51
|
Zhao Y, Xiao J, Gong S, Clara JA, Ledoux MS. Neural expression of the transcription factor THAP1 during development in rat. Neuroscience 2012; 231:282-95. [PMID: 23219941 DOI: 10.1016/j.neuroscience.2012.11.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/24/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
Abstract
Loss of function mutations in THAP1 has been associated with primary generalized and focal dystonia in children and adults. THAP1 encodes a transcription factor (THAP1) that harbors an atypical zinc finger domain and plays a critical role in G(1)-S cell cycle control. Current thinking suggests that dystonia may be a neurodevelopmental circuit disorder. Hence, THAP1 may participate in the development of the nervous system. Herein, we report the neurodevelopmental expression patterns of Thap1 transcript and THAP1 protein from the early postnatal period through adulthood in the rat brain, spinal cord and dorsal root ganglia (DRG). We detected Thap1 transcript and THAP1-immunoreactivity (IR) in the cerebral cortex, cerebellum, striatum, substantia nigra, thalamus, spinal cord and DRG. Thap1 transcript expression was higher in the brain than in spinal cord and DRG at P1 and P7 and declined to similar levels at P14 and later time points in all regions except the cerebellum, where it remained high through adulthood. In the brain, THAP1 expression was highest in early development, particularly in the cerebellum at P7. In addition to Purkinje cells in the cerebellum, THAP1-IR was also localized to pyramidal neurons in the cerebral cortex, relay neurons in the thalamus, medium spiny and cholinergic neurons in the striatum, dopaminergic neurons in the substantia nigra, and pyramidal and interneurons in the hippocampus. In the cerebellar cortex, THAP1-IR was prominently distributed in the perikarya and proximal dendrites of Purkinje cells at early time-points. In contrast, it was more diffusely distributed throughout the dendritic arbor of adult Purkinje cells producing a moderate diffuse staining pattern in the molecular layer. At all time points, nuclear IR was weaker than cytoplasmic IR. The prominent cytoplasmic and developmentally regulated expression of THAP1 suggests that THAP1 may function as part of a cell surface-nucleus signaling cascade involved in terminal neural differentiation.
Collapse
Affiliation(s)
- Y Zhao
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
52
|
Trinidad JC, Barkan DT, Gulledge BF, Thalhammer A, Sali A, Schoepfer R, Burlingame AL. Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol Cell Proteomics 2012; 11:215-29. [PMID: 22645316 DOI: 10.1074/mcp.o112.018366] [Citation(s) in RCA: 346] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is a dynamic, reversible monosaccharide modifier of serine and threonine residues on intracellular protein domains. Crosstalk between O-GlcNAcylation and phosphorylation has been hypothesized. Here, we identified over 1750 and 16,500 sites of O-GlcNAcylation and phosphorylation from murine synaptosomes, respectively. In total, 135 (7%) of all O-GlcNAcylation sites were also found to be sites of phosphorylation. Although many proteins were extensively phosphorylated and minimally O-GlcNAcylated, proteins found to be extensively O-GlcNAcylated were almost always phosphorylated to a similar or greater extent, indicating the O-GlcNAcylation system is specifically targeting a subset of the proteome that is also phosphorylated. Both PTMs usually occur on disordered regions of protein structure, within which, the location of O-GlcNAcylation and phosphorylation is virtually random with respect to each other, suggesting that negative crosstalk at the structural level is not a common phenomenon. As a class, protein kinases are found to be more extensively O-GlcNAcylated than proteins in general, indicating the potential for crosstalk of phosphorylation with O-GlcNAcylation via regulation of enzymatic activity.
Collapse
Affiliation(s)
- Jonathan C Trinidad
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California 94158, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Shan X, Vocadlo DJ, Krieger C. Reduced protein O-glycosylation in the nervous system of the mutant SOD1 transgenic mouse model of amyotrophic lateral sclerosis. Neurosci Lett 2012; 516:296-301. [PMID: 22521585 DOI: 10.1016/j.neulet.2012.04.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/16/2012] [Accepted: 04/06/2012] [Indexed: 11/17/2022]
Abstract
In the neurodegenerative disease amyotrophic lateral sclerosis (ALS), a number of proteins have been found to be hyperphosphorylated, including neurofilament proteins (NFs). In addition to protein phosphorylation, another important post-translational modification is O-glycosylation with β-N-acetylglucosamine residues (O-GlcNAc) and it has been found that O-GlcNAc can modify proteins competitively with protein phosphorylation, so that increased O-GlcNAc can reduce phosphorylation at specific sites. We evaluated a transgenic mouse model of ALS that overexpresses mutant superoxide dismutase (mSOD) and found that O-GlcNAc immunoreactivity levels are decreased in spinal cord tissue from mSOD mice, compared to controls. This reduction in O-GlcNAc levels is prominent in the motor neurons of spinal cord. We find that inhibition of O-GlcNAcase (OGA), the enzyme catalyzing removal of O-GlcNAc, using the inhibitor NButGT for 3 days, resulted in increased O-GlcNAc levels in spinal cord, both in mSOD and control mice. Furthermore, NButGT increased levels of O-GlcNAc modified NF-medium in spinal cords of control mice, but not in mSOD mice. These observations suggest that the neurodegeneration found in mSOD mice is associated with a reduction of O-GlcNAc levels in neurons, including motor neurons.
Collapse
Affiliation(s)
- Xiaoyang Shan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | |
Collapse
|
54
|
Graham ME, Thaysen-Andersen M, Bache N, Craft GE, Larsen MR, Packer NH, Robinson PJ. A novel post-translational modification in nerve terminals: O-linked N-acetylglucosamine phosphorylation. J Proteome Res 2011; 10:2725-33. [PMID: 21500857 DOI: 10.1021/pr1011153] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein phosphorylation and glycosylation are the most common post-translational modifications observed in biology, frequently on the same protein. Assembly protein AP180 is a synapse-specific phosphoprotein and O-linked beta-N-acetylglucosamine (O-GlcNAc) modified glycoprotein. AP180 is involved in the assembly of clathrin coated vesicles in synaptic vesicle endocytosis. Unlike other types of O-glycosylation, O-GlcNAc is nucleocytoplasmic and reversible. It was thought to be a terminal modification, that is, the O-GlcNAc was not found to be additionally modified in any way. We now show that AP180 purified from rat brain contains a phosphorylated O-GlcNAc (O-GlcNAc-P) within a highly conserved sequence. O-GlcNAc or O-GlcNAc-P, but not phosphorylation alone, was found at Thr-310. Analysis of synthetic GlcNAc-6-P produced identical fragmentation products to GlcNAc-P from AP180. Direct O-linkage of GlcNAc-P to a Thr residue was confirmed by electron transfer dissociation MS. A second AP180 tryptic peptide was also glycosyl phosphorylated, but the site of modification was not assigned. Sequence similarities suggest there may be a common motif within AP180 involving glycosyl phosphorylation and dual flanking phosphorylation sites within 4 amino acid residues. This novel type of protein glycosyl phosphorylation adds a new signaling mechanism to the regulation of neurotransmission and more complexity to the study of O-GlcNAc modification.
Collapse
Affiliation(s)
- Mark E Graham
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Westmead, Australia.
| | | | | | | | | | | | | |
Collapse
|
55
|
Hwang SY, Shin JH, Hwang JS, Kim SY, Shin JA, Oh ES, Oh S, Kim JB, Lee JK, Han IO. Glucosamine exerts a neuroprotective effect via suppression of inflammation in rat brain ischemia/reperfusion injury. Glia 2010; 58:1881-92. [PMID: 20737476 DOI: 10.1002/glia.21058] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We investigated the neuroprotective effect of glucosamine (GlcN) in a rat middle cerebral artery occlusion model. At the highest dose used, intraperitoneal GlcN reduced infarct volume to 14.3% ± 7.4% that of untreated controls and afforded a reduction in motor impairment and neurological deficits. Neuroprotective effects were not reproduced by other amine sugars or acetylated-GlcN, and GlcN suppressed postischemic microglial activation. Moreover, GlcN suppressed lipopolysaccharide (LPS)-induced upregulation of proinflammatory mediators both in vivo and in culture systems using microglial or macrophage cells. The anti-inflammatory effects of GlcN were mainly attributable to its ability to inhibit nuclear factor kappaB (NF-κB) activation. GlcN inhibited LPS-induced nuclear translocation and DNA binding of p65 to both NF-κB consensus sequence and NF-κB binding sequence of inducible nitric oxide synthase promoter. In addition, we found that GlcN strongly repressed p65 transactivation in BV2 cells using Gal4-p65 chimeras system. P65 displayed increased O-GlcNAcylation in response to LPS; this effect was also reversed by GlcN. The LPS-induced increase in p65 O-GlcNAcylation was paralleled by an increase in interaction with O-GlcNAc transferase, which was reversed by GlcN. Finally, our results suggest that GlcN or its derivatives may serve as novel neuroprotective or anti-inflammatory agents.
Collapse
Affiliation(s)
- So-Young Hwang
- Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Skorobogatko YV, Deuso J, Adolf-Bryfogle J, Nowak MG, Gong Y, Lippa CF, Vosseller K. Human Alzheimer's disease synaptic O-GlcNAc site mapping and iTRAQ expression proteomics with ion trap mass spectrometry. Amino Acids 2010; 40:765-79. [PMID: 20563614 DOI: 10.1007/s00726-010-0645-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 05/27/2010] [Indexed: 12/31/2022]
Abstract
Neuronal synaptic functional deficits are linked to impaired learning and memory in Alzheimer's disease (AD). We recently demonstrated that O-GlcNAc, a novel cytosolic and nuclear carbohydrate post-translational modification, is enriched at neuronal synapses and positively regulates synaptic plasticity linked to learning and memory in mice. Reduced levels of O-GlcNAc have been observed in AD, suggesting a possible link to deficits in synaptic plasticity. Using lectin enrichment and mass spectrometry, we mapped several human cortical synaptic O-GlcNAc modification sites. Overlap in patterns of O-GlcNAcation between mouse and human appears to be high, as previously mapped mouse synaptic O-GlcNAc sites in Bassoon, Piccolo, and tubulin polymerization promoting protein p25 were identified in human. Novel O-GlcNAc modification sites were identified on Mek2 and RPN13/ADRM1. Mek2 is a signaling component of the Erk 1/2 pathway involved in synaptic plasticity. RPN13 is a component of the proteasomal degradation pathway. The potential interplay of phosphorylation with mapped O-GlcNAc sites, and possible implication of those sites in synaptic plasticity in normal versus AD states is discussed. iTRAQ is a powerful differential isotopic quantitative approach in proteomics. Pulsed Q dissociation (PQD) is a recently introduced fragmentation strategy that enables detection of low mass iTRAQ reporter ions in ion trap mass spectrometry. We optimized LTQ ion trap settings for PQD-based iTRAQ quantitation and demonstrated its utility in O-GlcNAc site mapping. Using iTRAQ, abnormal synaptic expression levels of several proteins previously implicated in AD pathology were observed in addition to novel changes in synaptic specific protein expression including Synapsin II.
Collapse
Affiliation(s)
- Yuliya V Skorobogatko
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Lefebvre T, Dehennaut V, Guinez C, Olivier S, Drougat L, Mir AM, Mortuaire M, Vercoutter-Edouart AS, Michalski JC. Dysregulation of the nutrient/stress sensor O-GlcNAcylation is involved in the etiology of cardiovascular disorders, type-2 diabetes and Alzheimer's disease. Biochim Biophys Acta Gen Subj 2009; 1800:67-79. [PMID: 19732809 DOI: 10.1016/j.bbagen.2009.08.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 08/17/2009] [Accepted: 08/24/2009] [Indexed: 11/19/2022]
Abstract
O-GlcNAcylation is widespread within the cytosolic and nuclear compartments of cells. This post-translational modification is likely an indicator of good health since its intracellular level correlates with the availability of extracellular glucose. Apart from its status as a nutrient sensor, O-GlcNAcylation may also act as a stress sensor since it exerts its fundamental effects in response to stress. Several studies report that the cell quickly responds to an insult by elevating O-GlcNAcylation levels and by unmasking a newly described Hsp70-GlcNAc binding property. From a more practical point of view, it has been shown that O-GlcNAcylation impairments contribute to the etiology of cardiovascular diseases, type-2 diabetes and Alzheimer's disease (AD), three illnesses common in occidental societies. Many studies have demonstrated that O-GlcNAcylation operates as a powerful cardioprotector and that by raising O-GlcNAcylation levels, the organism more successfully resists trauma-hemorrhage and ischemia/reperfusion injury. Recent data have also shown that insulin resistance and, more broadly, type-2 diabetes can be controlled by O-GlcNAcylation of the insulin pathway and O-GlcNAcylation of the gluconeogenesis transcription factors FoxO1 and CRCT2. Lastly, the finding that AD may correspond to a type-3 diabetes offers new perspectives into the knowledge of the neuropathology and into the search for new therapeutic avenues.
Collapse
Affiliation(s)
- Tony Lefebvre
- CNRS-UMR 8576, Unit of Structural and Functional Glycobiology, IFR 147, University of Lille 1, Villeneuve d'Ascq, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
O-GlcNAc cycling: implications for neurodegenerative disorders. Int J Biochem Cell Biol 2009; 41:2134-46. [PMID: 19782947 DOI: 10.1016/j.biocel.2009.03.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 03/13/2009] [Accepted: 03/18/2009] [Indexed: 12/20/2022]
Abstract
The dynamic post-translational modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc), termed O-GlcNAcylation, is an important mechanism for modulating cellular signaling pathways. O-GlcNAcylation impacts transcription, translation, organelle trafficking, proteasomal degradation and apoptosis. O-GlcNAcylation has been implicated in the etiology of several human diseases including type-2 diabetes and neurodegeneration. This review describes the pair of enzymes responsible for the cycling of this post-translational modification: O-GlcNAc transferase (OGT) and beta-N-acetylglucosaminidase (OGA), with a focus on the function of their structural domains. We will also highlight the important processes and substrates regulated by these enzymes, with an emphasis on the role of O-GlcNAc as a nutrient sensor impacting insulin signaling and the cellular stress response. Finally, we will focus attention on the many ways by which O-GlcNAc cycling may affect the cellular machinery in the neuroendocrine and central nervous systems.
Collapse
|
59
|
Francisco H, Kollins K, Varghis N, Vocadlo D, Vosseller K, Gallo G. O-GLcNAc post-translational modifications regulate the entry of neurons into an axon branching program. Dev Neurobiol 2009; 69:162-73. [PMID: 19086029 PMCID: PMC2747243 DOI: 10.1002/dneu.20695] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 10/27/2008] [Accepted: 10/30/2008] [Indexed: 11/23/2022]
Abstract
Many neuronal cytosolic and nuclear proteins are post-translationally modified by the reversible addition of O-linked N-acetylglucosamine (O-GlcNAc) on serines and threonines. The cellular functions of O-GlcNAc modifications in neuronal development are not known. We report that O-GlcNAc-modified proteins are distributed nonuniformly throughout cultured primary chicken forebrain neurons, with intense immunostaining of the cell body, punctuate immunostaining in axons and all processes, and localization in filopodia/lamellipodia. Overexpression of O-GlcNAcase, the enzyme that removes O-GlcNAc from proteins, increased the percentage of neurons exhibiting axon branching without altering the frequency of axon branches on a per neuron basis and increased the numbers of axonal filopodia. Conversely, pharmacologically increasing O-GlcNAc levels on proteins through specific inhibition of O-GlcNAcase with the inhibitor 9d decreased the numbers of axonal filopodia, but had no effect on axon length or branching. Treatment with an alternative O-GlcNAcase inhibitor, PUGNAc, similarly decreased the number of axonal filopodia. Furthermore, axon branching induced by the adenylyl cyclase activator forskolin was suppressed by pharmacological inhibition of O-GlcNAcase. Western analysis revealed that O-GlcNAc levels regulate the phosphorylation of some PKA substrates in response to forskolin. These data provide the first evidence of O-GlcNAc modification-specific influences in neuronal development in primary culture, and indicate specific roles for O-GlcNAc in the regulation of axon morphology.
Collapse
Affiliation(s)
- Herb Francisco
- Department of Neurobiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | | | |
Collapse
|
60
|
O-GlcNAc modification of radial glial vimentin filaments in the developing chick brain. ACTA ACUST UNITED AC 2009; 36:191-202. [PMID: 19132533 DOI: 10.1007/s11068-008-9036-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 06/24/2008] [Accepted: 09/09/2008] [Indexed: 10/21/2022]
Abstract
We examined the post-translational modification of intracellular proteins by beta-O-linked N-acetylglucosamine (O-GlcNAc) with regard to neurofilament phosphorylation in the developing chick optic tectum. A regulated developmental pattern of O-GlcNAcylation was discovered in the developing brain. Most notably, discernible staining occurs along radial glial filaments but not along neuronal filaments in vivo. Immunohistochemical analyses in sections of progressive stages of development suggest upregulation of O-GlcNAc in the ependyma, tectofugal neuron bodies, and radial glial processes, but not in axons. In contrast, double-label immunostaining of monolayer cultures made from dissociated embryonic day (E) 7 optic tecta revealed O-GlcNAcylation of most axons. Labeling of brain sections together with Western blot analyses showed O-GlcNAc modification of a few discrete proteins throughout development, and suggested vimentin as the protein in radial glia. Immunoprecipitation of vimentin from E9 whole brain lysates confirmed O-GlcNAcylation of vimentin in development. These results indicate a regulated pattern of O-GlcNAc modification of vimentin filaments, which in turn suggests a role for O-GlcNAc-modified intermediate filaments in radial glia, but not in neurons during brain development. The control mechanisms that regulate this pattern in vivo, however, are disrupted when cells are placed in vitro.
Collapse
|
61
|
Tallent MK, Varghis N, Skorobogatko Y, Hernandez-Cuebas L, Whelan K, Vocadlo DJ, Vosseller K. In vivo modulation of O-GlcNAc levels regulates hippocampal synaptic plasticity through interplay with phosphorylation. J Biol Chem 2008; 284:174-181. [PMID: 19004831 DOI: 10.1074/jbc.m807431200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O-Linked N-acetylglucosamine (O-GlcNAc) is a cytosolic and nuclear carbohydrate post-translational modification most abundant in brain. We recently reported uniquely extensive O-GlcNAc modification of proteins that function in synaptic vesicle release and post-synaptic signal transduction. Here we examined potential roles for O-GlcNAc in mouse hippocampal synaptic transmission and plasticity. O-GlcNAc modifications and the enzyme catalyzing their addition (O-GlcNAc transferase) were enriched in hippocampal synaptosomes. Pharmacological elevation or reduction of O-GlcNAc levels had no effect on Schaffer collateral CA1 basal hippocampal synaptic transmission. However, in vivo elevation of O-GlcNAc levels enhanced long term potentiation (LTP), an electrophysiological correlate to some forms of learning/memory. Reciprocally, pharmacological reduction of O-GlcNAc levels blocked LTP. Additionally, elevated O-GlcNAc led to reduced paired-pulse facilitation, a form of short term plasticity attributed to presynaptic mechanisms. Synapsin I and II are presynaptic proteins that increase synaptic vesicle availability for release when phosphorylated, thus contributing to hippocampal synaptic plasticity. Synapsins are among the most extensively O-GlcNAc-modified proteins known. Elevating O-GlcNAc levels increased phosphorylation of Synapsin I/II at serine 9 (cAMP-dependent protein kinase substrate site), serine 62/67 (Erk 1/2 (MAPK 1/2) substrate site), and serine 603 (calmodulin kinase II site). Activation-specific phosphorylation events on Erk 1/2 and calmodulin kinase II, two proteins required for CA1 hippocampal LTP establishment, were increased in response to elevation of O-GlcNAc levels. Thus, O-GlcNAc is a novel regulatory signaling component of excitatory synapses, with specific roles in synaptic plasticity that involve interplay with phosphorylation.
Collapse
Affiliation(s)
- Melanie K Tallent
- Department of Biochemistry and Molecular Biology and Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and the Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Neal Varghis
- Department of Biochemistry and Molecular Biology and Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and the Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Yuliya Skorobogatko
- Department of Biochemistry and Molecular Biology and Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and the Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Lisa Hernandez-Cuebas
- Department of Biochemistry and Molecular Biology and Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and the Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Kelly Whelan
- Department of Biochemistry and Molecular Biology and Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and the Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - David J Vocadlo
- Department of Biochemistry and Molecular Biology and Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and the Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Keith Vosseller
- Department of Biochemistry and Molecular Biology and Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and the Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
62
|
Rexach JE, Clark PM, Hsieh-Wilson LC. Chemical approaches to understanding O-GlcNAc glycosylation in the brain. Nat Chem Biol 2008; 4:97-106. [PMID: 18202679 PMCID: PMC3250351 DOI: 10.1038/nchembio.68] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
O-GlcNAc glycosylation is a unique, dynamic form of glycosylation found on intracellular proteins of all multicellular organisms. Studies suggest that O-GlcNAc represents a key regulatory modification in the brain, contributing to transcriptional regulation, neuronal communication and neurodegenerative disease. Recently, several new chemical tools have been developed to detect and study the modification, including chemoenzymatic tagging methods, quantitative proteomics strategies and small-molecule inhibitors of O-GlcNAc enzymes. Here we highlight some of the emerging roles for O-GlcNAc in the nervous system and describe how chemical tools have significantly advanced our understanding of the scope, functional significance and cellular dynamics of this modification.
Collapse
Affiliation(s)
- Jessica E Rexach
- Division of Chemistry and Chemical Engineering, and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
63
|
Abstract
Our knowledge of the complex synaptic proteome and its relationship to physiological or pathological conditions is rapidly expanding. This has been greatly accelerated by the application of various evolving proteomic techniques, enabling more efficient protein resolution, more accurate protein identification, and more comprehensive characterization of proteins undergoing quantitative and qualitative changes. More recently, the combination of the classical subcellular fractionation techniques for the isolation of synaptosomes from the brain with the various proteomic analyses has facilitated this effort. This has resulted from the enrichment of many low abundant proteins comprising the fundamental structure and molecular machinery of brain neurotransmission and neuroplasticity. The analysis of various subproteomes obtained from the synapse, such as synaptic vesicles, synaptic membranes, presynaptic particles, synaptodendrosomes, and postsynaptic densities (PSD) holds great promise for improving our understanding of the temporal and spatial processes that coordinate synaptic proteins in closely related complexes under both normal and diseased states. This chapter will summarize a selection of recent studies that have drawn upon established and emerging proteomic technologies, along with fractionation techniques that are essential to the isolation and analysis of specific synaptic components, in an effort to understand the complexity and plasticity of the synapse proteome.
Collapse
Affiliation(s)
- Fengju Bai
- Safety Sciences, Charles River Laboratories Preclinical Services, Worcester, Massachusetts, USA
| | | |
Collapse
|
64
|
März P, Stetefeld J, Bendfeldt K, Nitsch C, Reinstein J, Shoeman RL, Dimitriades-Schmutz B, Schwager M, Leiser D, Ozcan S, Otten U, Ozbek S. Ataxin-10 interacts with O-linked beta-N-acetylglucosamine transferase in the brain. J Biol Chem 2006; 281:20263-70. [PMID: 16714295 DOI: 10.1074/jbc.m601563200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Modification by O-GlcNAc involves a growing number of eucaryotic nuclear and cytosolic proteins. Glycosylation of intracellular proteins is a dynamic process that in several cases competes with and acts as a reciprocal modification system to phosphorylation. O-Linked beta-N-acetylglucosamine transferase (OGT) levels are highest in the brain, and neurodegenerative disorders such as Alzheimer disease have been shown to involve abnormally phosphorylated key proteins, probably as a result of hypoglycosylation. Here, we show that the neurodegenerative disease protein ataxin-10 (Atx-10) is associated with cytoplasmic OGT p110 in the brain. In PC12 cells and pancreas, this association is competed by the shorter OGT p78 splice form, which is down-regulated in brain. Overexpression of Atx-10 in PC12 cells resulted in the reconstitution of the Atx-10-OGT p110 complex and enhanced intracellular glycosylation activity. Moreover, in an in vitro enzyme assay using PC12 cell extracts, Atx-10 increased OGT activity 2-fold. These data indicate that Atx-10 might be essential for the maintenance of a critical intracellular glycosylation level and homeostasis in the brain.
Collapse
Affiliation(s)
- Pia März
- Institute of Physiology, Pestalozzistr. 20, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Lefebvre T, Guinez C, Dehennaut V, Beseme-Dekeyser O, Morelle W, Michalski JC. Does O-GlcNAc play a role in neurodegenerative diseases? Expert Rev Proteomics 2006; 2:265-75. [PMID: 15892570 DOI: 10.1586/14789450.2.2.265] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There are several lines of evidence that the modification of proteins by cytosolic- and nuclear-specific O-linked N-acetylglucosamine (O-GlcNAc) glycosylation is closely related to neuropathologies, particularly Alzheimer's disease. Several neuronal proteins have been identified as being modified with O-GlcNAc; these proteins could form part of the inclusion bodies found, for example, in the most frequently observed neurologic disorder (i.e., Alzheimer's disease; Tau protein and beta-amyloid peptide are the well known aggregated proteins). O-GlcNAc proteins are also implicated in synaptosomal transport (e.g., synapsins and clathrin-assembly proteins). Inclusion bodies are partly characterized by a deficiency in the ubiquitin-proteasome system, avoiding the degradation of aggregated proteins. From this perspective, it appears interesting that substrate proteins could be protected against proteasomal degradation by being covalently modified with single N-acetylglucosamine on serine or threonine, and that the proteasome itself is modified and regulated by O-GlcNAc (in this case the turnover of neuronal proteins correlates with extracellular glucose). Interestingly, glucose uptake and metabolism are impaired in neuronal disorders, and this phenomenon is linked to increased phosphorylation. In view of the existence of the dynamic interplay between O-GlcNAc and phosphorylation, it is tempting to draw a parallel between the use of glucose, O-GlcNAc glycosylation and phosphorylation. Lastly, the two enzymes responsible for O-GlcNAc dynamism (i.e., O-GlcNAc transferase and glucosaminidase) are both enriched in the brain and genes that encode the two enzymes are located in two regions that are found to be frequently mutated in neurologic disorders. The data presented in this review strongly suggest that O-GlcNAc could play an active role in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tony Lefebvre
- UMR 8576, Centre National de la Recherche Scientifique , Laboratoire de Chimie-Biologique, Bâtiment C9, 59655 Villeneuve d'Ascq, France.
| | | | | | | | | | | |
Collapse
|
66
|
Abstract
A dynamic cycle of addition and removal of O-linked N-acetylglucosamine (O-GlcNAc) at serine and threonine residues is emerging as a key regulator of nuclear and cytoplasmic protein activity. Like phosphorylation, protein O-GlcNAcylation dramatically alters the posttranslational fate and function of target proteins. Indeed, O-GlcNAcylation may compete with phosphorylation for certain Ser/Thr target sites. Like kinases and phosphatases, the enzymes of O-GlcNAc metabolism are highly compartmentalized and regulated. Yet, O-GlcNAc addition is subject to an additional and unique level of metabolic control. O-GlcNAc transfer is the terminal step in a "hexosamine signaling pathway" (HSP). In the HSP, levels of uridine 5'-diphosphate (UDP)-GlcNAc respond to nutrient excess to activate O-GlcNAcylation. Removal of O-GlcNAc may also be under similar metabolic regulation. Differentially targeted isoforms of the enzymes of O-GlcNAc metabolism allow the participation of O-GlcNAc in diverse intracellular functions. O-GlcNAc addition and removal are key to histone remodeling, transcription, proliferation, apoptosis, and proteasomal degradation. This nutrient-responsive signaling pathway also modulates important cellular pathways, including the insulin signaling cascade in animals and the gibberellin signaling pathway in plants. Alterations in O-GlcNAc metabolism are associated with various human diseases including diabetes mellitus and neurodegeneration. This review will focus on current approaches to deciphering the "O-GlcNAc code" in order to elucidate how O-GlcNAc participates in its diverse functions. This ongoing effort requires analysis of the enzymes of O-GlcNAc metabolism, their many targets, and how the O-GlcNAc modification may be regulated.
Collapse
Affiliation(s)
- Dona C Love
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | | |
Collapse
|
67
|
Majumdar G, Wright J, Markowitz P, Martinez-Hernandez A, Raghow R, Solomon SS. Insulin stimulates and diabetes inhibits O-linked N-acetylglucosamine transferase and O-glycosylation of Sp1. Diabetes 2004; 53:3184-92. [PMID: 15561949 DOI: 10.2337/diabetes.53.12.3184] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insulin stimulates both the biosynthesis of transcription factor Sp1 and its O-linked N-acetylglucosaminylation (O-GlcNAcylation), which promotes nuclear localization of Sp1 and its ability to transactivate calmodulin (CaM) gene transcription. To investigate this further, we incubated H-411E liver cells with insulin (10,000 microU/ml) and quantified the subcellular distribution of O-GlcNAc transferase (OGT) and O-GlcNAc-modified Sp1. We also examined the phosphorylation of Sp1 using both Western blot and incorporation of 32P into Sp1. The results demonstrate that insulin, but not glucagon, stimulates OGT synthesis and enhances cytosolic staining of OGT (histochemical). Insulin increases O-GlcNAc-Sp1, which peaks at 30 min, followed by decline at 4 h. In contrast, insulin initiates phosphorylation of Sp1 early, followed by a continued increase in phosphorylated Sp1 (PO4-Sp1) at 4 h. A reciprocal relationship between O-GlcNAc-Sp1 and PO4-Sp1 was observed. To explore the pathophysiological relevance, we localized OGT in liver sections from streptozotocin (STZ)-induced diabetic rats. We observed that staining of OGT in STZ-induced diabetic rat liver is clearly diminished, but it was substantially restored after 6 days of insulin treatment. We conclude that insulin stimulates CaM gene transcription via a dynamic interplay between O-glycosylation and phosphorylation of Sp1 that modulates stability, mobility, subcellular compartmentalization, and activity.
Collapse
Affiliation(s)
- Gipsy Majumdar
- Research Services, VA Medical Center, Memphis, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
68
|
Kisilevsky R, Szarek WA, Ancsin JB, Elimova E, Marone S, Bhat S, Berkin A. Inhibition of amyloid A amyloidogenesis in vivo and in tissue culture by 4-deoxy analogues of peracetylated 2-acetamido-2-deoxy-alpha- and beta-d-glucose: implications for the treatment of various amyloidoses. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:2127-37. [PMID: 15161647 PMCID: PMC1615784 DOI: 10.1016/s0002-9440(10)63771-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two novel sugars, 2-acetamido-1,3,6-tri-O-acetyl-2,4-dideoxy-alpha- and beta-D-xylo-hexopyranoses, have been synthesized and their effects on heparan sulfate biosynthesis using primary mouse hepatocytes in tissue culture have been assessed. At concentrations of 0.1 and 1.0 mmol/L a mixture of both anomers significantly inhibited the biosynthesis of heparan sulfate by 60% and 99%, respectively. At 1.0 mmol/L the average molecular weight of the heparan sulfate synthesized is reduced from 77 kd to 40 kd. The biosynthetic inhibition is apparent within 1 hour (the earliest time point examined) of exposure of the hepatocytes to the analogues and appears virtually complete throughout a 24-hour incubation period. Using a radiolabeled version of the beta-anomer we demonstrate that the analogue is incorporated into growing heparan sulfate chains. The nature of the analogue, the quantity of analogue isotope incorporated, and the reduction in the size of the heparan sulfate polysaccharide are consistent with UDP activation and incorporation of the analogue and truncation of the growing heparan sulfate chain. At 0.1 mmol/L, and in the presence of a constant concentration of serum amyloid A (the precursor to AA amyloid), each analogue inhibited amyloid deposition (by 95 to 99%) in a tissue culture model of AA amyloidogenesis. At 6 mg/dose twice daily each analogue inhibited in vivo splenic AA amyloid deposition by 65 to 70% when using a rapid induction model of mouse AA amyloidogenesis. These data indicate that polysaccharides, such as heparan sulfate, play an integral part in the pathogenesis of AA amyloid deposition, and potentially other forms of amyloid. These data support our previous work that demonstrated that agents that mimic aspects of heparan sulfate structure and that interfere with heparan sulfate:amyloid protein binding inhibit AA amyloid deposition. They emphasize that heparan sulfate likely plays a critical role in amyloidogenesis, and compounds that interfere with heparan sulfate biosynthesis may provide leads for the development of anti-amyloid therapeutic agents.
Collapse
Affiliation(s)
- Robert Kisilevsky
- Department of Pathology, Queen's University and The Syl and Molly Apps Research Center, Kingston General Hospital, Kingston, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
69
|
Liu K, Paterson AJ, Zhang F, McAndrew J, Fukuchi KI, Wyss JM, Peng L, Hu Y, Kudlow JE. Accumulation of protein O-GlcNAc modification inhibits proteasomes in the brain and coincides with neuronal apoptosis in brain areas with high O-GlcNAc metabolism. J Neurochem 2004; 89:1044-55. [PMID: 15140202 DOI: 10.1111/j.1471-4159.2004.02389.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
All tissues contain the enzymes that modify and remove O-GlcNAc dynamically from nucleocytoplasmic proteins. These enzymes have been shown to play a role in the control of transcription, vesicular trafficking and, more recently, proteasome function. Modification by O-GlcNAc of the 19S cap of the proteasome inhibits proteasomal function. Transcripts of both O-GlcNAc transferase and O-GlcNAcase are very abundant in the brain, with the highest concentrations in hippocampal neurons and Purkinje cells. When the on-rate of modification is favored over the off-rate by intraventricular administration of a drug, streptozocin, these areas of the brain display the most rapid accumulation of O-GlcNAc. Cerebral proteasome function is reduced and ubiquitin and p53 accumulate in these brain regions, with the subsequent activation of a p53-dependent transgene and the endogenous Mdm2 gene. Later, some hippocampal cells, but not Purkinje cells, undergo apoptosis. These observations suggest that the O-GlcNAc system may participate in neurodegeneration, particularly in the hippocampus.
Collapse
Affiliation(s)
- Kan Liu
- Department Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|