Putative Novel Genotypes Within the Species Orthohepevirus C. Virol Sin 2018; 33:44-58. [PMID: 29500690 PMCID: PMC6178085 DOI: 10.1007/s12250-018-0011-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is the prototype of the family Hepeviridae and the causative agent of common acute viral hepatitis. Genetically diverse HEV-related viruses have been detected in a variety of mammals and some of them may have zoonotic potential. In this study, we tested 278 specimens collected from seven wild small mammal species in Yunnan province, China, for the presence and prevalence of orthohepevirus by broad-spectrum reverse transcription (RT)-PCR. HEV-related sequences were detected in two rodent species, including Chevrier's field mouse (Apodemus chevrieri, family Muridae) and Père David's vole (Eothenomys melanogaster, family Cricetidae), with the infection rates of 29.20% (59/202) and 7.27% (4/55), respectively. Further four representative full-length genomes were generated: two each from Chevrier's field mouse (named RdHEVAc14 and RdHEVAc86) and Père David's vole (RdHEVEm40 and RdHEVEm67). Phylogenetic analyses and pairwise distance comparisons of whole genome sequences and amino acid sequences of the gene coding regions showed that orthohepeviruses identified in Chinese Chevrier's field mouse and Père David's vole belonged to the species Orthohepevirus C but were highly divergent from the two assigned genotypes: HEV-C1 derived from rat and shrew, and HEV-C2 derived from ferret and possibly mink. Quantitative real-time RT-PCR demonstrated that these newly discovered orthohepeviruses had hepatic tropism. In summary, our work discovered two putative novel genotypes orthohepeviruses preliminarily named HEV-C3 and HEV-C4 within the species Orthohepevirus C, which expands our understanding of orthohepevirus infection in the order Rodentia and gives new insights into the origin, evolution, and host range of orthohepevirus.
Collapse
Affiliation(s)
- Bo Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430070, China
- Department of Infectious Diseases, Robert Koch Institute, 13353, Berlin, Germany
| | - Wen Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Ji-Hua Zhou
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China
| | - Bei Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Wei Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Wei-Hong Yang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China
| | - Hong Pan
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China
| | - Li-Xia Wang
- School of Public Health, Dali University, Dali, 671000, China
| | - C Thomas Bock
- Department of Infectious Diseases, Robert Koch Institute, 13353, Berlin, Germany
- Institute of Tropical Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Zheng-Li Shi
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Yun-Zhi Zhang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China.
- School of Public Health, Dali University, Dali, 671000, China.
| | - Xing-Lou Yang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430070, China.
| |
Collapse
|
62
|
Generation in yeast and antigenic characterization of hepatitis E virus capsid protein virus-like particles. Appl Microbiol Biotechnol 2017; 102:185-198. [PMID: 29143081 DOI: 10.1007/s00253-017-8622-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 12/30/2022]
Abstract
Hepatitis E is a globally distributed human disease caused by hepatitis E virus (HEV). In Europe, it spreads through undercooked pork meat or other products and with blood components through transfusions. There are no approved or golden standard serologic systems for HEV diagnostics. Commercially available HEV tests often provide inconsistent results which may differ among the assays. In this study, we describe generation in yeast and characterization of HEV genotype 3 (HEV-3) and rat HEV capsid proteins self-assembled into virus-like particles (VLPs) and the development of HEV-specific monoclonal antibodies (MAbs). Full-length HEV-3 and rat HEV capsid proteins and their truncated variants comprising amino acids (aa) 112-608 were produced in yeast S. cerevisiae. The yeast-expressed rat HEV capsid protein was found to be glycosylated. The full-length HEV-3 capsid protein and both full-length and truncated rat HEV capsid proteins were capable to self-assemble into VLPs. All recombinant proteins contained HEV genotype-specific linear epitopes and cross-reactive conformational epitopes recognized by serum antibodies from HEV-infected reservoir animals. Two panels of MAbs against HEV-3 and rat HEV capsid proteins were generated. Their cross-reactivity pattern was investigated by Western blot, ELISA, and immunofluorescence assay on HEV-3-infected cell cultures. The analysis revealed cross-reactive, genotype-specific, and virus-reactive MAbs. MAb epitopes were localized within S, M, and P domains of HEV-3 and rat HEV capsid proteins. Yeast-generated recombinant VLPs of HEV-3 and rat HEV capsid proteins and HEV-specific MAbs might be employed to develop novel HEV detection systems.
Collapse
|
63
|
Serological evidence of hepatitis E virus infection in zoo animals and identification of a rodent-borne strain in a Syrian brown bear. Vet Microbiol 2017; 212:87-92. [PMID: 29173594 DOI: 10.1016/j.vetmic.2017.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Hepatitis E virus (HEV) is the causative agent of hepatitis E, an emerging infectious disease of humans. HEV infections have also been described in various animal species. Whereas domestic pigs and wild boars are well-known animal reservoirs for HEV, the knowledge on natural HEV infection in zoo animals is scarce so far. Here, we analysed 244 sera from 66 mammal species derived from three zoos in Germany using a commercial double antigen sandwich ELISA. HEV-specific antibodies were detected in 16 animal species, with the highest detection rates in suids (33.3%) and carnivores (27.0%). However, RNA of the human pathogenic HEV genotypes 1-4 was not detected in the serum samples from suids or carnivores. Using a broad spectrum RT-PCR, a ratHEV-related sequence was identified in a sample of a female Syrian brown bear (Ursus arctos syriacus). Subsequent serum samples within a period of five years confirmed a HEV seroconversion in this animal. No symptoms of hepatitis were recorded. In a follow-up investigation at the same location, closely related ratHEV sequences were identified in free-living Norway rats (Rattus norvegicus), whereas feeder rats (Rattus norvegicus forma domestica) were negative for HEV-specific antibodies and RNA. Therefore, a spillover infection of ratHEV from free-living Norway rats is most likely. The results indicate that a wide range of zoo animals can be naturally infected with HEV or HEV-related viruses. Their distinct role as possible reservoir animals for HEV and sources of HEV infection for humans and other animals remains to be investigated.
Collapse
|
64
|
Drewes S, Straková P, Drexler JF, Jacob J, Ulrich RG. Assessing the Diversity of Rodent-Borne Viruses: Exploring of High-Throughput Sequencing and Classical Amplification/Sequencing Approaches. Adv Virus Res 2017; 99:61-108. [PMID: 29029730 DOI: 10.1016/bs.aivir.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rodents are distributed throughout the world and interact with humans in many ways. They provide vital ecosystem services, some species are useful models in biomedical research and some are held as pet animals. However, many rodent species can have adverse effects such as damage to crops and stored produce, and they are of health concern because of the transmission of pathogens to humans and livestock. The first rodent viruses were discovered by isolation approaches and resulted in break-through knowledge in immunology, molecular and cell biology, and cancer research. In addition to rodent-specific viruses, rodent-borne viruses are causing a large number of zoonotic diseases. Most prominent examples are reemerging outbreaks of human hemorrhagic fever disease cases caused by arena- and hantaviruses. In addition, rodents are reservoirs for vector-borne pathogens, such as tick-borne encephalitis virus and Borrelia spp., and may carry human pathogenic agents, but likely are not involved in their transmission to human. In our days, next-generation sequencing or high-throughput sequencing (HTS) is revolutionizing the speed of the discovery of novel viruses, but other molecular approaches, such as generic RT-PCR/PCR and rolling circle amplification techniques, contribute significantly to the rapidly ongoing process. However, the current knowledge still represents only the tip of the iceberg, when comparing the known human viruses to those known for rodents, the mammalian taxon with the largest species number. The diagnostic potential of HTS-based metagenomic approaches is illustrated by their use in the discovery and complete genome determination of novel borna- and adenoviruses as causative disease agents in squirrels. In conclusion, HTS, in combination with conventional RT-PCR/PCR-based approaches, resulted in a drastically increased knowledge of the diversity of rodent viruses. Future improvements of the used workflows, including bioinformatics analysis, will further enhance our knowledge and preparedness in case of the emergence of novel viruses. Classical virological and additional molecular approaches are needed for genome annotation and functional characterization of novel viruses, discovered by these technologies, and evaluation of their zoonotic potential.
Collapse
Affiliation(s)
- Stephan Drewes
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Petra Straková
- Institute of Vertebrate Biology v.v.i., Academy of Sciences, Brno, Czech Republic
| | - Jan F Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany; German Center for Infection Research (DZIF), Germany
| | - Jens Jacob
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany; German Center for Infection Research (DZIF), Partner site Hamburg-Luebeck-Borstel-Insel Riems, Greifswald-Insel Riems, Germany.
| |
Collapse
|
65
|
Spahr C, Knauf-Witzens T, Vahlenkamp T, Ulrich RG, Johne R. Hepatitis E virus and related viruses in wild, domestic and zoo animals: A review. Zoonoses Public Health 2017; 65:11-29. [PMID: 28944602 DOI: 10.1111/zph.12405] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Indexed: 01/15/2023]
Abstract
Hepatitis E is a human disease mainly characterized by acute liver illness, which is caused by infection with the hepatitis E virus (HEV). Large hepatitis E outbreaks have been described in developing countries; however, the disease is also increasingly recognized in industrialized countries. Mortality rates up to 25% have been described for pregnant women during outbreaks in developing countries. In addition, chronic disease courses could be observed in immunocompromised transplant patients. Whereas the HEV genotypes 1 and 2 are mainly confined to humans, genotypes 3 and 4 are also found in animals and can be zoonotically transmitted to humans. Domestic pig and wild boar represent the most important reservoirs for these genotypes. A distinct subtype of genotype 3 has been repeatedly detected in rabbits and a few human patients. Recently, HEV genotype 7 has been identified in dromedary camels and in an immunocompromised transplant patient. The reservoir animals get infected with HEV without showing any clinical symptoms. Besides these well-known animal reservoirs, HEV-specific antibodies and/or the genome of HEV or HEV-related viruses have also been detected in many other animal species, including primates, other mammals and birds. In particular, genotypes 3 and 4 infections are documented in many domestic, wildlife and zoo animal species. In most cases, the presence of HEV in these animals can be explained by spillover infections, but a risk of virus transmission through contact with humans cannot be excluded. This review gives a general overview on the transmission pathways of HEV to humans. It particularly focuses on reported serological and molecular evidence of infections in wild, domestic and zoo animals with HEV or HEV-related viruses. The role of these animals for transmission of HEV to humans and other animals is discussed.
Collapse
Affiliation(s)
- C Spahr
- Wilhelma Zoological-Botanical Gardens, Stuttgart, Germany.,Faculty of Veterinary Medicine, Institute of Virology, University of Leipzig, Leipzig, Germany
| | | | - T Vahlenkamp
- Faculty of Veterinary Medicine, Institute of Virology, University of Leipzig, Leipzig, Germany
| | - R G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany.,German Center for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel-Insel Riems, Braunschweig, Germany
| | - R Johne
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|