51
|
Zhang MY, Huang NN, Clawson GA, Osmani SA, Pan W, Xin P, Razzaque MS, Miller BA. Involvement of the fungal nuclear migration gene nudC human homolog in cell proliferation and mitotic spindle formation. Exp Cell Res 2002; 273:73-84. [PMID: 11795948 DOI: 10.1006/excr.2001.5414] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Essential genes which are required for normal nuclear migration and play a role in developmental processes have been isolated from model genetic organisms. One such gene is nudC (nuclear distribution C), which is required for positioning nuclei in the cytoplasm of the filamentous fungus Aspergillus nidulans and for normal colony growth. This gene is highly conserved, structurally and functionally, throughout evolution and the human homolog, HnudC, has been cloned. To study the function of nudC in higher eukaryotic cells, HnudC was downregulated by developing triple ribozyme constructs, consisting of two cis-acting ribozymes which liberate an internal trans-acting ribozyme targeted to HnudC. Efficient cleavage sites in HnudC mRNA were identified using a library selection technique and HnudC-targeted internal ribozymes were cloned into a triple ribozyme cassette. Triple ribozyme constructs were subcloned into an ecdysone-inducible expression vector and stably transfected into human embryonic 293 cells. Muristerone A induced expression of the HnudC ribozyme and produced specific reduction of HnudC mRNA. Downregulation of HnudC mRNA resulted in significant inhibition of cell proliferation in clones expressing the HnudC-targeted triple ribozyme, which was not observed in uninduced cells or cells transfected with vector alone. In induced cultures, many mitotic cells demonstrated defects in spindle architecture during mitosis. The most common defect observed was multiple mitotic spindle poles rather than the expected bipolar structure. These data demonstrate the fundamental importance of HnudC in eukaryotic cell proliferation and a functional role for HnudC in spindle formation at mitosis.
Collapse
Affiliation(s)
- Min-Ying Zhang
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Cardoso C, Leventer RJ, Dowling JJ, Ward HL, Chung J, Petras KS, Roseberry JA, Weiss AM, Das S, Martin CL, Pilz DT, Dobyns WB, Ledbetter DH. Clinical and molecular basis of classical lissencephaly: Mutations in the LIS1 gene (PAFAH1B1). Hum Mutat 2002; 19:4-15. [PMID: 11754098 DOI: 10.1002/humu.10028] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Classical lissencephaly (LIS) and subcortical band heterotopia (SBH) are related cortical malformations secondary to abnormal migration of neurons during early brain development. Approximately 60% of patients with classical LIS, and one patient with atypical SBH have been found to have deletions or mutations of the LIS1 gene, located on 17p13.3. This gene encodes the LIS1 or PAFAH1B1 protein with a coiled-coil domain at the N-terminus and seven WD40 repeats at the C-terminus. It is highly conserved between species and has been shown to interact with multiple proteins involved with cytoskeletal dynamics, playing a role in both cellular division and motility, as well as the regulation of brain levels of platelet activating factor. Here we report 65 large deletions of the LIS1 gene detected by FISH and 41 intragenic mutations, including four not previously reported, the majority of which have been found as a consequence of the investigation of 220 children with LIS or SBH by our group. All intragenic mutations are de novo, and there have been no familial recurrences. Eight-eight percent (36/41) of the mutations result in a truncated or internally deleted protein-with missense mutations found in only 12% (5/41) thus far. Mutations occurred throughout the gene except for exon 7, with clustering of three of the five missense mutations in exon 6. Only five intragenic mutations were recurrent. In general, the most severe LIS phenotype was seen in patients with large deletions of 17p13.3, with milder phenotypes seen with intragenic mutations. Of these, the mildest phenotypes were seen in patients with missense mutations.
Collapse
Affiliation(s)
- Carlos Cardoso
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Pilz D, Stoodley N, Golden JA. Neuronal migration, cerebral cortical development, and cerebral cortical anomalies. J Neuropathol Exp Neurol 2002; 61:1-11. [PMID: 11829339 DOI: 10.1093/jnen/61.1.1] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cerebral cortical malformations are relatively common anomalies identified by neuroimaging and pathologically in patients with epilepsy and mental retardation. A disruption in neuronal migration during central nervous system development has been postulated as the pathogenesis for many of these disorders. Recently, the cell migration hypothesis has been proven accurate for lissencephaly, subcortical band heterotopia, and periventricular nodular heterotopia. Furthermore, advances in cellular and molecular biology have begun elucidating the fundamental mechanisms underlying these migration disorders. These data have resulted in redefining and recategorizing specific malformations based on their molecular genetic abnormality. In this review we shall discuss the current understanding of neuronal migration in the developing cerebral cortex, the evaluation of these patients, and attempt to describe the pathogenesis for several well-characterized human disorders of cell migration.
Collapse
Affiliation(s)
- Daniela Pilz
- Institute for Medical Genetics, University Hospital of Wales, Cardiff
| | | | | |
Collapse
|
54
|
Hoffmann B, Zuo W, Liu A, Morris NR. The LIS1-related protein NUDF of Aspergillus nidulans and its interaction partner NUDE bind directly to specific subunits of dynein and dynactin and to alpha- and gamma-tubulin. J Biol Chem 2001; 276:38877-84. [PMID: 11509576 DOI: 10.1074/jbc.m106610200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NUDF protein of Aspergillus nidulans, which is required for nuclear migration through the fungal mycelium, closely resembles the LIS1 protein required for migration of neurons to the cerebral cortex in humans. Genetic experiments suggested that NUDF influences nuclear migration by affecting cytoplasmic dynein. NUDF interacts with another protein, NUDE, which also affects nuclear migration in A. nidulans. Interactions among LIS1, NUDE, dynein, and gamma-tubulin have been demonstrated in animal cells. In this paper we examine the interactions of the A. nidulans NUDF and NUDE proteins with components of dynein, dynactin, and with alpha- and gamma-tubulin. We show that NUDF binds directly to alpha- and gamma-tubulin and to the first P-loop of the cytoplasmic dynein heavy chain, whereas NUDE binds directly to alpha- and gamma-tubulin, to NUDK (actin-related protein 1), and to the NUDG dynein LC8 light chain. The data suggest a direct role for NUDF in regulation of the dynein heavy chain and an effect on other dynein/dynactin subunits via NUDE. The interactions between NUDE, NUDF, and gamma-tubulin suggest that this protein may also be involved in the regulation of dynein function. Additive interactions between NUDE and dynein and dynactin subunits suggest that NUDE acts as a scaffolding factor between components.
Collapse
Affiliation(s)
- B Hoffmann
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
55
|
Leventer RJ, Cardoso C, Ledbetter DH, Dobyns WB. LIS1: from cortical malformation to essential protein of cellular dynamics. Trends Neurosci 2001; 24:489-92. [PMID: 11506866 DOI: 10.1016/s0166-2236(00)01887-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The LIS1 gene was cloned following the study of children with lissencephaly and cytogenetic abnormalities involving chromosome 17p, however, the role of the LIS1 protein in normal cortical development is not precisely defined. LIS1 is a component of evolutionarily conserved intracellular multiprotein complexes and recent literature shows that these complexes are essential, not only for neuronal migration, but they might also be fundamental components of the machinery for cell proliferation and intracellular transport.
Collapse
Affiliation(s)
- R J Leventer
- Dept. of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
56
|
Leventer RJ, Cardoso C, Ledbetter DH, Dobyns WB. LIS1 missense mutations cause milder lissencephaly phenotypes including a child with normal IQ. Neurology 2001; 57:416-22. [PMID: 11502906 DOI: 10.1212/wnl.57.3.416] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Classical lissencephaly is a disorder of neuroblast migration with most patients having mutations of either the LIS1 or DCX genes. Most patients with lissencephaly secondary to LIS1 mutations have a severe malformation consisting of generalized agyria and pachygyria. However, increasing experience suggests that the phenotypic spectrum is wider than previously thought. METHODS The authors describe the clinical and imaging features and mutation data of the five known patients with missense mutations of the LIS1 gene and emphasize one patient with normal intelligence. RESULTS Patients with a missense mutation of the LIS1 gene have a wider and milder spectrum of cortical malformations and clinical sequelae compared with patients with other mutation types. CONCLUSION Milder and more variable phenotypes seen in patients with missense mutations of LIS1 are likely a consequence of suboptimal function of the mutant LIS1 protein, rather than complete loss of function of this protein. The authors suggest that the few patients found thus far with missense mutations of LIS1 results from an underascertainment of patients with more subtle malformations and that abnormalities of the LIS1 gene may account for a greater spectrum of neurologic problems in childhood than has previously been appreciated.
Collapse
Affiliation(s)
- R J Leventer
- Department of Human Genetics, The University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
57
|
Abstract
Like other motile cells, neurons migrate in three schematic steps, namely leading edge extension, nuclear translocation or nucleokinesis, and retraction of the trailing process. In addition, neurons are ordered into architectonic patterns at the end of migration. Leading edge extension can proceed at the extremity of the axon, by growth cone formation, or from the dendrites, by formation of dendritic tips. Among both categories of leading edges, variation seems to be related to the rate of extension of the leading process. Leading edge extension is directed by microfilament polymerization following integration of extracellular cues and is regulated by Rho-type small GTPases. In humans, mutations of filamin, an actin-associated protein, result in heterotopic neurons, probably due to defective leading edge extension. The second event in neuron migration is nucleokinesis, a process which is critically dependent on the microtubule network, as shown in many cell types, from slime molds to vertebrates. In humans, mutations in the PAFAH1B1 gene (more commonly called LIS1) or in the doublecortin (DCX) gene result in type 1 lissencephalies that are most probably due to defective nucleokinesis. Both the Lis1 and doublecortin proteins interact with microtubules, and two Lis1-interacting proteins, Nudel and mammalian NudE, are components of the dynein motor complex and of microtubule organizing centers. In mice, mutations of Cdk5 or of its activators p35 and p39 result in a migration phenotype compatible with defective nucleokinesis, although an effect on leading edge formation is also likely. The formation of architectonic patterns at the end of migration requires the integrity of the Reelin signalling pathway. Other known components of the pathway include members of the lipoprotein receptor family, the intracellular adaptor Dab1, and possibly integrin alpha 3 beta 1. Defective Reelin leads to poor lamination and, in humans, to a lissencephaly phenotype different from type 1 lissencephaly. Although the action of Reelin is unknown, it may trigger some recognition-adhesion among target neurons. Finally, pattern formation requires the integrity of the external limiting membrane, defects of which lead to overmigration of neurons in meninges and to human type 2 lissencephaly.
Collapse
Affiliation(s)
- C Lambert de Rouvroit
- Neurobiology Unit, University of Namur Medical School, 61 Rue de Bruxelles, B5000, Namur, Belgium
| | | |
Collapse
|
58
|
Feng Y, Walsh CA. Protein-protein interactions, cytoskeletal regulation and neuronal migration. Nat Rev Neurosci 2001; 2:408-16. [PMID: 11389474 DOI: 10.1038/35077559] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuronal migration, like the migration of many cell types, requires an extensive rearrangement of cell shape, mediated by changes in the cytoskeleton. The genetic analysis of human brain malformations has identified several biochemical players in this process, including doublecortin (DCX) and LIS1, mutations of which cause a profound migratory disturbance known as lissencephaly ('smooth brain') in humans. Studies in mice have identified additional molecules such as Cdk5, P35, Reelin, Disabled and members of the LDL superfamily of receptors. Understanding the cell biology of these molecules has been a challenge, and it is not known whether they function in related biochemical pathways or in very distinct processes. The last year has seen rapid advances in the biochemical analysis of several such molecules. This analysis has revealed roles for some of these molecules in cytoskeletal regulation and has shown an unexpected conservation of the genetic pathways that regulate neuronal migration in humans and nuclear movement in simple eukaryotic organisms.
Collapse
Affiliation(s)
- Y Feng
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Centre, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
59
|
Cahana A, Escamez T, Nowakowski RS, Hayes NL, Giacobini M, von Holst A, Shmueli O, Sapir T, McConnell SK, Wurst W, Martinez S, Reiner O. Targeted mutagenesis of Lis1 disrupts cortical development and LIS1 homodimerization. Proc Natl Acad Sci U S A 2001; 98:6429-34. [PMID: 11344260 PMCID: PMC33485 DOI: 10.1073/pnas.101122598] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lissencephaly is a severe brain malformation in humans. To study the function of the gene mutated in lissencephaly (LIS1), we deleted the first coding exon from the mouse Lis1 gene. The deletion resulted in a shorter protein (sLIS1) that initiates from the second methionine, a unique situation because most LIS1 mutations result in a null allele. This mutation mimics a mutation described in one lissencephaly patient with a milder phenotype. Homozygotes are early lethal, although heterozygotes are viable and fertile. Most strikingly, the morphology of cortical neurons and radial glia is aberrant in the developing cortex, and the neurons migrate more slowly. This is the first demonstration, to our knowledge, of a cellular abnormality in the migrating neurons after Lis1 mutation. Moreover, cortical plate splitting and thalomocortical innervation are also abnormal. Biochemically, the mutant protein is not capable of dimerization, and enzymatic activity is elevated in the embryos, thus a demonstration of the in vivo role of LIS1 as a subunit of PAF-AH. This mutation allows us to determine a hierarchy of functions that are sensitive to LIS1 dosage, thus promoting our understanding of the role of LIS1 in the developing cortex.
Collapse
Affiliation(s)
- A Cahana
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
Brain development is severely defective in children with lissencephaly. The highly organized distribution of neurons within the cerebral cortex is disrupted, a condition that might arise from improper migration of neuronal progenitors to their cortical destinations. Type I lissencephaly results from mutations in the LIS1 gene, which has been implicated in the cytoplasmic dynein and platelet-activating factor pathways. Recent studies have identified roles for the product of LIS1 in nuclear migration, mitotic spindle orientation and chromosome alignment, where it appears to act in concert with cytoplasmic dynein. A unifying hypothesis for the subcellular function of LIS1 is presented.
Collapse
Affiliation(s)
- R B Vallee
- Dept of Cell Biology, University of Massachusetts Medical School, 377 Plantation Street, Worcester, MA 06105, USA.
| | | | | |
Collapse
|
61
|
Abstract
The promise of genetics has been partly realized in our understanding of human brain development as this relates to disorders of gyral formation. Cerebral gyral dysplasias are disorders of brain formation that result in phenotypes with the common feature of abnormal cerebral gyri. This review emphasizes the recent progress made in understanding the human lissencephalies and related disorders. LIS1 heterozygous loss-of-function deletions and point mutations, as well as Doublecortin mutations in males, lead to a very similar phenotype, termed type 1 lissencephaly. Additionally, Doublecortin mutations in females lead to a more variable subcortical band heterotopia. Given the similarities between the lissencephaly phenotypes that result from aberrations in these genes, it is important to review the genetics of these disorders. In order to begin to understand the cell biology of the LIS1 protein and the Doublecortin protein, potentially interacting pathways need to be emphasized. Another human genetic disorder with an interestingly similar phenotype has a mouse correlate that has been well characterized. This surprising finding may lead to further understanding of LIS1 protein and of Doublecortin protein. Furthermore, mouse modeling of the aforementioned human disorders now holds promise for enabling us finally to understand the formation of the most complex organ that nature has produced - the human brain.
Collapse
Affiliation(s)
- G D Clark
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
62
|
Ahn C, Morris NR. Nudf, a fungal homolog of the human LIS1 protein, functions as a dimer in vivo. J Biol Chem 2001; 276:9903-9. [PMID: 11134054 DOI: 10.1074/jbc.m010233200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NUDF protein is required for nuclear migration through the mycelium of the filamentous fungus Aspergillus nidulans. It is of particular interest, because it closely resembles a human protein, LIS1, that is required for development of the cerebral cortex. Both are approximately 50-kDa proteins with a short N-terminal predicted coiled coil and seven WD-40 domains in the C-terminal half of the molecule. They also interact with homologous proteins, suggesting that they may have similar biochemical functions. Here we describe the purification to homogeneity of NUDF protein in a single step from a cell-free extract of A. nidulans. We demonstrate that NUDF is a homodimer, that its dimerization occurs via the N-terminal coiled coil region of the molecule, and that it must be a dimer to support the growth of A. nidulans.
Collapse
Affiliation(s)
- C Ahn
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
63
|
Wynshaw-Boris A, Gambello MJ. LIS1 and dynein motor function in neuronal migration and development. Genes Dev 2001; 15:639-51. [PMID: 11274050 DOI: 10.1101/gad.886801] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- A Wynshaw-Boris
- Departments of Pediatrics and Medicine, University of California, San Diego, School of Medicine, La Jolla, California 92093-0627, USA
| | | |
Collapse
|
64
|
Sweeney KJ, Prokscha A, Eichele G. NudE-L, a novel Lis1-interacting protein, belongs to a family of vertebrate coiled-coil proteins. Mech Dev 2001; 101:21-33. [PMID: 11231056 DOI: 10.1016/s0925-4773(00)00543-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The LIS1-encoded protein (Lis1) plays a role in brain development because a hemizygous deletion or mutation of the human gene causes neuronal migration disorders, such as Miller-Dieker syndrome (MDS) or isolated lissencephaly sequence (ILS). Using a yeast two-hybrid screen, we have isolated a novel protein that interacts with mouse Lis1 (mLis1) which is termed mouse NudE-like protein (mNudE-L) because of its 49% amino acid conservation with NudE, a protein involved in nuclear migration in Aspergillus nidulans. GST pull-down assays and co-immunoprecipitation of fusion proteins expressed in mammalian cells confirmed the interaction of mLis1 and mNudE-L. mNudE-L gives rise to a approximately 2.3 kb mRNA and encodes an ORF corresponding to approximately 38 kDa protein. The overall amino acid sequence of mNudE-L is 49-95% identical to proteins found in a variety of organisms, thus establishing mNudE-L as a new member of a protein family. The hallmark of this family is an N-terminal region predicted to form a coiled-coil domain. We show that mNudE-L and mLis1 are coexpressed in the postnatal and adult cerebral cortices and in the Purkinje neurons of the cerebellum. In contrast to mLis1, mNudE-L transcripts are absent in the mitral cell layer of the olfactory bulb and in the inward migrating granular neurons of the developing cerebellum. Mutant mLis1 proteins modelling mutations found in human lissencephaly patients fail to interact with mNudE-L, raising the possibility that phenotypic changes result, in part, from the inability of mutant Lis1 proteins to interact with the human NudE-L polypeptide.
Collapse
Affiliation(s)
- K J Sweeney
- Max Planck Institute for Experimental Endocrinology, Feodor-Lynen Strasse 7, 30625, Hannover, Germany
| | | | | |
Collapse
|
65
|
Feng Y, Olson EC, Stukenberg PT, Flanagan LA, Kirschner MW, Walsh CA. LIS1 regulates CNS lamination by interacting with mNudE, a central component of the centrosome. Neuron 2000; 28:665-79. [PMID: 11163258 DOI: 10.1016/s0896-6273(00)00145-8] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
LIS1, a microtubule-associated protein, is required for neuronal migration, but the precise mechanism of LIS1 function is unknown. We identified a LIS1 interacting protein encoded by a mouse homolog of NUDE, a nuclear distribution gene in A. nidulans and a multicopy suppressor of the LIS1 homolog, NUDF. mNudE is located in the centrosome or microtubule organizing center (MTOC), and interacts with six different centrosomal proteins. Overexpression of mNudE dissociates gamma-tubulin from the centrosome and disrupts microtubule organization. Missense mutations that disrupt LIS1 function block LIS1-mNudE binding. Moreover, misexpression of the LIS1 binding domain of mNudE in Xenopus embryos disrupts the architecture and lamination of the CNS. Thus, LIS1-mNudE interactions may regulate neuronal migration through dynamic reorganization of the MTOC.
Collapse
Affiliation(s)
- Y Feng
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
66
|
Affiliation(s)
- O Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|