51
|
Hu K. Vectorology and factor delivery in induced pluripotent stem cell reprogramming. Stem Cells Dev 2014; 23:1301-15. [PMID: 24625220 PMCID: PMC4046209 DOI: 10.1089/scd.2013.0621] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/13/2014] [Indexed: 12/26/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) reprogramming requires sustained expression of multiple reprogramming factors for a limited period of time (10-30 days). Conventional iPSC reprogramming was achieved using lentiviral or simple retroviral vectors. Retroviral reprogramming has flaws of insertional mutagenesis, uncontrolled silencing, residual expression and re-activation of transgenes, and immunogenicity. To overcome these issues, various technologies were explored, including adenoviral vectors, protein transduction, RNA transfection, minicircle DNA, excisable PiggyBac (PB) transposon, Cre-lox excision system, negative-sense RNA replicon, positive-sense RNA replicon, Epstein-Barr virus-based episomal plasmids, and repeated transfections of plasmids. This review provides summaries of the main vectorologies and factor delivery systems used in current reprogramming protocols.
Collapse
Affiliation(s)
- Kejin Hu
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, School of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
52
|
Lau SKP, Woo PCY, Yip CCY, Li KSM, Fan RYY, Bai R, Huang Y, Chan KH, Yuen KY. Chickens host diverse picornaviruses originated from potential interspecies transmission with recombination. J Gen Virol 2014; 95:1929-1944. [PMID: 24906980 DOI: 10.1099/vir.0.066597-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
While chickens are an important reservoir for emerging pathogens such as avian influenza viruses, little is known about the diversity of picornaviruses in poultry. We discovered a previously unknown diversity of picornaviruses in chickens in Hong Kong. Picornaviruses were detected in 87 cloacal and 7 tracheal samples from 93 of 900 chickens by reverse transcription-PCR, with their partial 3D(pol) gene sequences forming five distinct clades (I to V) among known picornaviruses. Analysis of eight genomes from different clades revealed seven different picornaviruses, including six novel picornavirus species (ChPV1 from clade I, ChPV2 and ChPV3 from clade II, ChPV4 and ChPV5 from clade III, ChGV1 from clade IV) and one existing species (Avian encephalomyelitis virus from clade V). The six novel chicken picornavirus genomes exhibited distinct phylogenetic positions and genome features different from related picornaviruses, supporting their classification as separate species. Moreover, ChPV1 may potentially belong to a novel genus, with low sequence homologies to related picornaviruses, especially in the P1 and P2 regions, including the predicted L and 2A proteins. Nevertheless, these novel picornaviruses were most closely related to picornaviruses of other avian species (ChPV1 related to Passerivirus A, ChPV2 and ChPV3 to Avisivirus A and Duck hepatitis A virus, ChPV4 and ChPV5 to Melegrivirus A, ChGV1 to Gallivirus A). Furthermore, ChPV5 represented a potential recombinant picornavirus, with its P2 and P3 regions possibly originating from Melegrivirus A. Chickens are an important reservoir for diverse picornaviruses that may cross avian species barriers through mutation or recombination.
Collapse
Affiliation(s)
- Susanna K P Lau
- Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, PR China.,State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, PR China.,Department of Microbiology, University of Hong Kong, Hong Kong, PR China.,Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, PR China
| | - Patrick C Y Woo
- Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, PR China.,Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, PR China.,State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, PR China.,Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Cyril C Y Yip
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Kenneth S M Li
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Rachel Y Y Fan
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Ru Bai
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Yi Huang
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Kwok-Hung Chan
- Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, University of Hong Kong, Hong Kong, PR China.,Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong, PR China.,Carol Yu Centre for Infection, University of Hong Kong, Hong Kong, PR China.,Department of Microbiology, University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
53
|
Tan CW, Chan YF, Quah YW, Poh CL. Inhibition of enterovirus 71 infection by antisense octaguanidinium dendrimer-conjugated morpholino oligomers. Antiviral Res 2014; 107:35-41. [PMID: 24769243 PMCID: PMC7118997 DOI: 10.1016/j.antiviral.2014.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/25/2014] [Accepted: 04/13/2014] [Indexed: 12/11/2022]
Abstract
Enterovirus 71 (EV-71) infections are generally manifested as mild hand, foot and mouth disease, but have been reported to cause severe neurological complications with high mortality rates. Treatment options remain limited due to the lack of antivirals. Octaguanidinium-conjugated morpholino oligomers (vivo-MOs) are single-stranded DNA-like antisense agents that can readily penetrate cells and reduce gene expression by steric blocking of complementary RNA sequences. In this study, inhibitory effects of three vivo-MOs that are complementary to the EV-71 internal ribosome entry site (IRES) and the RNA-dependent RNA polymerase (RdRP) were tested in RD cells. Vivo-MO-1 and vivo-MO-2 targeting the EV-71 IRES showed significant viral plaque reductions of 2.5 and 3.5 log10PFU/ml, respectively. Both vivo-MOs reduced viral RNA copies and viral capsid expression in RD cells in a dose-dependent manner. In contrast, vivo-MO-3 targeting the EV-71 RdRP exhibited less antiviral activity. Both vivo-MO-1 and 2 remained active when administered either 4h before or within 6h after EV-71 infection. Vivo-MO-2 exhibited antiviral activities against poliovirus (PV) and coxsackievirus A16 but vivo-MO-1 showed no antiviral activities against PV. Both the IRES-targeting vivo-MO-1 and vivo-MO-2 inhibit EV-71 RNA translation. Resistant mutants arose after serial passages in the presence of vivo-MO-1, but none were isolated against vivo-MO-2. A single T to C substitution at nucleotide position 533 was sufficient to confer resistance to vivo-MO-1. Our findings suggest that IRES-targeting vivo-MOs are good antiviral candidates for treating early EV-71 infection, and vivo-MO-2 is a more favorable candidate with broader antiviral spectrum against enteroviruses and are refractory to antiviral resistance.
Collapse
Affiliation(s)
- Chee Wah Tan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; Tropical Infectious Disease Research and Education Center, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yi Wan Quah
- Faculty of Science and Technology, Sunway University, 46150 Petaling Jaya, Selangor, Malaysia
| | - Chit Laa Poh
- Faculty of Science and Technology, Sunway University, 46150 Petaling Jaya, Selangor, Malaysia.
| |
Collapse
|
54
|
Chan SW. Establishment of chronic hepatitis C virus infection: Translational evasion of oxidative defence. World J Gastroenterol 2014; 20:2785-2800. [PMID: 24659872 PMCID: PMC3961964 DOI: 10.3748/wjg.v20.i11.2785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/03/2013] [Accepted: 01/15/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) causes a clinically important disease affecting 3% of the world population. HCV is a single-stranded, positive-sense RNA virus belonging to the genus Hepacivirus within the Flaviviridae family. The virus establishes a chronic infection in the face of an active host oxidative defence, thus adaptation to oxidative stress is key to virus survival. Being a small RNA virus with a limited genomic capacity, we speculate that HCV deploys a different strategy to evade host oxidative defence. Instead of counteracting oxidative stress, it utilizes oxidative stress to facilitate its own survival. Translation is the first step in the replication of a plus strand RNA virus so it would make sense if the virus can exploit the host oxidative defence in facilitating this very first step. This is particularly true when HCV utilizes an internal ribosome entry site element in translation, which is distinctive from that of cap-dependent translation of the vast majority of cellular genes, thus allowing selective translation of genes under conditions when global protein synthesis is compromised. Indeed, we were the first to show that HCV translation was stimulated by an important pro-oxidant-hydrogen peroxide in hepatocytes, suggesting that HCV is able to adapt to and utilize the host anti-viral response to facilitate its own translation thus allowing the virus to thrive under oxidative stress condition to establish chronicity. Understanding how HCV translation is regulated under oxidative stress condition will advance our knowledge on how HCV establishes chronicity. As chronicity is the initiator step in disease progression this will eventually lead to a better understanding of pathogenicity, which is particularly relevant to the development of anti-virals and improved treatments of HCV patients using anti-oxidants.
Collapse
|
55
|
García-Nuñez S, Gismondi MI, König G, Berinstein A, Taboga O, Rieder E, Martínez-Salas E, Carrillo E. Enhanced IRES activity by the 3′UTR element determines the virulence of FMDV isolates. Virology 2014; 448:303-13. [DOI: 10.1016/j.virol.2013.10.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/06/2013] [Accepted: 10/18/2013] [Indexed: 11/26/2022]
|
56
|
Reddy KE, Noh JH, Yoo MS, Kim YH, Kim NH, Doan HTT, Ramya M, Jung SC, Van Quyen D, Kang SW. Molecular characterization and phylogenetic analysis of deformed wing viruses isolated from South Korea. Vet Microbiol 2013; 167:272-9. [DOI: 10.1016/j.vetmic.2013.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 08/12/2013] [Accepted: 08/19/2013] [Indexed: 12/24/2022]
|
57
|
Martínez-Salas E, Lozano G, Fernandez-Chamorro J, Francisco-Velilla R, Galan A, Diaz R. RNA-binding proteins impacting on internal initiation of translation. Int J Mol Sci 2013; 14:21705-26. [PMID: 24189219 PMCID: PMC3856030 DOI: 10.3390/ijms141121705] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/17/2013] [Accepted: 10/22/2013] [Indexed: 12/20/2022] Open
Abstract
RNA-binding proteins (RBPs) are pivotal regulators of all the steps of gene expression. RBPs govern gene regulation at the post-transcriptional level by virtue of their capacity to assemble ribonucleoprotein complexes on certain RNA structural elements, both in normal cells and in response to various environmental stresses. A rapid cellular response to stress conditions is triggered at the step of translation initiation. Two basic mechanisms govern translation initiation in eukaryotic mRNAs, the cap-dependent initiation mechanism that operates in most mRNAs, and the internal ribosome entry site (IRES)-dependent mechanism activated under conditions that compromise the general translation pathway. IRES elements are cis-acting RNA sequences that recruit the translation machinery using a cap-independent mechanism often assisted by a subset of translation initiation factors and various RBPs. IRES-dependent initiation appears to use different strategies to recruit the translation machinery depending on the RNA organization of the region and the network of RBPs interacting with the element. In this review we discuss recent advances in understanding the implications of RBPs on IRES-dependent translation initiation.
Collapse
Affiliation(s)
- Encarnación Martínez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain.
| | | | | | | | | | | |
Collapse
|
58
|
Souii A, Gharbi J, Ben M'hadheb-Gharbi M. Impaired binding of standard initiation factors eIF3b, eIF4G and eIF4B to domain V of the live-attenuated coxsackievirus B3 Sabin3-like IRES--alternatives for 5'UTR-related cardiovirulence mechanisms. Diagn Pathol 2013; 8:161. [PMID: 24063684 PMCID: PMC3853319 DOI: 10.1186/1746-1596-8-161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/17/2013] [Indexed: 01/28/2023] Open
Abstract
Abstract Internal ribosome entry site (IRES) elements fold into highly organized conserved secondary and probably tertiary structures that guide the ribosome to an internal site of the RNA at the IRES 3′end. The composition of the cellular proteome is under the control of multiple processes, one of the most important being translation initiation. In each poliovirus Sabin vaccine strain, a single point mutation in the IRES secondary-structure domain V is a major determinant of neurovirulence and translation attenuation. Here we are extrapolating poliovirus findings to a genomic related virus named coxsackievirus B3 CVB3); a causative agent of viral myocarditis. We have previously reported that Sabin3-like mutation (U473 → C) introduced in the domain V sequence of the CVB3 IRES led to a defective mutant with a serious reduction in translation efficiency and ribosomal initiation complex assembly, besides an impaired RNA-protein binding pattern. With the aim to identify proteins interacting with both CVB3 wild-type and Sabin3-like domain V RNAs and to assess the effect of the Sabin3-like mutation on these potential interactions, we have used a proteomic approach. This procedure allowed the identification of three RNA-binding proteins interacting with the domain V: eIF4G (p220), eIF3b (p116) and eIF4B (p80). Moreover, we report that this single-nucleotide exchange impairs the interaction pattern and the binding affinity of these standard translation initiation factors within the IRES domain V of the mutant strain. Taken together, these data indicate how this decisive Sabin3-like mutation mediates viral translation attenuation; playing a key role in the understanding of the cardiovirulence attenuation within this construct. Hence, these data provide further evidence for the crucial role of RNA structure for the IRES activity, and reinforce the idea of a distribution of function between the different IRES structural domains. Virtual slide The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/6160165131045880.
Collapse
Affiliation(s)
- Amira Souii
- Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Avenue Tahar Hadded, BP 74, Monastir 5000, Tunisia.
| | | | | |
Collapse
|
59
|
Zhou JH, Zhang J, Sun DJ, Ma Q, Ma B, Pejsak Z, Chen HT, Ma LN, Ding YZ, Liu YS. Potential roles of synonymous codon usage and tRNA concentration in hosts on the two initiation regions of foot-and-mouth disease virus RNA. Virus Res 2013; 176:298-302. [DOI: 10.1016/j.virusres.2013.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/10/2013] [Accepted: 06/14/2013] [Indexed: 12/01/2022]
|
60
|
Redondo N, García-Moreno M, Sanz MA, Carrasco L. Translation of viral mRNAs that do not require eIF4E is blocked by the inhibitor 4EGI-1. Virology 2013; 444:171-80. [PMID: 23870416 PMCID: PMC7111898 DOI: 10.1016/j.virol.2013.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 03/31/2013] [Accepted: 06/07/2013] [Indexed: 11/18/2022]
Abstract
High throughput screening has rendered new inhibitors of eukaryotic protein synthesis. One such molecule, 4EGI-1 has been reported to selectively block the initiation factor eIF4E. We have investigated the action of this inhibitor on translation directed by several viral mRNAs which, in principle, do not utilize eIF4E. We found that 4EGI-1 inhibits translation directed by poliovirus IRES, in rabbit reticulocyte lysates, to a similar extent as capped mRNA. Moreover, 4EGI-1 inhibits translation driven by poliovirus IRES, both in vitro and in cultured cells, despite cleavage of eIF4G by picornavirus proteases. Finally, translation of vesicular stomatitis virus mRNAs and Sindbis virus subgenomic mRNA is blocked by 4EGI-1 in infected cells to a similar extent as cellular mRNAs. These findings cast doubt on the selective action of this inhibitor, and suggest that this molecule may affect other steps in protein synthesis unrelated to cap recognition by eIF4E.
Collapse
Affiliation(s)
- Natalia Redondo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), c/Nicolás Cabrera, 1 Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain.
| | | | | | | |
Collapse
|
61
|
Boros Á, Nemes C, Pankovics P, Kapusinszky B, Delwart E, Reuter G. Genetic characterization of a novel picornavirus in turkeys (Meleagris gallopavo) distinct from turkey galliviruses and megriviruses and distantly related to the members of the genus Avihepatovirus. J Gen Virol 2013; 94:1496-1509. [PMID: 23559479 DOI: 10.1099/vir.0.051797-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This study reports the metagenomic detection and complete genome characterization of a novel turkey picornavirus from faecal samples of healthy (1/3) and affected (6/8) commercial turkeys with enteric and/or stunting syndrome in Hungary. The virus was detected at seven of the eight farms examined. The turkey/M176-TuASV/2011/HUN genome (KC465954) was genetically different from the currently known picornaviruses of turkey origin (megriviruses and galliviruses), and showed distant phylogenetic relationship and common genomic features (e.g. uncleaved VP0 and three predicted and unrelated 2A polypeptides) to duck hepatitis A virus (DHAV) of the genus Avihepatovirus. The complete genome analysis revealed multiple distinct genome features like the presence of two in-tandem aphthovirus 2A-like sequence repeats with DxExNPG/P 'ribosome-skipping' sites (76 %, 23/30 amino acids identical), with the first aphthovirus 2A-like sequence being located at the end of the VP1 capsid protein (VP1/2A1 'ribosome-skipping' site). The phylogenetic analyses, low sequence identity (33, 32 and 36 % amino acid identity in P1, P2 and P3 regions) to DHAV, and the type II-like internal ribosome entry site suggests that this turkey picornavirus is related to, but distinct from the genus Avihepatovirus and it could be the founding member of a novel Avihepatovirus sister-clade genus. This is the third, taxonomically highly distinct picornavirus clade identified from turkeys exhibiting varied symptoms.
Collapse
Affiliation(s)
- Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | - Csaba Nemes
- Veterinary Diagnostic Directorate of the Central Agricultural Office, Kaposvár, Hungary
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| | | | - Eric Delwart
- University of California San Francisco, San Francisco, CA, USA.,Blood Systems Research Institute, San Francisco, CA, USA
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary
| |
Collapse
|
62
|
Sanz MA, Redondo N, García-Moreno M, Carrasco L. Phosphorylation of eIF2α is responsible for the failure of the picornavirus internal ribosome entry site to direct translation from Sindbis virus replicons. J Gen Virol 2013; 94:796-806. [DOI: 10.1099/vir.0.049064-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Translation directed by the poliovirus (PV) or encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) is very inefficient when expressed from Sindbis virus (SV) replicons. This inhibition can be rescued by co-expression of PV 2A protease (2Apro). Inhibition correlates with the extensive phosphorylation of eukaryotic initiation factor (eIF) 2α induced by SV replication. Confirmation that PV or EMCV IRES-driven translation can function when eIF2α is not phosphorylated was obtained in dsRNA-activated protein kinase knockout mouse embryonic fibroblasts (PKR−/− MEFs), where SV replication cannot induce eIF2α phosphorylation, and in variant S51A MEFs that express an unphosphorylatable eIF2α. In these cells, PV or EMCV IRES-dependent translation operated more efficiently than in wild-type MEFs. However, this translation was potently blocked when eIF2α was phosphorylated by the addition of thapsigargin to PKR−/− MEFs. In addition, when wild-type eIF2α was expressed in S51A MEFs or PKR was expressed in PKR−/− MEFs, PV IRES-dependent translation decreased. In both cases, the decrease in PV IRES-dependent translation correlated with the phosphorylation of eIF2α. Notably, PV 2Apro expression rescued PV IRES-driven translation in thapsigargin-treated PKR−/− MEFs. Taken together, these results demonstrated that PV IRES-driven translation can take place from SV replicons if eIF2α remains unphosphorylated. Remarkably, PV IRES-dependent translation was fully functional in this system when PV 2Apro was present, even if eIF2α was phosphorylated.
Collapse
Affiliation(s)
- Miguel Angel Sanz
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/Nicolás Cabrera, 1, Cantoblanco, 28049 Madrid, Spain
| | - Natalia Redondo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/Nicolás Cabrera, 1, Cantoblanco, 28049 Madrid, Spain
| | - Manuel García-Moreno
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/Nicolás Cabrera, 1, Cantoblanco, 28049 Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/Nicolás Cabrera, 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
63
|
Fernández N, Buddrus L, Piñeiro D, Martínez-Salas E. Evolutionary conserved motifs constrain the RNA structure organization of picornavirus IRES. FEBS Lett 2013; 587:1353-8. [PMID: 23507141 DOI: 10.1016/j.febslet.2013.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/04/2013] [Accepted: 03/04/2013] [Indexed: 11/24/2022]
Abstract
Picornavirus RNAs initiate translation using a 5' end-independent mechanism based on internal ribosome entry site (IRES) elements. Despite performing similar functions, IRES elements present in genetically distant RNAs differ in primary sequence, RNA secondary structure and trans-acting factors requirement. The lack of conserved features amongst IRESs represents obstacles for the understanding of the internal initiation process. RNA structure is tightly linked to picornavirus IRES activity, consistent with the conservation of RNA motifs. This study extends the functional relevance of evolutionary conserved motifs of foot-and-mouth disease virus (FMDV) IRES. SHAPE structural analysis of mutant IRESs revealed local changes in RNA flexibility indicating the existence of an interactive structure constrained by lateral bulges that maintain the RNA conformation necessary for IRES-mediated translation.
Collapse
Affiliation(s)
- Noemí Fernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
64
|
Garcia-Moreno M, Sanz MA, Pelletier J, Carrasco L. Requirements for eIF4A and eIF2 during translation of Sindbis virus subgenomic mRNA in vertebrate and invertebrate host cells. Cell Microbiol 2012. [PMID: 23189929 DOI: 10.1111/cmi.12079] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have examined the requirements for the initiation factors (eIFs) eIF4A and eIF2 to translate Sindbis virus (SV) subgenomic mRNA (sgmRNA) in the natural hosts of SV: vertebrate and arthropod cells. Notably, this viral mRNA does not utilize eIF4A in SV-infected mammalian cells. However, eIF4A is required to translate this mRNA in transfected cells. Therefore, SV sgmRNA exhibits a dual mechanism for translation with respect to the use of eIF4A. Interestingly, SV genomic mRNA requires eIF4A for translation during the early phase of infection. In sharp contrast to what is observed in mammalian cells, active eIF2 is necessary to translate SV sgmRNA in mosquito cells. However, eIF4A is not necessary for SV sgmRNA translation in this cell line. In the SV sgmRNA coding region, proximal to the initiation codon is a hairpin structure that confers eIF2 independence only in mammalian cells infected by SV. Strikingly, this structure does not provide independence for eIF4A neither in mammalian nor in mosquito cells. These findings provide the first evidence of different eIF requirements for translation of SV sgmRNA in vertebrate and invertebrate cells. These observations can help to understand the interaction of SV with its host cells.
Collapse
Affiliation(s)
- Manuel Garcia-Moreno
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera, 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
65
|
Redondo N, Sanz MA, Steinberger J, Skern T, Kusov Y, Carrasco L. Translation directed by hepatitis A virus IRES in the absence of active eIF4F complex and eIF2. PLoS One 2012; 7:e52065. [PMID: 23272212 PMCID: PMC3525551 DOI: 10.1371/journal.pone.0052065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/08/2012] [Indexed: 12/31/2022] Open
Abstract
Translation directed by several picornavirus IRES elements can usually take place after cleavage of eIF4G by picornavirus proteases 2Apro or Lpro. The hepatitis A virus (HAV) IRES is thought to be an exception to this rule because it requires intact eIF4F complex for translation. In line with previous results we report that poliovirus (PV) 2Apro strongly blocks protein synthesis directed by HAV IRES. However, in contrast to previous findings we now demonstrate that eIF4G cleavage by foot-and-mouth disease virus (FMDV) Lpro strongly stimulates HAV IRES-driven translation. Thus, this is the first observation that 2Apro and Lpro exhibit opposite effects to what was previously thought to be the case in HAV IRES. This effect has been observed both in hamster BHK and human hepatoma Huh7 cells. In addition, this stimulation of translation is also observed in cell free systems after addition of purified Lpro. Notably, in presence of this FMDV protease, translation directed by HAV IRES takes place when eIF2α has been inactivated by phosphorylation. Our present findings clearly demonstrate that protein synthesis directed by HAV IRES can occur when eIF4G has been cleaved and after inactivation of eIF2. Therefore, translation directed by HAV IRES without intact eIF4G and active eIF2 is similar to that observed with other picornavirus IRESs.
Collapse
Affiliation(s)
- Natalia Redondo
- Centro de Biologia Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
66
|
Tapparel C, Siegrist F, Petty TJ, Kaiser L. Picornavirus and enterovirus diversity with associated human diseases. INFECTION GENETICS AND EVOLUTION 2012. [PMID: 23201849 DOI: 10.1016/j.meegid.2012.10.016] [Citation(s) in RCA: 334] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Members of the Picornaviridae family are non-enveloped, positive-stranded RNA viruses with a 30nm icosahedral capsid. This virus family exhibits a considerable amount of genetic variability driven both by mutation and recombination. Recently, three previously unknown human picornaviruses, namely the human Saffold cardiovirus, cosavirus and salivirus, have been identified in stools or respiratory samples from subjects presenting symptoms ranging from gastroenteritis to acute flaccid paralysis. However, these viruses were also frequently detected in asymptomatic subjects and their clinical relevance remains to be elucidated. The Enterovirus genus is a prototype example of the Picornaviridae heterogeneity at both genetic and phenotypic levels. This genus is divided into 10 species, seven of which contain human viruses, including three Rhinovirus species. Both human rhino- and enteroviruses are also characterized by high levels of genetic variability, as exemplified by the existence of over 250 different serotypes and the recent discovery of new enterovirus genotypes and the Rhinovirus C species. Despite their common genomic features, rhinoviruses are restricted to the respiratory tract, whereas the vast majority of enteroviruses infect the gastrointestinal tract and can spread to other organs, such as the heart or the central nervous system. Understanding the genetic determinants of such phenotypic diversity is an important challenge and a field for future investigation. Better characterization of these ubiquitous human pathogens may help to develop vaccines or antiviral treatments and to monitor the emergence of new strains.
Collapse
Affiliation(s)
- Caroline Tapparel
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14, Switzerland.
| | | | | | | |
Collapse
|
67
|
Piñeiro D, Martinez-Salas E. RNA structural elements of hepatitis C virus controlling viral RNA translation and the implications for viral pathogenesis. Viruses 2012. [PMID: 23202462 PMCID: PMC3497050 DOI: 10.3390/v4102233] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) genome multiplication requires the concerted action of the viral RNA, host factors and viral proteins. Recent studies have provided information about the requirement of specific viral RNA motifs that play an active role in the viral life cycle. RNA regulatory motifs controlling translation and replication of the viral RNA are mostly found at the 5' and 3' untranslated regions (UTRs). In particular, viral protein synthesis is under the control of the internal ribosome entry site (IRES) element, a complex RNA structure located at the 5'UTR that recruits the ribosomal subunits to the initiator codon. Accordingly, interfering with this RNA structural motif causes the abrogation of the viral cycle. In addition, RNA translation initiation is modulated by cellular factors, including miRNAs and RNA-binding proteins. Interestingly, a RNA structural motif located at the 3'end controls viral replication and establishes long-range RNA-RNA interactions with the 5'UTR, generating functional bridges between both ends on the viral genome. In this article, we review recent advances on virus-host interaction and translation control modulating viral gene expression in infected cells.
Collapse
Affiliation(s)
- David Piñeiro
- Centro de Biología Molecular Severo Ochoa, Nicolas Cabrera, 1, Cantoblanco, 28049 Madrid, Spain.
| | | |
Collapse
|
68
|
Desai SD, Eu YJ, Whyard S, Currie RW. Reduction in deformed wing virus infection in larval and adult honey bees (Apis mellifera L.) by double-stranded RNA ingestion. INSECT MOLECULAR BIOLOGY 2012; 21:446-455. [PMID: 22690671 DOI: 10.1111/j.1365-2583.2012.01150.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Deformed wing virus (DWV) is a serious pathogen of the honey bee, Apis mellifera L., vectored by the parasitic mite Varroa destructor. The virus is associated with wing deformity in symptomatic bees, and premature death and reduced colony performance in asymptomatic bees. In the present study we reduced DWV infection by feeding both first instar larvae and adult A. mellifera with a double-stranded (ds) RNA construct, DWV-dsRNA, which is specific to DWV in DWV-inoculated bees, by mixing it with their food. We showed that feeding DWV to larvae causes wing deformity in adult bees in the absence of varroa mites and decreases survival rates of adult bees relative to bees not fed DWV. Feeding larvae with DWV-dsRNA in advance of inoculation with virus reduced the DWV viral level and reduced wing deformity relative to larvae fed DWV or DWV with green fluorescent protein-dsRNA (probably a result of RNA silencing), but did not affect survival to the adult stage. Feeding DWV-dsRNA did not affect larval survival rates, which suggests that dsRNA is non-toxic to larvae. Feeding adult workers with DWV-dsRNA in advance of inoculation with virus increased their longevity and reduced DWV concentration relative to controls.
Collapse
Affiliation(s)
- S D Desai
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada.
| | | | | | | |
Collapse
|
69
|
Abstract
The encephalomyocarditis virus (EMCV) is a small non-enveloped single-strand RNA virus, the causative agent of not only myocarditis and encephalitis, but also neurological diseases, reproductive disorders and diabetes in many mammalian species. EMCV pathogenesis appears to be viral strain- and host-specific, and a better understanding of EMCV virulence factors is increasingly required. Indeed, EMCV is often used as a model for diabetes and viral myocarditis, and is also widely used in immunology as a double-stranded RNA stimulus in the study of Toll-like as well as cytosolic receptors. However, EMCV virulence and properties have often been neglected. Moreover, EMCV is able to infect humans albeit with a low morbidity. Progress on xenografts, such as pig heart transplantation in humans, has raised safety concerns that need to be explored. In this review we will highlight the biology of EMCV and all known and potential virulence factors.
Collapse
Affiliation(s)
- Margot Carocci
- Microbiology Immunology Department, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
70
|
Abstract
Modulation of translation initiation efficiency on classical swine fever virus (CSFV) RNA can be achieved by targeted mutations within the internal ribosome entry site (IRES). In this study, cDNAs corresponding to the wild-type (wt) or mutant forms of the IRES of CSFV strain Paderborn were amplified and inserted into dicistronic reporter plasmids encoding Fluc and Rluc under the control of a T7 promoter. The mutations were within domains II, IIId(1), and IIIf of the IRES. The plasmids were transfected into baby hamster kidney (BHK) cells infected with recombinant vaccinia virus vTF7-3, which expresses the T7 RNA polymerase. IRES mutants with different levels of IRES activity were identified and then introduced by homologous recombination into bacterial artificial chromosomes (BACs) containing CSFV Paderborn cDNA downstream of a T7 promoter. From the wt and mutant BACs, full-length CSFV RNA transcripts were produced in vitro and electroporated into porcine PK15 cells. Rescued mutant viruses were obtained from RNAs that contained mutations within domain IIIf which retained more than 75% of the wt translation efficiency. Sequencing of cDNA generated from these rescued viruses verified the maintenance of the introduced changes within the IRES. The growth characteristics of each rescued mutant virus were compared to those of the wt virus. It was shown that viable mutant viruses with reduced translation initiation efficiency can be designed and generated and that viruses containing mutations within domain IIIf of the IRES have reduced growth in cell culture compared to the wt virus.
Collapse
|
71
|
Abstract
Viral protein synthesis is completely dependent upon the translational machinery of the host cell. However, many RNA virus transcripts have marked structural differences from cellular mRNAs that preclude canonical translation initiation, such as the absence of a 5′ cap structure or the presence of highly structured 5′UTRs containing replication and/or packaging signals. Furthermore, whilst the great majority of cellular mRNAs are apparently monocistronic, RNA viruses must often express multiple proteins from their mRNAs. In addition, RNA viruses have very compact genomes and are under intense selective pressure to optimize usage of the available sequence space. Together, these features have driven the evolution of a plethora of non-canonical translational mechanisms in RNA viruses that help them to meet these challenges. Here, we review the mechanisms utilized by RNA viruses of eukaryotes, focusing on internal ribosome entry, leaky scanning, non-AUG initiation, ribosome shunting, reinitiation, ribosomal frameshifting and stop-codon readthrough. The review will highlight recently discovered examples of unusual translational strategies, besides revisiting some classical cases.
Collapse
Affiliation(s)
- Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
72
|
Hanson PJ, Zhang HM, Hemida MG, Ye X, Qiu Y, Yang D. IRES-Dependent Translational Control during Virus-Induced Endoplasmic Reticulum Stress and Apoptosis. Front Microbiol 2012; 3:92. [PMID: 22461781 PMCID: PMC3307021 DOI: 10.3389/fmicb.2012.00092] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/23/2012] [Indexed: 12/11/2022] Open
Abstract
Many virus infections and stresses can induce endoplasmic reticulum (ER) stress response, a host self-defense mechanism against viral invasion and stress. During this event, viral and cellular gene expression is actively regulated and often encounters a switching of the translation initiation from cap-dependent to internal ribosome-entry sites (IRES)-dependent. This switching is largely dependent on the mRNA structure of the 5′ untranslated region (5′ UTR) and on the particular stress stimuli. Picornaviruses and some other viruses contain IRESs within their 5′ UTR of viral genome and employ an IRES-driven mechanism for translation initiation. Recently, a growing number of cellular genes involved in growth control, cell cycle progression and apoptosis were also found to contain one or more IRES within their long highly structured 5′ UTRs. These genes initiate translation usually by a cap-dependent mechanism under normal physiological conditions; however, in certain environments, such as infection, starvation, and heat shock they shift translation initiation to an IRES-dependent modality. Although the molecular mechanism is not entirely understood, a number of studies have revealed that several cellular biochemical processes are responsible for the switching of translation initiation to IRES-dependent. These include the cleavage of translation initiation factors by viral and/or host proteases, phosphorylation (inactivation) of host factors for translation initiation, overproduction of homologous proteins of cap-binding protein eukaryotic initiation factors (eIF)4E, suppression of cap-binding protein eIF4E expression by specific microRNA, activation of enzymes for mRNA decapping, as well as others. Here, we summarize the recent advances in our understanding of the molecular mechanisms for the switching of translation initiation, particularly for the proteins involved in cell survival and apoptosis in the ER stress pathways during viral infections.
Collapse
Affiliation(s)
- Paul J Hanson
- Department of Pathology and Laboratory Medicine, The Institute for Heart and Lung Health, St. Paul's Hospital, University of British Columbia Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
73
|
Structure of a hepatitis C virus RNA domain in complex with a translation inhibitor reveals a binding mode reminiscent of riboswitches. Proc Natl Acad Sci U S A 2012; 109:5223-8. [PMID: 22431596 DOI: 10.1073/pnas.1118699109] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The internal ribosome entry site (IRES) in the hepatitis C virus (HCV) RNA genome is essential for the initiation of viral protein synthesis. IRES domains adopt well-defined folds that are potential targets for antiviral translation inhibitors. We have determined the three-dimensional structure of the IRES subdomain IIa in complex with a benzimidazole translation inhibitor at 2.2 Å resolution. Comparison to the structure of the unbound RNA in conjunction with studies of inhibitor binding to the target in solution demonstrate that the RNA undergoes a dramatic ligand-induced conformational adaptation to form a deep pocket that resembles the substrate binding sites in riboswitches. The presence of a well-defined ligand-binding pocket within the highly conserved IRES subdomain IIa holds promise for the development of unique anti-HCV drugs with a high barrier to resistance.
Collapse
|
74
|
Pooggin MM, Rajeswaran R, Schepetilnikov MV, Ryabova LA. Short ORF-dependent ribosome shunting operates in an RNA picorna-like virus and a DNA pararetrovirus that cause rice tungro disease. PLoS Pathog 2012; 8:e1002568. [PMID: 22396650 PMCID: PMC3291615 DOI: 10.1371/journal.ppat.1002568] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/23/2012] [Indexed: 11/18/2022] Open
Abstract
Rice tungro disease is caused by synergistic interaction of an RNA picorna-like virus Rice tungro spherical virus (RTSV) and a DNA pararetrovirus Rice tungro bacilliform virus (RTBV). It is spread by insects owing to an RTSV-encoded transmission factor. RTBV has evolved a ribosome shunt mechanism to initiate translation of its pregenomic RNA having a long and highly structured leader. We found that a long leader of RTSV genomic RNA remarkably resembles the RTBV leader: both contain several short ORFs (sORFs) and potentially fold into a large stem-loop structure with the first sORF terminating in front of the stem basal helix. Using translation assays in rice protoplasts and wheat germ extracts, we show that, like in RTBV, both initiation and proper termination of the first sORF translation in front of the stem are required for shunt-mediated translation of a reporter ORF placed downstream of the RTSV leader. The base pairing that forms the basal helix is required for shunting, but its sequence can be varied. Shunt efficiency in RTSV is lower than in RTBV. But in addition to shunting the RTSV leader sequence allows relatively efficient linear ribosome migration, which also contributes to translation initiation downstream of the leader. We conclude that RTSV and RTBV have developed a similar, sORF-dependent shunt mechanism possibly to adapt to the host translation system and/or coordinate their life cycles. Given that sORF-dependent shunting also operates in a pararetrovirus Cauliflower mosaic virus and likely in other pararetroviruses that possess a conserved shunt configuration in their leaders it is tempting to propose that RTSV may have acquired shunt cis-elements from RTBV during their co-existence. Ribosome shunting, first discovered in plant pararetroviruses, is a translation initiation mechanism that combines 5′ end-dependent scanning and internal initiation and allows a bypass of highly-structured leaders of certain viral and cellular mRNAs. Here we demonstrate that a similar shunt mechanism has been developed by the RNA picorna-like virus RTSV and the DNA pararetrovirus RTBV that form a disease complex in rice. Leader sequences of the RTSV genomic RNA and the RTBV pregenomic RNA possess a conserved shunt configuration with a 5′-proximal short ORF (sORF1) terminating in front of a large stem-loop structure. Like in RTBV and a related pararetrovirus Cauliflower mosaic virus, shunt-mediated translation downstream of the RTSV leader depends on initiation and proper termination of sORF1 translation and on formation of the basal helix of the downstream secondary structure. Given that RTBV-like shunt elements with identical sequence motifs are present in all RTSV isolates but absent in related picorna-like viruses, it is likely that RTSV could have acquired these elements after its encounter with RTBV. Alternatively, the RTSV shunt elements could have evolved independently to adapt to the rice translation machinery. Our study highlights on-going genetic exchange and co-adaptation to the host in emerging viral disease complexes.
Collapse
|
75
|
Lau SKP, Woo PCY, Yip CCY, Choi GKY, Wu Y, Bai R, Fan RYY, Lai KKY, Chan KH, Yuen KY. Identification of a novel feline picornavirus from the domestic cat. J Virol 2012; 86:395-405. [PMID: 22031936 PMCID: PMC3255865 DOI: 10.1128/jvi.06253-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 10/14/2011] [Indexed: 12/11/2022] Open
Abstract
While picornaviruses are known to infect different animals, their existence in the domestic cat was unknown. We describe the discovery of a novel feline picornavirus (FePV) from stray cats in Hong Kong. From samples from 662 cats, FePV was detected in fecal samples from 14 cats and urine samples from 2 cats by reverse transcription-PCR (RT-PCR). Analysis of five FePV genomes revealed a distinct phylogenetic position and genomic features, with low sequence homologies to known picornaviruses especially in leader and 2A proteins. Among the viruses that belong to the closely related bat picornavirus groups 1 to 3 and the genus Sapelovirus, G+C content and sequence analysis of P1, P2, and P3 regions showed that FePV is most closely related to bat picornavirus group 3. However, FePV possessed other distinct features, including a putative type IV internal ribosome entry site/segment (IRES) instead of type I IRES in bat picornavirus group 3, protein cleavage sites, and H-D-C catalytic triad in 3C(pro) different from those in sapeloviruses and bat picornaviruses, and the shortest leader protein among known picornaviruses. These results suggest that FePV may belong to a new genus in the family Picornaviridae. Western blot analysis using recombinant FePV VP1 polypeptide showed a high seroprevalence of 33.6% for IgG among the plasma samples from 232 cats tested. IgM was also detected in three cats positive for FePV in fecal samples, supporting recent infection in these cats. Further studies are important to understand the pathogenicity, epidemiology, and genetic evolution of FePV in these common pet animals.
Collapse
Affiliation(s)
- Susanna K. P. Lau
- State Key Laboratory of Emerging Infectious Diseases
- Research Centre of Infection and Immunology
- Carol Yu Centre for Infection
- Department of Microbiology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Patrick C. Y. Woo
- State Key Laboratory of Emerging Infectious Diseases
- Research Centre of Infection and Immunology
- Carol Yu Centre for Infection
- Department of Microbiology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Cyril C. Y. Yip
- Department of Microbiology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Garnet K. Y. Choi
- Department of Microbiology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ying Wu
- Department of Microbiology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ru Bai
- Department of Microbiology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Rachel Y. Y. Fan
- Department of Microbiology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kenneth K. Y. Lai
- Department of Microbiology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kwok-Hung Chan
- Department of Microbiology, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases
- Research Centre of Infection and Immunology
- Carol Yu Centre for Infection
- Department of Microbiology, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
76
|
Chan KK, Ramesh V. Conserved RNA motifs of EMCV IRES as potential building blocks to design RNA nanostructures. Chem Commun (Camb) 2012; 48:11573-5. [DOI: 10.1039/c2cc36034a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
77
|
Natural occurrence and characterization of two internal ribosome entry site elements in a novel virus, canine picodicistrovirus, in the picornavirus-like superfamily. J Virol 2011; 86:2797-808. [PMID: 22205729 DOI: 10.1128/jvi.05481-11] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dicistroviridae and Picornaviridae are two phylogenetically related families of positive-sense single-stranded RNA viruses in the picornavirus-like superfamily with similar gene contents but different genome organizations and hosts. In a surveillance study involving 1,472 samples from 368 dogs over a 22-month period, we identified a novel picornavirus-like virus from 47 fecal and urine samples by the use of reverse transcription-PCR (RT-PCR). Sequencing and phylogenetic analysis of three complete genomes revealed that, although it seemed that the virus was most closely related to other picornaviruses, P1, P2, and P3 of the virus possessed very low amino acid identities of <30% to those of all other known picornaviruses and that the amino acid identities between the 3D(pol) and 2C of the virus and the RNA-dependent RNA polymerases and helicases of all other picornaviruses were <35%. Distinct from other picornaviruses, the genomes of the virus contain two putative internal ribosome entry sites (IRESs) and two open reading frames, encoding two polyprotein precursors (844 and 1,406 amino acids), separated by an intergenic region (IGR) of 588 bases. A dual-luciferase activity assay using DNA and RNA transfection revealed that both IRESs were functional. Quantitative RT-PCR showed that numbers of viral RNAs ranged from 7.55 × 10(6) to 1.26 × 10(9) copies/ml of urine and 1.82 × 10(6) to 4.97 × 10(10) copies/ml of fecal sample. This is the first report of the natural occurrence of two functional IRESs in nondicistroviruses. Based on our results, we have proposed a novel species, canine picodicistrovirus (CPDV), to describe this novel member of the picornavirus-like superfamily, which could represent a novel family of viruses.
Collapse
|
78
|
Duck Hepatitis A virus possesses a distinct type IV internal ribosome entry site element of picornavirus. J Virol 2011; 86:1129-44. [PMID: 22090106 DOI: 10.1128/jvi.00306-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sequence analysis of duck hepatitis virus type 1 (DHV-1) led to its classification as the only member of a new genus, Avihepatovirus, of the family Picornaviridae, and so was renamed duck hepatitis A virus (DHAV). The 5' untranslated region (5' UTR) plays an important role in translation initiation and RNA synthesis of the picornavirus. Here, we provide evidence that the 651-nucleotide (nt)-long 5' UTR of DHAV genome contains an internal ribosome entry site (IRES) element that functions efficiently in vitro and within BHK cells. Comparative sequence analysis showed that the 3' part of the DHAV 5' UTR is similar to the porcine teschovirus 1 (PTV-1) IRES in sequence and predicted secondary structure. Further mutational analyses of the predicted domain IIId, domain IIIe, and pseudoknot structure at the 3' end of the DHAV IRES support our predicted secondary structure. However, unlike the case for the PTV-1 IRES element, analysis of various deletion mutants demonstrated that the optimally functional DHAV IRES element with a size of approximately 420 nt is larger than that of PTV-1 and contains other peripheral domains (Id and Ie) that do not exist within the type IV IRES elements. The domain Ie, however, could be removed without significant loss of activity. Surprisingly, like the hepatitis A virus (HAV) IRES element, the activity of DHAV IRES could be eliminated by expression of enterovirus 2A protease. These findings indicate that the DHAV IRES shares common features with type IV picornavirus IRES elements, whereas it exhibits significant differences from type IV IRESs. Therefore, we propose that DHAV possesses a distinct type IV IRES element of picornavirus.
Collapse
|
79
|
Screening of feral and wood pigeons for viruses harbouring a conserved mobile viral element: characterization of novel Astroviruses and Picornaviruses. PLoS One 2011; 6:e25964. [PMID: 22043297 PMCID: PMC3197151 DOI: 10.1371/journal.pone.0025964] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/13/2011] [Indexed: 01/23/2023] Open
Abstract
A highly conserved RNA-motif of yet unknown function, called stem-loop-2-like motif (s2m), has been identified in the 3′ end of the genomes of viruses belonging to different RNA virus families which infect a broad range of mammal and bird species, including Astroviridae, Picornaviridae, Coronaviridae and Caliciviridae. Since s2m is such an extremely conserved motif, it is an ideal target for screening for viruses harbouring it. In this study, we have detected and characterized novel viruses harbouring this motif in pigeons by using a s2m-specific amplification. 84% and 67% of the samples from feral pigeons and wood pigeons, respectively, were found to contain a virus harbouring s2m. Four novel viruses were identified and characterized. Two of the new viruses belong to the genus Avastrovirus in the Astroviridae family. We propose two novel species to be included in this genus, Feral pigeon astrovirus and Wood pigeon astrovirus. Two other novel viruses, Pigeon picornavirus A and Pigeon picornavirus B, belong to the Picornaviridae family, presumably to the genus Sapelovirus. Both of the novel picornaviruses harboured two adjacent s2m, called (s2m)2, suggesting a possible increased functional effect of s2m when present in two copies.
Collapse
|
80
|
Inoculation of newborn mice with non-coding regions of foot-and-mouth disease virus RNA can induce a rapid, solid and wide-range protection against viral infection. Antiviral Res 2011; 92:500-4. [PMID: 22020303 DOI: 10.1016/j.antiviral.2011.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/03/2011] [Accepted: 10/05/2011] [Indexed: 11/23/2022]
Abstract
We have recently described the ability of in vitro-transcribed RNAs, mimicking structural domains in the 5' and 3' non-coding regions (NCRs) of the foot-and-mouth disease virus (FMDV) genome, to trigger the innate immune response in porcine cultured cells and mice. In this work, the antiviral effect exerted in vivo by these small synthetic non-infectious RNA molecules was analyzed extensively. The susceptibility of transfected newborn Swiss mice to FMDV challenge was tested using a wide range of viral doses. The level of protection depended on the specific RNA inoculated and was dose-dependent. The RNA giving the best protection was the internal ribosome entry site (IRES), followed by the transcripts corresponding to the S fragment. The time course of resistance to FMDV of the RNA-transfected mice was studied. Our results show the efficacy of these RNAs to prevent viral infection as well as to contain ongoing FMDV infection in certain time intervals. Protection proved to be independent of the serotype of FMDV used for challenge. These results support the potential use of the FMDV NCR transcripts as both prophylactic and therapeutic molecules for new FMDV control strategies.
Collapse
|
81
|
Translation without eIF2 promoted by poliovirus 2A protease. PLoS One 2011; 6:e25699. [PMID: 22003403 PMCID: PMC3189197 DOI: 10.1371/journal.pone.0025699] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/08/2011] [Indexed: 12/14/2022] Open
Abstract
Poliovirus RNA utilizes eIF2 for the initiation of translation in cell free systems. Remarkably, we now describe that poliovirus translation takes place at late times of infection when eIF2 is inactivated by phosphorylation. By contrast, translation directed by poliovirus RNA is blocked when eIF2 is inactivated at earlier times. Thus, poliovirus RNA translation exhibits a dual mechanism for the initiation of protein synthesis as regards to the requirement for eIF2. Analysis of individual poliovirus non-structural proteins indicates that the presence of 2Apro alone is sufficient to provide eIF2 independence for IRES-driven translation. This effect is not observed with a 2Apro variant unable to cleave eIF4G. The level of 2Apro synthesized in culture cells is crucial for obtaining eIF2 independence. Expression of the N-or C-terminus fragments of eIF4G did not stimulate IRES-driven translation, nor provide eIF2 independence, consistent with the idea that the presence of 2Apro at high concentrations is necessary. The finding that 2Apro provides eIF2-independent translation opens a new and unsuspected area of research in the field of picornavirus protein synthesis.
Collapse
|
82
|
Escape from transcriptional shutoff during poliovirus infection: NF-κB-responsive genes IκBa and A20. J Virol 2011; 85:10101-8. [PMID: 21795344 DOI: 10.1128/jvi.00575-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been known for a long time that infection of cultured cells with poliovirus results in the overall inhibition of transcription of most host genes. We examined whether selected host genes can escape transcriptional inhibition by thiouridine marking newly synthesized host mRNAs during viral infection. Using cDNA microarrays hybridized to cDNAs made from thiolated mRNAs, a small set of host transcripts was identified and their expression verified by quantitative PCR and Northern and Western blot analyses. These transcripts were synthesized from genes that displayed enrichment for NF-κB binding sites in their promoter regions, suggesting that some NF-κB-regulated promoters can escape the virus-induced inhibition of transcription. In particular, two negative regulators of NF-κB, IκBa and A20, were upregulated during viral infection. Depletion of A20 enhanced viral RNA abundance and viral yield, arguing that cells respond to virus infection by counteracting NF-κB-induced proviral effects.
Collapse
|
83
|
Fernández-Miragall O, Hernández C. An internal ribosome entry site directs translation of the 3'-gene from Pelargonium flower break virus genomic RNA: implications for infectivity. PLoS One 2011; 6:e22617. [PMID: 21818349 PMCID: PMC3144232 DOI: 10.1371/journal.pone.0022617] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/26/2011] [Indexed: 01/31/2023] Open
Abstract
Pelargonium flower break virus (PFBV, genus Carmovirus) has a single-stranded positive-sense genomic RNA (gRNA) which contains five ORFs. The two 5'-proximal ORFs encode the replicases, two internal ORFs encode movement proteins, and the 3'-proximal ORF encodes a polypeptide (p37) which plays a dual role as capsid protein and as suppressor of RNA silencing. Like other members of family Tombusviridae, carmoviruses express ORFs that are not 5'-proximal from subgenomic RNAs. However, in one case, corresponding to Hisbiscus chlorotic ringspot virus, it has been reported that the 3'-proximal gene can be translated from the gRNA through an internal ribosome entry site (IRES). Here we show that PFBV also holds an IRES that mediates production of p37 from the gRNA, raising the question of whether this translation strategy may be conserved in the genus. The PFBV IRES was functional both in vitro and in vivo and either in the viral context or when inserted into synthetic bicistronic constructs. Through deletion and mutagenesis studies we have found that the IRES is contained within a 80 nt segment and have identified some structural traits that influence IRES function. Interestingly, mutations that diminish IRES activity strongly reduced the infectivity of the virus while the progress of the infection was favoured by mutations potentiating such activity. These results support the biological significance of the IRES-driven p37 translation and suggest that production of the silencing suppressor from the gRNA might allow the virus to early counteract the defence response of the host, thus facilitating pathogen multiplication and spread.
Collapse
Affiliation(s)
- Olga Fernández-Miragall
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Carmen Hernández
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
84
|
Welnowska E, Sanz MA, Redondo N, Carrasco L. Translation of viral mRNA without active eIF2: the case of picornaviruses. PLoS One 2011; 6:e22230. [PMID: 21779397 PMCID: PMC3136507 DOI: 10.1371/journal.pone.0022230] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 06/17/2011] [Indexed: 12/19/2022] Open
Abstract
Previous work by several laboratories has established that translation of picornavirus RNA requires active eIF2α for translation in cell free systems or after transfection in culture cells. Strikingly, we have found that encephalomyocarditis virus protein synthesis at late infection times is resistant to inhibitors that induce the phosphorylation of eIF2α whereas translation of encephalomyocarditis virus early during infection is blocked upon inactivation of eIF2α by phosphorylation induced by arsenite. The presence of this compound during the first hour of infection leads to a delay in the appearance of late protein synthesis in encephalomyocarditis virus-infected cells. Depletion of eIF2α also provokes a delay in the kinetics of encephalomyocarditis virus protein synthesis, whereas at late times the levels of viral translation are similar in control or eIF2α-depleted HeLa cells. Immunofluorescence analysis reveals that eIF2α, contrary to eIF4GI, does not colocalize with ribosomes or with encephalomyocarditis virus 3D polymerase. Taken together, these findings support the novel idea that eIF2 is not involved in the translation of encephalomyocarditis virus RNA during late infection. Moreover, other picornaviruses such as foot-and-mouth disease virus, mengovirus and poliovirus do not require active eIF2α when maximal viral translation is taking place. Therefore, translation of picornavirus RNA may exhibit a dual mechanism as regards the participation of eIF2. This factor would be necessary to translate the input genomic RNA, but after viral RNA replication, the mechanism of viral RNA translation switches to one independent of eIF2.
Collapse
Affiliation(s)
- Ewelina Welnowska
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Angel Sanz
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| | - Natalia Redondo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
85
|
Abstract
Enterovirus 71 (EV71) infections continue to remain an important public health problem around the world, especially in the Asia-Pacific region. There is a significant mortality rate following such infections, and there is neither any proven therapy nor a vaccine for EV71. This has spurred much fundamental research into the replication of the virus. In this review, we discuss recent work identifying host cell factors which regulate the synthesis of EV71 RNA and proteins. Three of these proteins, heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), far-upstream element-binding protein 2 (FBP2), and FBP1 are nuclear proteins which in EV71-infected cells are relocalized to the cytoplasm, and they influence EV71 internal ribosome entry site (IRES) activity. hnRNP A1 stimulates IRES activity but can be replaced by hnRNP A2. FBP2 is a negative regulatory factor with respect to EV71 IRES activity, whereas FBP1 has the opposite effect. Two other proteins, hnRNP K and reticulon 3, are required for the efficient synthesis of viral RNA. The cleavage stimulation factor 64K subunit (CstF-64) is a host protein that is involved in the 3' polyadenylation of cellular pre-mRNAs, and recent work suggests that in EV71-infected cells, it may be cleaved by the EV71 3C protease. Such a cleavage would impair the processing of pre-mRNA to mature mRNAs. Host cell proteins play an important role in the replication of EV71, but much work remains to be done in order to understand how they act.
Collapse
|
86
|
RNA structural domains in noncoding regions of the foot-and-mouth disease virus genome trigger innate immunity in porcine cells and mice. J Virol 2011; 85:6492-501. [PMID: 21525336 DOI: 10.1128/jvi.00599-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The induction of type I interferons (alpha/beta interferon [IFN-α/β]) in response to viral infection is a crucial step leading to the antiviral state in the host. Viruses produce double-stranded RNA (dsDNA) during their replication cycle that is sensed as nonself by host cells through different receptors. A signaling cascade then is activated to block viral replication and spread. Foot-and-mouth disease virus (FMDV) is a picornavirus that is highly sensitive to IFN, and it causes one of the world's most important animal diseases. In this study, we showed the ability of structural domains predicted to enclose stable dsRNA regions in the 5'- and 3'-noncoding regions (NCRs) of the FMDV genome to trigger an IFN-α/β response in porcine kidney cultured cells and newborn mice. These RNAs, generated by in vitro transcription, were able to stimulate IFN-β transcription and induce an antiviral state in SK-6 cells. The induction levels elicited by the different NCR RNAs were compared. Among them, the 3'NCR was identified as a potent IFN activator, and the features in this region involved in signaling have been analyzed. To address whether the FMDV NCR transcripts were able to trigger the innate immune response in vivo, Swiss suckling mice were inoculated intraperitoneally with the RNAs. All transcripts induced the innate response in transfected animals, measured as IFN-α/β protein levels, antiviral activity in sera, and reduced susceptibility to FMDV infection. Our work provides new insight into innate responses against FMDV and identifies these small noninfectious RNA molecules as potential adjuvants for vaccine improvement and antiviral strategies against picornaviruses.
Collapse
|
87
|
Liu G, Yángüez E, Chen Z, Li C. The duck hepatitis virus 5'-UTR possesses HCV-like IRES activity that is independent of eIF4F complex and modulated by downstream coding sequences. Virol J 2011; 8:147. [PMID: 21450110 PMCID: PMC3072930 DOI: 10.1186/1743-422x-8-147] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/31/2011] [Indexed: 02/05/2023] Open
Abstract
Duck hepatitis virus (DHV-1) is a worldwide distributed picornavirus that causes acute and fatal disease in young ducklings. Recently, the complete genome of DHV-1 has been determined and comparative sequence analysis has shown that possesses the typical picornavirus organization but exhibits several unique features. For the first time, we provide evidence that the 626-nucleotide-long 5'-UTR of the DHV-1 genome contains an internal ribosome entry site (IRES) element that functions efficiently both in vitro and in mammalian cells. The prediction of the secondary structure of the DHV-1 IRES shows significant similarity to the hepatitis C virus (HCV) IRES. Moreover, similarly to HCV IRES, DHV-1 IRES can direct translation initiation in the absence of a functional eIF4F complex. We also demonstrate that the activity of the DHV-1 IRES is modulated by a viral coding sequence located downstream of the DHV-1 5'-UTR, which enhances DHV-1 IRES activity both in vitro and in vivo. Furthermore, mutational analysis of the predicted pseudo-knot structures at the 3'-end of the putative DHV-1 IRES supported the presence of conserved domains II and III and, as it has been previously described for other picornaviruses, these structures are essential for keeping the normal internal initiation of translation of DHV-1.
Collapse
Affiliation(s)
- Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| | | | | | | |
Collapse
|
88
|
Malys N, McCarthy JEG. Translation initiation: variations in the mechanism can be anticipated. Cell Mol Life Sci 2011; 68:991-1003. [PMID: 21076851 PMCID: PMC11115079 DOI: 10.1007/s00018-010-0588-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 10/25/2010] [Accepted: 10/28/2010] [Indexed: 01/05/2023]
Abstract
Translation initiation is a critical step in protein synthesis. Previously, two major mechanisms of initiation were considered as essential: prokaryotic, based on SD interaction; and eukaryotic, requiring cap structure and ribosomal scanning. Although discovered decades ago, cap-independent translation has recently been acknowledged as a widely spread mechanism in viruses, which may take place in some cellular mRNA translations. Moreover, it has become evident that translation can be initiated on the leaderless mRNA in all three domains of life. New findings demonstrate that other distinguishable types of initiation exist, including SD-independent in Bacteria and Archaea, and various modifications of 5' end-dependent and internal initiation mechanisms in Eukarya. Since translation initiation has developed through the loss, acquisition, and modification of functional elements, all of which have been elevated by competition with viral translation in a large number of organisms of different complexity, more variation in initiation mechanisms can be anticipated.
Collapse
Affiliation(s)
- Naglis Malys
- Manchester Centre for Integrative Systems Biology, Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, UK.
| | | |
Collapse
|
89
|
Structural features of the Seneca Valley virus internal ribosome entry site (IRES) element: a picornavirus with a pestivirus-like IRES. J Virol 2011; 85:4452-61. [PMID: 21325406 DOI: 10.1128/jvi.01107-10] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The RNA genome of Seneca Valley virus (SVV), a recently identified picornavirus, contains an internal ribosome entry site (IRES) element which has structural and functional similarity to that from classical swine fever virus (CSFV) and hepatitis C virus, members of the Flaviviridae. The SVV IRES has an absolute requirement for the presence of a short region of virus-coding sequence to allow it to function either in cells or in rabbit reticulocyte lysate. The IRES activity does not require the translation initiation factor eIF4A or intact eIF4G. The predicted secondary structure indicates that the SVV IRES is more closely related to the CSFV IRES, including the presence of a bipartite IIId domain. Mutagenesis of the SVV IRES, coupled to functional assays, support the core elements of the IRES structure model, but surprisingly, deletion of the conserved IIId(2) domain had no effect on IRES activity, including 40S and eIF3 binding. This is the first example of a picornavirus IRES that is most closely related to the CSFV IRES and suggests the possibility of multiple, independent recombination events between the genomes of the Picornaviridae and Flaviviridae to give rise to similar IRES elements.
Collapse
|
90
|
Yu JM, Xu ZQ, Li BW, Zhang Q, Cui SX, Jin M, Duan ZJ. Analysis and characterization of the complete genome of a member of a new species of kobuvirus associated with swine. Arch Virol 2011; 156:747-51. [PMID: 21274731 DOI: 10.1007/s00705-010-0907-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 12/23/2010] [Indexed: 10/18/2022]
Abstract
A virus belonging to a new species in the genus Kobuvirus, family Picornaviridae, was first isolated in 2008 from apparently healthy pigs in Hungary and China. We report the complete genome sequence and the genetic organization of the novel porcine kobuvirus strain Y-1-CHI, which was identified in China. The RNA genome of strain Y-1-CHI contains 8210 nucleotides (nt) and has an organization similar to that of other picornaviruses. The full-length nucleotide sequence of Y-1-CHI was 88.62%, 58.66%, and 48.86% identical to those of S-1-HUN, U-1, and Aichi virus, respectively. No positive results were found in 454 stool samples from children with acute gastroenteritis. Dendrograms indicated that Y-1-CHI and S-1-HUN are most closely related to each other and belong to the same species. Our results suggest that members of this novel species have the typical genome characteristics of members of the genus Kobuvirus and may be distributed globally in swine.
Collapse
Affiliation(s)
- Jie-mei Yu
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
Viral reproduction involves not only replication but also interactions with host defences. Although various viral proteins can take part in counteracting innate and adaptive immunity, many viruses possess a subset of proteins that are specifically dedicated to counter-defensive activities. These proteins are sometimes referred to as 'virulence factors', but here we argue that the term 'security proteins' is preferable, for several reasons. The concept of security proteins of RNA-containing viruses can be considered using the leader (L and L*) and 2A proteins of picornaviruses as examples. The picornaviruses are a large group of human and animal viruses that include important pathogens such as poliovirus, hepatitis A virus and foot-and-mouth disease virus. The genomes of different picornaviruses have a similar organization, in which the genes for L and 2A occupy fixed positions upstream and downstream of the capsid genes, respectively. Both L and 2A are extremely heterogeneous with respect to size, sequence and biochemical properties. The similarly named proteins can be completely unrelated to each other in different viral genera, and the variation can be striking even among members of the same genus. A subset of picornaviruses lacks L altogether. The properties and functions of L and 2A of many picornaviruses are unknown, but in those viruses that have been investigated sufficiently it has been found that these proteins can switch off various aspects of host macromolecular synthesis and specifically suppress mechanisms involved in innate immunity. Thus, notwithstanding their unrelatedness, the security proteins carry out similar biological functions. It is proposed that other picornavirus L and 2A proteins that have not yet been investigated should also be primarily involved in security activities. The L, L* and 2A proteins are dispensable for viral reproduction, but their elimination or inactivation usually renders the viruses less pathogenic. The phenotypic changes associated with inactivation of security proteins are much less pronounced in cells or organisms that have innate immunity deficiencies. In several examples, the decreased fitness of a virus in which a security protein has been inactivated could be rescued by the experimental introduction of an unrelated security protein. It can be argued that L and 2A were acquired by different picornaviruses independently, and possibly by exploiting different mechanisms, late in the evolution of this viral family. It is proposed that the concept of security proteins is of general relevance and can be applied to viruses other than picornaviruses. The hallmarks of security proteins are: structural and biochemical unrelatedness in related viruses or even absence in some of them; dispensability of the entire protein or its functional domains for viral viability; and, for mutated versions of the proteins, fewer detrimental effects on viral reproduction in immune-compromised hosts than in immune-competent hosts.
Viral security proteins are structurally and biochemically unrelated proteins that function to counteract host defences. Here, Agol and Gmyl consider the impact of the picornavirus security proteins on viral reproduction, pathogenicity and evolution. Interactions with host defences are key aspects of viral infection. Various viral proteins perform counter-defensive functions, but a distinct class, called security proteins, is dedicated specifically to counteracting host defences. Here, the properties of the picornavirus security proteins L and 2A are discussed. These proteins have well-defined positions in the viral polyprotein, flanking the capsid precursor, but they are structurally and biochemically unrelated. Here, we consider the impact of these two proteins, as well as that of a third security protein, L*, on viral reproduction, pathogenicity and evolution. The concept of security proteins could serve as a paradigm for the dedicated counter-defensive proteins of other viruses.
Collapse
Affiliation(s)
- Vadim I Agol
- M. P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow 142782, Russia.
| | | |
Collapse
|
92
|
Fernández N, García-Sacristán A, Ramajo J, Briones C, Martínez-Salas E. Structural analysis provides insights into the modular organization of picornavirus IRES. Virology 2010; 409:251-61. [PMID: 21056890 DOI: 10.1016/j.virol.2010.10.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 09/12/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
Abstract
Picornavirus RNA translation is driven by the internal ribosome entry site (IRES) element. The impact of RNA structure on the foot-and-mouth disease virus (FMDV) IRES activity has been analyzed using Selective 2'Hydroxyl Acylation analyzed by Primer Extension (SHAPE) and high throughput analysis of RNA conformation by antisense oligonucleotides printed on microarrays. SHAPE reactivity revealed the self-folding capacity of domain 3 and evidenced a change of RNA structure in a defective GNRA mutant. A modified RNA conformation of this mutant was also evidenced by RNA accessibility to oligonucleotides. Interestingly, comparison of nucleotide reactivity with RNA accessibility revealed that SHAPE reactive nucleotides corresponding to the GNRA motif were not accessible to their respective target oligonucleotides. The differential response was observed both in domain 3 and the entire IRES. Our results demonstrate distant effects of the GNRA motif in the domain 3 RNA conformation, and highlight the modular organization of a picornavirus IRES.
Collapse
Affiliation(s)
- Noemí Fernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
93
|
Sanz MA, Welnowska E, Redondo N, Carrasco L. Translation driven by picornavirus IRES is hampered from Sindbis virus replicons: rescue by poliovirus 2A protease. J Mol Biol 2010; 402:101-17. [PMID: 20643140 DOI: 10.1016/j.jmb.2010.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/06/2010] [Accepted: 07/12/2010] [Indexed: 01/08/2023]
Abstract
Alphavirus replicons are very useful for analyzing different aspects of viral molecular biology. They are also useful tools in the development of new vaccines and highly efficient expression of heterologous genes. We have investigated the translatability of Sindbis virus (SV) subgenomic mRNA bearing different 5'-untranslated regions, including several viral internal ribosome entry sites (IRESs) from picornaviruses, hepatitis C virus, and cricket paralysis virus. Our findings indicate that all these IRES-containing mRNAs are initially translated in culture cells transfected with the corresponding SV replicon but their translation is inhibited in the late phase of SV replication. Notably, co-expression of different poliovirus (PV) non-structural genes reveals that the protease 2A (2A(pro)) is able to increase translation of subgenomic mRNAs containing the PV or encephalomyocarditis virus IRESs but not of those of hepatitis C virus or cricket paralysis virus. A PV 2A(pro) variant deficient in eukaryotic initiation factor (eIF) 4GI cleavage or PV protease 3C, neither of which cleaves eIF4GI, does not increase picornavirus IRES-driven translation, whereas L protease from foot-and-mouth disease virus also rescues translation. These findings suggest that the replicative foci of SV-infected cells where translation takes place are deficient in components necessary to translate IRES-containing mRNAs. In the case of picornavirus IRESs, cleavage of eIF4GI accomplished by PV 2A(pro) or foot-and-mouth disease virus protease L rescues this inhibition. eIF4GI co-localizes with ribosomes both in cells electroporated with SV replicons bearing the picornavirus IRES and in cells co-electroporated with replicons that express PV 2A(pro). These findings support the idea that eIF4GI cleavage is necessary to rescue the translation driven by picornavirus IRESs in baby hamster kidney cells that express SV replicons.
Collapse
Affiliation(s)
- Miguel Angel Sanz
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM,C/Nicolás Cabrera, 1,Universidad Autónoma,Cantoblanco, 28049 Madrid,Spain.
| | | | | | | |
Collapse
|
94
|
Nicholson BL, Wu B, Chevtchenko I, White KA. Tombusvirus recruitment of host translational machinery via the 3' UTR. RNA (NEW YORK, N.Y.) 2010; 16:1402-19. [PMID: 20507975 PMCID: PMC2885689 DOI: 10.1261/rna.2135210] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
RNA viruses recruit the host translational machinery by different mechanisms that depend partly on the structure of their genomes. In this regard, the plus-strand RNA genomes of several different pathogenic plant viruses do not contain traditional translation-stimulating elements, i.e., a 5'-cap structure and a 3'-poly(A) tail, and instead rely on a 3'-cap-independent translational enhancer (3'CITE) located in their 3' untranslated regions (UTRs) for efficient synthesis of viral proteins. We investigated the structure and function of the I-shaped class of 3'CITE in tombusviruses--also present in aureusviruses and carmoviruses--using biochemical and molecular approaches and we determined that it adopts a complex higher-order RNA structure that facilitates translation by binding simultaneously to both eukaryotic initiation factor (eIF) 4F and the 5' UTR of the viral genome. The specificity of 3'CITE binding to eIF4F is mediated, at least in part, through a direct interaction with its eIF4E subunit, whereas its association with the viral 5' UTR relies on complementary RNA-RNA base-pairing. We show for the first time that this tripartite 5' UTR/3'CITE/eIF4F complex forms in vitro in a translationally relevant environment and is required for recruitment of ribosomes to the 5' end of the viral RNA genome by a mechanism that shares some fundamental features with cap-dependent translation. Notably, our results demonstrate that the 3'CITE facilitates the initiation step of translation and validate a molecular model that has been proposed to explain how several different classes of 3'CITE function. Moreover, the virus-host interplay defined in this study provides insights into natural host resistance mechanisms that have been linked to 3'CITE activity.
Collapse
Affiliation(s)
- Beth L Nicholson
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | |
Collapse
|
95
|
de Miranda JR, Dainat B, Locke B, Cordoni G, Berthoud H, Gauthier L, Neumann P, Budge GE, Ball BV, Stoltz DB. Genetic characterization of slow bee paralysis virus of the honeybee (Apis mellifera L.). J Gen Virol 2010; 91:2524-30. [PMID: 20519455 DOI: 10.1099/vir.0.022434-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Complete genome sequences were determined for two distinct strains of slow bee paralysis virus (SBPV) of honeybees (Apis mellifera). The SBPV genome is approximately 9.5 kb long and contains a single ORF flanked by 5'- and 3'-UTRs and a naturally polyadenylated 3' tail, with a genome organization typical of members of the family Iflaviridae. The two strains, labelled 'Rothamsted' and 'Harpenden', are 83% identical at the nucleotide level (94% identical at the amino acid level), although this variation is distributed unevenly over the genome. The two strains were found to co-exist at different proportions in two independently propagated SBPV preparations. The natural prevalence of SBPV for 847 colonies in 162 apiaries across five European countries was <2%, with positive samples found only in England and Switzerland, in colonies with variable degrees of Varroa infestation.
Collapse
Affiliation(s)
- Joachim R de Miranda
- School of Biological Sciences, Queen's University Belfast, Belfast BT9 7BL, Republic of Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Fernández N, Martínez-Salas E. Tailoring the switch from IRES-dependent to 5'-end-dependent translation with the RNase P ribozyme. RNA (NEW YORK, N.Y.) 2010; 16:852-862. [PMID: 20194518 PMCID: PMC2844631 DOI: 10.1261/rna.1973710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/04/2010] [Indexed: 05/28/2023]
Abstract
Translation initiation driven by internal ribosome entry site (IRES) elements is dependent on the structural organization of the IRES region. We have previously shown that a structural motif within the foot-and-mouth-disease virus IRES is recognized in vitro as substrate for the Synechocystis sp. RNase P ribozyme. Here we show that this structure-dependent endonuclease recognizes the IRES element in cultured cells, leading to inhibition of translation. Inhibition of IRES activity was dependent on the expression of the active ribozyme RNA subunit. Moreover, expression of the antisense sequence of the ribozyme did not inhibit IRES activity, demonstrating that stable RNA structures located upstream of the IRES element do not interfere with internal initiation. RNAs carrying defective IRES mutants that were substrates of the ribozyme in vivo revealed an increased translation of the reporter in response to the expression of the active ribozyme. In support of RNA cleavage, subsequent analysis of the translation initiation manner indicated a switch from IRES-dependent to 5'-end-dependent translation of RNase P target RNAs. We conclude that the IRES element is inactivated by expression in cis of RNase P in the cytoplasm of cultured cells, providing a promising antiviral tool to combat picornavirus infections. Furthermore, our results reinforce the essential role of the structural motif that serves as RNase P recognition motif for IRES activity.
Collapse
Affiliation(s)
- Noemi Fernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain
| | | |
Collapse
|
97
|
Insights into the biology of IRES elements through riboproteomic approaches. J Biomed Biotechnol 2010; 2010:458927. [PMID: 20150968 PMCID: PMC2817807 DOI: 10.1155/2010/458927] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 12/03/2009] [Indexed: 12/11/2022] Open
Abstract
Translation initiation is a highly regulated process that exerts a strong influence on the posttranscriptional control of gene expression. Two alternative mechanisms govern translation initiation in eukaryotic mRNAs, the cap-dependent initiation mechanism operating in most mRNAs, and the internal ribosome entry site (IRES)-dependent mechanism, first discovered in picornaviruses. IRES elements are highly structured RNA sequences that, in most instances, require specific proteins for recruitment of the translation machinery. Some of these proteins are eukaryotic initiation factors. In addition, RNA-binding proteins (RBPs) play a key role in internal initiation control. RBPs are pivotal regulators of gene expression in response to numerous stresses, including virus infection. This review discusses recent advances on riboproteomic approaches to identify IRES transacting factors (ITAFs) and the relationship between RNA-protein interaction and IRES activity, highlighting the most relevant features on picornavirus and hepatitis C virus IRESs.
Collapse
|
98
|
Abstract
Cytoplasmic PABP [poly(A)-binding protein] is a multifunctional protein with well-studied roles in mRNA translation and stability. In the present review, we examine recent evidence that the activity of PABP is altered during infection with a wide range of viruses, bringing about changes in its stability, complex formation and intracellular localization. Targeting of PABP by both RNA and DNA viruses highlights the role of PABP as a central regulator of gene expression.
Collapse
|
99
|
Bung C, Bochkaeva Z, Terenin I, Zinovkin R, Shatsky IN, Niepmann M. Influence of the hepatitis C virus 3'-untranslated region on IRES-dependent and cap-dependent translation initiation. FEBS Lett 2010; 584:837-42. [PMID: 20079737 DOI: 10.1016/j.febslet.2010.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 12/31/2009] [Accepted: 01/10/2010] [Indexed: 12/25/2022]
Abstract
Translation of hepatitis C virus (HCV) genomic RNA is directed by an internal ribosome entry site (IRES) in the 5'-untranslated region (5'-UTR), and the HCV 3'-UTR enhances IRES activity. Since the HCV 3'-UTR has a unique structure among 3'-UTRs, we checked possible communication between the 5'- and the 3'-UTR of HCV during translation using chimeric reporter RNAs. We show that translation directed by the HCV IRES and by the HCV-like IRES of porcine teschovirus (PTV) which belongs to a quite distinct family of viruses (picornaviruses) or by the EMCV IRES is also enhanced by the HCV 3'-UTR or by a poly(A)-tail in different cell types.
Collapse
Affiliation(s)
- C Bung
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University Giessen, Germany
| | | | | | | | | | | |
Collapse
|
100
|
Abstract
Dicistroviruses are members of a recently defined and rapidly growing family of picornavirus-like RNA viruses called the Dicistroviridae. Dicistroviruses are pathogenic to beneficial arthropods such as honey bees and shrimp and to insect pests of medical and agricultural importance. Our understanding of these viruses is uneven. We present highly advanced studies of the virus particle structure, remarkable mechanisms of internal ribosome entry in translation of viral RNA, and the use of dicistroviruses to study the insect immune system. However, little is known about dicistrovirus RNA replication mechanisms or gene function, except by comparison with picornaviruses. The recent construction of infectious clones of dicistrovirus genomes may fill these gaps in knowledge. We discuss economically important diseases caused by dicistroviruses. Future research may lead to protection of beneficial arthropods from dicistroviruses and to application of dicistroviruses as biopesticides targeting pestiferous insects.
Collapse
Affiliation(s)
- Bryony C Bonning
- Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| | | |
Collapse
|