51
|
Ray WK, Larson TJ. Application of AgaR repressor and dominant repressor variants for verification of a gene cluster involved in N-acetylgalactosamine metabolism in Escherichia coli K-12. Mol Microbiol 2004; 51:813-26. [PMID: 14731281 DOI: 10.1046/j.1365-2958.2003.03868.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The agaZVWEFASYBCDI gene cluster encodes the phosphotransferase systems and enzymes responsible for the uptake and metabolism of N-acetylgalactosamine and galactosamine in Escherichia coli. In some strains of E. coli, particularly the common K-12 strain, a portion of this cluster is missing because of a site-specific recombination event that occurred between sites in agaW and agaA. Strains that have undergone this recombination event have lost the ability to utilize either N-acetylgalactosamine or galactosamine as sole sources of carbon. Divergently transcribed from this gene cluster is the gene agaR encoding a transcriptional repressor belonging to the DeoR/GlpR family of transcriptional regulators. Promoters upstream of agaR, agaZ and agaS were characterized. All three promoters had elevated activity in the presence of N-acetylgalactosamine or galactosamine, were regulated in vivo by AgaR and possessed specific DNA-binding sites for AgaR upstream from the start sites of transcription as determined by DNase I footprinting. In vivo analysis and DNase I footprinting indicated that the promoter specific for agaZ also requires activation by cAMP-CRP. Previous work with GlpR and other members of the DeoR/GlpR family have identified highly conserved amino acid residues that function in DNA-binding or response to inducer. These residues of AgaR were targeted for site-directed mutagenesis and yielded variants of AgaR that were either negatively dominant or non-inducible. The apparent ability to produce negatively dominant and non-inducible variants of proteins of the DeoR/GlpR family of currently unknown function will likely facilitate screening for function.
Collapse
Affiliation(s)
- W Keith Ray
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
52
|
Stroud RM, Nollert P, Miercke L. The glycerol facilitator GlpF its aquaporin family of channels, and their selectivity. ADVANCES IN PROTEIN CHEMISTRY 2003; 63:291-316. [PMID: 12629974 DOI: 10.1016/s0065-3233(03)63011-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Robert M Stroud
- Department of Biochemistry and Biophysics, School of Medicine, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
53
|
Llamas MA, Rodríguez-Herva JJ, Hancock REW, Bitter W, Tommassen J, Ramos JL. Role of Pseudomonas putida tol-oprL gene products in uptake of solutes through the cytoplasmic membrane. J Bacteriol 2003; 185:4707-16. [PMID: 12896989 PMCID: PMC166457 DOI: 10.1128/jb.185.16.4707-4716.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins of the Tol-Pal (Tol-OprL) system play a key role in the maintenance of outer membrane integrity and cell morphology in gram-negative bacteria. Here we describe an additional role for this system in the transport of various carbon sources across the cytoplasmic membrane. Growth of Pseudomonas putida tol-oprL mutant strains in minimal medium with glycerol, fructose, or arginine was impaired, and the growth rate with succinate, proline, or sucrose as the carbon source was lower than the growth rate of the parental strain. Assays with radiolabeled substrates revealed that the rates of uptake of these compounds by mutant cells were lower than the rates of uptake by the wild-type strain. The pattern and amount of outer membrane protein in the P. putida tol-oprL mutants were not changed, suggesting that the transport defect was not in the outer membrane. Consistently, the uptake of radiolabeled glucose and glycerol in spheroplasts was defective in the P. putida tol-oprL mutant strains, suggesting that there was a defect at the cytoplasmic membrane level. Generation of a proton motive force appeared to be unaffected in these mutants. To rule out the possibility that the uptake defect was due to a lack of specific transporter proteins, the PutP symporter was overproduced, but this overproduction did not enhance proline uptake in the tol-oprL mutants. These results suggest that the Tol-OprL system is necessary for appropriate functioning of certain uptake systems at the level of the cytoplasmic membrane.
Collapse
Affiliation(s)
- María A Llamas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | | | | | | | | | | |
Collapse
|
54
|
Hansen M, Kun JFJ, Schultz JE, Beitz E. A single, bi-functional aquaglyceroporin in blood-stage Plasmodium falciparum malaria parasites. J Biol Chem 2002; 277:4874-82. [PMID: 11729204 DOI: 10.1074/jbc.m110683200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The malaria parasite Plasmodium falciparum faces drastic osmotic changes during kidney passages and is engaged in the massive biosynthesis of glycerolipids during its development in the blood-stage. We identified a single aquaglyceroporin (PfAQP) in the nearly finished genome of P. falciparum with highest similarity to the Escherichia coli glycerol facilitator (50.4%), but both canonical Asn-Pro-Ala (NPA) motifs in the pore region are changed to Asn-Leu-Ala (NLA) and Asn-Pro-Ser (NPS), respectively. Expression in Xenopus oocytes renders them highly permeable for both water and glycerol. Sugar alcohols up to five carbons and urea pass the pore. Mutation analyses of the NLA/NPS motifs showed their structural importance, but the symmetrical pore properties were maintained. PfAQP is expressed in blood-stage parasites throughout the development from rings via trophozoites to schizonts and is localized to the parasite but not to the erythrocyte cytoplasm or membrane. Its unique bi-functionality indicates functions in the protection from osmotic stress and efficiently provides access to the serum glycerol pool for the use in ATP generation and primarily in the phospholipid synthesis.
Collapse
Affiliation(s)
- Martin Hansen
- Department of Pharmaceutical Biochemistry, University of Tübingen, Morgenstelle 8, Tübingen D-72076, Germany
| | | | | | | |
Collapse
|
55
|
Drake KD, Schuette D, Chepelinsky AB, Jacob TJC, Crabbe MJC, Jacob TJ. pH-Dependent channel activity of heterologously-expressed main intrinsic protein (MIP) from rat lens. FEBS Lett 2002; 512:199-204. [PMID: 11852079 DOI: 10.1016/s0014-5793(02)02284-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Wild-type rat lens main intrinsic protein (MIP) was heterologously expressed in the membrane of Spodoptera frugiperda (Sf21) cells using the baculovirus expression system and in mouse erythroid leukaemia cells (MEL C88). Both MEL and Sf21 cell lines expressing wild-type MIP were investigated for the conductance of ions using a whole cell patch clamp technique. An increase in conductance was seen in both expression systems, particularly on lowering the pH to 6.3. In Sf21 cells, addition of antibodies to the NPA1 box resulted in a reduction of current flow. These results suggest that MIP has pH-dependent ion channel activity, which involves the NPA1 box domain.
Collapse
Affiliation(s)
- K Dawn Drake
- Division of Cell and Molecular Biology, School of Animal and Microbial Sciences, The University of Reading, P.O. Box 228, Whiteknights, Berkshire RG6 6AJ, Reading, UK
| | | | | | | | | | | |
Collapse
|
56
|
Drake KD, Schuette D, Chepelinsky AB, Crabbe MJC. Heterologous expression and topography of the main intrinsic protein (MIP) from rat lens. FEBS Lett 2002; 512:191-8. [PMID: 11852078 DOI: 10.1016/s0014-5793(02)02256-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Wild type rat lens main intrinsic protein (MIP) and MIP mutated (F73I, F75L) to resemble the glycerol facilitator of Escherichia coli in the region of the NPA1 box were used to investigate the topology of MIP in the membrane of Spodoptera frugiperda (Sf21) cells using the baculovirus expression system and expression in mouse erythroid leukaemia cells (MEL C88). Differential fixation for staining was used, with paraformaldehyde for externally exposed antigenic sites, and acetone for both externally and internally exposed protein antigenic sites. Immunofluorescence using antibodies to synthetic MIP peptides showed that wild type MIP had a six transmembrane topography. The N- and C-termini were intracellular in both expression systems, and both NPA boxes were found to be extracellular. These results show that residues around the NPA1 box can influence the folding of the MIP in the membrane, and provide structural evidence for the poor water transport properties of MIP, as the NPA boxes lie outside the plane of the membrane.
Collapse
Affiliation(s)
- K Dawn Drake
- Division of Cell and Molecular Biology, School of Animal and Microbial Sciences, The University of Reading, P.O. Box 228, Whiteknights, Berkshire RG6 6AJ, Reading, UK
| | | | | | | |
Collapse
|
57
|
Chagneau C, Heyde M, Alonso S, Portalier R, Laloi P. External-pH-dependent expression of the maltose regulon and ompF gene in Escherichia coli is affected by the level of glycerol kinase, encoded by glpK. J Bacteriol 2001; 183:5675-83. [PMID: 11544231 PMCID: PMC95460 DOI: 10.1128/jb.183.19.5675-5683.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of the maltose system in Escherichia coli is regulated at both transcriptional and translational levels by the pH of the growth medium (pHo). With glycerol as the carbon source, transcription of malT, encoding the transcriptional activator of the maltose regulon, is weaker in acidic medium than in alkaline medium. malT transcription became high, regardless of the pHo, when glycerol-3-phosphate or succinate was used as the carbon source. Conversely, malT expression was low, regardless of the pHo, when maltose was used as the carbon source. The increase in malT transcription, associated with the pHo, requires the presence of glycerol in the growth medium and the expression of the glycerol kinase (GlpK). Changes in the level of glpK transcription had a great effect on malT transcription. Indeed, a glpFKX promoter-down mutation has been isolated, and in the presence of this mutation, malT expression was increased. When glpK was expressed from a high-copy-number plasmid, the glpK-dependent reduced expression of the maltose system became effective regardless of the pHo. Analysis of this repression showed that a malTp1 malTp10 promoter, which is independent of the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex, was no longer repressed by glpFKX amplification. Thus, GlpK-dependent repression of the maltose system requires the cAMP-CRP complex. We propose that the pHo may affect a complex interplay between GlpK, the phosphotransferase-mediated uptake of glucose, and the adenylate cyclase.
Collapse
Affiliation(s)
- C Chagneau
- Unité de Microbiologie et Génétique, UMR CNRS 5122, Université Lyon 1, F-69622 Villeurbanne Cedex, France
| | | | | | | | | |
Collapse
|
58
|
Raj VS, Tomitori H, Yoshida M, Apirakaramwong A, Kashiwagi K, Takio K, Ishihama A, Igarashi K. Properties of a revertant of Escherichia coli viable in the presence of spermidine accumulation: increase in L-glycerol 3-phosphate. J Bacteriol 2001; 183:4493-8. [PMID: 11443083 PMCID: PMC95343 DOI: 10.1128/jb.183.15.4493-4498.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli CAG2242 cells are deficient in the speG gene encoding spermidine acetyltransferase. When these cells were cultured in the presence of 0.5 to 4 mM spermidine, their viability was greatly decreased through the inhibition of protein synthesis by overaccumulation of spermidine. When the cells were cultured with a high concentration of spermidine (4 mM), a revertant strain was obtained. We found that a 55-kDa protein, glycerol kinase, was overexpressed in the revertant and that synthesis of a ribosome modulation factor and the RNA polymerase sigma(38) subunit, factors important for cell viability, was increased in the revertant. Levels of L-glycerol 3-phosphate also increased in the revertant. Transformation of glpFK, which encodes a glycerol diffusion facilitator (glpF) and glycerol kinase (glpK), to E. coli CAG2242 partially prevented the cell death caused by accumulation of spermidine. It was also found that L-glycerol 3-phosphate inhibited spermidine binding to ribosomes and attenuated the inhibition of protein synthesis caused by high concentrations of spermidine. These results indicate that L-glycerol 3-phosphate reduces the binding of excess amounts of spermidine to ribosomes so that protein synthesis is recovered.
Collapse
Affiliation(s)
- V S Raj
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Holtman CK, Pawlyk AC, Meadow ND, Pettigrew DW. Reverse genetics of Escherichia coli glycerol kinase allosteric regulation and glucose control of glycerol utilization in vivo. J Bacteriol 2001; 183:3336-44. [PMID: 11344141 PMCID: PMC99631 DOI: 10.1128/jb.183.11.3336-3344.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reverse genetics is used to evaluate the roles in vivo of allosteric regulation of Escherichia coli glycerol kinase by the glucose-specific phosphocarrier of the phosphoenolpyruvate:glycose phosphotransferase system, IIA(Glc) (formerly known as III(glc)), and by fructose 1,6-bisphosphate. Roles have been postulated for these allosteric effectors in glucose control of both glycerol utilization and expression of the glpK gene. Genetics methods based on homologous recombination are used to place glpK alleles with known specific mutations into the chromosomal context of the glpK gene in three different genetic backgrounds. The alleles encode glycerol kinases with normal catalytic properties and specific alterations of allosteric regulatory properties, as determined by in vitro characterization of the purified enzymes. The E. coli strains with these alleles display the glycerol kinase regulatory phenotypes that are expected on the basis of the in vitro characterizations. Strains with different glpR alleles are used to assess the relationships between allosteric regulation of glycerol kinase and specific repression in glucose control of the expression of the glpK gene. Results of these studies show that glucose control of glycerol utilization and glycerol kinase expression is not affected by the loss of IIA(Glc) inhibition of glycerol kinase. In contrast, fructose 1,6-bisphosphate inhibition of glycerol kinase is the dominant allosteric control mechanism, and glucose is unable to control glycerol utilization in its absence. Specific repression is not required for glucose control of glycerol utilization, and the relative roles of various mechanisms for glucose control (catabolite repression, specific repression, and inducer exclusion) are different for glycerol utilization than for lactose utilization.
Collapse
Affiliation(s)
- C K Holtman
- Department of Biochemistry and Biophysics, Program in Microbial Genetics and Genomics, Texas A&M University, College Station, TX 77843-2128, USA
| | | | | | | |
Collapse
|
60
|
Donahue JL, Bownas JL, Niehaus WG, Larson TJ. Purification and characterization of glpX-encoded fructose 1, 6-bisphosphatase, a new enzyme of the glycerol 3-phosphate regulon of Escherichia coli. J Bacteriol 2000; 182:5624-7. [PMID: 10986273 PMCID: PMC111013 DOI: 10.1128/jb.182.19.5624-5627.2000] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, gene products of the glp regulon mediate utilization of glycerol and sn-glycerol 3-phosphate. The glpFKX operon encodes glycerol diffusion facilitator, glycerol kinase, and as shown here, a fructose 1,6-bisphosphatase that is distinct from the previously described fbp-encoded enzyme. The purified enzyme was dimeric, dependent on Mn(2+) for activity, and exhibited an apparent K(m) of 35 microM for fructose 1,6-bisphosphate. The enzyme was inhibited by ADP and phosphate and activated by phosphoenolpyruvate.
Collapse
Affiliation(s)
- J L Donahue
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | |
Collapse
|
61
|
Ray WK, Zeng G, Potters MB, Mansuri AM, Larson TJ. Characterization of a 12-kilodalton rhodanese encoded by glpE of Escherichia coli and its interaction with thioredoxin. J Bacteriol 2000; 182:2277-84. [PMID: 10735872 PMCID: PMC111278 DOI: 10.1128/jb.182.8.2277-2284.2000] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Rhodaneses catalyze the transfer of the sulfane sulfur from thiosulfate or thiosulfonates to thiophilic acceptors such as cyanide and dithiols. In this work, we define for the first time the gene, and hence the amino acid sequence, of a 12-kDa rhodanese from Escherichia coli. Well-characterized rhodaneses are comprised of two structurally similar ca. 15-kDa domains. Hence, it is thought that duplication of an ancestral rhodanese gene gave rise to the genes that encode the two-domain rhodaneses. The glpE gene, a member of the sn-glycerol 3-phosphate (glp) regulon of E. coli, encodes the 12-kDa rhodanese. As for other characterized rhodaneses, kinetic analysis revealed that catalysis by purified GlpE occurs by way of an enzyme-sulfur intermediate utilizing a double-displacement mechanism requiring an active-site cysteine. The K(m)s for SSO(3)(2-) and CN(-) were 78 and 17 mM, respectively. The apparent molecular mass of GlpE under nondenaturing conditions was 22.5 kDa, indicating that GlpE functions as a dimer. GlpE exhibited a k(cat) of 230 s(-1). Thioredoxin 1 from E. coli, a small multifunctional dithiol protein, served as a sulfur acceptor substrate for GlpE with an apparent K(m) of 34 microM when thiosulfate was near its K(m), suggesting that thioredoxin 1 or related dithiol proteins could be physiological substrates for sulfurtransferases. The overall degree of amino acid sequence identity between GlpE and the active-site domain of mammalian rhodaneses is limited ( approximately 17%). This work is significant because it begins to reveal the variation in amino acid sequences present in the sulfurtransferases. GlpE is the first among the 41 proteins in COG0607 (rhodanese-related sulfurtransferases) of the database Clusters of Orthologous Groups of proteins (http://www.ncbi.nlm.nih.gov/COG/) for which sulfurtransferase activity has been confirmed.
Collapse
Affiliation(s)
- W K Ray
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | | | |
Collapse
|
62
|
Yang B, Larson TJ. Multiple promoters are responsible for transcription of the glpEGR operon of Escherichia coli K-12. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1396:114-26. [PMID: 9524241 DOI: 10.1016/s0167-4781(97)00179-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transcriptional organization of the glpEGR genes of Escherichia coli was studied. Besides a promoter located upstream of the glpE start codon, three internal glpGR promoters were identified that express glpG and/or glpR (glp repressor). One promoter was located just upstream of the glpG start codon and two others (separated by several hundred base pairs) were located within glpG upstream of the glpR start codon. The transcriptional start points of these promoters were identified by primer extension analysis. The strengths of the individual promoters were compared by analysis of their expression when fused to a pormoter-probe vector. Analysis of the transcriptional expression of the glpEGR sequence with different combinations of the glpEGR promoters revealed no internal transcriptional terminators within the entire operon. Thus, the glpEGR genes are co-transcribed and form a single complex operon. The presence of multiple promoters may provide for differential expression of glpE, glpG and glpR. Potential regulation of the operon promoters by GlpR, catabolite repression, anaerobiosis or by FIS was studied. The glpE promoter was apparently controlled by the cAMP-CRP complex, but none of the promoters was responsive to specific repression by GlpR, to anaerobiosis or to FIS. Specific repression exerted by GlpR was characterized in vivo using glpD-lacZ and glpK-lacZ fusions. The degree of repression was correlated with the level of GlpR expression, and was inefficient when the glpD-encoded glycerol-P dehydrogenase was absent, presumably due to accumulation of the inducer, glycerol-P. This is in contrast to the previous conclusion that gpsA-encoded glycerol-P synthase tightly controls the cellular level of glycerol-P by end product inhibition.
Collapse
Affiliation(s)
- B Yang
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061-0308, USA
| | | |
Collapse
|
63
|
Ishibashi K, Kuwahara M, Gu Y, Kageyama Y, Tohsaka A, Suzuki F, Marumo F, Sasaki S. Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J Biol Chem 1997; 272:20782-6. [PMID: 9252401 DOI: 10.1074/jbc.272.33.20782] [Citation(s) in RCA: 296] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A new member of the aquaporin (AQP) family has been identified from rat testis. This gene, referred as aquaporin 7 (AQP7), encodes a 269-amino acid protein that contained the conserved NPA motifs of MIP family proteins. AQP7 has the amino acid sequence homology with other aquaporins ( approximately 30%), and it is highest with AQP3 (48%), suggesting that both AQP3 and AQP7 belong to a subfamily in the MIP family. Injection of AQP7-cRNA into Xenopus oocytes expressed a 26-kDa protein detected by immunoblotting. The expression of AQP7 in oocytes stimulated the osmotic water permeability by 10-fold which was not inhibited by 0.3 mM mercury chloride. The Arrhenius activation energy for the stimulated water permeability was low (2.1 kcal/mol). AQP7 also facilitated glycerol and urea transport by 5- and 9-fold, respectively. The activation energy for glycerol was also low (5.3 kcal/mol after the correction of the endogenous glycerol permeability of oocytes). Northern blot analysis revealed a 1.5-kilobase pair transcript expressed abundantly in testis. In situ hybridization of testis revealed the expression of AQP7 at late spermatids in seminiferous tubules. The immunohistochemistry of testis localized the AQP7 expression at late spermatids and at maturing sperms. AQP7 may play an important role in sperm function.
Collapse
Affiliation(s)
- K Ishibashi
- Second Department of Internal Medicine, Tokyo Medical and Dental University, Tokyo 113, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Charrier V, Buckley E, Parsonage D, Galinier A, Darbon E, Jaquinod M, Forest E, Deutscher J, Claiborne A. Cloning and sequencing of two enterococcal glpK genes and regulation of the encoded glycerol kinases by phosphoenolpyruvate-dependent, phosphotransferase system-catalyzed phosphorylation of a single histidyl residue. J Biol Chem 1997; 272:14166-74. [PMID: 9162046 DOI: 10.1074/jbc.272.22.14166] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The glpK genes of Enterococcus casseliflavus and Enterococcus faecalis, encoding glycerol kinase, the key enzyme of glycerol uptake and metabolism in bacteria, have been cloned and sequenced. The translated amino acid sequences exhibit strong homology to the amino acid sequences of other bacterial glycerol kinases. After expression of the enterococcal glpK genes in Escherichia coli, both glycerol kinases were purified and were found to be phosphorylated by enzyme I and the histidine-containing protein of the phosphoenolpyruvate:glycose phosphotransferase system. Phosphoenolpyruvate-dependent phosphorylation caused a 9-fold increase in enzyme activity. The site of phosphorylation in glycerol kinase of E. casseliflavus was determined as His-232. Site-specific mutagenesis was used to replace His-232 in glycerol kinase of E. casseliflavus with an alanyl, glutamate, or arginyl residue. The mutant proteins could no longer be phosphorylated confirming that His-232 of E. casseliflavus glycerol kinase represents the site of phosphorylation. The His232 --> Arg glycerol kinase exhibited an about 3-fold elevated activity compared with wild-type glycerol kinase. Fructose 1,6-bisphosphate was found to inhibit E. casseliflavus glycerol kinase activity. However, neither EIIAGlc from E. coli nor the EIIAGlc domain of Bacillus subtilis had an inhibitory effect on glycerol kinase of E. casseliflavus.
Collapse
Affiliation(s)
- V Charrier
- Institut de Biologie et Chimie des Protéines, CNRS, 7 passage du Vercors, F-69367 Lyon Cedex 07, France
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Sanders OI, Rensing C, Kuroda M, Mitra B, Rosen BP. Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J Bacteriol 1997; 179:3365-7. [PMID: 9150238 PMCID: PMC179121 DOI: 10.1128/jb.179.10.3365-3367.1997] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In a search for genes responsible for the accumulation of antimonite in Escherichia coli, TnphoA was used to create a pool of random insertional mutants, from which one antimonite-resistant mutant was isolated. Sequence analysis showed that the TnphoA insertion was located in the glpF gene, coding for the glycerol facilitator GlpF. The mutant was shown to be defective in polyol transport by GlpF. These results suggest that in solution Sb(III) is recognized as a polyol by the glycerol facilitator.
Collapse
Affiliation(s)
- O I Sanders
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
66
|
Schweizer HP, Jump R, Po C. Structure and gene-polypeptide relationships of the region encoding glycerol diffusion facilitator (glpF) and glycerol kinase (glpK) of Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 4):1287-1297. [PMID: 9141691 DOI: 10.1099/00221287-143-4-1287] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The glycerol facilitator is one of the few known examples of bacterial solute transport proteins that catalyse facilitated diffusion across the cytoplasmic membrane. A second protein, glycerol kinase, is involved in entry of external glycerol into cellular metabolism by trapping glycerol in the cytoplasm as sn-glycerol 3-phosphate. Evidence is presented that glycerol transport in Pseudomonas aeruginosa is mediated by a similar transport system. The genes encoding the glycerol facilitator, glpF, and glycerol kinase, glpK, were isolated on a 4.5 kb EcoRI fragment from a chromosomal mini-library by functional complementation of an Escherichia coli glpK mutant after establishing a map of the chromosomal glpFK region with the help of a PCR-amplified glpK segment. The nucleotide sequence revealed that glpF is the promoter-proximal gene of the glpFK operon. The glycerol facilitator and glycerol kinase were identified in a T7 expression system as proteins with apparent molecular masses of 25 and 56 kDa, respectively. The identities of the glycerol facilitator and glycerol kinase amino acid sequences with their counterparts from Escherichia coli were 70 and 81%, respectively; this similarity extended to two homologues in the genome sequence of Haemophilus influenzae. A chromosomal delta glpFK mutant was isolated by gene replacement. This mutant no longer transported glycerol and could no longer utilize it as sole carbon and energy source. Two ORFs, orfX and orfY, encoding a putative regulatory protein and a carbohydrate kinase of unknown function, were located upstream of the glpFK operon.
Collapse
Affiliation(s)
- Herbert P Schweizer
- Department of Microbiology, Colorado State University, Fort Collins, CO 80523, USA
| | - Robin Jump
- Department of Microbiology, Colorado State University, Fort Collins, CO 80523, USA
| | - Cecilia Po
- Department of Psychiatry & Behavioral Science, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
67
|
Zeng G, Ye S, Larson TJ. Repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K-12: primary structure and identification of the DNA-binding domain. J Bacteriol 1996; 178:7080-9. [PMID: 8955387 PMCID: PMC178618 DOI: 10.1128/jb.178.24.7080-7089.1996] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The nucleotide sequence of the glpEGR operon of Escherichia coli was determined. The translational reading frame at the beginning, middle, and end of each gene was verified. The glpE gene encodes an acidic, cytoplasmic protein of 108 amino acids with a molecular weight of 12,082. The glpG gene encodes a basic, cytoplasmic membrane-associated protein of 276 amino acids with a molecular weight of 31,278. The functions of GlpE and GlpG are unknown. The glpR gene encodes the repressor for the glycerol 3-phosphate regulon, a protein predicted to contain 252 amino acids with a calculated molecular weight of 28,048. The amino acid sequence of the glp repressor was similar to several repressors of carbohydrate catabolic systems, including those of the glucitol (GutR), fucose (FucR), and deoxyribonucleoside (DeoR) systems of E. coli, as well as those of the lactose (LacR) and inositol (IolR) systems of gram-positive bacteria and agrocinopine (AccR) system of Agrobacterium tumefaciens. These repressors constitute a family of related proteins, all of which contain approximately 250 amino acids, possess a helix-turn-helix DNA-binding motif near the amino terminus, and bind a sugar phosphate molecule as the inducing signal. The DNA recognition helix of the glp repressor and the nucleotide sequence of the glp operator were very similar to those of the deo system. The presumptive recognition helix of the glp repressor was changed by site-directed mutagenesis to match that of the deo repressor or, in a separate construct, to abolish DNA binding. Neither altered form of the glp repressor recognized the glp or deo operator, either in vivo or in vitro. However, both altered forms of the glp repressor were negatively dominant to the wild-type glp repressor, indicating that the inability to bind DNA with high affinity was due to alteration of the DNA-binding domain, not to an inability to oligomerize or instability of the altered repressors. For the first time, analysis of repressors with altered DNA-binding domains has verified the assignment of the helix-turn-helix motif of the transcriptional regulators in the deoR family.
Collapse
Affiliation(s)
- G Zeng
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061-0308, USA
| | | | | |
Collapse
|
68
|
Yang B, Larson TJ. Action at a distance for negative control of transcription of the glpD gene encoding sn-glycerol 3-phosphate dehydrogenase of Escherichia coli K-12. J Bacteriol 1996; 178:7090-8. [PMID: 8955388 PMCID: PMC178619 DOI: 10.1128/jb.178.24.7090-7098.1996] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aerobic sn-glycerol 3-phosphate dehydrogenase is a cytoplasmic membrane-associated respiratory enzyme encoded by the glpD gene of Escherichia coli. The glpD operon is tightly controlled by cooperative binding of the glp repressor to tandem operators (O(D)1 and O(D)2) that cover the -10 promoter element and 30 bp downstream of the transcription start site. In this work, two additional operators were identified within the glpD structural gene at positions 568 to 587 (0(D)3) and 609 to 628 (0(D)4). The two internal operators bound the glp repressor in the presence or absence of the tandem operators (O(D)1 and O(D)2) in vitro, as shown by DNase I footprinting. To assess a potential regulatory role for the two internal operators in vivo, a glpD-lacZ transcriptional fusion containing all four operators was constructed. The response of this fusion to the glp repressor was compared with those of fusion constructs in which O(D)3 and O(D)4 were inactivated by either deletion or site-directed mutagenesis. It was found that the repression conferred by binding of the glp repressor to O(D)1 and O(D)2 was increased five- to sevenfold upon introduction of the internal operators. A regulatory role for HU was suggested when it was found that repressor-mediated control of glpD transcription was increased fourfold in strains containing HU compared with that of strains deficient in HU. The effect of HU was apparent only in the presence of all four glpD operators. The results suggest that glpD is controlled by formation of a repression loop between the tandem and internal operators. HU may assist repression by bending the DNA to facilitate loop formation.
Collapse
Affiliation(s)
- B Yang
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061-0308, USA
| | | |
Collapse
|
69
|
Schweizer HP, Po C. Regulation of glycerol metabolism in Pseudomonas aeruginosa: characterization of the glpR repressor gene. J Bacteriol 1996; 178:5215-21. [PMID: 8752340 PMCID: PMC178319 DOI: 10.1128/jb.178.17.5215-5221.1996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The operons of the glp regulon encoding the glycerol metabolic enzymes of Pseudomonas aeruginosa were hitherto believed to be positively regulated by the product of the glpR regulatory gene. During nucleotide sequence analysis of the region located upstream of the previously characterized glpD gene, encoding sn-glycerol-3-phosphate dehydrogenase, an open reading frame (glpR) was identified which encodes a protein of 251 amino acids that is 59% identical to the Glp repressor from Escherichia coli and could be expressed as a 28-kDa protein in a T7 expression system. Inactivation of chromosomal glpR by gene replacement resulted in constitutive expression of glycerol transport activity and glpD activity. These activities were strongly repressed after introduction of a multicopy plasmid containing the glpR gene; the same plasmid also efficiently repressed expression of a glpT-lacZ+ transcriptional fusion in an E. coli glpR mutant. Analysis of the glpD and glpF upstream region identified conserved palindromic sequences which were 70% identical to the E. coli glp operator consensus sequence. The results suggest that the operons of the glp regulon in P. aeruginosa are negatively regulated by the action of a glp repressor.
Collapse
Affiliation(s)
- H P Schweizer
- Department of Microbiology, Colorado State University, Fort Collins 80523, USA
| | | |
Collapse
|
70
|
Sasaki S, Fushimi K, Ishibashi K, Marumo F. Water channels in the kidney collecting duct. Kidney Int 1995; 48:1082-7. [PMID: 8569069 DOI: 10.1038/ki.1995.391] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- S Sasaki
- School of Medicine, Tokyo Medical and Dental University, Japan
| | | | | | | |
Collapse
|
71
|
Janson H, Melhus A, Hermansson A, Forsgren A. Protein D, the glycerophosphodiester phosphodiesterase from Haemophilus influenzae with affinity for human immunoglobulin D, influences virulence in a rat otitis model. Infect Immun 1994; 62:4848-54. [PMID: 7927765 PMCID: PMC303197 DOI: 10.1128/iai.62.11.4848-4854.1994] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A mutant lacking the ability to express the surface-exposed lipoprotein protein D was constructed by linker insertion and deletion mutagenesis of a cloned DNA insert containing the protein D structural gene from a nontypeable Haemophilus influenzae strain (NTHi). An isogenic NTHi mutant was isolated after transformation of genetically competent bacteria. The transformant was unreactive to a protein D-specific monoclonal antibody in a colony immunoassay. In addition, the mutant lacked the ability to synthesize detectable levels of protein D by protein staining, immunoblot methods, glycerophosphodiester phosphodiesterase activity, and binding studies of radiolabelled immunoglobulin D. The isogenic protein D-deficient mutant was compared with its parental strain for its ability to induce experimental otitis media in rats challenged with bacteria. An approximately 100-times-higher concentration of the mutant compared with that of the wild-type strain was required in order to cause otitis among all rats challenged with that given dose. The protein D mutant exhibited a generation time that was equal to that of the wild-type strain in complex broth medium. No difference in lipopolysaccharide expression was found between the mutant and the parental strain. These results suggest that protein D may influence the pathogenesis of NTHi in the upper respiratory tract.
Collapse
Affiliation(s)
- H Janson
- Department of Medical Microbiology, Lund University, University Hospital, Malmö, Sweden
| | | | | | | |
Collapse
|
72
|
Hindle Z, Smith CP. Substrate induction and catabolite repression of the Streptomyces coelicolor glycerol operon are mediated through the GylR protein. Mol Microbiol 1994; 12:737-45. [PMID: 8052126 DOI: 10.1111/j.1365-2958.1994.tb01061.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The pathway for glycerol catabolism in Streptomyces coelicolor is determined by the gylCABX operon, which is transcribed from two closely spaced glycerol-inducible, glucose-repressible promoters. Glucose (or catabolite) repression of gyl is known to be exerted by a general catabolite repression system in which the soluble glucose kinase plays a central role. The gylR gene is contained in a separate glycerol-inducible, weakly glucose-repressible transcription unit immediately upstream from the gyl operon. The role of gylR in the regulation of gyl transcription was assessed by introducing specific null mutations into the chromosomal gylR gene. Direct quantification of gyl transcripts from the gylR null mutants grown on different carbon sources demonstrated that GylR is the repressor of the gylCABX operon and also revealed that GylR functions as a negative autoregulator. Moreover, the transcriptional analysis revealed that the gylR null mutants were relieved of glucose repression of both gylCABX and gylR. We conclude that both substrate induction and catabolite repression of gyl are mediated through the GylR protein. This is the first direct evidence that catabolite repression in Streptomyces is not exerted at the transcriptional level by a general 'catabolite repressor protein'. Models for catabolite repression are discussed.
Collapse
Affiliation(s)
- Z Hindle
- Department of Biochemistry and Applied Molecular Biology, UMIST, Manchester, UK
| | | |
Collapse
|
73
|
van der Vlag J, van Dam K, Postma PW. Quantification of the regulation of glycerol and maltose metabolism by IIAGlc of the phosphoenolpyruvate-dependent glucose phosphotransferase system in Salmonella typhimurium. J Bacteriol 1994; 176:3518-26. [PMID: 8206828 PMCID: PMC205539 DOI: 10.1128/jb.176.12.3518-3526.1994] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The amount of IIAGlc, one of the proteins of the phosphoenolpyruvate:glucose phosphotransferase system (PTS), was modulated over a broad range with the help of inducible expression plasmids in Salmonella typhimurium. The in vivo effects of different levels of IIAGlc on glycerol and maltose metabolism were studied. The inhibition of glycerol uptake, by the addition of a PTS sugar, was sigmoidally related to the amount of IIAGlc. For complete inhibition of glycerol uptake, a minimal ratio of about 3.6 mol of IIAGlc to 1 mol of glycerol kinase (tetramer) was required. Varying the level of IIAGlc (from 0 to 1,000% of the wild-type level) did not affect the growth rate on glycerol, the rate of glycerol uptake, or the synthesis of glycerol kinase. In contrast, the growth rate on maltose, the rate of maltose uptake, and the synthesis of the maltose-binding protein increased two- to fivefold with increasing levels of IIAGlc. In the presence of cyclic AMP, the maximal levels were obtained at all IIAGlc concentrations. The synthesis of the MalK protein, the target of IIAGlc, was not affected by varying the levels of IIAGlc. The inhibition of maltose uptake was sigmoidally related to the amount of IIAGlc. For complete inhibition of maltose uptake by a PTS sugar, a ratio of about 18 mol of IIAGlc to 1 mol of MalK protein (taken as a dimer) was required.
Collapse
Affiliation(s)
- J van der Vlag
- E. C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
74
|
Zhao N, Oh W, Trybul D, Thrasher KS, Kingsbury TJ, Larson TJ. Characterization of the interaction of the glp repressor of Escherichia coli K-12 with single and tandem glp operator variants. J Bacteriol 1994; 176:2393-7. [PMID: 8157609 PMCID: PMC205364 DOI: 10.1128/jb.176.8.2393-2397.1994] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The glp operons of Escherichia coli are negatively controlled by the glp repressor. Comparison of the repressor-binding affinities for consensus and altered consensus operators in vivo showed that all base substitutions at positions 3, 4, 5, and 8 from the center of the palindromic operator caused a striking decrease in repressor binding. Substitutions at other positions had a severe to no effect on repressor binding, depending on the base substitution. The results obtained indicate that the repressor binds with highest affinity to operators with the half-site WATKYTCGWW, where W is A or T, K is G or T, and Y is C or T. Strong cooperative binding of the repressor to tandem operators was demonstrated in vivo. Cooperativity was maximal when two 20-bp operators were directly repeated or when 2 bp separated the two operators. Cooperativity decreased with the deletion of 2 bp or the addition of 4 bp between the individual operators. Cooperativity was eliminated with a 6-bp insertion between the operators.
Collapse
Affiliation(s)
- N Zhao
- Department of Biochemistry and Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061-0308
| | | | | | | | | | | |
Collapse
|
75
|
Functional characterization of the Escherichia coli glycerol facilitator, GlpF, in Xenopus oocytes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32653-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
76
|
Suppmann B, Sawers G. Isolation and characterization of hypophosphite--resistant mutants of Escherichia coli: identification of the FocA protein, encoded by the pfl operon, as a putative formate transporter. Mol Microbiol 1994; 11:965-82. [PMID: 8022272 DOI: 10.1111/j.1365-2958.1994.tb00375.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hypophosphite was used as a toxic analogue to identify genes whose products have a putative function in the transport of formate. Two Tn10-derived insertion mutants were identified that exhibited increased resistance to high concentrations of hypophosphite in the culture medium. The transposon was located in the identical position in the focA (formate channel; previously termed orf) gene of the pfl operon in both mutants. A defined chromosomal focA nonsense mutant, which showed minimal polarity effects on pfl gene expression, had the same phenotype as the insertion mutants. Results obtained using a hycA-lacZ fusion to monitor changes in the intracellular formate concentration in a focA mutant indicated that the level of formate inside the cell was elevated compared with the wild type. Moreover, it could be shown that there was a corresponding reduction of approximately 50% in the amount of formate excreted by a focA mutant into the culture medium. Taken together, these results indicate that formate accumulates in anaerobic cells which do not have a functional focA gene product and that one function of FocA may be to export formate from the cell. A further significant result was that hypophosphite could substitute for formate in activating hycA gene expression. This hypophosphite-dependent activation of hycA gene expression was reduced 10-fold in a focA null mutant, suggesting that hypophosphite must first enter the cell before it can act as a signal to activate hycA expression. By analogy, these data suggest that focA may also be functional in the import of formate into anaerobic Escherichia coli cells. Site-specific mutagenesis identified the translation initiation codon of focA as a GUG. Therefore, the FocA polypeptide has a molecular weight of 30,958. FocA shows significant similarity at both the primary and secondary structural levels with the NirC protein of E. coli and the FdhC protein of Methanobacterium formicicum. All three proteins are predicted to be integral membrane proteins. A detailed in vivo TnphoA mutagenesis study predicted that FocA has six membrane-spanning segments.
Collapse
Affiliation(s)
- B Suppmann
- Lehrstuhl für Mikrobiologie der Universität München, Germany
| | | |
Collapse
|
77
|
Taranto PA, Keenan TW, Potts M. Rehydration induces rapid onset of lipid biosynthesis in desiccated Nostoc commune (Cyanobacteria). BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1168:228-37. [PMID: 8504158 DOI: 10.1016/0005-2760(93)90129-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Water, which contained [1,3-3H]glycerol, [35S]sodium sulfate, or [32P]sodium orthophosphate, was used to rehydrate air-dried cells of the desiccation-tolerant filamentous cyanobacterium Nostoc commune. The cells retained their capacities for the uptake and transport of all three compounds and, in response to rewetting, they mobilized the radiolabels into lipid precursors and initiated complex lipid biosynthesis. The onset of these events, measured in short-term, long-term and pulse-chase labeling experiments, was judged to be very rapid. The radiolabeled pool sizes of the major membrane species phosphatidylglycerol (PG) and sulfoquinovosyl diacylglycerol (SQDG) reached steady-state within several minutes, while those of the two abundant membrane glycolipids, mono- and di-glycosyldiacylglycerol (MGDG, DGDG), achieved uniform labeling within 2 h. The pattern of sulfolipid synthesis was generally more complex than the other lipid species. Analysis of the maturation of SQDG through differential labeling provided the only example of a lag in lipid maturation during the early stages (minutes) of cell rehydration. In this instance, the lag appeared to be associated specifically with the incorporation of 35SO3- by the sulfoquinovose. During the initial 2 h of rewetting there was complete turnover of 3H-label in the pools of the principal lipid precursors 1,2-sn-diacylglycerol and 1,3-diacylglycerol. In contrast, the accumulation of label by the major lipid of the heterocyst cell-wall, a non-saponifiable glycolipid, became detectable only after 24 h of rewetting. The present data are discussed in relation to the basis for desiccation tolerance in N. Commune.
Collapse
Affiliation(s)
- P A Taranto
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061
| | | | | |
Collapse
|
78
|
Truniger V, Boos W, Sweet G. Molecular analysis of the glpFKX regions of Escherichia coli and Shigella flexneri. J Bacteriol 1992; 174:6981-91. [PMID: 1400248 PMCID: PMC207378 DOI: 10.1128/jb.174.21.6981-6991.1992] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have identified a new gene, glpX, belonging to the glp regulon of Escherichia coli, located directly downstream of the glpK gene. The transcription of glpX is inducible with glycerol and sn-glycerol-3-phosphate and is constitutive in a glpR mutant. glpX is the third gene in the glpFKX operon. The function of GlpX remains unknown. GlpX has an apparent molecular weight of 40,000 on sodium dodecyl sulfate-polyacrylamide gels. In addition to determining the E. coli glpX sequence, we also sequenced the corresponding glpFKX region originating from Shigella flexneri, which after transfer into E. coli was instrumental in elucidating the function of glpF in glycerol transport (D. P. Richey and E. C. C. Lin, J. Bacteriol. 112:784-790, 1972). Sequencing of the glpFKX region of this hybrid strain revealed an amber mutation instead of the tryptophan 215 codon in glpF. The most striking difference between the E. coli and S. flexneri DNA was found directly behind glpK, where two repetitive (REP) sequences were present in S. flexneri, but not in the E. coli sequence. The presence or absence of these REP sequences had no effect on transport or on growth on glycerol. Not including the REP sequence-containing region, only 1.1% of a total of 2,167 bp sequenced was different in the two sequences. Comparison of the sequence with those in the EMBL data library revealed a 99% identity between the last third of glpX and the first part of a gene called mvrA. We show that the cloned mvrA gene (M. Morimyo, J. Bacteriol. 170:2136-2142, 1988) originated from the 88-min region of the Escherichia coli chromosome and not, as reported, from the 7-min region and that the gene product identified as MvrA is in fact encoded by a gene distal to glpX.
Collapse
Affiliation(s)
- V Truniger
- Department of Biology, University of Konstanz, Germany
| | | | | |
Collapse
|
79
|
Park H, Denbow CJ, Cramer CL. Structure and nucleotide sequence of tomato HMG2 encoding 3-hydroxy-3-methyl-glutaryl coenzyme A reductase. PLANT MOLECULAR BIOLOGY 1992; 20:327-31. [PMID: 1391777 DOI: 10.1007/bf00014502] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- H Park
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg 24061-0330
| | | | | |
Collapse
|
80
|
Larson T, Cantwell J, van Loo-Bhattacharya A. Interaction at a distance between multiple operators controls the adjacent, divergently transcribed glpTQ-glpACB operons of Escherichia coli K-12. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42669-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|