51
|
Sox12 deletion in the mouse reveals nonreciprocal redundancy with the related Sox4 and Sox11 transcription factors. Mol Cell Biol 2008; 28:4675-87. [PMID: 18505825 DOI: 10.1128/mcb.00338-08] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factors Sox4 and Sox11 are important regulators of diverse developmental processes including heart, lung, pancreas, spleen, and B-cell development. Here we have studied the role of the related Sox12 as the third protein of the SoxC group both in vivo and in vitro. Despite widespread Sox12 expression during embryonic development, Sox12-deficient mice developed surprisingly normally, so that they were born alive, showed no gross phenotypic abnormalities, and were fertile in both sexes. Comparison with the related Sox4 and Sox11 revealed extensive overlap in the embryonic expression pattern but more uniform expression levels for Sox12, without sites of particularly high expression. All three Sox proteins furthermore exhibited comparable DNA-binding characteristics and functioned as transcriptional activators. Sox12 was, however, a relatively weak transactivator in comparison to Sox11. We conclude that Sox4 and Sox11 function redundantly with Sox12 and can compensate its loss during mouse development. Because of differences in expression levels and transactivation rates, however, functional compensation is not reciprocal.
Collapse
|
52
|
Delporte FM, Pasque V, Devos N, Manfroid I, Voz ML, Motte P, Biemar F, Martial JA, Peers B. Expression of zebrafish pax6b in pancreas is regulated by two enhancers containing highly conserved cis-elements bound by PDX1, PBX and PREP factors. BMC DEVELOPMENTAL BIOLOGY 2008; 8:53. [PMID: 18485195 PMCID: PMC2409314 DOI: 10.1186/1471-213x-8-53] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 05/16/2008] [Indexed: 02/04/2023]
Abstract
Background PAX6 is a transcription factor playing a crucial role in the development of the eye and in the differentiation of the pancreatic endocrine cells as well as of enteroendocrine cells. Studies on the mouse Pax6 gene have shown that sequences upstream from the P0 promoter are required for expression in the lens and the pancreas; but there remain discrepancies regarding the precise location of the pancreatic regulatory elements. Results Due to genome duplication in the evolution of ray-finned fishes, zebrafish has two pax6 genes, pax6a and pax6b. While both zebrafish pax6 genes are expressed in the developing eye and nervous system, only pax6b is expressed in the endocrine cells of the pancreas. To investigate the cause of this differential expression, we used a combination of in silico, in vivo and in vitro approaches. We show that the pax6b P0 promoter targets expression to endocrine pancreatic cells and also to enteroendocrine cells, retinal neurons and the telencephalon of transgenic zebrafish. Deletion analyses indicate that strong pancreatic expression of the pax6b gene relies on the combined action of two conserved regulatory enhancers, called regions A and C. By means of gel shift assays, we detected binding of the homeoproteins PDX1, PBX and PREP to several cis-elements of these regions. In constrast, regions A and C of the zebrafish pax6a gene are not active in the pancreas, this difference being attributable to sequence divergences within two cis-elements binding the pancreatic homeoprotein PDX1. Conclusion Our data indicate a conserved role of enhancers A and C in the pancreatic expression of pax6b and emphasize the importance of the homeoproteins PBX and PREP cooperating with PDX1, in activating pax6b expression in endocrine pancreatic cells. This study also provides a striking example of how adaptative evolution of gene regulatory sequences upon gene duplication progressively leads to subfunctionalization of the paralogous gene pair.
Collapse
Affiliation(s)
- François M Delporte
- Unit of Molecular Biology and Genetic Engineering, University of Liège, Giga-R, B34, Avenue de l'hôpital, 1, B-4000 Liège, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Shin CH, Chung WS, Hong SK, Ober EA, Verkade H, Field HA, Huisken J, Stainier DYR. Multiple roles for Med12 in vertebrate endoderm development. Dev Biol 2008; 317:467-79. [PMID: 18394596 PMCID: PMC2435012 DOI: 10.1016/j.ydbio.2008.02.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 02/02/2023]
Abstract
In zebrafish, the endoderm originates at the blastula stage from the most marginal blastomeres. Through a series of complex morphogenetic movements and differentiation events, the endodermal germ layer gives rise to the epithelial lining of the digestive tract as well as its associated organs such as the liver, pancreas, and swim bladder. How endodermal cells differentiate into distinct cell types such as hepatocytes or endocrine and exocrine pancreatic cells remains a major question. In a forward genetic screen for genes regulating endodermal organ development, we identified mutations at the shiri locus that cause defects in the development of a number of endodermal organs including the liver and pancreas. Detailed phenotypic analyses indicate that these defects are partially due to a reduction in endodermal expression of the hairy/enhancer of split-related gene, her5, at mid to late gastrulation stages. Using the Tg(0.7her5:EGFP)(ne2067) line, we show that her5 is expressed in the endodermal precursors that populate the pharyngeal region as well as the organ-forming region. We also find that knocking down her5 recapitulates some of the endodermal phenotypes of shiri mutants, further revealing the role of her5 in endoderm development. Positional cloning reveals that shiri encodes Med12, a regulatory subunit of the transcriptional Mediator complex recently associated with two human syndromes. Additional studies indicate that Med12 modulates the ability of Casanova/Sox32 to induce sox17 expression. Thus, detailed phenotypic analyses of embryos defective in a component of the Mediator complex have revealed new insights into discrete aspects of vertebrate endoderm development, and provide possible explanations for the craniofacial and digestive system defects observed in humans with mutations in MED12.
Collapse
Affiliation(s)
- Chong Hyun Shin
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and Liver Center, University of California, San Francisco, San Francisco, CA94158, USA
| | - Won-Suk Chung
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and Liver Center, University of California, San Francisco, San Francisco, CA94158, USA
| | - Sung-Kook Hong
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD20892, USA
| | - Elke A. Ober
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and Liver Center, University of California, San Francisco, San Francisco, CA94158, USA
| | - Heather Verkade
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and Liver Center, University of California, San Francisco, San Francisco, CA94158, USA
| | - Holly A. Field
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and Liver Center, University of California, San Francisco, San Francisco, CA94158, USA
| | - Jan Huisken
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and Liver Center, University of California, San Francisco, San Francisco, CA94158, USA
| | - Didier Y. R. Stainier
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and Liver Center, University of California, San Francisco, San Francisco, CA94158, USA
| |
Collapse
|
54
|
Recent papers on zebrafish and other aquarium fish models. Zebrafish 2008; 2:215-24. [PMID: 18248196 DOI: 10.1089/zeb.2005.2.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
55
|
Serafimidis I, Rakatzi I, Episkopou V, Gouti M, Gavalas A. Novel effectors of directed and Ngn3-mediated differentiation of mouse embryonic stem cells into endocrine pancreas progenitors. Stem Cells 2008; 26:3-16. [PMID: 17932425 DOI: 10.1634/stemcells.2007-0194] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The delineation of regulatory networks involved in early endocrine pancreas specification will play a crucial role in directing the differentiation of embryonic stem cells toward the mature phenotype of beta cells for cell therapy of type 1 diabetes. The transcription factor Ngn3 is required for the specification of the endocrine lineage, but its direct targets and the scope of biological processes it regulates remain elusive. We show that stepwise differentiation of embryonic stem cells using successive in vivo patterning signals can lead to simultaneous induction of Ptf1a and Pdx1 expression. In this cellular context, Ngn3 induction results in upregulation of its known direct target genes within 12 hours. Microarray gene expression profiling at distinct time points following Ngn3 induction suggested novel and diverse roles of Ngn3 in pancreas endocrine cell specification. Induction of Ngn3 expression results in regulation of the Wnt, integrin, Notch, and transforming growth factor beta signaling pathways and changes in biological processes affecting cell motility, adhesion, the cytoskeleton, the extracellular matrix, and gene expression. Furthermore, the combination of in vivo patterning signals and inducible Ngn3 expression enhances ESC differentiation toward the pancreas endocrine lineage. This is shown by strong upregulation of endocrine lineage terminal differentiation markers and strong expression of the hormones glucagon, somatostatin, and insulin. Importantly, all insulin(+) cells are also C-peptide(+), and glucose-dependent insulin release was 10-fold higher than basal levels. These data suggest that bona fide pancreas endocrine cells have been generated and that timely induction of Ngn3 expression can play a decisive role in directing ESC differentiation toward the endocrine lineage.
Collapse
Affiliation(s)
- Ioannis Serafimidis
- Developmental Biology Laboratory, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | | | | | | |
Collapse
|
56
|
Filippi A, Dürr K, Ryu S, Willaredt M, Holzschuh J, Driever W. Expression and function of nr4a2, lmx1b, and pitx3 in zebrafish dopaminergic and noradrenergic neuronal development. BMC DEVELOPMENTAL BIOLOGY 2007; 7:135. [PMID: 18053265 PMCID: PMC2217549 DOI: 10.1186/1471-213x-7-135] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 12/05/2007] [Indexed: 11/10/2022]
Abstract
Background: Dopaminergic neurons form in diverse areas of the vertebrate di- and mesencephalon to constitute several major neuromodulatory systems. While much is known about mammalian mesencephalic dopaminergic neuron development, little is known about the specification of the diencephalic dopaminergic groups. The transcription factors Pitx3 and Lmx1b play an important role in mammalian mesencephalic dopaminergic specification, and Nurr1/Nr4a2 has been shown to contribute to specification of the dopaminergic neurotransmitter phenotype. We use zebrafish to analyze potentially evolutionarily conserved roles of these transcription factors in a vertebrate brain that lacks a mesencephalic dopaminergic system, but has an ascending dopaminergic system in the ventral diencephalon. Results: We use a combination of fluorescent in situ hybridization and immunohistochemistry to determine whether nr4a2, lmx1b, and pitx3 genes are expressed in mature dopaminergic neurons or in potential precursor populations. We identify a second nr4a2 paralogue, nr4a2a, and find it co-expressed with Tyrosine hydroxylase in preoptic, pretectal and retinal amacrine dopaminergic neurons, while nr4a2b is only expressed in preoptic and retinal dopaminergic neurons. Both zebrafish nr4a2 paralogues are not expressed in ventral diencephalic dopaminergic neurons with ascending projections. Combined morpholino antisense oligo mediated knock-down of both nr4a2a and nr4a2b transcripts reveals that all zebrafish dopaminergic neurons expressing nr4a2a depend on Nr4a2 activity for tyrosine hydroxylase and dopamine transporter expression. Zebrafish lmx1b.1 is expressed in noradrenergic neurons of the locus coeruleus and medulla oblongata, but knock-down reveals that it is specifically required for tyrosine hydroxylase expression only in the medulla oblongata area postrema noradrenergic neurons. Both lmx1b genes and pitx3 are not expressed in dopaminergic neurons, but in a diencephalic territory that might contain precursor cells for ventral diencephalic dopaminergic neurons. Upon morpholino knock-down of both lmx1b paralogues, the number of neurons in diencephalic dopaminergic clusters with ascending projections appears specifically reduced. Thus lmx1b paralogues may contribute to the generation of diencephalic dopaminergic precursors. Conversely, knock-down of pitx3 does not specifically affect any diencephalic DA cluster. Conclusion: Our data indicate a conserved evolutionary role of Nr4a2 proteins in specification of the neurotransmitter phenotype, albeit it appears to be only one of several regulatory modules of dopaminergic differentiation, as most ventral diencephalic dopaminergic neurons do not express nr4a2 genes in zebrafish. For zebrafish lmx1b genes, which are not expressed in mature dopaminergic neurons, our data suggest a role in diencephalic precursor populations contributing to the ascending dopaminergic systems. A di-mesencephalic longitudinal domain of lmx1b expression may be the basis for the expansion and posterior shift of ventral di-/mesencephalic dopaminergic populations with ascending projections during evolution.
Collapse
Affiliation(s)
- Alida Filippi
- Developmental Biology Department, Institute of Biology I, University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
57
|
Manfroid I, Delporte F, Baudhuin A, Motte P, Neumann CJ, Voz ML, Martial JA, Peers B. Reciprocal endoderm-mesoderm interactions mediated by fgf24 and fgf10 govern pancreas development. Development 2007; 134:4011-21. [PMID: 17942484 DOI: 10.1242/dev.007823] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In amniotes, the pancreatic mesenchyme plays a crucial role in pancreatic epithelium growth, notably through the secretion of fibroblast growth factors. However, the factors involved in the formation of the pancreatic mesenchyme are still largely unknown. In this study, we characterize, in zebrafish embryos, the pancreatic lateral plate mesoderm, which is located adjacent to the ventral pancreatic bud and is essential for its specification and growth. We firstly show that the endoderm, by expressing the fgf24 gene at early stages, triggers the patterning of the pancreatic lateral plate mesoderm. Based on the expression of isl1, fgf10 and meis genes, this tissue is analogous to the murine pancreatic mesenchyme. Secondly, Fgf10 acts redundantly with Fgf24 in the pancreatic lateral plate mesoderm and they are both required to specify the ventral pancreas. Our results unveil sequential signaling between the endoderm and mesoderm that is critical for the specification and growth of the ventral pancreas, and explain why the zebrafish ventral pancreatic bud generates the whole exocrine tissue.
Collapse
Affiliation(s)
- Isabelle Manfroid
- GIGA-Research-Unité de Biologie Moléculaire et Génie Génétique, Tour B34, Université de Liège, B-4000 Sart Tilman, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Nissen-Meyer LSH, Jemtland R, Gautvik VT, Pedersen ME, Paro R, Fortunati D, Pierroz DD, Stadelmann VA, Reppe S, Reinholt FP, Del Fattore A, Rucci N, Teti A, Ferrari S, Gautvik KM. Osteopenia, decreased bone formation and impaired osteoblast development in Sox4 heterozygous mice. J Cell Sci 2007; 120:2785-95. [PMID: 17652162 DOI: 10.1242/jcs.003855] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The transcription factor Sox4 is vital for fetal development, as Sox4–/– homozygotes die in utero. Sox4 mRNA is expressed in the early embryonic growth plate and is regulated by parathyroid hormone, but its function in bone modeling/remodeling is unknown. We report that Sox4+/– mice exhibit significantly lower bone mass (by dual-energy X-ray absorptiometry) from an early age, and fail to obtain the peak bone mass of wild-type (WT) animals. Microcomputed tomography (μCT), histomorphometry and biomechanical testing of Sox4+/– bones show reduced trabecular and cortical thickness, growth plate width, ultimate force and stiffness compared with WT. Bone formation rate (BFR) in 3-month-old Sox4+/– mice is 64% lower than in WT. Primary calvarial osteoblasts from Sox4+/– mice demonstrate markedly inhibited proliferation, differentiation and mineralization. In these cultures, osterix (Osx) and osteocalcin (OCN) mRNA expression was reduced, whereas Runx2 mRNA was unaffected. No functional defects were found in osteoclasts. Silencing of Sox4 by siRNA in WT osteoblasts replicated the defects observed in Sox4+/– cells. We demonstrate inhibited formation and altered microarchitecture of bone in Sox4+/– mice versus WT, without apparent defects in bone resorption. Our results implicate the transcription factor Sox4 in regulation of bone formation, by acting upstream of Osx and independent of Runx2.
Collapse
|
59
|
Lynn FC, Smith SB, Wilson ME, Yang KY, Nekrep N, German MS. Sox9 coordinates a transcriptional network in pancreatic progenitor cells. Proc Natl Acad Sci U S A 2007; 104:10500-5. [PMID: 17563382 PMCID: PMC1965542 DOI: 10.1073/pnas.0704054104] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During pancreas development, both the exocrine and endocrine lineages differentiate from a common pool of progenitor cells with similarities to mature pancreatic duct cells. A small set of transcription factors, including Tcf2, Onecut1, and Foxa2, has been identified in these pancreatic progenitor cells. The Sry/HMG box transcription factor Sox9 is also expressed in the early pancreatic epithelium and is required for normal pancreatic exocrine and endocrine development in humans. In this study, we found Sox9 in mice specifically expressed with the other progenitor transcription factors in both pancreatic progenitor cells and duct cells in the adult pancreas. Sox9 directly bound to all three genes in vitro and in intact cells, and regulated their expression. In turn, both Foxa2 and Tcf2 regulated Sox9 expression, demonstrating feedback circuits between these genes. Furthermore, Sox9 activated the expression of the proendocrine factor Neurogenin3, which also depends on the other members of the progenitor transcription network. These studies indicate that Sox9 plays a dual role in pancreatic progenitor cells: both maintaining a stable transcriptional network and supporting the programs by which these cells differentiate into distinct lineages.
Collapse
Affiliation(s)
- F. C. Lynn
- *Diabetes Center, Hormone Research Institute, and
| | - S. B. Smith
- *Diabetes Center, Hormone Research Institute, and
| | - M. E. Wilson
- *Diabetes Center, Hormone Research Institute, and
| | - K. Y. Yang
- *Diabetes Center, Hormone Research Institute, and
| | - N. Nekrep
- *Diabetes Center, Hormone Research Institute, and
| | - M. S. German
- Department of Medicine, University of California, San Francisco, CA 94143
- To whom correspondence should be addressed at:
University of California Diabetes Center, 513 Parnassus Avenue, San Francisco, CA 94143-0534. E-mail:
| |
Collapse
|
60
|
Understanding the extrinsic and intrinsic signals involved in pancreas and β-cell development: from endoderm to β cells. Curr Opin Organ Transplant 2007; 12:40-48. [PMID: 27792088 DOI: 10.1097/mot.0b013e3280129669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW To summarize recent progress in understanding of the extrinsic and intrinsic signals directing pancreas development from early endoderm. RECENT FINDINGS The pancreatic mesoderm was shown not only to play a permissive role in pancreas determination but also to control endocrine commitment and maturation through the interplay between Notch and fibroblast growth factor signaling. The requirement of Wnt (wingless-type)/β-catenin signaling in the expansion of the acinar cell lineage, and the spatial-temporal specificity of PDX1 (pancreatic and duodenal homeobox) activity, which is needed for proper acinar development, were also demonstrated. A novel factor, IA1 (insulinoma-associated 1), was identified as an endocrine marker downstream of Ngn3 (neurogenin); MAFB (musculo-aponeurotic fibrosarcoma) was shown to be a marker of α-cell and β-cell precursors, and ARX (aristaless-related homeobox), a marker of α-cell progenitors, was revealed to directly antagonize PAX4 (paired homeobox) in determining α-cell and β-cell lineages. SUMMARY Cell fate specification results from combined effects of extrinsic and intrinsic regulators and sensitivity of target cells to them, which vary depending on the precise stage of cell commitment or differentiation. Knowledge of the hierarchy of the different factors influencing pancreas development will aid in developing new cell therapies to treat diabetes.
Collapse
|
61
|
Bergsland M, Werme M, Malewicz M, Perlmann T, Muhr J. The establishment of neuronal properties is controlled by Sox4 and Sox11. Genes Dev 2007; 20:3475-86. [PMID: 17182872 PMCID: PMC1698453 DOI: 10.1101/gad.403406] [Citation(s) in RCA: 274] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The progression of neurogenesis relies on proneural basic helix-loop-helix (bHLH) transcription factors. These factors operate in undifferentiated neural stem cells and induce cell cycle exit and the initiation of a neurogenic program. However, the transient expression of proneural bHLH proteins in neural progenitors indicates that expression of neuronal traits must rely on previously unexplored mechanisms operating downstream from proneural bHLH proteins. Here we show that the HMG-box transcription factors Sox4 and Sox11 are of critical importance, downstream from proneural bHLH proteins, for the establishment of pan-neuronal protein expression. Examination of a neuronal gene promoter reveals that Sox4 and Sox11 exert their functions as transcriptional activators. Interestingly, the capacity of Sox4 and Sox11 to induce the expression of neuronal traits is independent of mechanisms regulating the exit of neural progenitors from the cell cycle. The transcriptional repressor protein REST/NRSF has been demonstrated to block neuronal gene expression in undifferentiated neural cells. We now show that REST/NRSF restricts the expression of Sox4 and Sox11, explaining how REST/NRSF can prevent precocious expression of neuronal proteins. Together, these findings demonstrate a central regulatory role of Sox4 and Sox11 during neuronal maturation and mechanistically separate cell cycle withdrawal from the establishment of neuronal properties.
Collapse
Affiliation(s)
- Maria Bergsland
- Ludwig Institute for Cancer Research, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Martin Werme
- Ludwig Institute for Cancer Research, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Michal Malewicz
- Ludwig Institute for Cancer Research, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Thomas Perlmann
- Ludwig Institute for Cancer Research, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Jonas Muhr
- Ludwig Institute for Cancer Research, Karolinska Institute, SE-171 77 Stockholm, Sweden
- Corresponding author.E-MAIL ; FAX 46-8-332812
| |
Collapse
|
62
|
Stetsyuk V, Peers B, Mavropoulos A, Verbruggen V, Thisse B, Thisse C, Motte P, Duvillié B, Scharfmann R. Calsenilin is required for endocrine pancreas development in zebrafish. Dev Dyn 2007; 236:1517-25. [PMID: 17450605 DOI: 10.1002/dvdy.21149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Calsenilin/DREAM/Kchip3 is a neuronal calcium-binding protein. It is a multifunctional protein, mainly expressed in neural tissues and implicated in regulation of presenilin processing, repression of transcription, and modulation of A-type potassium channels. Here, we performed a search for new genes expressed during pancreatic development and have studied the spatiotemporal expression pattern and possible role of calsenilin in pancreatic development in zebrafish. We detected calsenilin transcripts in the pancreas from 21 somites to 39 hours postfertilization stages. Using double in situ hybridization, we found that the calsenilin gene was expressed in pancreatic endocrine cells. Loss-of-function experiments with anti-calsenilin morpholinos demonstrated that injected morphants have a significant decrease in the number of pancreatic endocrine cells. Furthermore, the knockdown of calsenilin leads to perturbation in islet morphogenesis, suggesting that calsenilin is required for early islet cell migration. Taken together, our results show that zebrafish calsenilin is involved in endocrine cell differentiation and morphogenesis within the pancreas.
Collapse
Affiliation(s)
- V Stetsyuk
- University Paris-Descartes, Faculty of Medicine; INSERM, Necker Hospital, U845/EMI 363, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Zhong L, Yu X, Tong J. Soxgenes in grass carp ( Ctenopharyngodon idella) with their implications for genome duplication and evolution. Genet Sel Evol 2006. [DOI: 10.1051/gse:2006028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
64
|
Nichane M, Van Campenhout C, Pendeville H, Voz ML, Bellefroid EJ. The Na+/PO4 cotransporter SLC20A1 gene labels distinct restricted subdomains of the developing pronephros in Xenopus and zebrafish embryos. Gene Expr Patterns 2006; 6:667-72. [PMID: 16531124 DOI: 10.1016/j.modgep.2006.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 12/21/2005] [Accepted: 01/17/2006] [Indexed: 11/25/2022]
Abstract
The embryonic pronephric kidneys of Xenopus and zebrafish serve as models to study vertebrate nephrogenesis. Recently, multiple subdomains within the Xenopus pronephros have been defined based on the expression of several transport proteins. In contrast, very few studies on the expression of renal transporters have been conducted in zebrafish. We have recently shown that the anterior and posterior segments of the zebrafish pronephric duct may correspond to the proximal tubule and distal tubule/duct compartments of the Xenopus and higher vertebrate pronephros, respectively. Here, we report the embryonic expression pattern of the Na(+)/PO(4) cotransporter SLC20A1 (PiT1/Glvr-1) gene encoding a type III sodium-dependent phosphate cotransporter in Xenopus and zebrafish. In Xenopus, SLC20A1 mRNA is expressed in the somitic mesoderm and lower level of expression is detected in the neural tube, eye, and neural crest cells. From stage 25, SLC20A1 is also detectable in the developing pronephros where expression is restricted to the late portion of the distal pronephric tubules. In zebrafish, SLC20A1 is transcribed from mid-somitogenesis in the anterior part of the pronephros where its expression corresponds to the rostral portion of the expression of other proximal tubule-specific markers. Outside the pronephros, lower level of SLC20A1 expression is also observed in the posterior cardinal and caudal veins. Based on the SLC20A1 expression domain and that of other transporters, four segments have been defined within the zebrafish pronephros. Together, our data reveal that the zebrafish and Xenopus pronephros have non-identical proximo-distal organizations.
Collapse
Affiliation(s)
- Massimo Nichane
- Laboratoire d'Embryologie Moléculaire, Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires (IBMM), Gosselies, Belgium
| | | | | | | | | |
Collapse
|
65
|
Van Campenhout C, Nichane M, Antoniou A, Pendeville H, Bronchain OJ, Marine JC, Mazabraud A, Voz ML, Bellefroid EJ. Evi1 is specifically expressed in the distal tubule and duct of the Xenopus pronephros and plays a role in its formation. Dev Biol 2006; 294:203-19. [PMID: 16574097 DOI: 10.1016/j.ydbio.2006.02.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 02/13/2006] [Accepted: 02/23/2006] [Indexed: 01/24/2023]
Abstract
The ecotropic viral integration site 1 (Evi1) and related MEL1 (MDS1/Evi1-like gene 1) genes are zinc finger oncogenic transcription factors involved in myeloid leukaemia. Here, we show that in Xenopus, Evi1 and MEL1 have partially overlapping restricted embryonic expression profiles. Within the pronephros, Evi1 and MEL1 are sequentially expressed within the distal tubule and duct compartments, Evi1 transcription being detected prior to any sign of pronephric morphogenesis. In the pronephros of zebrafish embryos, Evi1 expression is restricted to the posterior portion of the duct, the anterior portion having characteristics of proximal tubules. In the Xenopus pronephros, Evi1 expression is upregulated by retinoid signaling and repressed by overexpression of xWT1 and by Notch signaling. Overexpression of Evi1 from late neurula stage specifically inhibits the expression of proximal tubule and glomus pronephric markers. We show that the first zinc finger and CtBP interaction domains are required for this activity. Overexpression of a hormone-inducible Evi1-VP16 antimorphic fusion with activation at neurula stage disrupts distal tubule and duct formation and expands the expression of glomus markers. Although overexpression of this construct also causes in many embryos a reduction of proximal tubule markers, embryos with expanded and ectopic staining have been also observed. Together, these data indicate that Evi1 plays a role in the proximo-distal patterning of the pronephros and suggest that it may do so by functioning as a CtBP dependent repressor.
Collapse
Affiliation(s)
- Claude Van Campenhout
- Laboratoire d'Embryologie Moléculaire, Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires (IBMM), rue des Profs. Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Lukowski CM, Ritzel RG, Waskiewicz AJ. Expression of two insm1-like genes in the developing zebrafish nervous system. Gene Expr Patterns 2006; 6:711-8. [PMID: 16487754 DOI: 10.1016/j.modgep.2005.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 11/17/2022]
Abstract
Insulinoma associated-1 (INSM1, formerly IA-1) is a Cys(2)-His(2) zinc finger transcription factor sharing conserved regions with Caenorhabditis elegans EGL-46 and Drosophila Nerfin-1. INSM, EGL-46, and Nerfin proteins comprise the EIN family of zinc finger transcription factors. egl-46 and nerfin-1 have been implicated in various aspects of neuronal differentiation including cell fate specification, axon guidance decisions and cell migration. Murine Insm1 has a restricted expression pattern in the developing CNS. We have characterized two zebrafish (Danio rerio) Insm1-like genes, insm1a and insm1b, and analyzed their expression patterns during embryonic development. Zebrafish insm1a and insm1b share an embryonic expression pattern comparable to the proneural deltaA as well as overlapping the neuronal marker elavl3. The expression pattern observed for zebrafish insm1a and insm1b is similar to other EIN homologues. Both zebrafish insm1-like transcripts are also present in a region of the embryo where pancreatic progenitors originate. The expression data along with functional characterization of invertebrate homologues suggest a conserved pathway involving the EIN transcription factors in early neurogenesis.
Collapse
Affiliation(s)
- Chris M Lukowski
- Department of Biological Sciences, University of Alberta, CW405 Biological Sciences Building, Edmonton, Alta., Canada
| | | | | |
Collapse
|