51
|
Serwer P, Wright ET, Chang JT, Liu X. Enhancing and initiating phage-based therapies. BACTERIOPHAGE 2014; 4:e961869. [PMID: 26713220 PMCID: PMC4588221 DOI: 10.4161/21597073.2014.961869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 02/02/2023]
Abstract
Drug development has typically been a primary foundation of strategy for systematic, long-range management of pathogenic cells. However, drug development is limited in speed and flexibility when response is needed to changes in pathogenic cells, especially changes that produce drug-resistance. The high replication speed and high diversity of phages are potentially useful for increasing both response speed and response flexibility when changes occur in either drug resistance or other aspects of pathogenic cells. We present strategy, with some empirical details, for (1) using modern molecular biology and biophysics to access these advantages during the phage therapy of bacterial infections, and (2) initiating use of phage capsid-based drug delivery vehicles (DDVs) with procedures that potentially overcome both drug resistance and other present limitations in the use of DDVs for the therapy of neoplasms. The discussion of phage therapy includes (a) historical considerations, (b) changes that appear to be needed in clinical tests if use of phage therapy is to be expanded, (c) recent work on novel phages and its potential use for expanding the capabilities of phage therapy and (d) an outline for a strategy that encompasses both theory and practice for expanding the applications of phage therapy. The discussion of DDVs starts by reviewing current work on DDVs, including work on both liposomal and viral DDVs. The discussion concludes with some details of the potential use of permeability constrained phage capsids as DDVs.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry; The University of Texas Health Science Center; San Antonio, TX USA
| | - Elena T Wright
- Department of Biochemistry; The University of Texas Health Science Center; San Antonio, TX USA
| | - Juan T Chang
- Department of Biochemistry and Molecular Biology; Baylor College of Medicine; Houston, TX USA
| | - Xiangan Liu
- Department of Biochemistry and Molecular Biology; Baylor College of Medicine; Houston, TX USA
| |
Collapse
|
52
|
Lopes A, Tavares P, Petit MA, Guérois R, Zinn-Justin S. Automated classification of tailed bacteriophages according to their neck organization. BMC Genomics 2014; 15:1027. [PMID: 25428721 PMCID: PMC4362835 DOI: 10.1186/1471-2164-15-1027] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/29/2014] [Indexed: 11/12/2022] Open
Abstract
Background The genetic diversity observed among bacteriophages remains a major obstacle for the identification of homologs and the comparison of their functional modules. In the structural module, although several classes of homologous proteins contributing to the head and tail structure can be detected, proteins of the head-to-tail connection (or neck) are generally more divergent. Yet, molecular analyses of a few tailed phages belonging to different morphological classes suggested that only a limited number of structural solutions are used in order to produce a functional virion. To challenge this hypothesis and analyze proteins diversity at the virion neck, we developed a specific computational strategy to cope with sequence divergence in phage proteins. We searched for homologs of a set of proteins encoded in the structural module using a phage learning database. Results We show that using a combination of iterative profile-profile comparison and gene context analyses, we can identify a set of head, neck and tail proteins in most tailed bacteriophages of our database. Classification of phages based on neck protein sequences delineates 4 Types corresponding to known morphological subfamilies. Further analysis of the most abundant Type 1 yields 10 Clusters characterized by consistent sets of head, neck and tail proteins. We developed Virfam, a webserver that automatically identifies proteins of the phage head-neck-tail module and assign phages to the most closely related cluster of phages. This server was tested against 624 new phages from the NCBI database. 93% of the tailed and unclassified phages could be assigned to our head-neck-tail based categories, thus highlighting the large representativeness of the identified virion architectures. Types and Clusters delineate consistent subgroups of Caudovirales, which correlate with several virion properties. Conclusions Our method and webserver have the capacity to automatically classify most tailed phages, detect their structural module, assign a function to a set of their head, neck and tail genes, provide their morphologic subtype and localize these phages within a “head-neck-tail” based classification. It should enable analysis of large sets of phage genomes. In particular, it should contribute to the classification of the abundant unknown viruses found on assembled contigs of metagenomic samples. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1027) contains supplementary material, which is available to authorized users.
Collapse
|
53
|
Abbasifar R, Griffiths MW, Sabour PM, Ackermann HW, Vandersteegen K, Lavigne R, Noben JP, Alanis Villa A, Abbasifar A, Nash JHE, Kropinski AM. Supersize me: Cronobacter sakazakii phage GAP32. Virology 2014; 460-461:138-46. [PMID: 25010279 DOI: 10.1016/j.virol.2014.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/05/2014] [Accepted: 05/03/2014] [Indexed: 01/27/2023]
Abstract
Cronobacter sakazakii is a Gram-negative pathogen found in milk-based formulae that causes infant meningitis. Bacteriophages have been proposed to control bacterial pathogens; however, comprehensive knowledge about a phage is required to ensure its safety before clinical application. We have characterized C. sakazakii phage vB_CsaM_GAP32 (GAP32), which possesses the second largest sequenced phage genome (358,663bp). A total of 571 genes including 545 protein coding sequences and 26 tRNAs were identified, thus more genes than in the smallest bacterium, Mycoplasma genitalium G37. BLASTP and HHpred searches, together with proteomic analyses reveal that only 23.9% of the putative proteins have defined functions. Some of the unique features of this phage include: a chromosome condensation protein, two copies of the large subunit terminase, a predicted signal-arrest-release lysin; and an RpoD-like protein, which is possibly involved in the switch from immediate early to delayed early transcription. Its closest relatives are all extremely large myoviruses, namely coliphage PBECO4 and Klebsiella phage vB_KleM-RaK2, with whom it shares approximately 44% homologous proteins. Since the homologs are not evenly distributed, we propose that these three phages belong to a new subfamily.
Collapse
Affiliation(s)
- Reza Abbasifar
- Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Mansel W Griffiths
- Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Parviz M Sabour
- Agriculture and Agri-Food Canada, Guelph Food Research Centre, Guelph, ON, Canada N1G 5C9
| | - Hans-Wolfgang Ackermann
- Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | | | - Rob Lavigne
- Laboratory of Gene Technology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Argentina Alanis Villa
- Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Arash Abbasifar
- Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - John H E Nash
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, ON, Canada N1G 3W4
| | - Andrew M Kropinski
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, ON, Canada N1G 3W4; Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
54
|
El-Didamony G. Occurrence of Bacillus thuringiensis and their phages in Yemen soil. Virusdisease 2014; 25:107-13. [PMID: 24426317 PMCID: PMC3889238 DOI: 10.1007/s13337-013-0181-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/11/2013] [Indexed: 10/26/2022] Open
Abstract
Bacillus thuringiensis (Bt) isolates were found in all samples of soil in nine Governorates of Yemen. From 384 isolates of Bacillus recovered from these soil samples after acetate selection, 104 isolates (27.1 %) were Bt. Five isolates of Bt were selected and insecticidal activity was tested against Culex pipiens, Callosobruchus maculatus and Spodoptera littoralis. The Bt isolate YH18 gave toxicity to all tested insects larvae. This study extended to isolate phages active against the selected Bt isolates. Five phages were isolated and classified into two groups of tailed phages. Four phages with long non-contractile tails and hexagonal heads (Siphoviridae) and one phage with very short tail and isometric head (Podoviridae). Susceptibility of selected Bt to infect by these phages was studied by spot-test technique. Also the Bt isolate no YH18 was resistant to all tested phages. This is the first report illustrates the diversity and the abundance of Bt and Bt phage in Yemen soil.
Collapse
Affiliation(s)
- Gamal El-Didamony
- Department of Botany, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| |
Collapse
|
55
|
Arachchi GG, Mutukumira A, Dias-Wanigasekera B, Cruz C, McIntyre L, Young J, Flint S, Hudson A, Billington C. Characteristics of three listeriaphages isolated from New Zealand seafood environments. J Appl Microbiol 2013; 115:1427-38. [DOI: 10.1111/jam.12332] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/02/2013] [Accepted: 08/13/2013] [Indexed: 02/05/2023]
Affiliation(s)
- G.J. Ganegama Arachchi
- Institute of Food Nutrition and Human Health; Massey University; North Shore City Auckland New Zealand
| | - A.N. Mutukumira
- Institute of Food Nutrition and Human Health; Massey University; North Shore City Auckland New Zealand
| | | | - C.D. Cruz
- The New Zealand Institute for Plant & Food Research Limited Mt Albert; Auckland New Zealand
| | - L. McIntyre
- Department of Food Science and Agri-Food Supply Chain Management; Harper Adams University; Edgmond Newport Shropshire UK
| | - J. Young
- Institute of Natural Sciences; Massey University; North Shore City Auckland
| | - S.H. Flint
- Institute of Food Nutrition and Human Health; Massey University; North Shore City Auckland New Zealand
| | - A. Hudson
- Institute of Environmental Science and Research (ESR) Limited; Food Programme; Christchurch Science Centre (CSC); Christchurch New Zealand
| | - C. Billington
- Institute of Environmental Science and Research (ESR) Limited; Food Programme; Christchurch Science Centre (CSC); Christchurch New Zealand
| |
Collapse
|
56
|
Kwon HJ, Seong WJ, Kim JH. Molecular prophage typing of avian pathogenic Escherichia coli. Vet Microbiol 2013; 162:785-792. [DOI: 10.1016/j.vetmic.2012.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 10/03/2012] [Accepted: 10/06/2012] [Indexed: 11/28/2022]
|
57
|
Kraemer JA, Erb ML, Waddling CA, Montabana EA, Zehr EA, Wang H, Nguyen K, Pham DSL, Agard DA, Pogliano J. A phage tubulin assembles dynamic filaments by an atypical mechanism to center viral DNA within the host cell. Cell 2012; 149:1488-99. [PMID: 22726436 DOI: 10.1016/j.cell.2012.04.034] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/27/2012] [Accepted: 04/13/2012] [Indexed: 01/24/2023]
Abstract
Tubulins are essential for the reproduction of many eukaryotic viruses, but historically, bacteriophage were assumed not to require a cytoskeleton. Here, we identify a tubulin-like protein, PhuZ, from bacteriophage 201φ2-1 and show that it forms filaments in vivo and in vitro. The PhuZ structure has a conserved tubulin fold, with an unusual, extended C terminus that we demonstrate to be critical for polymerization in vitro and in vivo. Longitudinal packing in the crystal lattice mimics packing observed by EM of in-vitro-formed filaments, indicating how interactions between the C terminus and the following monomer drive polymerization. PhuZ forms a filamentous array that is required for positioning phage DNA within the bacterial cell. Correct positioning to the cell center and optimal phage reproduction only occur when the PhuZ filament is dynamic. Thus, we show that PhuZ assembles a spindle-like array that functions analogously to the microtubule-based spindles of eukaryotes.
Collapse
Affiliation(s)
- James A Kraemer
- Department of Biochemistry and Biophysics and the Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Comeau AM, Tremblay D, Moineau S, Rattei T, Kushkina AI, Tovkach FI, Krisch HM, Ackermann HW. Phage morphology recapitulates phylogeny: the comparative genomics of a new group of myoviruses. PLoS One 2012; 7:e40102. [PMID: 22792219 PMCID: PMC3391216 DOI: 10.1371/journal.pone.0040102] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/31/2012] [Indexed: 11/18/2022] Open
Abstract
Among dsDNA tailed bacteriophages (Caudovirales), members of the Myoviridae family have the most sophisticated virion design that includes a complex contractile tail structure. The Myoviridae generally have larger genomes than the other phage families. Relatively few "dwarf" myoviruses, those with a genome size of less than 50 kb such as those of the Mu group, have been analyzed in extenso. Here we report on the genome sequencing and morphological characterization of a new group of such phages that infect a diverse range of Proteobacteria, namely Aeromonas salmonicida phage 56, Vibrio cholerae phages 138 and CP-T1, Bdellovibrio phage φ1422, and Pectobacterium carotovorum phage ZF40. This group of dwarf myoviruses shares an identical virion morphology, characterized by usually short contractile tails, and have genome sizes of approximately 45 kb. Although their genome sequences are variable in their lysogeny, replication, and host adaption modules, presumably reflecting differing lifestyles and hosts, their structural and morphogenesis modules have been evolutionarily constrained by their virion morphology. Comparative genomic analysis reveals that these phages, along with related prophage genomes, form a new coherent group within the Myoviridae. The results presented in this communication support the hypothesis that the diversity of phages may be more structured than generally believed and that the innumerable phages in the biosphere all belong to discrete lineages or families.
Collapse
Affiliation(s)
- André M Comeau
- Québec-Océan, Département de Biologie, and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Serwer P. Proposed ancestors of phage nucleic acid packaging motors (and cells). Viruses 2011; 3:1249-80. [PMID: 21994778 PMCID: PMC3185796 DOI: 10.3390/v3071249] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 07/07/2011] [Accepted: 07/12/2011] [Indexed: 01/08/2023] Open
Abstract
I present a hypothesis that begins with the proposal that abiotic ancestors of phage RNA and DNA packaging systems (and cells) include mobile shells with an internal, molecule-transporting cavity. The foundations of this hypothesis include the conjecture that current nucleic acid packaging systems have imprints from abiotic ancestors. The abiotic shells (1) initially imbibe and later also bind and transport organic molecules, thereby providing a means for producing molecular interactions that are links in the chain of events that produces ancestors to the first molecules that are both information carrying and enzymatically active, and (2) are subsequently scaffolds on which proteins assemble to form ancestors common to both shells of viral capsids and cell membranes. Emergence of cells occurs via aggregation and merger of shells and internal contents. The hypothesis continues by using proposed imprints of abiotic and biotic ancestors to deduce an ancestral thermal ratchet-based DNA packaging motor that subsequently evolves to integrate a DNA packaging ATPase that provides a power stroke.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
60
|
Cardinale DJ, Duffy S. Single-stranded genomic architecture constrains optimal codon usage. BACTERIOPHAGE 2011; 1:219-224. [PMID: 22334868 PMCID: PMC3278643 DOI: 10.4161/bact.1.4.18496] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/21/2011] [Accepted: 10/23/2011] [Indexed: 12/11/2022]
Abstract
Viral codon usage is shaped by the conflicting forces of mutational pressure and selection to match host patterns for optimal expression. We examined whether genomic architecture (single- or double-stranded DNA) influences the degree to which bacteriophage codon usage differ from their primary bacterial hosts and each other. While both correlated equally with their hosts’ genomic nucleotide content, the coat genes of ssDNA phages were less well adapted than those of dsDNA phages to their hosts’ codon usage profiles due to their preference for codons ending in thymine. No specific biases were detected in dsDNA phage genomes. In all nine of ten cases of codon redundancy in which a specific codon was overrepresented, ssDNA phages favored the NNT codon. A cytosine to thymine biased mutational pressure working in conjunction with strong selection against non-synonymous mutations appears be shaping codon usage bias in ssDNA viral genomes.
Collapse
Affiliation(s)
- Daniel J Cardinale
- Department of Ecology, Evolution and Natural Resources; School of Environmental and Biological Sciences; Rutgers; The State University of New Jersey; New Brunswick, NJ USA
| | | |
Collapse
|
61
|
Serwer P. A hypothesis for bacteriophage DNA packaging motors. Viruses 2010; 2:1821-1843. [PMID: 21994710 PMCID: PMC3185743 DOI: 10.3390/v2091821] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/12/2010] [Accepted: 08/18/2010] [Indexed: 12/29/2022] Open
Abstract
The hypothesis is presented that bacteriophage DNA packaging motors have a cycle comprised of bind/release thermal ratcheting with release-associated DNA pushing via ATP-dependent protein folding. The proposed protein folding occurs in crystallographically observed peptide segments that project into an axial channel of a protein 12-mer (connector) that serves, together with a coaxial ATPase multimer, as the entry portal. The proposed cycle begins when reverse thermal motion causes the connector’s peptide segments to signal the ATPase multimer to bind both ATP and the DNA molecule, thereby producing a dwell phase recently demonstrated by single-molecule procedures. The connector-associated peptide segments activate by transfer of energy from ATP during the dwell. The proposed function of connector/ATPase symmetry mismatches is to reduce thermal noise-induced signaling errors. After a dwell, ATP is cleaved and the DNA molecule released. The activated peptide segments push the released DNA molecule, thereby producing a burst phase recently shown to consist of four mini-bursts. The constraint of four mini-bursts is met by proposing that each mini-burst occurs via pushing by three of the 12 subunits of the connector. If all four mini-bursts occur, the cycle repeats. If the mini-bursts are not completed, a second cycle is superimposed on the first cycle. The existence of the second cycle is based on data recently obtained with bacteriophage T3. When both cycles stall, energy is diverted to expose the DNA molecule to maturation cleavage.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| |
Collapse
|
62
|
Thomas JA, Weintraub ST, Hakala K, Serwer P, Hardies SC. Proteome of the large Pseudomonas myovirus 201 phi 2-1: delineation of proteolytically processed virion proteins. Mol Cell Proteomics 2010; 9:940-51. [PMID: 20233846 DOI: 10.1074/mcp.m900488-mcp200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas chlororaphis phage 201 phi 2-1 produces a large structurally complex virion, including the products of 89 phage genes. Many of these proteins are modified by proteolysis during virion maturation. To delineate the proteolytic maturation process, 46 slices from an SDS-polyacrylamide gel were subjected to tryptic digestion and then HPLC-electrospray ionization-tandem mass spectrometry analysis. The scale of the experiment allowed high sequence coverage and detection of mass spectra assigned to peptides with one end produced by trypsin and the other end derived from a maturation cleavage (semitryptic peptides). Nineteen cleavage sites were detected in this way. From these sites, a cleavage motif was defined and used to predict the remaining cleavages required to explain the gel mobility of the processed polypeptide species. Profiling the gel with spectrum counts for specific polypeptide regions was found to be helpful in deducing the patterns of proteolysis. A total of 29 cleaved polypeptides derived from 19 gene products were thus detected in the mature 201 phi 2-1 virion. When combined with bioinformatics analyses, these results revealed the presence of head protein-encoding gene modules. Most of the propeptides that were removed from the virion after processing were acidic, whereas the mature domain remaining in the virion was nearly charge-neutral. For four of these processed virion proteins, the portions remaining in the mature virion were mutually homologous. Spectrum counts were found to overestimate the relative quantity of minor polypeptide species in the virion. The resulting sensitivity for minor species made it possible to observe a small amount of general proteolysis that also affected the virions.
Collapse
Affiliation(s)
- Julie A Thomas
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | | | |
Collapse
|
63
|
DNA packaging-associated hyper-capsid expansion of bacteriophage t3. J Mol Biol 2010; 397:361-74. [PMID: 20122936 DOI: 10.1016/j.jmb.2010.01.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/20/2010] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
Abstract
Evidence that in vivo bacteriophage T3 DNA packaging includes capsid hyper-expansion that is triggered by lengthening of incompletely packaged DNA (ipDNA) is presented here. This evidence includes observation that some of the longer ipDNAs in T3-infected cells are packaged in ipDNA-containing capsids with hyper-expanded outer shells (HE ipDNA-capsids). In addition, artificially induced hyper-expansion is observed for the outer shell of a DNA-free capsid. Detection and characterization of HE ipDNA-capsids are based on two-dimensional, non-denaturing agarose gel electrophoresis, followed by structure determination with electron microscopy and protein identification with SDS-PAGE/mass spectrometry. After expulsion from HE ipDNA-capsids, ipDNA forms sharp bands during gel electrophoresis. The following hypotheses are presented: (1) T3 has evolved feedback-initiated, ATP-driven capsid contraction/hyper-expansion cycles that accelerate DNA packaging when packaging is slowed by increase in the packaging-resisting force of the ipDNA and (2) each gel electrophoretic ipDNA band reflects a contraction/hyper-expansion cycle.
Collapse
|
64
|
Santos SB, Carvalho CM, Sillankorva S, Nicolau A, Ferreira EC, Azeredo J. The use of antibiotics to improve phage detection and enumeration by the double-layer agar technique. BMC Microbiol 2009; 9:148. [PMID: 19627589 PMCID: PMC2728735 DOI: 10.1186/1471-2180-9-148] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 07/23/2009] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The Double-Layer Agar (DLA) technique is extensively used in phage research to enumerate and identify phages and to isolate mutants and new phages. Many phages form large and well-defined plaques that are easily observed so that they can be enumerated when plated by the DLA technique. However, some give rise to small and turbid plaques that are very difficult to detect and count. To overcome these problems, some authors have suggested the use of dyes to improve the contrast between the plaques and the turbid host lawns. It has been reported that some antibiotics stimulate bacteria to produce phages, resulting in an increase in final titer. Thus, antibiotics might contribute to increasing plaque size in solid media. RESULTS Antibiotics with different mechanisms of action were tested for their ability to enhance plaque morphology without suppressing phage development. Some antibiotics increased the phage plaque surface by up to 50-fold. CONCLUSION This work presents a modification of the DLA technique that can be used routinely in the laboratory, leading to a more accurate enumeration of phages that would be difficult or even impossible otherwise.
Collapse
Affiliation(s)
- Sílvio B Santos
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4700-057 Braga, Portugal
| | - Carla M Carvalho
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4700-057 Braga, Portugal
| | - Sanna Sillankorva
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4700-057 Braga, Portugal
| | - Ana Nicolau
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4700-057 Braga, Portugal
| | - Eugénio C Ferreira
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4700-057 Braga, Portugal
| | - Joana Azeredo
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4700-057 Braga, Portugal
| |
Collapse
|
65
|
Serwer P, Hayes SJ, Thomas JA, Demeler B, Hardies SC. Isolation of novel large and aggregating bacteriophages. Methods Mol Biol 2009; 501:55-66. [PMID: 19066810 DOI: 10.1007/978-1-60327-164-6_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Viruses are detected via either biological properties such as plaque formation or physical properties. The physical properties include appearance during microscopy and DNA sequence derived from community sequencing. The assumption is that these procedures will succeed for most, if not all, viruses. However, we have found that some bacteriophages are in a category of viruses that are not detected by any of these classical procedures. Given that the data already indicate viruses to be the "largest reservoir of unknown genetic diversity on earth," the implied expansion of this reservoir confirms the belief that the genome project has hardly begun. The first step is to fill gaps in our knowledge of the biological diversity of viruses, an enterprise that will also help to determine the ways in which (a) viruses have participated in evolution and ecology and (b) viruses can be made to participate in disease control and bioremediation. We present here the details of procedures that can be used to cultivate previously undetectable viruses that are either comparatively large or aggregation-prone.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | |
Collapse
|
66
|
Simple method for plating Escherichia coli bacteriophages forming very small plaques or no plaques under standard conditions. Appl Environ Microbiol 2008; 74:5113-20. [PMID: 18586961 DOI: 10.1128/aem.00306-08] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of low concentrations (optimally 2.5 to 3.5 microg/ml, depending on top agar thickness) of ampicillin in the bottom agar of the plate allows for formation of highly visible plaques of bacteriophages which otherwise form extremely small plaques or no plaques on Escherichia coli lawns. Using this method, we were able to obtain plaques of newly isolated bacteriophages, propagated after induction of prophages present in six E. coli O157:H(-) strains which did not form plaques when standard plating procedures were employed.
Collapse
|
67
|
Thomas JA, Rolando MR, Carroll CA, Shen PS, Belnap DM, Weintraub ST, Serwer P, Hardies SC. Characterization of Pseudomonas chlororaphis myovirus 201varphi2-1 via genomic sequencing, mass spectrometry, and electron microscopy. Virology 2008; 376:330-8. [PMID: 18474389 DOI: 10.1016/j.virol.2008.04.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 01/28/2008] [Accepted: 04/02/2008] [Indexed: 10/22/2022]
Abstract
Pseudomonas chlororaphis phage 201varphi2-1 is a relative of Pseudomonas aeruginosa myovirus phiKZ. Phage 201 phi2-1 was examined by complete genomic sequencing (316,674 bp), by a comprehensive mass spectrometry survey of its virion proteins and by electron microscopy. Seventy-six proteins, of which at least 69 have homologues in phiKZ, were identified by mass spectrometry. Eight proteins, in addition to the major head, tail sheath and tail tube proteins, are abundant in the virion. Electron microscopy of 201 phi2-1 revealed a multitude of long, fine fibers apparently decorating the tail sheath protein. Among the less abundant virion proteins are three homologues to RNA polymerase beta or beta' subunits. Comparison between the genomes of 201 phi2-1 and phiKZ revealed substantial conservation of the genome plan, and a large region with an especially high rate of gene replacement. The phiKZ-like phages exhibited a two-fold higher rate of divergence than for T4-like phages or host genomes.
Collapse
Affiliation(s)
- Julie A Thomas
- Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Lavigne R, Seto D, Mahadevan P, Ackermann HW, Kropinski AM. Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res Microbiol 2008; 159:406-14. [PMID: 18555669 DOI: 10.1016/j.resmic.2008.03.005] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/18/2008] [Accepted: 03/31/2008] [Indexed: 11/19/2022]
Abstract
We defined phage genera by measuring genome relationships by the numbers of shared homologous/orthologous proteins. We used BLAST-based tools (CoreExtractor.vbs and CoreGenes) to analyze 55 fully sequenced bacteriophage genomes from the NCBI and EBI databases. This approach was first applied to the T7-related phages. Using a cut-off score of 40% homologous proteins, we identified three genera within the T7-related phages, redefined the phi29-related phages, and introduced five novel genera. The T7- and phi29-related phages were given subfamily status and named "Autographivirinae" and "Picovirinae", respectively. Our results confirm and refine the ICTV phage classification, enable elimination of errors in public databases, and provide a straightforward tool for the molecular classification of new phage genomes.
Collapse
Affiliation(s)
- Rob Lavigne
- Laboratory of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, Leuven, B-3001, Belgium
| | | | | | | | | |
Collapse
|
69
|
SERWER PHILIP, HAYES SHIRLEYJ, LIEMAN KAREN, GRIESS GARYA. In situ fluorescence microscopy of bacteriophage aggregates. J Microsc 2007; 228:309-21. [DOI: 10.1111/j.1365-2818.2007.01855.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
70
|
Thomas JA, Hardies SC, Rolando M, Hayes SJ, Lieman K, Carroll CA, Weintraub ST, Serwer P. Complete genomic sequence and mass spectrometric analysis of highly diverse, atypical Bacillus thuringiensis phage 0305phi8-36. Virology 2007; 368:405-21. [PMID: 17673272 PMCID: PMC2171028 DOI: 10.1016/j.virol.2007.06.043] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 06/09/2007] [Accepted: 06/30/2007] [Indexed: 10/23/2022]
Abstract
To investigate the apparent genomic complexity of long-genome bacteriophages, we have sequenced the 218,948-bp genome (6479-bp terminal repeat), and identified the virion proteins (55), of Bacillus thuringiensis bacteriophage 0305phi8-36. Phage 0305phi8-36 is an atypical myovirus with three large curly tail fibers. An accurate mode of DNA pyrosequencing was used to sequence the genome and mass spectrometry was used to accomplish the comprehensive virion protein survey. Advanced informatic techniques were used to identify classical morphogenesis genes. The 0305phi8-36 genes were highly diverged; 19% of 247 closely spaced genes have similarity to proteins with known functions. Genes for virion-associated, apparently fibrous proteins in a new class were found, in addition to strong candidates for the curly fiber genes. Phage 0305phi8-36 has twice the virion protein coding sequence of T4. Based on its genomic isolation, 0305phi8-36 is a resource for future studies of vertical gene transmission.
Collapse
Affiliation(s)
- Julie A. Thomas
- Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900
| | - Stephen C. Hardies
- Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900
| | - Mandy Rolando
- Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900
| | - Shirley J. Hayes
- Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900
| | - Karen Lieman
- Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900
| | - Christopher A. Carroll
- Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900
| | - Susan T. Weintraub
- Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900
| | - Philip Serwer
- Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900
| |
Collapse
|
71
|
Hardies SC, Thomas JA, Serwer P. Comparative genomics of Bacillus thuringiensis phage 0305phi8-36: defining patterns of descent in a novel ancient phage lineage. Virol J 2007; 4:97. [PMID: 17919320 PMCID: PMC2147016 DOI: 10.1186/1743-422x-4-97] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 10/05/2007] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The recently sequenced 218 kb genome of morphologically atypical Bacillus thuringiensis phage 0305phi8-36 exhibited only limited detectable homology to known bacteriophages. The only known relative of this phage is a string of phage-like genes called BtI1 in the chromosome of B. thuringiensis israelensis. The high degree of divergence and novelty of phage genomes pose challenges in how to describe the phage from its genomic sequences. RESULTS Phage 0305phi8-36 and BtI1 are estimated to have diverged 2.0 - 2.5 billion years ago. Positionally biased Blast searches aligned 30 homologous structure or morphogenesis genes between 0305phi8-36 and BtI1 that have maintained the same gene order. Functional clustering of the genes helped identify additional gene functions. A conserved long tape measure gene indicates that a long tail is an evolutionarily stable property of this phage lineage. An unusual form of the tail chaperonin system split to two genes was characterized, as was a hyperplastic homologue of the T4gp27 hub gene. Within this region some segments were best described as encoding a conservative array of structure domains fused with a variable component of exchangeable domains. Other segments were best described as multigene units engaged in modular horizontal exchange. The non-structure genes of 0305phi8-36 appear to include the remnants of two replicative systems leading to the hypothesis that the genome plan was created by fusion of two ancestral viruses. The case for a member of the RNAi RNA-directed RNA polymerase family residing in 0305phi8-36 was strengthened by extending the hidden Markov model of this family. Finally, it was noted that prospective transcriptional promoters were distributed in a gradient of small to large transcripts starting from a fixed end of the genome. CONCLUSION Genomic organization at a level higher than individual gene sequence comparison can be analyzed to aid in understanding large phage genomes. Methods of analysis include 1) applying a time scale, 2) augmenting blast scores with positional information, 3) categorizing genomic rearrangements into one of several processes with characteristic rates and outcomes, and 4) correlating apparent transcript sizes with genomic position, gene content, and promoter motifs.
Collapse
Affiliation(s)
- Stephen C Hardies
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, USA
| | - Julie A Thomas
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, USA
| | - Philip Serwer
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, USA
| |
Collapse
|
72
|
Serwer P, Hayes SJ, Thomas JA, Griess GA, Hardies SC. Rapid determination of genomic DNA length for new bacteriophages. Electrophoresis 2007; 28:1896-902. [PMID: 17480041 DOI: 10.1002/elps.200600672] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
dsDNA viruses with long genomes (>200 kb) are expected to be a major source of novel genes. To rapidly characterize the genomes of newly isolated dsDNA bacteriophages, we develop here a procedure for the PFGE of intact long DNA genomes from bacteriophage particles in unfractionated, infected cell lysates of either liquid or gelled cultures. The DNA used for PFGE is suitable for sequencing after extraction with phenol. The PFGE is tuned to the range of expected DNA lengths. This procedure bypasses the isolation of bacteriophage particles and is useful for PFGE analysis of DNA from dissected zones of bacteriophage plaques.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| | | | | | | | | |
Collapse
|
73
|
Krylov VN, Dela Cruz DM, Hertveldt K, Ackermann HW. "phiKZ-like viruses", a proposed new genus of myovirus bacteriophages. Arch Virol 2007; 152:1955-9. [PMID: 17680323 DOI: 10.1007/s00705-007-1037-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 06/27/2007] [Indexed: 11/29/2022]
Abstract
The proposed phiKZ genus of myoviruses has 21 members. Phages are virulent, lyse Pseudomonas bacteria, and are characterized by very large heads and correspondingly high DNA contents. The genome of the type virus, phiKZ, has 306 ORFs and over 280 kbp and is the second-largest phage genome known. The phiKZ genus has very few relationships to other phages and includes three species and one possible species.
Collapse
Affiliation(s)
- V N Krylov
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russia
| | | | | | | |
Collapse
|
74
|
Abstract
BACKGROUND The genomes of both long-genome (> 200 Kb) bacteriophages and long-genome eukaryotic viruses have cellular gene homologs whose selective advantage is not explained. These homologs add genomic and possibly biochemical complexity. Understanding their significance requires a definition of complexity that is more biochemically oriented than past empirically based definitions. HYPOTHESIS Initially, I propose two biochemistry-oriented definitions of complexity: either decreased randomness or increased encoded information that does not serve immediate needs. Then, I make the assumption that these two definitions are equivalent. This assumption and recent data lead to the following four-part hypothesis that explains the presence of cellular gene homologs in long bacteriophage genomes and also provides a pathway for complexity increases in prokaryotic cells: (1) Prokaryotes underwent evolutionary increases in biochemical complexity after the eukaryote/prokaryote splits. (2) Some of the complexity increases occurred via multi-step, weak selection that was both protected from strong selection and accelerated by embedding evolving cellular genes in the genomes of bacteriophages and, presumably, also archaeal viruses (first tier selection). (3) The mechanisms for retaining cellular genes in viral genomes evolved under additional, longer-term selection that was stronger (second tier selection). (4) The second tier selection was based on increased access by prokaryotic cells to improved biochemical systems. This access was achieved when DNA transfer moved to prokaryotic cells both the more evolved genes and their more competitive and complex biochemical systems. TESTING THE HYPOTHESIS I propose testing this hypothesis by controlled evolution in microbial communities to (1) determine the effects of deleting individual cellular gene homologs on the growth and evolution of long genome bacteriophages and hosts, (2) find the environmental conditions that select for the presence of cellular gene homologs, (3) determine which, if any, bacteriophage genes were selected for maintaining the homologs and (4) determine the dynamics of homolog evolution. IMPLICATIONS OF THE HYPOTHESIS This hypothesis is an explanation of evolutionary leaps in general. If accurate, it will assist both understanding and influencing the evolution of microbes and their communities. Analysis of evolutionary complexity increase for at least prokaryotes should include analysis of genomes of long-genome bacteriophages.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, USA.
| |
Collapse
|
75
|
Serwer P, Hayes SJ, Thomas JA, Hardies SC. Propagating the missing bacteriophages: a large bacteriophage in a new class. Virol J 2007; 4:21. [PMID: 17324288 PMCID: PMC1817643 DOI: 10.1186/1743-422x-4-21] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 02/26/2007] [Indexed: 11/18/2022] Open
Abstract
The number of successful propagations/isolations of soil-borne bacteriophages is small in comparison to the number of bacteriophages observed by microscopy (great plaque count anomaly). As one resolution of the great plaque count anomaly, we use propagation in ultra-dilute agarose gels to isolate a Bacillus thuringiensis bacteriophage with a large head (95 nm in diameter), tail (486 × 26 nm), corkscrew-like tail fibers (187 × 10 nm) and genome (221 Kb) that cannot be detected by the usual procedures of microbiology. This new bacteriophage, called 0305φ8-36 (first number is month/year of isolation; remaining two numbers identify the host and bacteriophage), has a high dependence of plaque size on the concentration of a supporting agarose gel. Bacteriophage 0305φ8-36 does not propagate in the traditional gels used for bacteriophage plaque formation and also does not produce visible lysis of liquid cultures. Bacteriophage 0305φ8-36 aggregates and, during de novo isolation from the environment, is likely to be invisible to procedures of physical detection that use either filtration or centrifugal pelleting to remove bacteria. Bacteriophage 0305φ8-36 is in a new genomic class, based on genes for both structural components and DNA packaging ATPase. Thus, knowledge of environmental virus diversity is expanded with prospect of greater future expansion.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, USA.
| | | | | | | |
Collapse
|
76
|
Fouts DE, Rasko DA, Cer RZ, Jiang L, Fedorova NB, Shvartsbeyn A, Vamathevan JJ, Tallon L, Althoff R, Arbogast TS, Fadrosh DW, Read TD, Gill SR. Sequencing Bacillus anthracis typing phages gamma and cherry reveals a common ancestry. J Bacteriol 2006; 188:3402-8. [PMID: 16621835 PMCID: PMC1447464 DOI: 10.1128/jb.188.9.3402-3408.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic relatedness of the Bacillus anthracis typing phages Gamma and Cherry was determined by nucleotide sequencing and comparative analysis. The genomes of these two phages were identical except at three variable loci, which showed heterogeneity within individual lysates and among Cherry, Wbeta, Fah, and four Gamma bacteriophage sequences.
Collapse
Affiliation(s)
- Derrick E Fouts
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, Maryland 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Casjens SR. Comparative genomics and evolution of the tailed-bacteriophages. Curr Opin Microbiol 2005; 8:451-8. [PMID: 16019256 DOI: 10.1016/j.mib.2005.06.014] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 06/16/2005] [Indexed: 11/29/2022]
Abstract
The number of completely sequenced tailed-bacteriophage genomes that have been published increased to more than 125 last year. The comparison of these genomes has brought their highly mosaic nature into much sharper focus. Furthermore, reports of the complete sequences of about 150 bacterial genomes have shown that the many prophage and parts thereof that reside in these bacterial genomes must comprise a significant fraction of Earth's phage gene pool. These phage and prophage genomes are fertile ground for attempts to deduce the nature of viral evolutionary processes, and such analyses have made it clear that these phage have enjoyed a significant level of horizontal exchange of genetic information throughout their long histories. The strength of these evolutionary deductions rests largely on the extensive knowledge that has accumulated during intensive study into the molecular nature of the life cycles of a few 'model system' phages over the past half century. Recent molecular studies of phages other than these model system phages have made it clear that much remains to be learnt about the variety of lifestyle strategies utilized by the tailed-phage.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah Medical School, Salt Lake City, UT 84132, USA.
| |
Collapse
|
78
|
Waltzek TB, Kelley GO, Stone DM, Way K, Hanson L, Fukuda H, Hirono I, Aoki T, Davison AJ, Hedrick RP. Koi herpesvirus represents a third cyprinid herpesvirus (CyHV-3) in the family Herpesviridae. J Gen Virol 2005; 86:1659-1667. [PMID: 15914843 DOI: 10.1099/vir.0.80982-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sequences of four complete genes were analysed in order to determine the relatedness of koi herpesvirus (KHV) to three fish viruses in the family Herpesviridae: carp pox herpesvirus (Cyprinid herpesvirus 1, CyHV-1), haematopoietic necrosis herpesvirus of goldfish (Cyprinid herpesvirus 2, CyHV-2) and channel catfish virus (Ictalurid herpesvirus 1, IcHV-1). The genes were predicted to encode a helicase, an intercapsomeric triplex protein, the DNA polymerase and the major capsid protein. The results showed that KHV is related closely to CyHV-1 and CyHV-2, and that the three cyprinid viruses are related, albeit more distantly, to IcHV-1. Twelve KHV isolates from four diverse geographical areas yielded identical sequences for a region of the DNA polymerase gene. These findings, with previously published morphological and biological data, indicate that KHV should join the group of related lower-vertebrate viruses in the family Herpesviridae under the formal designation Cyprinid herpesvirus 3 (CyHV-3).
Collapse
Affiliation(s)
- Thomas B Waltzek
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Garry O Kelley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - David M Stone
- The Centre for the Environment, Fisheries and Aquaculture Science, Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Keith Way
- The Centre for the Environment, Fisheries and Aquaculture Science, Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
| | - Larry Hanson
- Department of Basic Sciences, College of Veterinary Medicine, PO Box 6100 Mississippi State, MS 39762, USA
| | - Hideo Fukuda
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Takashi Aoki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Andrew J Davison
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Ronald P Hedrick
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|