51
|
Lévesque N, Leclerc D, Rozen R. Folate and Epigenetics: Colorectal Cancer Risk and Detection. HANDBOOK OF NUTRITION, DIET, AND EPIGENETICS 2019:61-78. [DOI: 10.1007/978-3-319-55530-0_93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
52
|
Mahmood N, Rabbani SA. Targeting DNA Hypomethylation in Malignancy by Epigenetic Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1164:179-196. [PMID: 31576549 DOI: 10.1007/978-3-030-22254-3_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
DNA methylation is a chemically reversible epigenetic modification that regulates the chromatin structure and gene expression, and thereby takes part in various cellular processes like embryogenesis, genomic imprinting, X-chromosome inactivation, and genome stability. Alterations in the normal methylation levels of DNA may contribute to the development of pathological conditions like cancer. Even though both hypo- and hypermethylation-mediated abnormalities are prevalent in the cancer genome, the field of cancer epigenetics has been more focused on targeting hypermethylation. As a result, DNA hypomethylation-mediated abnormalities remained relatively less explored, and currently, there are no approved drugs that can be clinically used to target hypomethylation. Understanding the precise role of DNA hypomethylation is not only crucial from a mechanistic point of view but also for the development of pharmacological agents that can reverse the hypomethylated state of the DNA. This chapter focuses on the causes and impact of DNA hypomethylation in the development of cancer and describes the possible ways to pharmacologically target it, especially by using a naturally occurring physiologic agent S-adenosylmethionine (SAM).
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada.
| |
Collapse
|
53
|
Sharifzad F, Ghavami S, Verdi J, Mardpour S, Mollapour Sisakht M, Azizi Z, Taghikhani A, Łos MJ, Fakharian E, Ebrahimi M, Hamidieh AA. Glioblastoma cancer stem cell biology: Potential theranostic targets. Drug Resist Updat 2019; 42:35-45. [PMID: 30877905 DOI: 10.1016/j.drup.2018.03.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/28/2018] [Accepted: 03/16/2018] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM) is among the most incurable cancers. GBMs survival rate has not markedly improved, despite new radical surgery protocols, the introduction of new anticancer drugs, new treatment protocols, and advances in radiation techniques. The low efficacy of therapy, and short interval between remission and recurrence, could be attributed to the resistance of a small fraction of tumorigenic cells to treatment. The existence and importance of cancer stem cells (CSCs) is perceived by some as controversial. Experimental evidences suggest that the presence of therapy-resistant glioblastoma stem cells (GSCs) could explain tumor recurrence and metastasis. Some scientists, including most of the authors of this review, believe that GSCs are the driving force behind GBM relapses, whereas others however, question the existence of GSCs. Evidence has accumulated indicating that non-tumorigenic cancer cells with high heterogeneity, could undergo reprogramming and become GSCs. Hence, targeting GSCs as the "root cells" initiating malignancy has been proposed to eradicate this devastating disease. Most standard treatments fail to completely eradicate GSCs, which can then cause the recurrence of the disease. To effectively target GSCs, a comprehensive understanding of the biology of GSCs as well as the mechanisms by which these cells survive during treatment and develop into new tumor, is urgently needed. Herein, we provide an overview of the molecular features of GSCs, and elaborate how to facilitate their detection and efficient targeting for therapeutic interventions. We also discuss GBM classifications based on the molecular stem cell subtypes with a focus on potential therapeutic approaches.
Collapse
Affiliation(s)
- Farzaneh Sharifzad
- Department of Applied Cell Sciences, Kashan University of Medical Sciences, Kashan, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeid Ghavami
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, Canada
| | - Javad Verdi
- Department of Applied Cell Sciences, Kashan University of Medical Sciences, Kashan, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soura Mardpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Azizi
- Heart Rhythm Program, Southlake Regional Health Centre, Toronto ON Canada
| | - Adeleh Taghikhani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Immunology, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology in Gliwice, Poland
| | - Esmail Fakharian
- Department of Neurosurgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Amir Ali Hamidieh
- Pediatric Stem Cell Transplant Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
54
|
Peng H, Wang S, Pang L, Yang L, Chen Y, Cui XB. Comprehensive bioinformation analysis of methylated and differentially expressed genes in esophageal squamous cell carcinoma. Mol Omics 2019; 15:88-100. [DOI: 10.1039/c8mo00218e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Differentially methylated genes (DMGs) play a crucial role in the etiology and pathogenesis of esophageal squamous cell carcinoma (ESCC).
Collapse
Affiliation(s)
- Hao Peng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases
- The First Affiliated Hospital
- Shihezi University School of Medicine
- North 4th Road
- Shihezi 832002
| | - Shasha Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases
- The First Affiliated Hospital
- Shihezi University School of Medicine
- North 4th Road
- Shihezi 832002
| | - Lijuan Pang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases
- The First Affiliated Hospital
- Shihezi University School of Medicine
- North 4th Road
- Shihezi 832002
| | - Lan Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases
- The First Affiliated Hospital
- Shihezi University School of Medicine
- North 4th Road
- Shihezi 832002
| | - Yunzhao Chen
- The People's Hospital of Suzhou National Hi-Tech District
- Department of Pathology
- Suzhou High-tech Zone People's Hospital No. 95
- Huashan Road
- Suzhou High-tech Zone
| | - Xiao-bin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases
- The First Affiliated Hospital
- Shihezi University School of Medicine
- North 4th Road
- Shihezi 832002
| |
Collapse
|
55
|
Epigenetic Targeting of Autophagy via HDAC Inhibition in Tumor Cells: Role of p53. Int J Mol Sci 2018; 19:ijms19123952. [PMID: 30544838 PMCID: PMC6321134 DOI: 10.3390/ijms19123952] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
Tumor development and progression is the consequence of genetic as well as epigenetic alterations of the cell. As part of the epigenetic regulatory system, histone acetyltransferases (HATs) and deacetylases (HDACs) drive the modification of histone as well as non-histone proteins. Derailed acetylation-mediated gene expression in cancer due to a delicate imbalance in HDAC expression can be reversed by histone deacetylase inhibitors (HDACi). Histone deacetylase inhibitors have far-reaching anticancer activities that include the induction of cell cycle arrest, the inhibition of angiogenesis, immunomodulatory responses, the inhibition of stress responses, increased generation of oxidative stress, activation of apoptosis, autophagy eliciting cell death, and even the regulation of non-coding RNA expression in malignant tumor cells. However, it remains an ongoing issue how tumor cells determine to respond to HDACi treatment by preferentially undergoing apoptosis or autophagy. In this review, we summarize HDACi-mediated mechanisms of action, particularly with respect to the induction of cell death. There is a keen interest in assessing suitable molecular factors allowing a prognosis of HDACi-mediated treatment. Addressing the results of our recent study, we highlight the role of p53 as a molecular switch driving HDACi-mediated cellular responses towards one of both types of cell death. These findings underline the importance to determine the mutational status of p53 for an effective outcome in HDACi-mediated tumor therapy.
Collapse
|
56
|
Oltra SS, Peña-Chilet M, Vidal-Tomas V, Flower K, Martinez MT, Alonso E, Burgues O, Lluch A, Flanagan JM, Ribas G. Methylation deregulation of miRNA promoters identifies miR124-2 as a survival biomarker in Breast Cancer in very young women. Sci Rep 2018; 8:14373. [PMID: 30258192 PMCID: PMC6158237 DOI: 10.1038/s41598-018-32393-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/02/2018] [Indexed: 01/02/2023] Open
Abstract
MiRNAs are part of the epigenetic machinery, and are also epigenetically modified by DNA methylation. MiRNAs regulate expression of different genes, so any alteration in their methylation status may affect their expression. We aimed to identify methylation differences in miRNA encoding genes in breast cancer affecting women under 35 years old (BCVY), in order to identify potential biomarkers in these patients. In Illumina Infinium MethylationEPIC BeadChip samples (metEPICVal), we analysed the methylation of 9,961 CpG site regulators of miRNA-encoding genes present in the array. We identified 193 differentially methylated CpG sites in BCVY (p-value < 0.05 and methylation differences ±0.1) that regulated 83 unique miRNA encoding genes. We validated 10 CpG sites using two independent datasets based on Infinium Human Methylation 450k array. We tested gene expression of miRNAs with differential methylation in BCVY in a meta-analysis using The Cancer Genome Atlas (TCGA), Clariom D and Affymetrix datasets. Five miRNAs (miR-9, miR-124-2, miR-184, miR-551b and miR-196a-1) were differently expressed (FDR p-value < 0.01). Finally, only miR-124-2 shows a significantly different gene expression by quantitative real-time PCR. MiR-124-hypomethylation presents significantly better survival rates for older patients as opposed to the worse prognosis observed in BCVY, identifying it as a potential specific survival biomarker in BCVY.
Collapse
Affiliation(s)
- Sara S Oltra
- INCLIVA Biomedical Research Institute, Hospital Clínico Universitario Valencia, University of Valencia, Valencia, Spain
| | - Maria Peña-Chilet
- INCLIVA Biomedical Research Institute, Hospital Clínico Universitario Valencia, University of Valencia, Valencia, Spain
| | - Victoria Vidal-Tomas
- INCLIVA Biomedical Research Institute, Hospital Clínico Universitario Valencia, University of Valencia, Valencia, Spain
| | - Kirsty Flower
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - María Teresa Martinez
- INCLIVA Biomedical Research Institute, Hospital Clínico Universitario Valencia, University of Valencia, Valencia, Spain
| | - Elisa Alonso
- Pathology Department, Hospital Clínico Universitario Valencia, University of Valencia, Valencia, Spain
| | - Octavio Burgues
- Pathology Department, Hospital Clínico Universitario Valencia, University of Valencia, Valencia, Spain
| | - Ana Lluch
- INCLIVA Biomedical Research Institute, Hospital Clínico Universitario Valencia, University of Valencia, Valencia, Spain.,Center for Biomedical Network Research on Cancer, Valencia, Spain
| | - James M Flanagan
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Gloria Ribas
- INCLIVA Biomedical Research Institute, Hospital Clínico Universitario Valencia, University of Valencia, Valencia, Spain. .,Center for Biomedical Network Research on Cancer, Valencia, Spain.
| |
Collapse
|
57
|
Abstract
Purpose of Review Systemic lupus erythematosus is a severe autoimmune/inflammatory condition of unknown pathophysiology. Though genetic predisposition is essential for disease expression, risk alleles in single genes are usually insufficient to confer disease. Epigenetic dysregulation has been suggested as the missing link between genetic risk and the development of clinically evident disease. Recent Findings Over the past decade, epigenetic events moved into the focus of research targeting the molecular pathophysiology of SLE. Epigenetic alteration can be the net result of preceding infections, medication, diet, and/or other environmental influences. While altered DNA methylation and histone modifications had already been established as pathomechanisms, DNA hydroxymethylation was more recently identified as an activating epigenetic mark. Summary Defective epigenetic control contributes to uncontrolled cytokine and co-receptor expression, resulting in immune activation and tissue damage in SLE. Epigenetic alterations promise potential as disease biomarkers and/or future therapeutic targets in SLE and other autoimmune/inflammatory conditions.
Collapse
Affiliation(s)
- Christian Michael Hedrich
- Division of Paediatric Rheumatology and Immunology, Children's Hospital Dresden, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany. .,Department of Women᾿s & Children᾿s Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK. .,Department of Paediatric Rheumatology, Alder Hey Children᾿s NHS Foundation Trust Hospital, East Prescott Road, Liverpool, L14 5AB, UK.
| |
Collapse
|
58
|
Dumbović G, Biayna J, Banús J, Samuelsson J, Roth A, Diederichs S, Alonso S, Buschbeck M, Perucho M, Forcales SV. A novel long non-coding RNA from NBL2 pericentromeric macrosatellite forms a perinucleolar aggregate structure in colon cancer. Nucleic Acids Res 2018; 46:5504-5524. [PMID: 29912433 PMCID: PMC6009586 DOI: 10.1093/nar/gky263] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/19/2018] [Accepted: 04/03/2018] [Indexed: 12/22/2022] Open
Abstract
Primate-specific NBL2 macrosatellite is hypomethylated in several types of tumors, yet the consequences of this DNA hypomethylation remain unknown. We show that NBL2 conserved repeats are close to the centromeres of most acrocentric chromosomes. NBL2 associates with the perinucleolar region and undergoes severe demethylation in a subset of colorectal cancer (CRC). Upon DNA hypomethylation and histone acetylation, NBL2 repeats are transcribed in tumor cell lines and primary CRCs. NBL2 monomers exhibit promoter activity, and are contained within novel, non-polyA antisense lncRNAs, which we designated TNBL (Tumor-associated NBL2 transcript). TNBL is stable throughout the mitotic cycle, and in interphase nuclei preferentially forms a perinucleolar aggregate in the proximity of a subset of NBL2 loci. TNBL aggregates interact with the SAM68 perinucleolar body in a mirror-image cancer specific perinucleolar structure. TNBL binds with high affinity to several proteins involved in nuclear functions and RNA metabolism, such as CELF1 and NPM1. Our data unveil novel DNA and RNA structural features of a non-coding macrosatellite frequently altered in cancer.
Collapse
Affiliation(s)
- Gabrijela Dumbović
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
| | - Josep Biayna
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
- Institute for Research in Biomedicine (IRB Barcelona), Parc Científic de Barcelona, Carrer de Baldiri Reixac, 10–12, Barcelona 08028, Spain
| | - Jordi Banús
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
| | | | - Anna Roth
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Sven Diederichs
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center – University of Freiburg & Faculty of Medicine, University of Freiburg & German Cancer Consortium (DKTK), Freiburg, Germany
| | - Sergio Alonso
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
| | - Marcus Buschbeck
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO - Germans Trias i Pujol, Campus Can Ruti, Badalona, Barcelona 08916, Spain
| | - Manuel Perucho
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
- Sanford-Burnham-Prebys Medical Discovery Institute (SBP), 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sonia-V Forcales
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Ctra Can Ruti, camí de les escoles s/n, Badalona, Barcelona 08916, Spain
- Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Campus of Bellvitge, University of Barcelona, Carrer de la Feixa Llarga, s/n, L’Hospitalet de Llobregat, Barcelona 08907, Spain
| |
Collapse
|
59
|
Hawkins LJ, Al-Attar R, Storey KB. Transcriptional regulation of metabolism in disease: From transcription factors to epigenetics. PeerJ 2018; 6:e5062. [PMID: 29922517 PMCID: PMC6005171 DOI: 10.7717/peerj.5062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022] Open
Abstract
Every cell in an individual has largely the same genomic sequence and yet cells in different tissues can present widely different phenotypes. This variation arises because each cell expresses a specific subset of genomic instructions. Control over which instructions, or genes, are expressed is largely controlled by transcriptional regulatory pathways. Each cell must assimilate a huge amount of environmental input, and thus it is of no surprise that transcription is regulated by many intertwining mechanisms. This large regulatory landscape means there are ample possibilities for problems to arise, which in a medical context means the development of disease states. Metabolism within the cell, and more broadly, affects and is affected by transcriptional regulation. Metabolism can therefore contribute to improper transcriptional programming, or pathogenic metabolism can be the result of transcriptional dysregulation. Here, we discuss the established and emerging mechanisms for controling transcription and how they affect metabolism in the context of pathogenesis. Cis- and trans-regulatory elements, microRNA and epigenetic mechanisms such as DNA and histone methylation, all have input into what genes are transcribed. Each has also been implicated in diseases such as metabolic syndrome, various forms of diabetes, and cancer. In this review, we discuss the current understanding of these areas and highlight some natural models that may inspire future therapeutics.
Collapse
Affiliation(s)
- Liam J Hawkins
- Institute of Biochemistry, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Rasha Al-Attar
- Institute of Biochemistry, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Kenneth B Storey
- Institute of Biochemistry, Department of Biology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
60
|
Oporto GH, Salazar LA. DNA is hypomethylated in circadian manifestations of bruxism. Oral Dis 2018; 24:1132-1139. [PMID: 29575322 DOI: 10.1111/odi.12856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The aim of this study was to compare the global DNA methylation levels in patients under bruxism treatment and a control group. METHODS Subjects undergoing bruxism treatment were classified in awake bruxism (42 patients), sleep bruxism (32 patients) and both conditions (42 patients). The control group included 42 individuals. A colorimetric assay (MethylFlash Methylated DNA 5-mC Quantification Kit, Epigenetic Group Inc., NY, USA) was used to determine the global DNA methylation levels. RESULTS Statistically significant differences were found in amounts of methylated DNA in all circadian manifestations of bruxism compared with a control group (sleep bruxism = 0.95% ± 2.02%; awake bruxism = 0.87% ± 2.1%; sleep and awake bruxism = 0.17% ± 0.25%; Control = 1.69% ± 1.6%; Kruskal-Wallis test [p = .0001] followed by Dunn's test [p < .05]). CONCLUSION Patients undergoing bruxism treatment exhibited hypomethylated DNA levels when compared to control group. Our results suggest that DNA hypomethylation might be a novel aetiologic factor in bruxism aetiology. Further researches must be performed exploring the role of epigenetics modifications in circadian manifestations of bruxism.
Collapse
Affiliation(s)
- G H Oporto
- Centro de Biología Molecular & Farmacogenética, Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile.,Departamento de Odontología Adultos, Facultad de Odontología, Universidad de La Frontera, Temuco, Chile.,Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco, Chile.,Centro de Investigación en Ciencias Odontológicas (CICO), Facultad de Odontología, Universidad de La Frontera, Temuco, Chile
| | - L A Salazar
- Centro de Biología Molecular & Farmacogenética, Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile.,Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
61
|
Llinàs-Arias P, Esteller M. Epigenetic inactivation of tumour suppressor coding and non-coding genes in human cancer: an update. Open Biol 2018; 7:rsob.170152. [PMID: 28931650 PMCID: PMC5627056 DOI: 10.1098/rsob.170152] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/02/2017] [Indexed: 12/13/2022] Open
Abstract
Cancer cells undergo many different alterations during their transformation, including genetic and epigenetic events. The controlled division of healthy cells can be impaired through the downregulation of tumour suppressor genes. Here, we provide an update of the mechanisms in which epigenetically altered coding and non-coding tumour suppressor genes are implicated. We will highlight the importance of epigenetics in the different molecular pathways that lead to enhanced and unlimited capacity of division, genomic instability, metabolic shift, acquisition of mesenchymal features that lead to metastasis, and tumour plasticity. We will briefly describe these pathways, focusing especially on genes whose epigenetic inactivation through DNA methylation has been recently described, as well as on those that are well established as being epigenetically silenced in cancer. A brief perspective of current clinical therapeutic approaches that can revert epigenetic inactivation of non-coding tumour suppressor genes will also be given.
Collapse
Affiliation(s)
- Pere Llinàs-Arias
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain .,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Carrer de la Feixa Llarga, s/n, 08908 L'Hospitalet, Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
62
|
Pascual G, Domínguez D, Benitah SA. The contributions of cancer cell metabolism to metastasis. Dis Model Mech 2018; 11:11/8/dmm032920. [PMID: 29739810 PMCID: PMC6124557 DOI: 10.1242/dmm.032920] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metastasis remains the leading cause of cancer-related deaths worldwide, and our inability to identify the tumour cells that colonize distant sites hampers the development of effective anti-metastatic therapies. However, with recent research advances we are beginning to distinguish metastasis-initiating cells from their non-metastatic counterparts. Importantly, advances in genome sequencing indicate that the acquisition of metastatic competency does not involve the progressive accumulation of driver mutations; moreover, in the early stages of tumorigenesis, cancer cells harbour combinations of driver mutations that endow them with metastatic competency. Novel findings highlight that cells can disseminate to distant sites early during primary tumour growth, remaining dormant and untreatable for long periods before metastasizing. Thus, metastatic cells must require local and systemic influences to generate metastases. This hypothesis suggests that factors derived from our lifestyle, such as our diet, exert a strong influence on tumour progression, and that such factors could be modulated if understood. Here, we summarize the recent findings on how specific metabolic cues modulate the behaviour of metastatic cells and how they influence the genome and epigenome of metastatic cells. We also discuss how crosstalk between metabolism and the epigenome can be harnessed to develop new anti-metastatic therapies.
Collapse
Affiliation(s)
- Gloria Pascual
- Institute for Research in Biomedicine (IRB Barcelona), Oncology Department, The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Diana Domínguez
- Institute for Research in Biomedicine (IRB Barcelona), Oncology Department, The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), Oncology Department, The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain .,Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| |
Collapse
|
63
|
Ramakrishnan N, Bose R. Analysis of healthy and tumour DNA methylation distributions in kidney-renal-clear-cell-carcinoma using Kullback-Leibler and Jensen-Shannon distance measures. IET Syst Biol 2018; 11:99-104. [PMID: 28518060 DOI: 10.1049/iet-syb.2016.0052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DNA methylation is an epigenetic phenomenon in which methyl groups get bonded to the cytosines of the DNA molecule altering the expression of the associated genes. Cancer is linked with hypo or hyper-methylation of specific genes as well as global changes in DNA methylation. In this study, the authors study the probability density function distribution of DNA methylation in various significant genes and across the genome in healthy and tumour samples. They propose a unique 'average healthy methylation distribution' based on the methylation values of several healthy samples. They then obtain the Kullback-Leibler and Jensen-Shannon distances between methylation distributions of the healthy and tumour samples and the average healthy methylation distribution. The distance measures of the healthy and tumour samples from the average healthy methylation distribution are compared and the differences in the distances are analysed as possible parameters for cancer. A classifier trained on these values was found to provide high values of sensitivity and specificity. They consider this to be a computationally efficient approach to predict tumour samples based on DNA methylation data. This technique can also be improvised to consider other differentially methylated genes significant in cancer or other epigenetic diseases.
Collapse
Affiliation(s)
| | - Ranjan Bose
- Electrical Engineering, Indian Institute of Technology Delhi, Delhi, India
| |
Collapse
|
64
|
Barbieri R, Gambari R, Buzzoni D, Piva R, Orlando P, Mischiati C, del Senno L, Nastruzzi C, Giacomini P, Natali PG. Methylation State of Cellular Genes and Oncogenes as a Marker of Malignancy in Human Carcinomas. TUMORI JOURNAL 2018; 75:321-8. [PMID: 2815342 DOI: 10.1177/030089168907500405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The methylation pattern of the human HLA-DRα gene was analyzed in primary tumors and lymph node metastases isolated from patients with a variety of tumors, including thyroid, pancreas, breast and gastric carcinomas and melanomas. In normal tissues (including breast, muscle, brain, sperm, T-and B-lymphocytes) the HLA-DRα gene is hypermethylated at CCGG and GCGC sites. In all tissues studied, the only constantly unmethylated region was located in the 5′ portion of the gene. Our results indicate that the HLA-DRα gene is hypomethylated in metastatic lymph nodes, as well as in the carcinomas and melanomas studied. These findings lend support to the hypothesis that DNA hypomethylation of the human HLA-DRα gene may represent a molecular marker of malignant tumors.
Collapse
Affiliation(s)
- R Barbieri
- Istituto di Chimica Biologica, Università di Ferrara, Roma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Pfeifer GP. Defining Driver DNA Methylation Changes in Human Cancer. Int J Mol Sci 2018; 19:ijms19041166. [PMID: 29649096 PMCID: PMC5979276 DOI: 10.3390/ijms19041166] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/11/2022] Open
Abstract
Human malignant tumors are characterized by pervasive changes in the patterns of DNA methylation. These changes include a globally hypomethylated tumor cell genome and the focal hypermethylation of numerous 5′-cytosine-phosphate-guanine-3′ (CpG) islands, many of them associated with gene promoters. It has been challenging to link specific DNA methylation changes with tumorigenesis in a cause-and-effect relationship. Some evidence suggests that cancer-associated DNA hypomethylation may increase genomic instability. Promoter hypermethylation events can lead to silencing of genes functioning in pathways reflecting hallmarks of cancer, including DNA repair, cell cycle regulation, promotion of apoptosis or control of key tumor-relevant signaling networks. A convincing argument for a tumor-driving role of DNA methylation can be made when the same genes are also frequently mutated in cancer. Many of the most commonly hypermethylated genes encode developmental transcription factors, the methylation of which may lead to permanent gene silencing. Inactivation of such genes will deprive the cells in which the tumor may initiate from the option of undergoing or maintaining lineage differentiation and will lock them into a perpetuated stem cell-like state thus providing an additional window for cell transformation.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Center for Epigenetics, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA.
| |
Collapse
|
66
|
Choudhuri S, Patton GW, Chanderbhan RF, Mattia A, Klaassen CD. From Classical Toxicology to Tox21: Some Critical Conceptual and Technological Advances in the Molecular Understanding of the Toxic Response Beginning From the Last Quarter of the 20th Century. Toxicol Sci 2018; 161:5-22. [PMID: 28973688 PMCID: PMC5837539 DOI: 10.1093/toxsci/kfx186] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Toxicology has made steady advances over the last 60+ years in understanding the mechanisms of toxicity at an increasingly finer level of cellular organization. Traditionally, toxicological studies have used animal models. However, the general adoption of the principles of 3R (Replace, Reduce, Refine) provided the impetus for the development of in vitro models in toxicity testing. The present commentary is an attempt to briefly discuss the transformation in toxicology that began around 1980. Many genes important in cellular protection and metabolism of toxicants were cloned and characterized in the 80s, and gene expression studies became feasible, too. The development of transgenic and knockout mice provided valuable animal models to investigate the role of specific genes in producing toxic effects of chemicals or protecting the organism from the toxic effects of chemicals. Further developments in toxicology came from the incorporation of the tools of "omics" (genomics, proteomics, metabolomics, interactomics), epigenetics, systems biology, computational biology, and in vitro biology. Collectively, the advances in toxicology made during the last 30-40 years are expected to provide more innovative and efficient approaches to risk assessment. A goal of experimental toxicology going forward is to reduce animal use and yet be able to conduct appropriate risk assessments and make sound regulatory decisions using alternative methods of toxicity testing. In that respect, Tox21 has provided a big picture framework for the future. Currently, regulatory decisions involving drugs, biologics, food additives, and similar compounds still utilize data from animal testing and human clinical trials. In contrast, the prioritization of environmental chemicals for further study can be made using in vitro screening and computational tools.
Collapse
Affiliation(s)
- Supratim Choudhuri
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Geoffrey W Patton
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
| | - Ronald F Chanderbhan
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Antonia Mattia
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Curtis D Klaassen
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
| |
Collapse
|
67
|
S-adenosyl-methionine (SAM) alters the transcriptome and methylome and specifically blocks growth and invasiveness of liver cancer cells. Oncotarget 2017; 8:111866-111881. [PMID: 29340097 PMCID: PMC5762365 DOI: 10.18632/oncotarget.22942] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/29/2017] [Indexed: 12/17/2022] Open
Abstract
S-adenosyl methionine (SAM) is a ubiquitous methyl donor that was reported to have chemo- protective activity against liver cancer, however the molecular footprint of SAM is unknown. We show here that SAM selectively inhibits growth, transformation and invasiveness of hepatocellular carcinoma cell lines but not normal primary liver cells. Analysis of the transcriptome of SAM treated and untreated liver cancer cell lines HepG2 and SKhep1 and primary liver cells reveals pathways involved in cancer and metastasis that are upregulated in cancer cells and are downregulated by SAM. Analysis of the methylome using bisulfite mapping of captured promoters and enhancers reveals that SAM hyper-methylates and downregulates genes in pathways of growth and metastasis that are upregulated in liver cancer cells. Depletion of two SAM downregulated genes STMN1 and TAF15 reduces cellular transformation and invasiveness, providing evidence that SAM targets are genes important for cancer growth and invasiveness. Taken together these data provide a molecular rationale for SAM as an anticancer agent.
Collapse
|
68
|
Li H, Liu JW, Liu S, Yuan Y, Sun LP. Bioinformatics-Based Identification of Methylated-Differentially Expressed Genes and Related Pathways in Gastric Cancer. Dig Dis Sci 2017; 62:3029-3039. [PMID: 28914394 DOI: 10.1007/s10620-017-4740-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 08/28/2017] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS The aim of the study was to identify methylated-differentially expressed genes (MDEGs) in gastric cancer and investigate their potential pathways. METHODS Expression profiling (GSE13911 and GSE29272) and methylation profiling (GSE25869 and GSE30601) data were obtained from GEO DataSets. Differentially expressed genes and differentially methylated genes were identified using GEO2R. Gene ontology and pathway enrichment analyses were performed for the MDEGs. Protein-protein interaction (PPI) networks were established by STRING and Cytoscape. Analysis of modules in the PPI networks was performed using MCODE. Further, the hub genes derived from the PPI networks were verified by The Cancer Genome Atlas (TCGA) database and human tissues, with methylation-specific PCR for genes methylation and real-time qPCR for genes expression. RESULTS A total of 445 genes were identified as hypermethylated, lowly expressed genes (Hyper-LGs), which were enriched in the regulation of system process and channel activity. A total of 129 genes were identified as hypomethylated, highly expressed genes (Hypo-HGs), which were involved in cell adhesion, cell proliferation, and protein binding. Pathway analysis showed that Hyper-LGs were associated with neuroactive ligand-receptor interaction and calcium signaling pathway, while Hypo-HGs were enriched in pathways in cancer. In the PPI networks, after verification by TCGA analysis and human tissue detection, CASR, CXCL12, and SST were identified as significantly different hub genes. CONCLUSIONS MDEG analysis helps to understand the epigenetic regulation mechanisms involved in the development and progression of gastric cancer. The hub genes have predictive and prognostic value as methylation-based biomarkers for the precise diagnosis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Hao Li
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, 110001, Liaoning, China
| | - Jing-Wei Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, 110001, Liaoning, China
| | - Shuang Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, 110001, Liaoning, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, 110001, Liaoning, China.
| | - Li-Ping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
69
|
Rabbani B, Nakaoka H, Akhondzadeh S, Tekin M, Mahdieh N. Next generation sequencing: implications in personalized medicine and pharmacogenomics. MOLECULAR BIOSYSTEMS 2017; 12:1818-30. [PMID: 27066891 DOI: 10.1039/c6mb00115g] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A breakthrough in next generation sequencing (NGS) in the last decade provided an unprecedented opportunity to investigate genetic variations in humans and their roles in health and disease. NGS offers regional genomic sequencing such as whole exome sequencing of coding regions of all genes, as well as whole genome sequencing. RNA-seq offers sequencing of the entire transcriptome and ChIP-seq allows for sequencing the epigenetic architecture of the genome. Identifying genetic variations in individuals can be used to predict disease risk, with the potential to halt or retard disease progression. NGS can also be used to predict the response to or adverse effects of drugs or to calculate appropriate drug dosage. Such a personalized medicine also provides the possibility to treat diseases based on the genetic makeup of the patient. Here, we review the basics of NGS technologies and their application in human diseases to foster human healthcare and personalized medicine.
Collapse
Affiliation(s)
- Bahareh Rabbani
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Niayesh-Vali asr Intersection, Tehran, Iran.
| | - Hirofumi Nakaoka
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mustafa Tekin
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Nejat Mahdieh
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Niayesh-Vali asr Intersection, Tehran, Iran.
| |
Collapse
|
70
|
Sadeghi MR, Jeddi F, Soozangar N, Somi MH, Samadi N. The role of Nrf2-Keap1 axis in colorectal cancer, progression, and chemoresistance. Tumour Biol 2017. [PMID: 28621229 DOI: 10.1177/1010428317705510] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is the third common cancer after lung and genital cancers worldwide with more than 1.2 million new cases diagnosed annually. Although extensive progress has been made in the treatment of colorectal cancer, finding novel targets for early diagnosis and effective treatment of these patients is an urgent need. Nuclear factor-erythroid 2-kelch-like ECH-associated protein 1 signaling pathway plays a key role in protecting cells from the damage of intracellular oxidative stress and extracellular oxidizing agents. Nuclear factor-erythroid 2 is a transcription factor that creates intracellular redox homeostasis via transcriptional activity and interaction with kelch-like ECH-associated protein 1. Furthermore, it contributes to survival and chemoresistance of colorectal cancer cells which is mediated by overexpression of cytoprotective and multidrug resistance genes. In this review, the dual role of nuclear factor-erythroid 2 signaling in induction of colorectal cancer cell survival and death as well as the possibility of targeting nuclear factor-erythroid 2-kelch-like ECH-associated protein 1 axis as an advanced strategy in prevention and effective treatment of colorectal cancer patients have been discussed.
Collapse
Affiliation(s)
- Mohammad Reza Sadeghi
- 1 Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- 2 Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- 3 Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jeddi
- 1 Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- 2 Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Soozangar
- 1 Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- 2 Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Somi
- 1 Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- 1 Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- 2 Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- 4 Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
71
|
Coyle KM, Boudreau JE, Marcato P. Genetic Mutations and Epigenetic Modifications: Driving Cancer and Informing Precision Medicine. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9620870. [PMID: 28685150 PMCID: PMC5480027 DOI: 10.1155/2017/9620870] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/06/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022]
Abstract
Cancer treatment is undergoing a significant revolution from "one-size-fits-all" cytotoxic therapies to tailored approaches that precisely target molecular alterations. Precision strategies for drug development and patient stratification, based on the molecular features of tumors, are the next logical step in a long history of approaches to cancer therapy. In this review, we discuss the history of cancer treatment from generic natural extracts and radical surgical procedures to site-specific and combinatorial treatment regimens, which have incrementally improved patient outcomes. We discuss the related contributions of genetics and epigenetics to cancer progression and the response to targeted therapies and identify challenges and opportunities for the success of precision medicine. The identification of patients who will benefit from targeted therapies is more complex than simply identifying patients whose tumors harbour the targeted aberration, and intratumoral heterogeneity makes it difficult to determine if a precision therapy is successful during treatment. This heterogeneity enables tumors to develop resistance to targeted approaches; therefore, the rational combination of therapeutic agents will limit the threat of acquired resistance to therapeutic success. By incorporating the view of malignant transformation modulated by networks of genetic and epigenetic interactions, molecular strategies will enable precision medicine for effective treatment across cancer subtypes.
Collapse
Affiliation(s)
| | - Jeanette E. Boudreau
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
72
|
Abstract
The dramatic re-organization of the cancer cell nucleus creates telltale morphological features critical for pathological staging of tumors. In addition, the changes to the mutational and epigenetic landscape in cancer cells alter the structure and stability of the genome and directly contribute to malignancy. DNA methylation is one of the best studied epigenetic changes in cancer, as nearly every type of cancer studied shows a loss of DNA methylation spread across most of the genome. This global hypomethylation is accompanied by hypermethylation at distinct loci, and much of the work on DNA methylation in cancer has focused on how local changes contribute to gene expression. However, the emerging picture is that the changes to DNA methylation in cancer cells has little direct effect on gene expression but instead impacts the organization of the genome in the nucleus. Several recent studies that take a broad view of the cancer epigenome find that the most profound changes to the cancer methylome are spread across large segments of the genome, and that the focal changes are reflective of a whole reorganization of epigenome. Hallmarks of nuclear reorganization in cancer are found in the long regions of chromatin marked by histone methylation (LOCKs) and nuclear lamina interactions (LADs). In this review, we focus on a novel perspective that DNA methylation changes in cancer impact the global structure of heterochromatin, LADs and LOCKs, and how these global changes, in turn, contribute to gene expression changes and genomic stability.
Collapse
Affiliation(s)
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi,Abu Dhabi, United Arab Emirates
| |
Collapse
|
73
|
Spangle JM, Roberts TM. Epigenetic regulation of RTK signaling. J Mol Med (Berl) 2017; 95:791-798. [PMID: 28589435 DOI: 10.1007/s00109-017-1546-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/04/2017] [Accepted: 05/09/2017] [Indexed: 01/03/2023]
Abstract
Receptor tyrosine kinase (RTK) signaling cascades coordinate intracellular signaling in response to growth factors, chemokines, and other extracellular stimuli to control fundamental biological processes such as cellular proliferation, metabolism, and survival. Hyperactivation of pathways associated with growth factor signaling (e.g., RTK and downstream effectors including Ras, PI3K/AKT, and Raf) is a frequent event in human cancers, which uncouples ligand-mediated activation with signal transduction. While the contributions of direct genomic events are well understood as causative agents of hyperactive signal transduction, other non-heritable genomic modifications promote the activation of growth factor-associated signaling cascades. In this review, we highlight epigenomic mechanisms by which hyperactivation of RTK-associated signaling cascades occurs and may contribute to cancer.
Collapse
Affiliation(s)
- Jennifer M Spangle
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Thomas M Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA. .,Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
| |
Collapse
|
74
|
Van Tongelen A, Loriot A, De Smet C. Oncogenic roles of DNA hypomethylation through the activation of cancer-germline genes. Cancer Lett 2017; 396:130-137. [DOI: 10.1016/j.canlet.2017.03.029] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 12/19/2022]
|
75
|
Galanopoulos M, Tsoukalas N, Papanikolaou IS, Tolia M, Gazouli M, Mantzaris GJ. Abnormal DNA methylation as a cell-free circulating DNA biomarker for colorectal cancer detection: A review of literature. World J Gastrointest Oncol 2017; 9:142-152. [PMID: 28451061 PMCID: PMC5390299 DOI: 10.4251/wjgo.v9.i4.142] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/28/2016] [Accepted: 03/12/2017] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies in the world. CRC-associated morbidity and mortality is continuously increasing, in part due to a lack of early detection. The existing screening tools such as colonoscopy, are invasive and yet high cost, affecting the willingness of patients to participate in screening programs. In recent years, evidence is accumulating that the interaction of aberrant genetic and epigenetic modifications is the cornerstone for the CRC development and progression by alternating the function of tumor suppressor genes, DNA repair genes and oncogenes of colonic cells. Apart from the understanding of the underlying mechanism(s) of carcinogenesis, the aforementioned interaction has also allowed identification of clinical biomarkers, especially epigenetic, for the early detection and prognosis of cancer patients. One of the ways to detect these epigenetic biomarkers is the cell-free circulating DNA (circDNA), a blood-based cancer diagnostic test, mainly focusing in the molecular alterations found in tumor cells, such as DNA mutations and DNA methylation. In this brief review, we epitomize the current knowledge on the research in circDNA biomarkers - mainly focusing on DNA methylation - as potential blood-based tests for early detection of colorectal cancer and the challenges for validation and globally implementation of this emergent technology.
Collapse
|
76
|
Abstract
We propose here a hypothesis of the cause of cancer that brings together fundamental changes in methyl-group metabolism resulting in methionine dependence and global DNA hypomethylation which destabilizes the genome leading to aneuploid karyotypes which evolve and stabilize into autonomous cancer. Experimental support for this hypothesis is that methioine dependence is a general metabolic defect in caner. Methionine dependence is due to excess use of methionene for aberrant transmethylation reactions that apparently divert methyl groups from DNA. The resulting global DNA hypomethylation is also a general phenomena in cancer. Global hypomethylation leads to an unstable genomes and aneuploid karyotypes, another general phenomena in cancer. The excessive and aberrant use of methionine in cancer is strongly observed in [11C]methionine PET imaging, where high uptake of [11C]methionine results in a very strong and selective tumor signal compared with normal tissue background. [11C]methionine is superior to [18C] fluorodeoxyglucose (FDG)-PET for PET imaging, suggesting methionine dependence is more tumor-specific than glucose dependence.
Collapse
Affiliation(s)
- Robert M Hoffman
- a AntiCancer Inc. , San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| |
Collapse
|
77
|
Lu Y, Li S, Zhu S, Gong Y, Shi J, Xu L. Methylated DNA/RNA in Body Fluids as Biomarkers for Lung Cancer. Biol Proced Online 2017; 19:2. [PMID: 28331435 PMCID: PMC5356409 DOI: 10.1186/s12575-017-0051-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/02/2017] [Indexed: 12/21/2022] Open
Abstract
DNA/RNA methylation plays an important role in lung cancer initiation and progression. Liquid biopsy makes use of cells, nucleotides and proteins released from tumor cells into body fluids to help with cancer diagnosis and prognosis. Methylation of circulating tumor DNA (ctDNA) has gained increasing attention as biomarkers for lung cancer. Here we briefly introduce the biological basis and detection method of ctDNA methylation, and review various applications of methylated DNA in body fluids in lung cancer screening, diagnosis, prognosis, monitoring and treatment prediction. We also discuss the emerging role of RNA methylation as biomarkers for cancer.
Collapse
Affiliation(s)
- Yan Lu
- No.2 oncology department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Rd, Shanghai, China
| | - Shulin/Sl Li
- MD Anderson Cancer Center, the university of Texas, 1840 Old Spanish Trail, Houston, TX USA
| | - Shiguo/Sg Zhu
- Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd, Shanghai, China
| | - Yabin/Yb Gong
- No.2 oncology department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Rd, Shanghai, China
| | - Jun/J Shi
- No.2 oncology department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Rd, Shanghai, China
| | - Ling/L Xu
- No.2 oncology department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Rd, Shanghai, China
| |
Collapse
|
78
|
Spencer DH, Russler-Germain DA, Ketkar S, Helton NM, Lamprecht TL, Fulton RS, Fronick CC, O'Laughlin M, Heath SE, Shinawi M, Westervelt P, Payton JE, Wartman LD, Welch JS, Wilson RK, Walter MJ, Link DC, DiPersio JF, Ley TJ. CpG Island Hypermethylation Mediated by DNMT3A Is a Consequence of AML Progression. Cell 2017; 168:801-816.e13. [PMID: 28215704 DOI: 10.1016/j.cell.2017.01.021] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/21/2016] [Accepted: 01/19/2017] [Indexed: 12/11/2022]
Abstract
DNMT3A mutations occur in ∼25% of acute myeloid leukemia (AML) patients. The most common mutation, DNMT3AR882H, has dominant negative activity that reduces DNA methylation activity by ∼80% in vitro. To understand the contribution of DNMT3A-dependent methylation to leukemogenesis, we performed whole-genome bisulfite sequencing of primary leukemic and non-leukemic cells in patients with or without DNMT3AR882 mutations. Non-leukemic hematopoietic cells with DNMT3AR882H displayed focal methylation loss, suggesting that hypomethylation antedates AML. Although virtually all AMLs with wild-type DNMT3A displayed CpG island hypermethylation, this change was not associated with gene silencing and was essentially absent in AMLs with DNMT3AR882 mutations. Primary hematopoietic stem cells expanded with cytokines were hypermethylated in a DNMT3A-dependent manner, suggesting that hypermethylation may be a response to, rather than a cause of, cellular proliferation. Our findings suggest that hypomethylation is an initiating phenotype in AMLs with DNMT3AR882, while DNMT3A-dependent CpG island hypermethylation is a consequence of AML progression.
Collapse
Affiliation(s)
- David H Spencer
- Section of Stem Cell Biology, Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; The McDonnell Genome Institute, Washington University, St. Louis, MO 63110, USA
| | - David A Russler-Germain
- Section of Stem Cell Biology, Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shamika Ketkar
- Section of Stem Cell Biology, Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nichole M Helton
- Section of Stem Cell Biology, Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tamara L Lamprecht
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Robert S Fulton
- The McDonnell Genome Institute, Washington University, St. Louis, MO 63110, USA
| | - Catrina C Fronick
- The McDonnell Genome Institute, Washington University, St. Louis, MO 63110, USA
| | - Michelle O'Laughlin
- The McDonnell Genome Institute, Washington University, St. Louis, MO 63110, USA
| | - Sharon E Heath
- Section of Stem Cell Biology, Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marwan Shinawi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peter Westervelt
- Section of Stem Cell Biology, Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jacqueline E Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lukas D Wartman
- Section of Stem Cell Biology, Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; The McDonnell Genome Institute, Washington University, St. Louis, MO 63110, USA
| | - John S Welch
- Section of Stem Cell Biology, Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Richard K Wilson
- The McDonnell Genome Institute, Washington University, St. Louis, MO 63110, USA
| | - Matthew J Walter
- Section of Stem Cell Biology, Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel C Link
- Section of Stem Cell Biology, Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John F DiPersio
- Section of Stem Cell Biology, Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy J Ley
- Section of Stem Cell Biology, Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; The McDonnell Genome Institute, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
79
|
Patel SA, Vanharanta S. Epigenetic determinants of metastasis. Mol Oncol 2017; 11:79-96. [PMID: 27756687 PMCID: PMC5423227 DOI: 10.1016/j.molonc.2016.09.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/12/2016] [Accepted: 09/30/2016] [Indexed: 02/06/2023] Open
Abstract
Genetic analyses of cancer progression in patient samples and model systems have thus far failed to identify specific mutational drivers of metastasis. Yet, at least in experimental systems, metastatic cancer clones display stable traits that can facilitate progression through the many steps of metastasis. How cancer cells establish and maintain the transcriptional programmes required for metastasis remains mostly unknown. Emerging evidence suggests that metastatic traits may arise from epigenetically altered transcriptional output of the oncogenic signals that drive tumour initiation and early progression. Molecular dissection of such mechanisms remains a central challenge for a comprehensive understanding of the origins of metastasis.
Collapse
Affiliation(s)
- Saroor A Patel
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, CB2 0XZ, United Kingdom
| | - Sakari Vanharanta
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, CB2 0XZ, United Kingdom.
| |
Collapse
|
80
|
Villota-Salazar NA, Mendoza-Mendoza A, González-Prieto JM. Epigenetics: from the past to the present. FRONTIERS IN LIFE SCIENCE 2016. [DOI: 10.1080/21553769.2016.1249033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
81
|
Ramakrishnan N, Bose R. Analysis of distribution of DNA methylation in kidney-renal-clear-cell-carcinoma specific genes using entropy. GENOMICS DATA 2016; 10:109-113. [PMID: 27818943 PMCID: PMC5080556 DOI: 10.1016/j.gdata.2016.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 12/20/2022]
Abstract
DNA Methylation is an epigenetic phenomenon in which methyl groups are added to the cytosines, thereby altering the physio-chemical properties of the DNA region and influencing gene expression. Aberrant DNA methylation in a set of genes or across the genome results in many epigenetic diseases including cancer. In this paper, we use entropy to analyze the extent and distribution of DNA methylation in Tumor Suppressor Genes (TSG's) and Oncogenes related to a specific type of cancer (viz.) KIRC (Kidney-renal-clear-cell-carcinoma). We apply various mathematical transformations to enhance the different regions in DNA methylation distribution and compare the resultant entropies for healthy and tumor samples. We also obtain the sensitivity and specificity of classification for the different mathematical transformations. Our findings show that it is not just the measure of methylation, but the distribution of the methylation levels in the genes that are significant in cancer.
Collapse
Affiliation(s)
- Nithya Ramakrishnan
- Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110015, India
| | | |
Collapse
|
82
|
Potential Role of Methylation Marker in Glioma Supporting Clinical Decisions. Int J Mol Sci 2016; 17:ijms17111876. [PMID: 27834917 PMCID: PMC5133876 DOI: 10.3390/ijms17111876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/27/2016] [Accepted: 11/04/2016] [Indexed: 01/18/2023] Open
Abstract
The IDH1/2 gene mutations, ATRX loss/mutation, 1p/19q status, and MGMT promoter methylation are increasingly used as prognostic or predictive biomarkers of gliomas. However, the effect of their combination on radiation therapy outcome is discussable. Previously, we demonstrated that the IDH1 c.G395A; p.R132H mutation was associated with longer survival in grade II astrocytoma and GBM (Glioblastoma). Here we analyzed the MGMT promoter methylation status in patients with a known mutation status in codon 132 of IDH1, followed by clinical and genetic data analysis based on the two statuses. After a subtotal tumor resection, the patients were treated using IMRT (Intensity-Modulated Radiation Therapy) with 6 MeV photons. The total dose was: 54 Gy for astrocytoma II, 60 Gy for astrocytoma III, 60 Gy for glioblastoma, 2 Gy per day, with 24 h intervals, five days per week. The patients with MGMT promoter methylation and IDH1 somatic mutation (OS = 40 months) had a better prognosis than those with MGMT methylation alone (OS = 18 months). In patients with astrocytoma anaplasticum (n = 7) with the IDH1 p.R132H mutation and hypermethylated MGMT, the prognosis was particularly favorable (median OS = 47 months). In patients with astrocytoma II meeting the above criteria, the prognosis was also better than in those not meeting those criteria. The IDH1 mutation appears more relevant for the prognosis than MGMT methylation. The IDH1 p.R132H mutation combined with MGMT hypermethylation seems to be the most advantageous for treatment success. Patients not meeting those criteria may require more aggressive treatments.
Collapse
|
83
|
Braun CJ, Hemann MT. Rewiring the solid tumor epigenome for cancer therapy. Expert Rev Anticancer Ther 2016; 16:977-87. [DOI: 10.1080/14737140.2016.1212663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
84
|
Andreatos N, Ronnekleiv-Kelly S, Margonis GA, Sasaki K, Gani F, Amini N, Wilson A, Pawlik TM. From bench to bedside: Clinical implications of KRAS status in patients with colorectal liver metastasis. Surg Oncol 2016; 25:332-8. [PMID: 27566041 DOI: 10.1016/j.suronc.2016.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/12/2016] [Indexed: 12/22/2022]
Abstract
INTRODUCTION While the role of KRAS in the molecular genetics of colorectal cancer has been studied extensively, its prognostic impact in colorectal liver metastases (CRLM) has only recently been examined. This review aimed to summarize currently reported findings on the clinical implications of KRAS mutant (mut-KRAS) status for patients with CRLM. MATERIALS AND METHODS The Pubmed database was searched for relevant articles published from 01/01/2010 to 02/01/2016. Overall survival (OS) and recurrence free survival (RFS) as well as patterns of recurrence were the primary endpoints, but consideration was given to secondary outcomes when the respective findings were of clinical interest. RESULTS Out of the 266 studies screened, 15 were included in our review. Fourteen studies were retrospective cohorts while one was a systematic review/meta-analysis. Among the 14 retrospective studies, 12 reported OS with 9 detecting a negative association with mut-KRAS status. Similarly, 11 out of 14 retrospective cohorts reported RFS with 6 detecting a negative association with mut-KRAS status. Five studies examined patterns of recurrence, with 4 detecting increased extrahepatic recurrence in the mut-KRAS group. One study examined the different effects of codon-specific KRAS mutations on prognosis. CONCLUSION mut-KRAS status predisposes to worse RFS and OS in patients with CRLM, possibly as a result of aggressive tumor biology. Early unresectable extrahepatic recurrence is more frequent in this patient group and may underlie the unfavorable prognosis. Future research should focus on characterizing the distinct effects of codon-specific KRAS mutations as well their interplay with other less common genetic mutations.
Collapse
Affiliation(s)
| | | | | | - Kazunari Sasaki
- Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Faiz Gani
- Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Neda Amini
- Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Ana Wilson
- Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Timothy M Pawlik
- Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA.
| |
Collapse
|
85
|
Brien GL, Valerio DG, Armstrong SA. Exploiting the Epigenome to Control Cancer-Promoting Gene-Expression Programs. Cancer Cell 2016; 29:464-476. [PMID: 27070701 PMCID: PMC4889129 DOI: 10.1016/j.ccell.2016.03.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 12/30/2022]
Abstract
The epigenome is a key determinant of transcriptional output. Perturbations within the epigenome are thought to be a key feature of many, perhaps all cancers, and it is now clear that epigenetic changes are instrumental in cancer development. The inherent reversibility of these changes makes them attractive targets for therapeutic manipulation, and a number of small molecules targeting chromatin-based mechanisms are currently in clinical trials. In this perspective we discuss how understanding the cancer epigenome is providing insights into disease pathogenesis and informing drug development. We also highlight additional opportunities to further unlock the therapeutic potential within the cancer epigenome.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacokinetics
- Cell Transformation, Neoplastic/genetics
- Chromatin/drug effects
- Chromatin/genetics
- Chromosome Aberrations
- Clinical Trials as Topic
- DNA Methylation/drug effects
- DNA, Neoplasm/drug effects
- DNA, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic/drug effects
- Epigenesis, Genetic/genetics
- Epigenomics
- Gene Expression Regulation, Neoplastic
- Histone Code/drug effects
- Histone Deacetylase Inhibitors/therapeutic use
- Histones/metabolism
- Humans
- Mice
- Models, Genetic
- Molecular Targeted Therapy
- Mutation
- Neoplasm Proteins/metabolism
- Neoplasms/genetics
- Neoplasms/prevention & control
- Neoplasms/therapy
- Oncogene Proteins/metabolism
- Protein Processing, Post-Translational/drug effects
- Therapies, Investigational
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Gerard L Brien
- The Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daria G Valerio
- The Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Scott A Armstrong
- The Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
86
|
Gombeau K, Pereira S, Ravanat JL, Camilleri V, Cavalie I, Bourdineaud JP, Adam-Guillermin C. Depleted uranium induces sex- and tissue-specific methylation patterns in adult zebrafish. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 154:25-33. [PMID: 26829549 DOI: 10.1016/j.jenvrad.2016.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/15/2015] [Accepted: 01/09/2016] [Indexed: 06/05/2023]
Abstract
We examined the effects of chronic exposure to different concentrations (2 and 20 μg L(-)(1)) of environmentally relevant waterborne depleted uranium (DU) on the DNA methylation patterns both at HpaII restriction sites (5'-CCGG-3') and across the whole genome in the zebrafish brain, gonads, and eyes. We first identified sex-dependent differences in the methylation level of HpaII sites after exposure. In males, these effects were present as early as 7 days after exposure to 20 μg L(-)(1) DU, and were even more pronounced in the brain, gonads, and eyes after 24 days. However, in females, hypomethylation was only observed in the gonads after exposure to 20 μg L(-)(1) DU for 24 days. Sex-specific effects of DU were also apparent at the whole-genome level, because in males, exposure to 20 μg L(-)(1) DU for 24 days resulted in cytosine hypermethylation in the brain and eyes and hypomethylation in the gonads. In contrast, in females, hypermethylation was observed in the brain after exposure to both concentrations of DU for 7 days. Based on our current knowledge of uranium toxicity, several hypotheses are proposed to explain these findings, including the involvement of oxidative stress, alteration of demethylation enzymes and the calcium signaling pathway. This study reports, for the first time, the sex- and tissue-specific epigenetic changes that occur in a nonhuman organism after exposure to environmentally relevant concentrations of uranium, which could induce transgenerational epigenetic effects.
Collapse
Affiliation(s)
- Kewin Gombeau
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Sandrine Pereira
- Neolys Diagnostics, Centre Léon Bérard, Bât Cheney A, 69008 LYON, France
| | - Jean-Luc Ravanat
- Univ. Grenoble Alpes, INAC-SCIB, 38000 Grenoble, France; CEA, INAC-SCIB Laboratoire des Lésions des Acides Nucléiques, 38000 Grenoble, France
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Isabelle Cavalie
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | | | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France.
| |
Collapse
|
87
|
Abstract
A complex interplay between genetic and environmental factors is involved in the pathogenesis of cardiovascular diseases (CVDs). Environmental factors have crucial effects on the epigenetic trait of genes, which refers to a stably heritable phenotype resulting from changes in the chromosomes without alteration of the DNA sequence, but has profound effects on the cellular repertoire. Among the epigenetic patterns, DNA methylation is of great interest. DNA methylation occurs at both global and specific gene promoter levels and relates to atherosclerosis. Aberrant DNA methylation affects the transcription and expression of critical regulatory genes and induces a proatherogenic cellular phenotype, which plays key roles in endothelia cell dysfunction, abnormal vascular smooth muscle cell proliferation, extracellular matrix formation, and inflammation in CVDs. This review focuses on the contribution of DNA methylation in the pathogenesis of CVDs.
Collapse
Affiliation(s)
- Ye Zhang
- a Department of Cardiology, Daping Hospital , The Third Military Medical University , Chongqing , P.R. China.,b Chongqing Institute of Cardiology , Chongqing , P.R. China
| | - Chunyu Zeng
- a Department of Cardiology, Daping Hospital , The Third Military Medical University , Chongqing , P.R. China.,b Chongqing Institute of Cardiology , Chongqing , P.R. China
| |
Collapse
|
88
|
Schulze I, Rohde C, Scheller-Wendorff M, Bäumer N, Krause A, Herbst F, Riemke P, Hebestreit K, Tschanter P, Lin Q, Linhart H, Godley LA, Glimm H, Dugas M, Wagner W, Berdel WE, Rosenbauer F, Müller-Tidow C. Increased DNA methylation of Dnmt3b targets impairs leukemogenesis. Blood 2016; 127:1575-86. [PMID: 26729896 DOI: 10.1182/blood-2015-07-655928] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 12/15/2015] [Indexed: 12/28/2022] Open
Abstract
The de novo DNA methyltransferases Dnmt3a and Dnmt3b are of crucial importance in hematopoietic stem cells. Dnmt3b has recently been shown to play a role in genic methylation. To investigate how Dnmt3b-mediated DNA methylation affects leukemogenesis, we analyzed leukemia development under conditions of high and physiological methylation levels in a tetracycline-inducible knock-in mouse model. High expression of Dnmt3b slowed leukemia development in serial transplantations and impaired leukemia stem cell (LSC) function. Forced Dnmt3b expression induced widespread DNA hypermethylation inMyc-Bcl2-induced leukemias, preferentially at gene bodies.MLL-AF9-induced leukemogenesis showed much less pronounced DNA hypermethylation upon Dnmt3b expression. Nonetheless, leukemogenesis was delayed in both models with a shared core set of DNA hypermethylated regions and suppression of stem cell-related genes. Acute myeloid leukemia patients with high expression of Dnmt3b target genes showed inferior survival. Together, these findings indicate a critical role for Dnmt3b-mediated DNA methylation in leukemia development and maintenance of LSC function.
Collapse
Affiliation(s)
- Isabell Schulze
- Department of Hematology and Oncology, University of Halle, Halle, Germany
| | - Christian Rohde
- Department of Hematology and Oncology, University of Halle, Halle, Germany
| | | | - Nicole Bäumer
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | - Annika Krause
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | - Friederike Herbst
- National Center for Tumor Diseases, German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Pia Riemke
- Institute of Molecular Tumor Biology and
| | - Katja Hebestreit
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Petra Tschanter
- Department of Hematology and Oncology, University of Halle, Halle, Germany
| | - Qiong Lin
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; and
| | - Heinz Linhart
- National Center for Tumor Diseases, German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Lucy A Godley
- Department of Medicine and Comprehensive Cancer Center, The University of Chicago, Chicago, IL
| | - Hanno Glimm
- National Center for Tumor Diseases, German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; and
| | - Wolfgang E Berdel
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | | | | |
Collapse
|
89
|
Kuscu C, Kuscu C. Pyrosequencing Analysis for Breast Cancer DNA Methylome. Methods Mol Biol 2016; 1406:89-104. [PMID: 26820948 DOI: 10.1007/978-1-4939-3444-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Unraveling DNA methylation profile of tumor is important for the diagnosis and treatment of cancer patients. Because of the heterogeneity of clinical samples, it is very difficult to get methylation profile of only tumor cells. Laser capture Microdissection (LCM) is giving us a chance to isolate the DNA only from the tumor cells without any stroma cell's DNA contamination. Once we capture the breast tumor cells, we can isolate the genomic DNA which is followed by the bisulfite treatment in which unmethylated cytosines of the CG pairs are converted into uracil; however, methylated cytosine does not go into any chemical change during this reaction. Next, bisulfite treated DNA is used in the regular PCR reaction to get a single band PCR amplicon which will be used as a template for the pyrosequencing. Pyrosequencing is a powerful method to make a quantitative methylation analysis for each specific CG pair.
Collapse
Affiliation(s)
- Cem Kuscu
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 800733, 22908, USA.
| | - Canan Kuscu
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 800733, 22908, USA
| |
Collapse
|
90
|
Lakshminarasimhan R, Liang G. The Role of DNA Methylation in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:151-172. [PMID: 27826838 PMCID: PMC7409375 DOI: 10.1007/978-3-319-43624-1_7] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The malignant transformation of normal cells is driven by both genetic and epigenetic changes. With the advent of next-generation sequencing and large-scale multinational consortium studies, it has become possible to profile the genomes and epigenomes of thousands of primary tumors from nearly every cancer type. From these genome-wide studies, it became clear that the dynamic regulation of DNA methylation is a critical epigenetic mechanism of cancer initiation, maintenance, and progression. Proper control of DNA methylation is not only crucial for regulating gene transcription, but its broader consequences include maintaining the integrity of the genome and modulating immune response. Here, we describe the aberrant DNA methylation changes that take place in cancer and how they contribute to the disease phenotype. Further, we highlight potential clinical implications of these changes in the context of prognostic and diagnostic biomarkers, as well as therapeutic targets.
Collapse
Affiliation(s)
- Ranjani Lakshminarasimhan
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA
| | - Gangning Liang
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA.
| |
Collapse
|
91
|
Sahnane N, Magnoli F, Bernasconi B, Tibiletti MG, Romualdi C, Pedroni M, Ponz de Leon M, Magnani G, Reggiani-Bonetti L, Bertario L, Signoroni S, Capella C, Sessa F, Furlan D. Aberrant DNA methylation profiles of inherited and sporadic colorectal cancer. Clin Epigenetics 2015; 7:131. [PMID: 26697123 PMCID: PMC4687378 DOI: 10.1186/s13148-015-0165-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/16/2015] [Indexed: 12/11/2022] Open
Abstract
Background Aberrant DNA methylation has been widely investigated in sporadic colorectal carcinomas (CRCs), and extensive work has been performed to characterize different methylation profiles of CRC. Less information is available about the role of epigenetics in hereditary CRC and about the possible clinical use of epigenetic biomarkers in CRC, regardless of the etiopathogenesis. Long interspersed nucleotide element 1 (LINE-1) hypomethylation and gene-specific hypermethylation of 38 promoters were analyzed in multicenter series of 220 CRCs including 71 Lynch (Lynch colorectal cancer with microsatellite instability (LS-MSI)), 23 CRCs of patients under 40 years in which the main inherited CRC syndromes had been excluded (early-onset colorectal cancer with microsatellite stability (EO-MSS)), and 126 sporadic CRCs, comprising 28 cases with microsatellite instability (S-MSI) and 98 that were microsatellite stable (S-MSS). All tumor methylation patterns were integrated with clinico-pathological and genetic characteristics, namely chromosomal instability (CIN), TP53 loss, BRAF, and KRAS mutations. Results LS-MSI mainly showed absence of extensive DNA hypo- and hypermethylation. LINE-1 hypomethylation was observed in a subset of LS-MSI that were associated with the worse prognosis. Genetically, they commonly displayed G:A transition in the KRAS gene and absence of a CIN phenotype and of TP53 loss. S-MSI exhibited a specific epigenetic profile showing low rates of LINE-1 hypomethylation and extensive gene hypermethylation. S-MSI were mainly characterized by MLH1 methylation, BRAF mutation, and absence of a CIN phenotype and of TP53 loss. By contrast, S-MSS showed a high frequency of LINE-1 hypomethylation and of CIN, and they were associated with a worse prognosis. EO-MSS were a genetically and epigenetically heterogeneous group of CRCs. Like LS-MSI, some EO-MSS displayed low rates of DNA hypo- or hypermethylation and frequent G:A transitions in the KRAS gene, suggesting that a genetic syndrome might still be unrevealed in these patients. By contrast, some EO-MSS showed similar features to those observed in S-MSS, such as LINE-1 hypomethylation, CIN, and TP53 deletion. In all four classes, hypermethylation of ESR1, GATA5, and WT1 was very common. Conclusions Aberrant DNA methylation analysis allows the identification of different subsets of CRCs. This study confirms the potential utility of methylation tests for early detection of CRC and suggests that LINE-1 hypomethylation may be a useful prognostic marker in both sporadic and inherited CRCs. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0165-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nora Sahnane
- Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, 21100 Varese, Italy
| | - Francesca Magnoli
- Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, 21100 Varese, Italy
| | - Barbara Bernasconi
- Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, 21100 Varese, Italy
| | | | - Chiara Romualdi
- CRIBI Biotechnology Center, University of Padova, Padua, Italy
| | - Monica Pedroni
- Department of Diagnostic Medicine, Clinical and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Maurizio Ponz de Leon
- Department of Diagnostic Medicine, Clinical and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Magnani
- Department of Diagnostic Medicine, Clinical and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Lucio Bertario
- Unit of Hereditary Digestive Tract Tumours, Fondazione IRCCS-Istituto Nazionale dei Tumori Milan, Modena, Italy
| | - Stefano Signoroni
- Unit of Hereditary Digestive Tract Tumours, Fondazione IRCCS-Istituto Nazionale dei Tumori Milan, Modena, Italy
| | - Carlo Capella
- Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, 21100 Varese, Italy
| | - Fausto Sessa
- Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, 21100 Varese, Italy
| | - Daniela Furlan
- Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, 21100 Varese, Italy
| | | |
Collapse
|
92
|
Alonso S, González B, Ruiz-Larroya T, Durán Domínguez M, Kato T, Matsunaga A, Suzuki K, Strongin AY, Gimènez-Bonafé P, Perucho M. Epigenetic inactivation of the extracellular matrix metallopeptidase ADAMTS19 gene and the metastatic spread in colorectal cancer. Clin Epigenetics 2015; 7:124. [PMID: 26634009 PMCID: PMC4667455 DOI: 10.1186/s13148-015-0158-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/24/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND ADAMTS19 encodes a member of the ADAMTS (a disintegrin and metalloproteinase domain with thrombospondin motifs) protein family with emerging roles in carcinogenesis and metastasis. ADAMTS shares several distinct protein modules including a propeptide region, a metalloproteinase domain, a disintegrin-like domain, and a thrombospondin type 1 (TS) motif. In a previous work, we found ADAMTS19 frequently hypermethylated in colorectal cancer (CRC). We explored the association of methylation with tumor genotype and phenotype. RESULTS The methylation status of the CpG island in the promoter of ADAMTS19 was determined in 252 colorectal, 65 pancreatic, 33 breast and 169 ovarian primary tumors, 70 CRC metastases, and 10 CRC cell lines. Tumor-specific methylation of ADAMTS19 was significantly more frequent in gastrointestinal than in gynecological cancers (odds ratio (OR) = 2.9, confidence interval (CI) = (1.9-4.7), p = 5.2 × 10(-7)) and was independent of the methylation of adjacent loci in CRC. Hypermethylation associated with CRC with mutated BRAF oncogene (OR = 10.1, CI = (3.1-42.9), p = 6.3 × 10(-6)) and with the mucinous phenotype in CRC (OR = 2.1, CI = (1.1-4.1), p = 0.023) and ovarian cancer (OR = 60, CI = (16-346), p = 4 × 10(-16)). Methylation was significantly more frequent in CRC metastases homing to the ovary and omentum than in those homing to the liver and lung (OR = 6.1, CI = (1.8-22.2), p = 0.001). Differentiating local from distant metastatic spread, methylation negatively associated with tumor progression (p = 0.031) but positively with depth of invasion (p = 0.030). Hypermethylation associated with transcriptional repression in CRC cell lines, and treatment with 5'-AZA-2'-deoxycytidine led to reactivation of mRNA expression. shRNA-mediated silencing of ADAMTS19 had no effect on the in vitro proliferation rate of CRC cells but significantly diminished their collective migration speed (56 %, p = 3.3 × 10(-4)) and potential to migrate in collagen I (64 %, p = 4.3 × 10(-10)). CONCLUSIONS Our results highlight the frequent involvement of ADAMTS19 epigenetic silencing in CRC and mucinous ovarian cancer. The mechanistic preferences for the target organ of metastatic spread may lead to the development of diagnostic CRC biomarkers. The association with the mucinous phenotype also may have diagnostic applications for ovarian cancer.
Collapse
Affiliation(s)
- Sergio Alonso
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Institut d'investigació en ciéncies de la salut Germans Trias I Pujol, (IGTP), Campus Can Ruti, 08916 Badalona, Barcelona Spain
| | - Beatriz González
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Institut d'investigació en ciéncies de la salut Germans Trias I Pujol, (IGTP), Campus Can Ruti, 08916 Badalona, Barcelona Spain
| | - Tatiana Ruiz-Larroya
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Institut d'investigació en ciéncies de la salut Germans Trias I Pujol, (IGTP), Campus Can Ruti, 08916 Badalona, Barcelona Spain ; Sanford Burnham Prebys Medical Dicovery Institute, 10901 N. Torrey Pines Rd. La Jolla, San Diego, CA 92037 USA
| | | | - Takaharu Kato
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Institut d'investigació en ciéncies de la salut Germans Trias I Pujol, (IGTP), Campus Can Ruti, 08916 Badalona, Barcelona Spain ; Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503 Japan
| | - Akihiro Matsunaga
- Sanford Burnham Prebys Medical Dicovery Institute, 10901 N. Torrey Pines Rd. La Jolla, San Diego, CA 92037 USA
| | - Koichi Suzuki
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503 Japan
| | - Alex Y Strongin
- Sanford Burnham Prebys Medical Dicovery Institute, 10901 N. Torrey Pines Rd. La Jolla, San Diego, CA 92037 USA
| | - Pepita Gimènez-Bonafé
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Institut d'investigació en ciéncies de la salut Germans Trias I Pujol, (IGTP), Campus Can Ruti, 08916 Badalona, Barcelona Spain ; Departament de Ciències Fisiològiques II, Campus Ciènces de Salut de Bellvitge, IDIBELL, University of Barcelona, Barcelona, 08907 Spain
| | - Manuel Perucho
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Institut d'investigació en ciéncies de la salut Germans Trias I Pujol, (IGTP), Campus Can Ruti, 08916 Badalona, Barcelona Spain ; Sanford Burnham Prebys Medical Dicovery Institute, 10901 N. Torrey Pines Rd. La Jolla, San Diego, CA 92037 USA ; Institució Catalana de Recerca i Estudis Avançats (ICREA), Catalan Institution for Research and Advanced Studies. Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
93
|
Wojtowicz ME, Dunn BK, Umar A. Immunologic approaches to cancer prevention-current status, challenges, and future perspectives. Semin Oncol 2015; 43:161-172. [PMID: 26970135 DOI: 10.1053/j.seminoncol.2015.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The potential of the immune system to recognize and reject tumors has been investigated for more than a century. However, only recently impressive breakthroughs in cancer immunotherapy have been seen with the use of checkpoint inhibitors. The experience with various immune-based strategies in the treatment of late cancer highlighted the importance of negative impact advanced disease has on immunity. Consequently, use of immune modulation for cancer prevention rather than therapy has gained considerable attention, with many promising results seen already in preclinical and early clinical studies. Although not without challenges, these results provide much excitement and optimism that successful cancer immunoprevention could be within our reach. In this review we will discuss the current state of predominantly primary and secondary cancer immunoprevention, relevant research, potential barriers, and future directions.
Collapse
Affiliation(s)
- Malgorzata E Wojtowicz
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Barbara K Dunn
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Asad Umar
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
94
|
Abstract
Constitutional epimutation, which is an aberration in gene expression due to an altered epigenotype that is widely distributed in normal tissues (albeit frequently mosaic), provides an alternative mechanism to genetic mutation for cancer predisposition. Observational studies in cancer-affected families have revealed intergenerational inheritance of constitutional epimutation, providing unique insights into the heritability of epigenetic traits in humans. In this Opinion article, the potential contribution of constitutional epimutation to the 'missing' causality and heritability of cancer is explored.
Collapse
Affiliation(s)
- Megan P Hitchins
- Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Grant Building S169, 1291 Welch Road, Stanford, California 94305, USA
| |
Collapse
|
95
|
van Veldhoven K, Polidoro S, Baglietto L, Severi G, Sacerdote C, Panico S, Mattiello A, Palli D, Masala G, Krogh V, Agnoli C, Tumino R, Frasca G, Flower K, Curry E, Orr N, Tomczyk K, Jones ME, Ashworth A, Swerdlow A, Chadeau-Hyam M, Lund E, Garcia-Closas M, Sandanger TM, Flanagan JM, Vineis P. Epigenome-wide association study reveals decreased average methylation levels years before breast cancer diagnosis. Clin Epigenetics 2015; 7:67. [PMID: 26244061 PMCID: PMC4524428 DOI: 10.1186/s13148-015-0104-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/29/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Interest in the potential of DNA methylation in peripheral blood as a biomarker of cancer risk is increasing. We aimed to assess whether epigenome-wide DNA methylation measured in peripheral blood samples obtained before onset of the disease is associated with increased risk of breast cancer. We report on three independent prospective nested case-control studies from the European Prospective Investigation into Cancer and Nutrition (EPIC-Italy; n = 162 matched case-control pairs), the Norwegian Women and Cancer study (NOWAC; n = 168 matched pairs), and the Breakthrough Generations Study (BGS; n = 548 matched pairs). We used the Illumina 450k array to measure methylation in the EPIC and NOWAC cohorts. Whole-genome bisulphite sequencing (WGBS) was performed on the BGS cohort using pooled DNA samples, combined to reach 50× coverage across ~16 million CpG sites in the genome including 450k array CpG sites. Mean β values over all probes were calculated as a measurement for epigenome-wide methylation. RESULTS In EPIC, we found that high epigenome-wide methylation was associated with lower risk of breast cancer (odds ratio (OR) per 1 SD = 0.61, 95 % confidence interval (CI) 0.47-0.80; -0.2 % average difference in epigenome-wide methylation for cases and controls). Specifically, this was observed in gene bodies (OR = 0.51, 95 % CI 0.38-0.69) but not in gene promoters (OR = 0.92, 95 % CI 0.64-1.32). The association was not replicated in NOWAC (OR = 1.03 95 % CI 0.81-1.30). The reasons for heterogeneity across studies are unclear. However, data from the BGS cohort was consistent with epigenome-wide hypomethylation in breast cancer cases across the overlapping 450k probe sites (difference in average epigenome-wide methylation in case and control DNA pools = -0.2 %). CONCLUSIONS We conclude that epigenome-wide hypomethylation of DNA from pre-diagnostic blood samples may be predictive of breast cancer risk and may thus be useful as a clinical biomarker.
Collapse
Affiliation(s)
- Karin van Veldhoven
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG UK.,HuGeF Foundation, 52, Via Nizza, Torino, 10126 Italy
| | | | | | | | | | - Salvatore Panico
- Departimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Amalia Mattiello
- Departimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy
| | - Giovanna Masala
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy
| | - Vittorio Krogh
- Epidemiology and Prevention Unit Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Agnoli
- Epidemiology and Prevention Unit Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | - Kirsty Flower
- Epigenetics Unit, Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN UK
| | - Ed Curry
- Epigenetics Unit, Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN UK
| | - Nicholas Orr
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Katarzyna Tomczyk
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Michael E Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Alan Ashworth
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Anthony Swerdlow
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK.,Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Marc Chadeau-Hyam
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG UK
| | - Eiliv Lund
- Department of Community Medicine, UiT-the Arctic University of Norway, Tromsø, Norway
| | - Montserrat Garcia-Closas
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK.,Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Torkjel M Sandanger
- Department of Community Medicine, UiT-the Arctic University of Norway, Tromsø, Norway
| | - James M Flanagan
- Epigenetics Unit, Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN UK
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG UK.,HuGeF Foundation, 52, Via Nizza, Torino, 10126 Italy
| |
Collapse
|
96
|
Yoo KH, Lee DG, Won KY, Lim SJ, Park YK, Chang SG. Expression of CC chemokine receptor 5 in clear cell renal cell carcinoma and its clinical significance. Oncol Lett 2015; 9:2085-2089. [PMID: 26137017 DOI: 10.3892/ol.2015.3048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 03/04/2015] [Indexed: 11/06/2022] Open
Abstract
DNA hypomethylation was the initial epigenetic abnormality recognized in human malignancy. In the present study, the GoldenGate high-throughput genotyping assay was adapted to determine the methylation state of 1,505 specific CpG sites in 807 cancer-related genes. The methylation results revealed that CC chemokine receptor 5 (CCR5) was hypomethylated (mean β-value difference, -0.21) in clear cell renal cell carcinoma (CCRCC) tissue. Tissue samples from 61 CCRCC cases were used for immunohistochemical staining, and patients with low CCR5 expression (n=44) were compared with those with high CCR5 expression (n=17). Tumor (T) stage was significantly lower in the low expression group compared with the high expression group (P=0.047). The Fuhrman grade of patients in the low expression group was significantly lower than that of patients in the high expression group (P=0.044). Whilst the node (N) and metastasis (M) stages of the CCR5 low expression group appeared to be lower compared with those of the CCR5 high expression group; this difference was not statistically significant (N stage, P=0.632; M stage, P=0.896). Additionally, patients in the low expression group had lower risks of postoperative tumor recurrence (P=0.110) and mortality from CCRCC (P=0.159) compared with those in the high expression group, however, this was also without statistical significance. The results indicate that CCR5 hypomethylation is associated with cancer tissue to a greater extent than normal tissue. Although the biological function of CCR5 in CCRCC remains to be established, low CCR5 expression is associated with low T stage and low Fuhrman grade in these patients.
Collapse
Affiliation(s)
- Koo Han Yoo
- Department of Urology, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Dong-Gi Lee
- Department of Urology, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Kyu Yeoun Won
- Department of Pathology, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Sung-Jig Lim
- Department of Pathology, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Yong-Koo Park
- Department of Pathology, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Sung-Goo Chang
- Department of Urology, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| |
Collapse
|
97
|
Sandhu R, Roll JD, Rivenbark AG, Coleman WB. Dysregulation of the epigenome in human breast cancer: contributions of gene-specific DNA hypermethylation to breast cancer pathobiology and targeting the breast cancer methylome for improved therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:282-92. [PMID: 25541331 DOI: 10.1016/j.ajpath.2014.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/23/2014] [Indexed: 12/11/2022]
Abstract
Triple-negative breast cancers (including basal-like and claudin-low molecular subtypes) represent 20% to 25% of all breast cancers, but disproportionately contribute to breast cancer-associated death. We have identified a novel fundamental biological property of triple-negative breast cancers: most triple-negative breast cancers express aberrant DNA hypermethylation due to overexpression of DNA methyltransferase 3b (and hyperactivity of the DNA methyltransferase enzymes). DNA methyltransferase 3b overexpression occurs secondary to loss of miRNA-mediated post-transcriptional regulation. The resulting hyperactivity of DNA methyltransferase 3b produces concurrent DNA methylation-dependent silencing of numerous critical gene targets (including tumor suppressors and pro-apoptotic genes) and resistance to cytotoxic chemotherapy. This observation presents new opportunities for development of innovative treatment strategies on the basis of the epigenome as a novel therapeutic target in triple-negative breast cancers. Epigenetic therapy represents a new principle in cancer treatment in which restoration of critical molecular pathways occurs secondary to reexpression of silenced genes that encode negative mediators of cancer cell growth.
Collapse
Affiliation(s)
- Rupninder Sandhu
- Department of Pathology and Laboratory Medicine, Curriculum in Toxicology, UNC Program in Translational Medicine, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - J Devon Roll
- Department of Pathology and Laboratory Medicine, Curriculum in Toxicology, UNC Program in Translational Medicine, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Ashley G Rivenbark
- Department of Pathology and Laboratory Medicine, Curriculum in Toxicology, UNC Program in Translational Medicine, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - William B Coleman
- Department of Pathology and Laboratory Medicine, Curriculum in Toxicology, UNC Program in Translational Medicine, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
| |
Collapse
|
98
|
Chandra V, Hong KM. Effects of deranged metabolism on epigenetic changes in cancer. Arch Pharm Res 2015; 38:321-37. [PMID: 25628247 DOI: 10.1007/s12272-015-0561-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/09/2015] [Indexed: 12/17/2022]
Abstract
The concept of epigenetics is now providing the mechanisms by which cells transfer their new environmental-change-induced phenotypes to their daughter cells. However, how extracellular or cytoplasmic environmental cues are connected to the nuclear epigenome remains incompletely understood. Recently emerging evidence suggests that epigenetic changes are correlated with metabolic changes via chromatin remodeling. As many human complex diseases including cancer harbor both epigenetic changes and metabolic dysregulation, understanding the molecular processes linking them has huge implications for disease pathogenesis and therapeutic intervention. In this review, the impacts of metabolic changes on cancer epigenetics are discussed, along with the current knowledge on cancer metabolism and epigenetics.
Collapse
Affiliation(s)
- Vishal Chandra
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, 410-769, Korea
| | | |
Collapse
|
99
|
Abstract
Most recent investigations into cancer etiology have identified a key role played by epigenetics. Specifically, aberrant DNA and histone modifications which silence tumor suppressor genes or promote oncogenes have been demonstrated in multiple cancer models. While the role of epigenetics in several solid tumor cancers such as colorectal cancer are well established, there is emerging evidence that epigenetics also plays a critical role in breast and prostate cancer. In breast cancer, DNA methylation profiles have been linked to hormone receptor status and tumor progression. Similarly in prostate cancer, epigenetic patterns have been associated with androgen receptor status and response to therapy. The regulation of key receptor pathways and activities which affect clinical therapy treatment options by epigenetics renders this field high priority for elucidating mechanisms and potential targets. A new set of methylation arrays are now available to screen epigenetic changes and provide the cutting-edge tools needed to perform such investigations. The role of nutritional interventions affecting epigenetic changes particularly holds promise. Ultimately, determining the causes and outcomes from epigenetic changes will inform translational applications for utilization as biomarkers for risk and prognosis as well as candidates for therapy.
Collapse
Affiliation(s)
- Yanyuan Wu
- Division of Cancer Research and Training, Center to Eliminate Cancer Health Disparities, Department of Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, USA
| | - Marianna Sarkissyan
- Division of Cancer Research and Training, Center to Eliminate Cancer Health Disparities, Department of Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Center to Eliminate Cancer Health Disparities, Department of Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, USA
- Corresponding Author Contact Information: Division of Cancer Research and Training, Center to Eliminate Cancer Health Disparities, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, CA 90059, USA. Tele: 323-563-4853. Fax: 323-563-4859 ;
| |
Collapse
|
100
|
Langevin SM, Kratzke RA, Kelsey KT. Epigenetics of lung cancer. Transl Res 2015; 165:74-90. [PMID: 24686037 PMCID: PMC4162853 DOI: 10.1016/j.trsl.2014.03.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/25/2014] [Accepted: 03/06/2014] [Indexed: 12/20/2022]
Abstract
Lung cancer is the leading cause of cancer-related mortality in the United States. Epigenetic alterations, including DNA methylation, histone modifications, and noncoding RNA expression, have been reported widely in the literature to play a major role in the genesis of lung cancer. The goal of this review is to summarize the common epigenetic changes associated with lung cancer to give some clarity to its etiology, and to provide an overview of the potential translational applications of these changes, including applications for early detection, diagnosis, prognostication, and therapeutics.
Collapse
Affiliation(s)
- Scott M Langevin
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Robert A Kratzke
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minn
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, RI; Department of Pathology and Laboratory Medicine, Brown University, Providence, RI.
| |
Collapse
|