51
|
Valadez-Graham V, Yoshioka Y, Velazquez O, Kawamori A, Vázquez M, Neumann A, Yamaguchi M, Zurita M. XNP/dATRX interacts with DREF in the chromatin to regulate gene expression. Nucleic Acids Res 2011; 40:1460-74. [PMID: 22021382 PMCID: PMC3287189 DOI: 10.1093/nar/gkr865] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The ATRX gene encodes a chromatin remodeling protein that has two important domains, a helicase/ATPase domain and a domain composed of two zinc fingers called the ADD domain. The ADD domain binds to histone tails and has been proposed to mediate their binding to chromatin. The putative ATRX homolog in Drosophila (XNP/dATRX) has a conserved helicase/ATPase domain but lacks the ADD domain. In this study, we propose that XNP/dATRX interacts with other proteins with chromatin-binding domains to recognize specific regions of chromatin to regulate gene expression. We report a novel functional interaction between XNP/dATRX and the cell proliferation factor DREF in the expression of pannier (pnr). DREF binds to DNA-replication elements (DRE) at the pnr promoter to modulate pnr expression. XNP/dATRX interacts with DREF, and the contact between the two factors occurs at the DRE sites, resulting in transcriptional repression of pnr. The occupancy of XNP/dATRX at the DRE, depends on DNA binding of DREF at this site. Interestingly, XNP/dATRX regulates some, but not all of the genes modulated by DREF, suggesting a promoter-specific role of XNP/dATRX in gene regulation. This work establishes that XNP/dATRX directly contacts the transcriptional activator DREF in the chromatin to regulate gene expression.
Collapse
Affiliation(s)
- Viviana Valadez-Graham
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México Av Universidad 2001, Col Chamilpa 62250, Cuernavaca Mor, México
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Bérubé NG. ATRX in chromatin assembly and genome architecture during development and disease. Biochem Cell Biol 2011; 89:435-44. [DOI: 10.1139/o11-038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The regulation of genome architecture is essential for a variety of fundamental cellular phenomena that underlie the complex orchestration of mammalian development. The ATP-dependent chromatin remodeling protein ATRX is emerging as a key regulatory component of nucleosomal dynamics and higher order chromatin conformation. Here we provide an overview of the role of ATRX at chromatin and during development, and discuss recent studies exposing a repertoire of ATRX functions at heterochromatin, in gene regulation, and during mitosis and meiosis. Exciting new progress on several fronts suggest that ATRX operates in histone variant deposition and in the modulation of higher order chromatin structure. Not surprisingly, dysfunction or absence of ATRX protein has devastating consequences on embryonic development and leads to human disease.
Collapse
Affiliation(s)
- Nathalie G. Bérubé
- Victoria Research Laboratories 800 Commissioners Road East London, ON, Canada N6C 2V5
| |
Collapse
|
53
|
Campbell JM, Mitchell M, Nottle MB, Lane M. Development of a Mouse Model for Studying the Effect of Embryo Culture on Embryonic Stem Cell Derivation. Stem Cells Dev 2011; 20:1577-86. [DOI: 10.1089/scd.2010.0357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jared M. Campbell
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia
- Centre for Stem Cell Research, University of Adelaide, Adelaide, South Australia
| | - Megan Mitchell
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia
| | - Mark B. Nottle
- Centre for Stem Cell Research, University of Adelaide, Adelaide, South Australia
- Robinson Institute, University of Adelaide, Adelaide, South Australia
| | - Michelle Lane
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia
| |
Collapse
|
54
|
De La Fuente R, Baumann C, Viveiros MM. Role of ATRX in chromatin structure and function: implications for chromosome instability and human disease. Reproduction 2011; 142:221-34. [PMID: 21653732 PMCID: PMC3253860 DOI: 10.1530/rep-10-0380] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Functional differentiation of chromatin structure is essential for the control of gene expression, nuclear architecture, and chromosome stability. Compelling evidence indicates that alterations in chromatin remodeling proteins play an important role in the pathogenesis of human disease. Among these, α-thalassemia mental retardation X-linked protein (ATRX) has recently emerged as a critical factor involved in heterochromatin formation at mammalian centromeres and telomeres as well as facultative heterochromatin on the murine inactive X chromosome. Mutations in human ATRX result in an X-linked neurodevelopmental condition with various degrees of gonadal dysgenesis (ATRX syndrome). Patients with ATRX syndrome may exhibit skewed X chromosome inactivation (XCI) patterns, and ATRX-deficient mice exhibit abnormal imprinted XCI in the trophoblast cell line. Non-random or skewed XCI can potentially affect both the onset and severity of X-linked disease. Notably, failure to establish epigenetic modifications associated with the inactive X chromosome (Xi) results in several conditions that exhibit genomic and chromosome instability such as fragile X syndrome as well as cancer development. Insight into the molecular mechanisms of ATRX function and its interacting partners in different tissues will no doubt contribute to our understanding of the pathogenesis of ATRX syndrome as well as the epigenetic origins of aneuploidy. In turn, this knowledge will be essential for the identification of novel drug targets and diagnostic tools for cancer progression as well as the therapeutic management of global epigenetic changes commonly associated with malignant neoplastic transformation.
Collapse
Affiliation(s)
- Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|
55
|
Tang P, Frankenberg S, Argentaro A, Graves JM, Familari M. Comparative analysis of the ATRX promoter and 5' regulatory region reveals conserved regulatory elements which are linked to roles in neurodevelopment, alpha-globin regulation and testicular function. BMC Res Notes 2011; 4:200. [PMID: 21676266 PMCID: PMC3144453 DOI: 10.1186/1756-0500-4-200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 06/15/2011] [Indexed: 12/18/2022] Open
Abstract
Background ATRX is a tightly-regulated multifunctional protein with crucial roles in mammalian development. Mutations in the ATRX gene cause ATR-X syndrome, an X-linked recessive developmental disorder resulting in severe mental retardation and mild alpha-thalassemia with facial, skeletal and genital abnormalities. Although ubiquitously expressed the clinical features of the syndrome indicate that ATRX is not likely to be a global regulator of gene expression but involved in regulating specific target genes. The regulation of ATRX expression is not well understood and this is reflected by the current lack of identified upstream regulators. The availability of genomic data from a range of species and the very highly conserved 5' regulatory regions of the ATRX gene has allowed us to investigate putative transcription factor binding sites (TFBSs) in evolutionarily conserved regions of the mammalian ATRX promoter. Results We identified 12 highly conserved TFBSs of key gene regulators involved in biologically relevant processes such as neural and testis development and alpha-globin regulation. Conclusions Our results reveal potentially important regulatory elements in the ATRX gene which may lead to the identification of upstream regulators of ATRX and aid in the understanding of the molecular mechanisms that underlie ATR-X syndrome.
Collapse
Affiliation(s)
- Paisu Tang
- Department of Zoology, University of Melbourne, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
56
|
Eustermann S, Yang JC, Law MJ, Amos R, Chapman LM, Jelinska C, Garrick D, Clynes D, Gibbons RJ, Rhodes D, Higgs DR, Neuhaus D. Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin. Nat Struct Mol Biol 2011; 18:777-82. [PMID: 21666677 DOI: 10.1038/nsmb.2070] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 04/15/2011] [Indexed: 12/12/2022]
Abstract
Accurate read-out of chromatin modifications is essential for eukaryotic life. Mutations in the gene encoding X-linked ATRX protein cause a mental-retardation syndrome, whereas wild-type ATRX protein targets pericentric and telomeric heterochromatin for deposition of the histone variant H3.3 by means of a largely unknown mechanism. Here we show that the ADD domain of ATRX, in which most syndrome-causing mutations occur, engages the N-terminal tail of histone H3 through two rigidly oriented binding pockets, one for unmodified Lys4 and the other for di- or trimethylated Lys9. In vivo experiments show this combinatorial readout is required for ATRX localization, with recruitment enhanced by a third interaction through heterochromatin protein-1 (HP1) that also recognizes trimethylated Lys9. The cooperation of ATRX ADD domain and HP1 in chromatin recruitment results in a tripartite interaction that may span neighboring nucleosomes and illustrates how the 'histone-code' is interpreted by a combination of multivalent effector-chromatin interactions.
Collapse
|
57
|
Endo T, Imai A, Shimaoka T, Kano K, Naito K. Histone exchange activity and its correlation with histone acetylation status in porcine oocytes. Reproduction 2011; 141:397-405. [DOI: 10.1530/rep-10-0164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In mammalian oocytes, histone H3 and histone H4 (H4) in the chromatin are highly acetylated at the germinal vesicle (GV) stage, and become globally deacetylated after GV breakdown (GVBD). Although nuclear core histones can be exchanged by cytoplasmic free histones in somatic cells, it remains unknown whether this is also the case in mammalian oocytes. In this study, we examined the histone exchange activity in maturing porcine oocytes before and after GVBD, and investigated the correlations between this activity and both the acetylation profile of the H4 N-terminal tail and the global histone acetylation level in the chromatin. We injected Flag-tagged H4 (H4-Flag) mRNA into GV oocytes, and found that the Flag signal was localized to the chromatin. We next injected mRNAs of mutated H4-Flag, which lack all acetylation sites and the whole N-terminal tail, and found that the H4 N-terminal tail and its modification were not necessary for histone incorporation into chromatin. Despite the lack of acetylation sites, the mutated H4-Flag mRNA injection did not decrease the acetylation level on the chromatin, indicating that the histone exchange occurs partially in the GV chromatin. In contrast to GV oocytes, the Flag signal was not detected on the chromatin after the injection of H4-Flag protein into the second meiotic metaphase oocytes. These results suggest that histone exchange activity changes during meiotic maturation in porcine oocytes, and that the acetylation profile of the H4 N-terminal tail has no effect on histone incorporation into chromatin and does not affect the global level of histone acetylation in it.
Collapse
|
58
|
van den Berg IM, Eleveld C, van der Hoeven M, Birnie E, Steegers EAP, Galjaard RJ, Laven JSE, van Doorninck JH. Defective deacetylation of histone 4 K12 in human oocytes is associated with advanced maternal age and chromosome misalignment. Hum Reprod 2011; 26:1181-90. [PMID: 21349858 DOI: 10.1093/humrep/der030] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Chromosome segregation errors during human oocyte meiosis are associated with low fertility in humans and the incidence of these errors increases with advancing maternal age. Studies of mitosis and meiosis suggest that defective remodeling of chromatin plays a causative role in aneuploidy. We analyzed the histone deacetylation pattern during the final stages of human oocyte maturation to investigate whether defective epigenetic regulation of chromatin remodeling in human oocytes is related to maternal age and leads to segregation errors. METHODS Human surplus oocytes of different meiotic maturation stages [germinal vesicle (GV), metaphase (M)I and MII] were collected from standard IVF/ICSI treatments. Oocytes were analyzed for acetylation of different lysines of histone 4 (H4K5, H4K8, H4K12 and H4K16) and for α-tubulin. RESULTS Human GV oocytes had an intense staining of the chromatin for all four histone 4 lysine acetylations. MI and MII stage oocytes showed either normal deacetylation or various amounts of defective histone deacetylation. Residual H4K12 acetylation was more frequently found in oocytes obtained from older women, with a significant correlation between defective deacetylation and maternal age (r = 0.185, P = 0.007). Eighty-eight percent of the oocytes with residual acetylation had misaligned chromosomes, whereas only 33% of the oocytes that showed correct deacetylated chromatin had misaligned chromosomes (P < 0.001). CONCLUSIONS We conclude that defective deacetylation during human female meiosis increases with maternal age and is correlated with misaligned chromosomes. As chromosome misalignment predisposes to segregation errors, our data imply that defective regulation of histone deacetylation could be an important factor in age-related aneuploidy.
Collapse
Affiliation(s)
- I M van den Berg
- Department of Obstetrics and Gynaecology, Subdivision of Reproductive Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
Embryonic development is regulated by both genetic and epigenetic mechanisms, with nearly all DNA-templated processes influenced by chromatin architecture. Sequence variations in histone proteins, core components of chromatin, provide a means to generate diversity in the chromatin structure, resulting in distinct and profound biological outcomes in the developing embryo. Emerging literature suggests that epigenetic contributions from histone variants play key roles in a number of developmental processes such as the initiation and maintenance of pericentric heterochromatin, X-inactivation, and germ cell differentiation. Here, we review the role of histone variants in the embryo with particular emphasis on early mammalian development.
Collapse
Affiliation(s)
| | - C. David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | | |
Collapse
|
60
|
Baumann C, Viveiros MM, De La Fuente R. Loss of maternal ATRX results in centromere instability and aneuploidy in the mammalian oocyte and pre-implantation embryo. PLoS Genet 2010; 6:e1001137. [PMID: 20885787 PMCID: PMC2944790 DOI: 10.1371/journal.pgen.1001137] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 08/24/2010] [Indexed: 01/10/2023] Open
Abstract
The α-thalassemia/mental retardation X-linked protein (ATRX) is a chromatin-remodeling factor known to regulate DNA methylation at repetitive sequences of the human genome. We have previously demonstrated that ATRX binds to pericentric heterochromatin domains in mouse oocytes at the metaphase II stage where it is involved in mediating chromosome alignment at the meiotic spindle. However, the role of ATRX in the functional differentiation of chromatin structure during meiosis is not known. To test ATRX function in the germ line, we developed an oocyte-specific transgenic RNAi knockdown mouse model. Our results demonstrate that ATRX is required for heterochromatin formation and maintenance of chromosome stability during meiosis. During prophase I arrest, ATRX is necessary to recruit the transcriptional regulator DAXX (death domain associated protein) to pericentric heterochromatin. At the metaphase II stage, transgenic ATRX-RNAi oocytes exhibit abnormal chromosome morphology associated with reduced phosphorylation of histone 3 at serine 10 as well as chromosome segregation defects leading to aneuploidy and severely reduced fertility. Notably, a large proportion of ATRX-depleted oocytes and 1-cell stage embryos exhibit chromosome fragments and centromeric DNA–containing micronuclei. Our results provide novel evidence indicating that ATRX is required for centromere stability and the epigenetic control of heterochromatin function during meiosis and the transition to the first mitosis. The transmission of an abnormal chromosome complement from the gametes to the early embryo, a condition called aneuploidy, is a major cause of congenital birth defects and pregnancy loss. Human embryos are particularly susceptible to aneuploidy, which in the majority of cases is the result of abnormal meiosis in the female gamete. However, the molecular mechanisms involved in the onset of aneuploidy in mammalian oocytes are not fully understood. We show here that, the α-thalassemia/mental retardation X-linked protein (ATRX) is essential for the maintenance of chromosome stability during female meiosis. ATRX is required to recruit the transcriptional regulator DAXX to pericentric heterochromatin at prophase I of meiosis. Notably, lack of ATRX function at the metaphase II stage interferes with the establishment of chromatin modifications associated with chromosome condensation leading to segregation defects, chromosome fragmentation, and severely reduced fertility. Our results provide direct evidence for a role of ATRX in the regulation of pericentric heterochromatin structure and function in mammalian oocytes and have important implications for our understanding of the epigenetic factors contributing to the onset of aneuploidy in the female gamete.
Collapse
Affiliation(s)
- Claudia Baumann
- Female Germ Cell Biology Group, Department of Clinical Studies, University of Pennsylvania, Kennett Square, Pennsylvania, United States of America
| | - Maria M. Viveiros
- Department of Animal Biology, Center for Animal Transgenesis and Germ Cell Research, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, United States of America
| | - Rabindranath De La Fuente
- Female Germ Cell Biology Group, Department of Clinical Studies, University of Pennsylvania, Kennett Square, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
61
|
Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci U S A 2010; 107:14075-80. [PMID: 20651253 DOI: 10.1073/pnas.1008850107] [Citation(s) in RCA: 645] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The histone variant H3.3 is implicated in the formation and maintenance of specialized chromatin structure in metazoan cells. H3.3-containing nucleosomes are assembled in a replication-independent manner by means of dedicated chaperone proteins. We previously identified the death domain associated protein (Daxx) and the alpha-thalassemia X-linked mental retardation protein (ATRX) as H3.3-associated proteins. Here, we report that the highly conserved N terminus of Daxx interacts directly with variant-specific residues in the H3.3 core. Recombinant Daxx assembles H3.3/H4 tetramers on DNA templates, and the ATRX-Daxx complex catalyzes the deposition and remodeling of H3.3-containing nucleosomes. We find that the ATRX-Daxx complex is bound to telomeric chromatin, and that both components of this complex are required for H3.3 deposition at telomeres in murine embryonic stem cells (ESCs). These data demonstrate that Daxx functions as an H3.3-specific chaperone and facilitates the deposition of H3.3 at heterochromatin loci in the context of the ATRX-Daxx complex.
Collapse
|
62
|
MAPK-activated protein kinase 2 is required for mouse meiotic spindle assembly and kinetochore-microtubule attachment. PLoS One 2010; 5:e11247. [PMID: 20596525 PMCID: PMC2893158 DOI: 10.1371/journal.pone.0011247] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 05/28/2010] [Indexed: 11/19/2022] Open
Abstract
MAPK-activated protein kinase 2 (MK2), a direct substrate of p38 MAPK, plays key roles in multiple physiological functions in mitosis. Here, we show for the first time the unique distribution pattern of MK2 in meiosis. Phospho-MK2 was localized on bipolar spindle minus ends and along the interstitial axes of homologous chromosomes extending over centromere regions and arm regions at metaphase of first meiosis (MI stage) in mouse oocytes. At metaphase of second meiosis (MII stage), p-MK2 was localized on the bipolar spindle minus ends and at the inner centromere region of sister chromatids as dots. Knockdown or inhibition of MK2 resulted in spindle defects. Spindles were surrounded by irregular nondisjunction chromosomes, which were arranged in an amphitelic or syntelic/monotelic manner, or chromosomes detached from the spindles. Kinetochore-microtubule attachments were impaired in MK2-deficient oocytes because spindle microtubules became unstable in response to cold treatment. In addition, homologous chromosome segregation and meiosis progression were inhibited in these oocytes. Our data suggest that MK2 may be essential for functional meiotic bipolar spindle formation, chromosome segregation and proper kinetochore-microtubule attachments.
Collapse
|
63
|
Lukashchuk V, Everett RD. Regulation of ICP0-null mutant herpes simplex virus type 1 infection by ND10 components ATRX and hDaxx. J Virol 2010; 84:4026-40. [PMID: 20147399 PMCID: PMC2849514 DOI: 10.1128/jvi.02597-09] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 01/31/2010] [Indexed: 12/15/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) immediate-early gene product ICP0 activates lytic infection and relieves cell-mediated repression of viral gene expression. This repression is conferred by preexisting cellular proteins and is commonly referred to as intrinsic antiviral resistance or intrinsic defense. PML and Sp100, two core components of nuclear substructures known as ND10 or PML nuclear bodies, contribute to intrinsic resistance, but it is clear that other proteins must also be involved. We have tested the hypothesis that additional ND10 factors, particularly those that are involved in chromatin remodeling, may have roles in intrinsic resistance against HSV-1 infection. The two ND10 component proteins investigated in this report are ATRX and hDaxx, which are known to interact with each other and comprise components of a repressive chromatin-remodeling complex. We generated stable cell lines in which endogenous ATRX or hDaxx expression is severely suppressed by RNA interference. We found increases in both gene expression and plaque formation induced by ICP0-null mutant HSV-1 in both ATRX- and hDaxx-depleted cells. Reconstitution of wild-type hDaxx expression reversed the effects of hDaxx depletion, but reconstitution with a mutant form of hDaxx unable to interact with ATRX did not. Our results suggest that ATRX and hDaxx act as a complex that contributes to intrinsic antiviral resistance to HSV-1 infection, which is counteracted by ICP0.
Collapse
Affiliation(s)
- Vera Lukashchuk
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, Scotland, United Kingdom
| | - Roger D. Everett
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, Scotland, United Kingdom
| |
Collapse
|
64
|
Kernohan KD, Jiang Y, Tremblay DC, Bonvissuto AC, Eubanks JH, Mann MRW, Bérubé NG. ATRX partners with cohesin and MeCP2 and contributes to developmental silencing of imprinted genes in the brain. Epigenomics 2010; 2:743-63. [PMID: 20159591 DOI: 10.2217/epi.10.61] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human developmental disorders caused by chromatin dysfunction often display overlapping clinical manifestations, such as cognitive deficits, but the underlying molecular links are poorly defined. Here, we show that ATRX, MeCP2, and cohesin, chromatin regulators implicated in ATR-X, RTT, and CdLS syndromes, respectively, interact in the brain and colocalize at the H19 imprinting control region (ICR) with preferential binding on the maternal allele. Importantly, we show that ATRX loss of function alters enrichment of cohesin, CTCF, and histone modifications at the H19 ICR, without affecting DNA methylation on the paternal allele. ATRX also affects cohesin, CTCF, and MeCP2 occupancy within the Gtl2/Dlk1 imprinted domain. Finally, we show that loss of ATRX interferes with the postnatal silencing of the maternal H19 gene along with a larger network of imprinted genes. We propose that ATRX, cohesin, and MeCP2 cooperate to silence a subset of imprinted genes in the postnatal mouse brain.
Collapse
Affiliation(s)
- Kristin D Kernohan
- Department of Paediatrics, 800 Commissioners Road East, London, ON N6C 2V5, Canada
| | | | | | | | | | | | | |
Collapse
|
65
|
Vanderwall DK, Baumann C, Viveiros M, Sertich PL, Kelleman AA, Maenhoudt C, Jacobson CC, De La Fuente R. Characterizing the meiotic spindle configuration and chromosome complement of in vivo matured equine oocytes. Anim Reprod Sci 2010; 121:234-236. [PMID: 33437111 DOI: 10.1016/j.anireprosci.2010.04.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- D K Vanderwall
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, 382 West Street Road, Kennett Square, PA 19348, USA
| | - C Baumann
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, 382 West Street Road, Kennett Square, PA 19348, USA
| | - M Viveiros
- Department of Animal Biology, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania,382 West Street Road, Kennett Square, PA 19348, USA
| | - P L Sertich
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, 382 West Street Road, Kennett Square, PA 19348, USA
| | - A A Kelleman
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, 382 West Street Road, Kennett Square, PA 19348, USA
| | - C Maenhoudt
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, 382 West Street Road, Kennett Square, PA 19348, USA
| | - C C Jacobson
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, 382 West Street Road, Kennett Square, PA 19348, USA
| | - R De La Fuente
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, 382 West Street Road, Kennett Square, PA 19348, USA
| |
Collapse
|
66
|
Urdinguio RG, Sanchez-Mut JV, Esteller M. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol 2009; 8:1056-72. [PMID: 19833297 DOI: 10.1016/s1474-4422(09)70262-5] [Citation(s) in RCA: 409] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epigenetic mechanisms such as DNA methylation and modifications to histone proteins regulate high-order DNA structure and gene expression. Aberrant epigenetic mechanisms are involved in the development of many diseases, including cancer. The neurological disorder most intensely studied with regard to epigenetic changes is Rett syndrome; patients with Rett syndrome have neurodevelopmental defects associated with mutations in MeCP2, which encodes the methyl CpG binding protein 2, that binds to methylated DNA. Other mental retardation disorders are also linked to the disruption of genes involved in epigenetic mechanisms; such disorders include alpha thalassaemia/mental retardation X-linked syndrome, Rubinstein-Taybi syndrome, and Coffin-Lowry syndrome. Moreover, aberrant DNA methylation and histone modification profiles of discrete DNA sequences, and those at a genome-wide level, have just begun to be described for neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, and in other neurological disorders such as multiple sclerosis, epilepsy, and amyotrophic lateral sclerosis. In this Review, we describe epigenetic changes present in neurological diseases and discuss the therapeutic potential of epigenetic drugs, such as histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Rocio G Urdinguio
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Catalonia, Spain
| | | | | |
Collapse
|
67
|
Abstract
The packaging of chromosomal DNA by nucleosomes condenses and organizes the genome, but occludes many regulatory DNA elements. However, this constraint also allows nucleosomes and other chromatin components to actively participate in the regulation of transcription, chromosome segregation, DNA replication, and DNA repair. To enable dynamic access to packaged DNA and to tailor nucleosome composition in chromosomal regions, cells have evolved a set of specialized chromatin remodeling complexes (remodelers). Remodelers use the energy of ATP hydrolysis to move, destabilize, eject, or restructure nucleosomes. Here, we address many aspects of remodeler biology: their targeting, mechanism, regulation, shared and unique properties, and specialization for particular biological processes. We also address roles for remodelers in development, cancer, and human syndromes.
Collapse
Affiliation(s)
- Cedric R Clapier
- Howard Hughes Medical Institute, Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
68
|
Heterozygosity for a Bub1 mutation causes female-specific germ cell aneuploidy in mice. Proc Natl Acad Sci U S A 2009; 106:12776-81. [PMID: 19617567 DOI: 10.1073/pnas.0903075106] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aneuploidy, the most common chromosomal abnormality at birth and the main ascertained cause of pregnancy loss in humans, originates primarily from chromosome segregation errors during oogenesis. Here, we report that heterozygosity for a mutation in the mitotic checkpoint kinase gene, Bub1, induces aneuploidy in female germ cells of mice and that the effect increases with advancing maternal age. Analysis of Bub1 heterozygous oocytes showed that aneuploidy occurred primarily during the first meiotic division and involved premature sister chromatid separation. Furthermore, aneuploidy was inherited in zygotes and resulted in the loss of embryos after implantation. The incidence of aneuploidy in zygotes was sufficient to explain the reduced litter size in matings with Bub1 heterozygous females. No effects were seen in germ cells from heterozygous males. These findings show that Bub1 dysfunction is linked to inherited aneuploidy in female germ cells and may contribute to the maternal age-related increase in aneuploidy and pregnancy loss.
Collapse
|
69
|
Steensma DP, Porcher JC, Litzow MR, Hogan WJ, Arora S, Van Laar E. Assessment of ATRX expression in patients with myelodysplastic syndromes treated with decitabine. Leuk Res 2009; 33:e81-2. [PMID: 19157545 PMCID: PMC2730658 DOI: 10.1016/j.leukres.2008.11.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 11/30/2008] [Accepted: 11/30/2008] [Indexed: 11/23/2022]
|
70
|
Tang P, Argentaro A, Pask AJ, O'Donnell L, Marshall-Graves J, Familari M, Harley VR. Localization of the chromatin remodelling protein, ATRX in the adult testis. J Reprod Dev 2009; 57:317-21. [PMID: 19444003 DOI: 10.1262/jrd.20221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in ATRX (alpha-thalassaemia and mental retardation on the X-chromosome) can give rise to ambiguous or female genitalia in XY males, implying a role for ATRX in testicular development. Studies on ATRX have mainly focused on its crucial role in brain development and α-globin regulation; however, little is known about its function in sexual differentiation and its expression in the adult testis. Here we show that the ATRX protein is present in adult human and rat testis and is expressed in the somatic cells; Sertoli, Leydig, and peritubular myoid cells, and also in germ cells; spermatogonia and early meiotic spermatocytes. The granular pattern of ATRX staining is consistent with that observed in other cell-types and suggests a role in chromatin regulation. The findings suggest that ATRX in humans may play a role in adult spermatogenesis as well as in testicular development.
Collapse
Affiliation(s)
- Paisu Tang
- Prince Henry's Institute of Medical Research, Victoria 3168, Australia
| | | | | | | | | | | | | |
Collapse
|
71
|
Baumann C, De La Fuente R. ATRX marks the inactive X chromosome (Xi) in somatic cells and during imprinted X chromosome inactivation in trophoblast stem cells. Chromosoma 2009; 118:209-22. [PMID: 19005673 PMCID: PMC2877807 DOI: 10.1007/s00412-008-0189-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 10/06/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
Abstract
Mammalian X chromosome inactivation (XCI) is an essential mechanism to compensate for dosage imbalances between male and female embryos. Although the molecular pathways are not fully understood, heterochromatinization of the Xi requires the coordinate recruitment of multiple epigenetic marks. Using fluorescence in situ hybridization analysis combined with immunocytochemistry, we demonstrate that the chromatin remodeling protein ATRX decorates the chromatids of a single, late replicating X chromosome in female somatic cells and co-localizes with the bona fide marker of the Xi, macroH2A1.2. Chromatin immunoprecipitation using somatic, embryonic stem (ES) cells and trophoblast stem (TS) cells as model for random and imprinted XCI, respectively, revealed that, in somatic and TS cells, ATRX exhibits a specific association with sequences located within the previously described H3K9me2-hotspot, a region 5' to the X inactive-specific transcript (Xist) locus. While no ATRX-Xi interaction was detectable in undifferentiated ES cells, an enrichment of ATRX was observed after 8 days of differentiation, indicating that ATRX associates with the Xi following the onset of random XCI, consistent with a potential role in maintenance of XCI. These results have important implications regarding a previously described escape from imprinted XCI in ATRX-deficient mice as well as cases of skewed XCI in patients with ATRX syndrome.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cells, Cultured
- Chromatin Immunoprecipitation
- Chromosomes, Human, X/genetics
- Chromosomes, Human, X/metabolism
- DNA Helicases/deficiency
- DNA Helicases/genetics
- DNA Helicases/metabolism
- Embryonic Stem Cells/cytology
- Embryonic Stem Cells/metabolism
- Female
- Genomic Imprinting
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Male
- Mice
- Mice, Knockout
- Models, Genetic
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Pregnancy
- RNA, Long Noncoding
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Syndrome
- Trophoblasts/cytology
- Trophoblasts/metabolism
- X Chromosome/genetics
- X Chromosome/metabolism
- X Chromosome Inactivation
- X-linked Nuclear Protein
Collapse
Affiliation(s)
- Claudia Baumann
- Department of Clinical Studies, Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania, New Bolton Center, Kennett Square, PA, 19348, USA
| | | |
Collapse
|
72
|
Wang S, Hu J, Guo X, Liu JX, Gao S. ADP-Ribosylation Factor 1 Regulates Asymmetric Cell Division in Female Meiosis in the Mouse1. Biol Reprod 2009; 80:555-62. [DOI: 10.1095/biolreprod.108.073197] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
73
|
Douet J, Blanchard B, Cuvillier C, Tourmente S. Interplay of RNA Pol IV and ROS1 during post-embryonic 5S rDNA chromatin remodeling. PLANT & CELL PHYSIOLOGY 2008; 49:1783-91. [PMID: 18845569 DOI: 10.1093/pcp/pcn152] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have investigated the chromatin structure of 5S rDNA, a heterochromatic pericentromeric tandemly repeated family, at 2, 3, 4 and 5 days post-germination. Our results revealed a large-scale reorganization of 5S rDNA chromatin that occurs during the first days of development. Unexpectedly, there is a decondensation followed by a 're'condensation of 5S rDNA chromatin, to obtain almost mature nuclei 5 d post-germination. The reorganization of 5S rDNA chromatin is accompanied by a rapid and active demethylation of 5S rDNA mediated by the ROS1 (repressor of silencing 1) demethylase, whereas the plant-specific RNA polymerase IV (Pol IV) is essential to the 5S chromatin 're'condensation. In conclusion, Pol IV and ROS1 collaborate to unlock the 5S rDNA chromatin inherited from the seed, and establish adult features.
Collapse
Affiliation(s)
- Julien Douet
- CNRS, UMR 6247 GReD, Clermont Université, INSERM, 24 Avenue des Landais, 63177 Aubière Cedex, France
| | | | | | | |
Collapse
|
74
|
Noel S, Sharma S, Rath SK. Simultaneous application of t-test and fold change criteria to identify acetaminophen and carbon tetrachloride affected genes in mice liver. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2008; 26:150-161. [PMID: 21783904 DOI: 10.1016/j.etap.2008.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 03/05/2008] [Accepted: 03/05/2008] [Indexed: 05/31/2023]
Abstract
t-Test and fold change criteria were employed simultaneously following acute exposure to acetaminophen and carbon tetrachloride to provide high statistical confidence in the identification of affected genes in mice livers. Furthermore, gene expression data was also investigated with either t-test or fold change criteria alone. Gene expression studies were also accompanied by liver histological and serum biochemical studies for toxicity evaluation. We identified a large number of affected genes using both filtering criteria (p<0.01 and twofold) simultaneously following both the hepatotoxicants. In some cases gene expression studies provided the earliest evidence of tissue response in the absence of traditional markers at histological and biochemical level. We conclude that simultaneous application of t-test and fold change criteria helps to identify important genes with greater statistical confidence than the use of either of them alone, however, this approach results in the reduction of identified probes. Thus, data analysis at different statistical stringencies is needed to know exact outcome of any toxicological event.
Collapse
Affiliation(s)
- Sanjeev Noel
- Division of Toxicology, Central Drug Research Institute, M.G. Marg, Lucknow, India
| | | | | |
Collapse
|
75
|
Pan H, Ma P, Zhu W, Schultz RM. Age-associated increase in aneuploidy and changes in gene expression in mouse eggs. Dev Biol 2008; 316:397-407. [PMID: 18342300 PMCID: PMC2374949 DOI: 10.1016/j.ydbio.2008.01.048] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 01/31/2008] [Accepted: 01/31/2008] [Indexed: 11/21/2022]
Abstract
An increase in the incidence of aneuploidy is well documented with increasing maternal age, in particular in human females. Remarkably, little is known regarding the underlying molecular basis for the age-associated increase in aneuploidy, which is a major source of decreased fertility in humans. Using mouse as a model system we find that eggs obtained from old mice (60-70 weeks of age) display a 6-fold increase in the incidence of hyperploidy as assessed by chromosome spreads. Expression profiling of transcripts in oocytes and eggs obtained from young and old mice reveals that approximately 5% of the transcripts are differentially expressed in oocytes obtained from old females when compared to oocytes obtained from young females (6-12 weeks of age) and that this fraction increases to approximately 33% in eggs. The latter finding indicates that the normal pattern of degradation of maternal mRNAs that occurs during oocyte maturation is dramatically altered in eggs obtained from old mice and could therefore be a contributing source to the decline in fertility. Analysis of the differentially expressed transcripts also indicated that the strength of the spindle assembly checkpoint is weakened and that higher errors of microtubule-kinetochore interactions constitute part of molecular basis for the age-associated increase in aneuploidy in females. Last, BRCA1 expression is reduced in oocytes obtained from old females and RNAi-mediated reduction of BRCA1 in oocytes obtained from young females results in perturbing spindle formation and chromosome congression following maturation.
Collapse
Affiliation(s)
- Hua Pan
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104-6018, USA
| | | | | | | |
Collapse
|
76
|
Baumann C, Schmidtmann A, Muegge K, De La Fuente R. Association of ATRX with pericentric heterochromatin and the Y chromosome of neonatal mouse spermatogonia. BMC Mol Biol 2008; 9:29. [PMID: 18366812 PMCID: PMC2275742 DOI: 10.1186/1471-2199-9-29] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 03/13/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Establishment of chromosomal cytosine methylation and histone methylation patterns are critical epigenetic modifications required for heterochromatin formation in the mammalian genome. However, the nature of the primary signal(s) targeting DNA methylation at specific genomic regions is not clear. Notably, whether histone methylation and/or chromatin remodeling proteins play a role in the establishment of DNA methylation during gametogenesis is not known. The chromosomes of mouse neonatal spermatogonia display a unique pattern of 5-methyl cytosine staining whereby centromeric heterochromatin is hypo-methylated whereas chromatids are strongly methylated. Thus, in order to gain some insight into the relationship between global DNA and histone methylation in the germ line we have used neonatal spermatogonia as a model to determine whether these unique chromosomal DNA methylation patterns are also reflected by concomitant changes in histone methylation. RESULTS Our results demonstrate that histone H3 tri-methylated at lysine 9 (H3K9me3), a hallmark of constitutive heterochromatin, as well as the chromatin remodeling protein ATRX remained associated with pericentric heterochromatin regions in spite of their extensive hypo-methylation. This suggests that in neonatal spermatogonia, chromosomal 5-methyl cytosine patterns are regulated independently of changes in histone methylation, potentially reflecting a crucial mechanism to maintain pericentric heterochromatin silencing. Furthermore, chromatin immunoprecipitation and fluorescence in situ hybridization, revealed that ATRX as well as H3K9me3 associate with Y chromosome-specific DNA sequences and decorate both arms of the Y chromosome, suggesting a possible role in heterochromatinization and the predominant transcriptional quiescence of this chromosome during spermatogenesis. CONCLUSION These results are consistent with a role for histone modifications and chromatin remodeling proteins such as ATRX in maintaining transcriptional repression at constitutive heterochromatin domains in the absence of 5-methyl cytosine and provide evidence suggesting that the establishment and/or maintenance of repressive histone and chromatin modifications at pericentric heterochromatin following genome-wide epigenetic reprogramming in the germ line may precede the establishment of chromosomal 5-methyl cytosine patterns as a genomic silencing strategy in neonatal spermatogonia.
Collapse
Affiliation(s)
- Claudia Baumann
- Female Germ Cell Biology Group, Department of Clinical Studies, Center for Animal Transgenesis and Germ Cell Research, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, 382 West Street Road, Kennett Square, PA 19348, USA
| | - Anja Schmidtmann
- Laboratory of Cancer Prevention, SAIC-Basic Research Program, National Cancer Institute, Frederick, MD 21701, USA
| | - Kathrin Muegge
- Laboratory of Cancer Prevention, SAIC-Basic Research Program, National Cancer Institute, Frederick, MD 21701, USA
| | - Rabindranath De La Fuente
- Female Germ Cell Biology Group, Department of Clinical Studies, Center for Animal Transgenesis and Germ Cell Research, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, 382 West Street Road, Kennett Square, PA 19348, USA
| |
Collapse
|
77
|
Enhanced polarizing microscopy as a new tool in aneuploidy research in oocytes. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 651:131-40. [DOI: 10.1016/j.mrgentox.2007.10.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 10/28/2007] [Indexed: 12/11/2022]
|
78
|
Ritchie K, Seah C, Moulin J, Isaac C, Dick F, Bérubé NG. Loss of ATRX leads to chromosome cohesion and congression defects. ACTA ACUST UNITED AC 2008; 180:315-24. [PMID: 18227278 PMCID: PMC2213576 DOI: 10.1083/jcb.200706083] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alpha thalassemia/mental retardation X linked (ATRX) is a switch/sucrose nonfermenting-type ATPase localized at pericentromeric heterochromatin in mouse and human cells. Human ATRX mutations give rise to mental retardation syndromes characterized by developmental delay, facial dysmorphisms, cognitive deficits, and microcephaly and the loss of ATRX in the mouse brain leads to reduced cortical size. We find that ATRX is required for normal mitotic progression in human cultured cells and in neuroprogenitors. Using live cell imaging, we show that the transition from prometaphase to metaphase is prolonged in ATRX-depleted cells and is accompanied by defective sister chromatid cohesion and congression at the metaphase plate. We also demonstrate that loss of ATRX in the embryonic mouse brain induces mitotic defects in neuroprogenitors in vivo with evidence of abnormal chromosome congression and segregation. These findings reveal that ATRX contributes to chromosome dynamics during mitosis and provide a possible cellular explanation for reduced cortical size and abnormal brain development associated with ATRX deficiency.
Collapse
Affiliation(s)
- Kieran Ritchie
- Department of Paediatrics, University of Western Ontario, London, Canada
| | | | | | | | | | | |
Collapse
|
79
|
Abstract
Post-translational modifications of histones are the subject of intensive investigations with the aim of decoding how they regulate, alone or in combination, chromatin structure, genomic stability, and gene expression. Major epigenetic programming events take place during gametogenesis and fetal development and are thought to have long-lasting consequences on adult health. Epidemiological and experimental studies have pointed toward maternal nutrition as a major player during prenatal development in influencing disease susceptibility later in life. Although the mechanisms underlying such observations are not well elucidated, epigenetic alterations of histones by particular maternal diets might be of central importance. Moreover, as much as dietary sources can influence epigenetic programming during pregnancy, they have started to be implicated in cancer chemoprevention, via the targeting of reversible epigenetic deregulations at the level of the histones.
Collapse
Affiliation(s)
- Barbara Delage
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331-6512
| | | |
Collapse
|
80
|
Abstract
RNA silencing is a common term for homology-dependent silencing phenomena found in the majority of eukaryotic species. RNA silencing pathways share several conserved components. The common denominator of these pathways is the presence of specific, short (21-25 nt) RNA molecules generated from different double-stranded RNA substrates by a specific RNase III activity. Short RNA molecules serve as a template for sequence-specific effects including transcriptional silencing, mRNA degradation, and inhibition of translation. This review will discuss possible roles of RNA silencing pathways in mouse oocytes and early embryos as well as the use of RNA silencing for experimental inhibition of gene expression in this model system.
Collapse
|
81
|
Lodde V, Modina S, Maddox-Hyttel P, Franciosi F, Lauria A, Luciano AM. Oocyte morphology and transcriptional silencing in relation to chromatin remodeling during the final phases of bovine oocyte growth. Mol Reprod Dev 2008; 75:915-24. [DOI: 10.1002/mrd.20824] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
82
|
Ola SI, Wang Q, Ai JS, Yin S, Liang CG, Chen DY, Sun QY. Meiotic competence and acetylation pattern of UV light classified mouse antral oocytes after meiotic arrest with isobutylmethylxanthine. Mol Reprod Dev 2007; 74:591-9. [PMID: 17034048 DOI: 10.1002/mrd.20625] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chromatin transformation from a diffused or NSN configuration to a compacted or SN shape that forms a ring around the nucleolus is regarded as one of the modifications necessary for successful embryonic development. But the process of the transformation is poorly understood. In this study we cultured mouse antral oocytes under meiotic arrest with IBMX for periods between 3 and 24 hr. We observed the chromatin status of the oocytes before and after culture under UV illumination. We reported here that the NSN configured oocytes transformed temporally through an intermediate form into the SN configuration while under meiotic arrest in vitro. Meiotic rate was improved in the NSN oocytes after the meiotic arrest but decreased in the SN oocytes. We also reported that chromatin of both the NSN and SN oocytes was acetylated and the two groups underwent the same pattern of H4/K5 deacetylation during meiotic maturation. We hypothesized that the transformation of mouse oocyte from the NSN to SN type may be time rather than oocyte size specific and the abrupt deacetylation of NSN oocyte during spontaneous maturation may explain its poor meiotic and developmental competence.
Collapse
Affiliation(s)
- Safiriyu Idowu Ola
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
83
|
Probst AV, Santos F, Reik W, Almouzni G, Dean W. Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote. Chromosoma 2007; 116:403-15. [PMID: 17447080 DOI: 10.1007/s00412-007-0106-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/07/2007] [Accepted: 03/13/2007] [Indexed: 11/27/2022]
Abstract
In mammals, paternal and maternal pronuclei undergo profound chromatin reorganisation upon fertilisation. How these events are orchestrated within centromeric regions to ensure proper chromosome segregation in the following cellular divisions is unknown. In this study, we followed the dynamic unfolding of the centromeric regions, i.e. the centric and pericentric satellite repeats, by DNA fluorescent in situ hybridization (FISH) during the first cell cycle up to the two-cell stage. The distinct chromatin from female and male gametes both undergo rapid remodelling and reach a zygotic organisation in which the satellites occupy restricted spatial domains surrounding the nucleolar precursor body. A transition from this zygotic to a somatic cell-like organisation takes place during the two-cell stage. Using 3D immuno-FISH, we find that, whereas maternal pericentric regions are marked with H3K9me3, H4K20me3 and HP1beta, paternal ones only showed HP1beta marking. Thus, despite different chromatin features, male and female pronuclei organise their centromeric regions in the same way within the nuclei to align chromosomes on the metaphase plate and segregate them appropriately. Our findings highlight the importance of ensuring a proper centromere function while preserving the distinction of parental genome origin during the return to totipotency in the zygote.
Collapse
Affiliation(s)
- Aline V Probst
- Laboratory of Nuclear Dynamics and Nuclear Plasticity, UMR218 CNRS/Institut Curie, 75248, Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
84
|
Pépin D, Vanderhyden BC, Picketts DJ, Murphy BD. ISWI chromatin remodeling in ovarian somatic and germ cells: revenge of the NURFs. Trends Endocrinol Metab 2007; 18:215-24. [PMID: 17544291 DOI: 10.1016/j.tem.2007.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 04/23/2007] [Accepted: 05/16/2007] [Indexed: 01/20/2023]
Abstract
Chromatin has emerged as an important regulator of gene expression, interposed between cell signaling pathways and transcriptional machinery. It participates in transmitting extra- and intra-cellular signals that coordinate ovarian events: ovarian follicle development, the meiotic maturation of the oocyte that precedes ovulation, and the ovulatory process and consequent luteinization. Recent evidence from model organisms and mammals suggests that chromatin signaling is achieved, in part, by imitation switch (ISWI) ATP-dependent chromatin-remodeling complexes. This review highlights a role for complexes containing the ISWI ATPase sucrose nonfermenting-2h (Snf2h) in proliferation in somatic and germ cells and also in meiosis in germ cells. Moreover, complexes containing the Snf2l ATPase dictate the differentiation of somatic cells and act in the induction of the terminal phases of meiosis in the oocyte.
Collapse
Affiliation(s)
- David Pépin
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | | | | | | |
Collapse
|
85
|
Wood JR, Dumesic DA, Abbott DH, Strauss JF. Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis. J Clin Endocrinol Metab 2007; 92:705-13. [PMID: 17148555 DOI: 10.1210/jc.2006-2123] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS), the most common cause of anovulatory infertility, is characterized by increased ovarian androgen production and arrested follicle development and is frequently associated with insulin resistance. These PCOS phenotypes are associated with exaggerated ovarian responsiveness to FSH and increased pregnancy loss. OBJECTIVE The objective of this study was to examine whether the perturbations in follicle growth and the intrafollicular environment affect gene expression and ultimately development of the PCOS oocyte. DESIGN Oocyte cDNA was subjected to microarray and PCR analysis. SETTING This study was conducted at a university laboratory. PATIENTS The study comprised 10 normal ovulatory women and nine women with PCOS. INTERVENTION The intervention was GnRH analog/recombinant human FSH therapy for in vitro fertilization. MAIN OUTCOME MEASURE The main outcome measure was mRNA abundance of oocyte-expressed genes. RESULTS Cluster analysis revealed differences in global gene expression profiles between normal and PCOS oocytes. Of the 8123 transcripts expressed in the oocytes, 374 genes showed significant differences in mRNA abundance in PCOS oocytes. Annotation of the data demonstrated that a subset of these genes was associated with chromosome alignment and segregation during mitosis and/or meiosis. Furthermore, 68 of the differentially expressed genes contained putative androgen receptor and/or peroxisome proliferating receptor gamma binding sites. CONCLUSIONS These analyses demonstrated that normal and PCOS oocytes that are morphologically indistinguishable and of high quality exhibit different gene expression profiles. Promoter analysis suggests that androgens and other activators of nuclear receptors may play a role in differential gene expression in the PCOS oocyte. Likewise, annotation of the differentially expressed genes suggests that defects in meiosis or early embryonic development may contribute to reduced developmental competency of PCOS oocytes.
Collapse
Affiliation(s)
- Jennifer R Wood
- Department of Animal Science, University of Nebraska-Lincoln, 3800 Fair Street, Lincoln, Nebraska 68583-0908, USA.
| | | | | | | |
Collapse
|
86
|
Frye M, Watt FM. The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. Curr Biol 2006; 16:971-81. [PMID: 16713953 DOI: 10.1016/j.cub.2006.04.027] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Revised: 04/05/2006] [Accepted: 04/05/2006] [Indexed: 12/22/2022]
Abstract
BACKGROUND Myc is a well-known proto-oncogene, but its functions in normal tissue remain enigmatic. In adult epidermis, Myc stimulates exit from the stem cell compartment, decreasing cell adhesion and, by an unknown mechanism, triggering proliferation of transit-amplifying cells. RESULTS We describe a novel direct target gene of Myc, Misu, that is expressed at low levels in normal epidermis but is upregulated on Myc activation. Misu encodes a previously uncharacterized RNA methyltransferase with high sequence homology to NSun2 and defines a new family of mammalian SUN-domain-containing proteins. The nucleolar localization of Misu is dependent on RNA polymerase III transcripts, and knockdown of Misu decreases nucleolar size. In G2 phase of the cell cycle, Misu is found in cytoplasmic vesicles, and it decorates the spindle in mitosis. Misu expression is highest in S phase, and RNAi constructs block Myc-induced keratinocyte proliferation and cell-cycle progression. Misu is expressed at low levels in normal tissues, but is highly induced in a range of tumors. Growth of human squamous-cell-carcinoma xenografts is decreased by Misu RNAi. CONCLUSIONS Misu is a novel downstream Myc target that methylates RNA polymerase III transcripts. Misu mediates Myc-induced cell proliferation and growth and is a potential target for cancer therapies.
Collapse
Affiliation(s)
- Michaela Frye
- Keratinocyte Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom.
| | | |
Collapse
|
87
|
Forsberg EC, Prohaska SS, Katzman S, Heffner GC, Stuart JM, Weissman IL. Differential expression of novel potential regulators in hematopoietic stem cells. PLoS Genet 2006; 1:e28. [PMID: 16151515 PMCID: PMC1200425 DOI: 10.1371/journal.pgen.0010028] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 07/14/2005] [Indexed: 12/12/2022] Open
Abstract
The hematopoietic system is an invaluable model both for understanding basic developmental biology and for developing clinically relevant cell therapies. Using highly purified cells and rigorous microarray analysis we have compared the expression pattern of three of the most primitive hematopoietic subpopulations in adult mouse bone marrow: long-term hematopoietic stem cells (HSC), short-term HSC, and multipotent progenitors. All three populations are capable of differentiating into a spectrum of mature blood cells, but differ in their self-renewal and proliferative capacity. We identified numerous novel potential regulators of HSC self-renewal and proliferation that were differentially expressed between these closely related cell populations. Many of the differentially expressed transcripts fit into pathways and protein complexes not previously identified in HSC, providing evidence for new HSC regulatory units. Extending these observations to the protein level, we demonstrate expression of several of the corresponding proteins, which provide novel surface markers for HSC. We discuss the implications of our findings for HSC biology. In particular, our data suggest that cell–cell and cell–matrix interactions are major regulators of long-term HSC, and that HSC themselves play important roles in regulating their immediate microenvironment. Hematopoietic, or blood-forming, stem cells (HSC) are responsible for the continual replenishment of all blood cells throughout life. This ability to both renew themselves and give rise to expanded populations of differentiating and mature cells is a hallmark of stem cells and is therefore an area of intense research. The rarity of HSC as well as their location in the bone marrow environment has made it difficult to identify the genes that regulate these properties. The earliest stages of blood development begins with the long-term (LT) repopulating HSC that then differentiate into short-term (ST) repopulating HSC and non-self renewing multipotent progenitors (MPP). The authors investigated the gene expression differences in these highly purified populations that differ mainly in their capacity to self renew, and identified a number of genes specific to each of these populations. Intriguingly, many of these genes code for proteins that are involved in cell–cell and cell–matrix interactions that were not previously identified on these populations. These novel discoveries will, together with future experiments, enhance our understanding of the basic biology of stem cells and their clinical uses.
Collapse
Affiliation(s)
- E Camilla Forsberg
- Department of Pathology, Institute of Cancer and Stem Cell Biology and Medicine, Stanford University Medical School, Stanford, California, USA.
| | | | | | | | | | | |
Collapse
|
88
|
De La Fuente R. Chromatin modifications in the germinal vesicle (GV) of mammalian oocytes. Dev Biol 2006; 292:1-12. [PMID: 16466710 DOI: 10.1016/j.ydbio.2006.01.008] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 12/30/2005] [Accepted: 01/06/2006] [Indexed: 11/16/2022]
Abstract
The nucleus of eukaryotic cells is organized into functionally specialized compartments that are essential for the control of gene expression, chromosome architecture and cellular differentiation. The mouse oocyte nucleus or germinal vesicle (GV) exhibits a unique chromatin configuration that is subject to dynamic modifications during oogenesis. This process of 'epigenetic maturation' is critical to confer the female gamete with meiotic as well as developmental competence. In spite of its biological significance, little is known concerning the cellular and molecular mechanisms regulating large-scale chromatin structure in mammalian oocytes. Here, recent findings that provide mechanistic insight into the complex relationship between large-scale chromatin structure and global transcriptional repression in pre-ovulatory oocytes will be discussed. Post-translational modifications of histone proteins such as acetylation and methylation are crucial for heterochromatin formation and thus play a key role in remodeling the oocyte genome. This strategy involves multiple and hierarchical chromatin modifications that regulate nuclear dynamics in response to a developmentally programmed signal(s), presumably of paracrine origin, before the resumption of meiosis. Models for the experimental manipulation of large-scale chromatin structure in vivo and in vitro will be instrumental to determine the key cellular pathways and oocyte-derived factors involved in genome-wide chromatin modifications. Importantly, analysis of the functional differentiation of chromatin structure in the oocyte genome with high resolution and in real time will have wide-ranging implications to understand the role of nuclear organization in meiosis, the events of nuclear reprogramming and the spatio-temporal regulation of gene expression during development and differentiation.
Collapse
Affiliation(s)
- Rabindranath De La Fuente
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, PA 19348, USA.
| |
Collapse
|
89
|
Eberharter A, Ferreira R, Becker P. Dynamic chromatin: concerted nucleosome remodelling and acetylation. Biol Chem 2005; 386:745-51. [PMID: 16201869 DOI: 10.1515/bc.2005.087] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The flexibility of chromatin that enables translation of environmental cues into changes in genome utilisation, relies on a battery of enzymes able to modulate chromatin structure in a highly targeted and regulated manner. The most dynamic structural changes are brought about by two kinds of enzymes with different functional principles. Changes in the acetylation status of histones modulate the folding of the nucleosomal fibre. The histone-DNA interactions that define the nucleosome itself can be disrupted by ATP-dependent remodelling factors. This review focuses on recent developments that illustrate various strategies for integrating these disparate activities into complex regulatory schemes. Synergies may be brought about by consecutive or parallel action during the stepwise process of chromatin opening or closing. Tight co-ordination may be achieved by direct interaction of (de-)acetylation enzymes and remodelling ATPases or even permanent residence within the same multi-enzyme complex. The fact that remodelling ATPases can be acetylated by histone acetyltransferases themselves suggests exciting possibilities for the co-ordinate modulation of chromatin structure and remodelling enzymes.
Collapse
Affiliation(s)
- Anton Eberharter
- Adolf-Butenandt-Institut, Abt. Molekularbiologie, Universität München, Schillerstr. 44, D-80336 München, Germany
| | | | | |
Collapse
|
90
|
Falender AE, Shimada M, Lo YK, Richards JS. TAF4b, a TBP associated factor, is required for oocyte development and function. Dev Biol 2005; 288:405-19. [PMID: 16289522 DOI: 10.1016/j.ydbio.2005.09.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 09/09/2005] [Accepted: 09/21/2005] [Indexed: 11/28/2022]
Abstract
Development of a fertilizable oocyte is a complex process that relies on the precise temporal and spatial expression of specific genes in germ cells and in surrounding somatic cells. Since female mice null for Taf4b, a TBP associated factor, are sterile, we sought to determine when during follicular development this phenotype was first observed. At postnatal day 3, ovaries of Taf4b null females contained fewer (P < 0.01) oocytes than ovaries of wild type and heterozygous Taf4b mice. However, expression of only one somatic cell marker Foxl2 was reduced in ovaries at day 15. Despite the reduced number of follicles, many proceed to the antral stage, multiple genes associated with granulosa cell differentiation and oocyte maturation were expressed in a normal pattern, and immature Taf4b null females could be hormonally primed to ovulate and mate. However, the ovulated cumulus oocyte complexes from the Taf4b null mice had fewer (P < 0.01) cumulus cells, and the oocytes were functionally abnormal. GVBD and polar body extrusion were reduced significantly (P < 0.01). The few oocytes that were fertilized failed to progress beyond the two-cell stage of development. Thus, infertility in Taf4b null female mice is associated with defects in early follicle formation, oocyte maturation, and zygotic cleavage following ovulation and fertilization.
Collapse
Affiliation(s)
- Allison E Falender
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
91
|
Dean W, Lucifero D, Santos F. DNA methylation in mammalian development and disease. ACTA ACUST UNITED AC 2005; 75:98-111. [PMID: 16035040 DOI: 10.1002/bdrc.20037] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetic modification of the cytosine base of DNA by its methylation introduced the possibility that beyond the inherent information contained within the nucleotide sequence there was an additional layer of information added to the underlying genetic code. DNA methylation has been implicated in a wide range of biological functions, including an essential developmental role in the reprogramming of germ cells and early embryos, the repression of endogenous retrotransposons, and a generalized role in gene expression. Special functions of DNA methylation include the marking of one of the parental alleles of many imprinted genes, a group of genes essential for growth and development in mammals with a unique parent-of-origin expression pattern, a role in stabilizing X-chromosome inactivation, and centromere function. In this regard, it is not surprising that errors in establishing or maintaining patterns of methylation are associated with a diverse group of human diseases and syndromes.
Collapse
Affiliation(s)
- Wendy Dean
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Babraham Research Campus, Cambridge CB2 4AT, UK.
| | | | | |
Collapse
|
92
|
Eichenlaub-Ritter U. Mouse genetic models for aneuploidy induction in germ cells. Cytogenet Genome Res 2005; 111:392-400. [PMID: 16192722 DOI: 10.1159/000086917] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 03/04/2005] [Indexed: 12/16/2022] Open
Abstract
Rodents have been successfully used as models to identify risks of chemical exposures or age to aneuploidy induction in germ cells, which may be transmitted to the progeny. For this administration in vivo as well as exposures to in vitro maturing germ cells have been useful. Genetic models involving mice with structural chromosomal rearrangements and transgenic animals have the potential to model conditions predisposing to aneuploidy in one or both sexes, and in this way to identify potential targets for aneugens and gender-effects. The review provides an overview of mouse genetic models for aneuploidy induction in mammalian germ cells and discusses perspectives for combining genetic with experimental approaches in aneuploidy research.
Collapse
Affiliation(s)
- U Eichenlaub-Ritter
- Institute of Gentechnology/Microbiology, Faculty of Biology, University of Bielefeld, Bielefeld, Germany.
| |
Collapse
|
93
|
Kimmins S, Sassone-Corsi P. Chromatin remodelling and epigenetic features of germ cells. Nature 2005; 434:583-9. [PMID: 15800613 DOI: 10.1038/nature03368] [Citation(s) in RCA: 315] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Germ cells have the unique capacity to start a new life upon fertilization. They are generated during a sex-specific differentiation programme called gametogenesis. Maturation of germ cells is characterized by an impressive degree of cellular restructuring and gene regulation that involves remarkable genomic reorganization. These events are finely tuned, but are also susceptible to the introduction of various types of error. Because stable genetic transmission to future generations is essential for life, understanding the control of these processes has far-reaching implications for human health and reproduction.
Collapse
Affiliation(s)
- Sarah Kimmins
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, B.P. 10142, 67404 Illkirch, Strasbourg, France
| | | |
Collapse
|
94
|
De La Fuente R, Viveiros MM, Burns KH, Adashi EY, Matzuk MM, Eppig JJ. Major chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes is dispensable for global transcriptional silencing but required for centromeric heterochromatin function. Dev Biol 2005; 275:447-58. [PMID: 15501230 DOI: 10.1016/j.ydbio.2004.08.028] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 08/02/2004] [Accepted: 08/06/2004] [Indexed: 10/26/2022]
Abstract
Global silencing of transcriptional activity in the oocyte genome occurs just before the resumption of meiosis and is a crucial developmental transition at the culmination of oogenesis. Transcriptionally quiescent oocytes rely on stored maternal transcripts to sustain the completion of meiosis, fertilization, and early embryonic cleavage stages. Thus, the timing of silencing is key for successful embryo development. Yet, the cellular and molecular pathways coordinating dynamic changes in large-scale chromatin structure with the onset of transcriptional repression are poorly understood. Here, oocytes obtained from nucleoplasmin 2 knockout (Npm2-/-) mice were used to investigate the relationship between transcriptional repression and chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes. Although temporally linked, global silencing of transcription and chromatin remodeling in the oocyte genome can be experimentally dissociated and therefore must be regulated through distinct pathways. Detection of centromeric heterochromatin DNA sequences with a mouse pan-centromeric chromosome paint revealed that most centromeres are found in close apposition with the nucleolus in transcriptionally quiescent oocytes and therefore constitute an important component of the perinucleolar heterochromatin rim or karyosphere. Pharmacological inhibition of histone deacetylases (HDACs) with trichostatin A (TSA) revealed that HDACs are essential for large-scale chromatin remodeling in the GV. Importantly, the specialized nuclear architecture acquired upon transcriptional repression is essential for meiotic progression as interference with global deacetylation and partial disruption of the karyosphere resulted in a dramatic increase in the proportion of oocytes exhibiting abnormal meiotic chromosome and spindle configuration. These results indicate that the unique chromatin remodeling mechanism in oocytes may be specifically related to meiotic cell division in female mammals.
Collapse
|