51
|
Hernandez-Garcia CM, Martinelli AP, Bouchard RA, Finer JJ. A soybean (Glycine max) polyubiquitin promoter gives strong constitutive expression in transgenic soybean. PLANT CELL REPORTS 2009; 28:837-49. [PMID: 19229538 DOI: 10.1007/s00299-009-0681-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 01/20/2009] [Accepted: 01/27/2009] [Indexed: 05/19/2023]
Abstract
The success of plant genetic transformation relies greatly on the strength and specificity of the promoters used to drive genes of interest. In this study, we analyzed gfp gene expression mediated by a polyubiquitin promoter (Gmubi) from soybean (Glycine max) in stably transformed soybean tissues. Strong GFP expression was observed in stably transformed proliferative embryogenic tissues. In whole transgenic plants, GFP expression was observed in root tips, main and lateral roots, cotyledons and plumules in young plants as well as in leaf veins, petioles, flower petals, pollen, pods and developing seeds in mature plants. GFP expression was localized mainly in epidermal cells, leaf mesophyll, procambium and vascular tissues. Introduction of an intron-less version of the Gmubi promoter (Gmupri) displayed almost the same GFP expression pattern albeit at lower intensities. The Gmubi promoter showed high levels of constitutive expression and represents an alternative to viral promoters for driving gene expression in soybean.
Collapse
Affiliation(s)
- Carlos M Hernandez-Garcia
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, Wooster, OH 44691, USA
| | | | | | | |
Collapse
|
52
|
Hanania U, Velcheva M, Sahar N, Flaishman M, Or E, Dgani O, Perl A. Suppression and overexpression of ubiquitin extension protein S27a affects cell proliferation and in vitro regeneration in Nicotiana benthamiana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2009; 176:566-74. [PMID: 26493147 DOI: 10.1016/j.plantsci.2009.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 01/14/2009] [Accepted: 01/22/2009] [Indexed: 05/22/2023]
Abstract
Ubiquitin is a highly conserved 76-amino-acid protein found in all eukaryotic cells. Ubiquitin's expression is encoded and expressed as multimeric head-to-tail repeats (polyubiquitins) that are post-translationally cleaved into monomers, or fused with ribosomal proteins S27a and L40. S27a is highly expressed in meristematic tissues, pollen and ovules and its ubiquitin moiety is thought to act as a chaperone in ribosome biogenesis prior to cleavage. This study suggests that the ribosomal protein S27a plays a critical role in the allocation of meristematic cells that differentiate into lateral structures such as leaves and flowers. S27a was also found to regulate floral meristem development, possibly through the control of cell proliferation as well as cell identity. Overexpression of S27a was correlated with increased proliferation of undifferentiated cells and arrest of morphologically "normal" shoot and leaf development. The ubiquitin moiety did not affect the localization of S27a, but it did affect its protein level: expression of S27a without the ubiquitin moiety caused a severe reduction in S27a protein level.
Collapse
Affiliation(s)
- Uri Hanania
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan 50250, Israel
| | - Margarita Velcheva
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan 50250, Israel
| | - Nachman Sahar
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan 50250, Israel
| | - Moshe Flaishman
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan 50250, Israel
| | - Etti Or
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan 50250, Israel
| | - Oded Dgani
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan 50250, Israel
| | - Avihai Perl
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan 50250, Israel.
| |
Collapse
|
53
|
Cai CQ, Doyon Y, Ainley WM, Miller JC, Dekelver RC, Moehle EA, Rock JM, Lee YL, Garrison R, Schulenberg L, Blue R, Worden A, Baker L, Faraji F, Zhang L, Holmes MC, Rebar EJ, Collingwood TN, Rubin-Wilson B, Gregory PD, Urnov FD, Petolino JF. Targeted transgene integration in plant cells using designed zinc finger nucleases. PLANT MOLECULAR BIOLOGY 2009; 69:699-709. [PMID: 19112554 DOI: 10.1007/s11103-008-9449-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 12/14/2008] [Indexed: 05/20/2023]
Abstract
Targeted transgene integration in plants remains a significant technical challenge for both basic and applied research. Here it is reported that designed zinc finger nucleases (ZFNs) can drive site-directed DNA integration into transgenic and native gene loci. A dimer of designed 4-finger ZFNs enabled intra-chromosomal reconstitution of a disabled gfp reporter gene and site-specific transgene integration into chromosomal reporter loci following co-transformation of tobacco cell cultures with a donor construct comprised of sequences necessary to complement a non-functional pat herbicide resistance gene. In addition, a yeast-based assay was used to identify ZFNs capable of cleaving a native endochitinase gene. Agrobacterium delivery of a Ti plasmid harboring both the ZFNs and a donor DNA construct comprising a pat herbicide resistance gene cassette flanked by short stretches of homology to the endochitinase locus yielded up to 10% targeted, homology-directed transgene integration precisely into the ZFN cleavage site. Given that ZFNs can be designed to recognize a wide range of target sequences, these data point toward a novel approach for targeted gene addition, replacement and trait stacking in plants.
Collapse
Affiliation(s)
- Charles Q Cai
- Dow AgroSciences, LLC, 9330 Zionsville Road, Indianapolis, IN 46268, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Craig A, Ewan R, Mesmar J, Gudipati V, Sadanandom A. E3 ubiquitin ligases and plant innate immunity. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1123-32. [PMID: 19276192 DOI: 10.1093/jxb/erp059] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In yeast and in animals the ubiquitin-proteasome system (UPS) is responsible for removing or modifying most abnormal peptides and also short-lived cellular regulators. The UPS therefore influences many processes such as the cell cycle, signal transduction, transcription, and stress responses including defence. In recent years, similar regulatory roles have been identified in plants. In Arabidopsis, mutations in the ubiquitin-proteasome pathway block development, circadian rhythms, photomorphogenesis, floral homeosis, hormone responses, senescence, and pathogen invasion. Plants have evolved an armoury of defence mechanisms that allow them to counter infection. These encompass both basal responses, triggered by recognition of conserved pathogen-associated molecular patterns, and pathogen-specific responses, mediated via pathogen- and plant-specific gene-for-gene recognition events. The role of E3 ubiquitin ligases in mediating plant defence signalling is reviewed and examples where pathogens impinge on the host's ubiquitination machinery acting as molecular mimics to undermine defence are also highlighted.
Collapse
Affiliation(s)
- Adam Craig
- Plant Molecular Sciences Group, Faculty of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | | | | | | | | |
Collapse
|
55
|
WIENS MATTHIAS, LUKIC LADA, MÜLLER WERNERE, GAMULIN VERA. Ubiquitins (polyubiquitin and ubiquitin extension protein) in marine sponges: cDNA sequence and phylogenetic analysis. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.1999.tb01928.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
56
|
Tu L, Zhang X, Liu D, Jin S, Cao J, Zhu L, Deng F, Tan J, Zhang C. Suitable internal control genes for qRT-PCR normalization in cotton fiber development and somatic embryogenesis. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0461-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
57
|
Kwak MS, Oh MJ, Lee SW, Shin JS, Paek KH, Bae JM. A strong constitutive gene expression system derived from ibAGP1 promoter and its transit peptide. PLANT CELL REPORTS 2007; 26:1253-62. [PMID: 17406871 DOI: 10.1007/s00299-007-0349-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 03/07/2007] [Accepted: 03/13/2007] [Indexed: 05/14/2023]
Abstract
To develop a strong constitutive gene expression system, the activities of ibAGP1 promoter and its transit peptide were investigated using transgenic Arabidopsis and a GUS reporter gene. The ibAGP1 promoter directed GUS expression in almost entire tissues including rosette leaf, inflorescence stem, inflorescence, cauline leaf and root, suggesting that the ibAGP1 promoter is a constitutive promoter. GUS expression mediated by ibAGP1 promoter was weaker than that by CaMV35S promoter in all tissue types, but when GUS protein was targeted to plastids with the aid of the ibAGP1 transit peptide, GUS levels increased to higher levels in lamina, petiole and cauline leaf compared to those produced by CaMV35S promoter. The enhancing effect of ibAGP1 transit peptide on the accumulation of foreign protein was tissue-specific; accumulation was high in lamina and inflorescence, but low in root and primary inflorescence stem. The transit peptide effect in the leaves was maintained highly regardless of developmental stages of plants. The ibAGP1 promoter and its transit peptide also directed strong GUS gene expression in transiently expressed tobacco leaves. These results suggest that the ibAGP1 promoter and its transit peptide are a strong constitutive foreign gene expression system for transgenesis of dicot plants.
Collapse
Affiliation(s)
- Man Sup Kwak
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | | | | | | | | | | |
Collapse
|
58
|
Yang P, Smalle J, Lee S, Yan N, Emborg TJ, Vierstra RD. Ubiquitin C-terminal hydrolases 1 and 2 affect shoot architecture in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:441-57. [PMID: 17559514 DOI: 10.1111/j.1365-313x.2007.03154.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ubiquitin C-terminal hydrolases (UCHs) are a subset of de-ubiquitinating proteases that release covalently linked ubiquitin (Ub), and as such play essential roles in recycling Ub and reversing the action of Ub conjugation. We show here that two related Arabidopsis UCHs, UCH1, and UCH2, are important for shoot development. The UCH1 and 2 genes are ubiquitously expressed, with the corresponding proteins present in both the cytoplasm and nucleus. Unlike their animal and fungal counterparts, we found no evidence that the Arabidopsis UCH1 and 2 proteins stably associate with the 26S proteasome. Altering the levels of UCH1 and 2 has substantial effects on Arabidopsis shoot development, especially with respect to inflorescence architecture, with over-expression and double mutants enhancing and suppressing the outgrowth of cauline branches, respectively. Neither UCH1-over-expressing nor uch1-1 uch2-1 plants have detectably altered sensitivity to cytokinins or auxins individually, but exhibit an altered sensitivity to the ratio of the two hormones. UCH1-over-expressing plants show dramatically enhanced phenotypes when combined with auxin-insensitive mutants axr1-3 and axr2-1, suggesting that one or more aspects of auxin signaling are affected by this enzyme pair. Previous studies revealed that the ubiquitination and degradation of the AUX/IAA family of repressors is a key step in auxin signaling. Here, we show that turnover of a reporter fused to a representative AUX/IAA protein AXR3 is faster in the uch1-1 uch2-1 double mutant but slower in the UCH1 over-expression backgrounds. Taken together, our results indicate that de-ubiquitination helps to modify plant shoot architecture, possibly via its ability to directly or indirectly protect upstream target proteins involved in auxin/cytokinin signaling from Ub-mediated degradation.
Collapse
Affiliation(s)
- Peizhen Yang
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706-1574, USA
| | | | | | | | | | | |
Collapse
|
59
|
Lee YP, Yu GH, Seo YS, Han SE, Choi YO, Kim D, Mok IG, Kim WT, Sung SK. Microarray analysis of apple gene expression engaged in early fruit development. PLANT CELL REPORTS 2007; 26:917-26. [PMID: 17294193 DOI: 10.1007/s00299-007-0308-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 12/12/2006] [Accepted: 01/12/2007] [Indexed: 05/13/2023]
Abstract
To evaluate gene expressions mostly engaged in early development of apple fruit, we performed the identification of transcripts differentially expressed in young fruit by using microarrays spotted with 6,253 cDNAs collected from young and mature apple fruits of the cultivar Fuji (Malus domestica Borkh. cv. Fuji). A total of 3,484 cDNAs out of 6,253 were selected after quality control of microarray spots and analyzed for differential gene expression patterns between young fruit and other tissues (mature fruit, leaf and flower). Among them, 192 cDNAs displayed a signal value higher than twofold in young fruit compared with other tissues. Blast analysis of the 192 cDNA clones identified 88 non-redundant groups encoding proteins with known function and 50 non-redundant groups with unknown function. The putative protein products were classified into the following categories: photosynthesis (16.7%), protein synthesis (12.3%), cell proliferation and differentiation (10.9%), cell enlargement (5.8%), metabolism (8.0%), stress response (7.2%), others (2.9%), and unknown functions (32.2%). Furthermore, confirming the microarray data by reverse transcription-polymerase chain reaction revealed that the wide range of transcripts differentially expressed in young fruit was expressed in other organs but not in the mature fruit. The data presented suggested that apple fruit development depends on the tight regulation of the expression of a number of genes, which are also expressed in other organs.
Collapse
Affiliation(s)
- Young-Pyo Lee
- Biotech Application Team, Dongbu Advanced Research Institute, Daejeon 305-708, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Mishra S, Yadav DK, Tuli R. Ubiquitin fusion enhances cholera toxin B subunit expression in transgenic plants and the plant-expressed protein binds GM1 receptors more efficiently. J Biotechnol 2006; 127:95-108. [PMID: 16843564 DOI: 10.1016/j.jbiotec.2006.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 05/30/2006] [Accepted: 06/06/2006] [Indexed: 11/18/2022]
Abstract
Developing plant based systems for the production of therapeutic recombinant proteins requires the development of efficient expression strategies and characterization of proteins made in heterologous cellular environment. In this study, the expression of cholera toxin B subunit (CtxB) was examined in the leaves of transgenic tobacco plants. A synthetic gene encoding CtxB was designed for high level expression in plant cells and cloned as ubiquitin (Ub) fusion in a plant expression vector. Tobacco plants were genetically engineered by nuclear transformation to express the CtxB or Ub-CtxB fusion proteins under the control of CaMV35S duplicated enhancer promoter. Functionally active CtxB accumulated in tobacco leaves at 2.5-fold higher level in the Ub-CtxB plants. In the best expressors, CtxB accumulated at 0.9% of the total soluble leaf protein. In both the constructs, molecular mass of the plant-expressed CtxB was 14.6 kDa in contrast to 11.6 kDa for the authentic CtxB. Schiff's test, retention on concanavalin A column and chemical and enzymatic deglycosylation established that the higher molecular mass was due to glycosylation of the CtxB expressed in plant cells. The glycosylated CtxB made in tobacco leaves had higher affinity of binding to the GM1 receptors.
Collapse
Affiliation(s)
- Satish Mishra
- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | | | | |
Collapse
|
61
|
Joung YH, Kamo K. Expression of a polyubiquitin promoter isolated from Gladiolus. PLANT CELL REPORTS 2006; 25:1081-8. [PMID: 16761144 DOI: 10.1007/s00299-006-0185-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 05/10/2006] [Accepted: 05/17/2006] [Indexed: 05/09/2023]
Abstract
A polyubiquitin promoter (GUBQ1) including its 5'UTR and intron was isolated from the floral monocot Gladiolus because high levels of expression could not be obtained using publicly available promoters isolated from either cereals or dicots. Sequencing of the promoter revealed highly conserved 5' and 3' intron splicing sites for the 1.234 kb intron. The coding sequence of the first two ubiquitin genes showed the highest homology (87 and 86%, respectively) to the ubiquitin genes of Nicotiana tabacum and Oryza sativa RUBQ2. Transient expression following gene gun bombardment showed that relative levels of GUS activity with the GUBQ1 promoter were comparable to the CaMV 35S promoter in gladiolus, tobacco, rose, rice, and the floral monocot freesia. The highest levels of GUS expression with GUBQ1 were attained with Gladiolus. The full-length GUBQ1 promoter including 5'UTR and intron were necessary for maximum GUS expression in Gladiolus. The relative GUS activity for the promoter only was 9%, and the activity for the promoter with 5'UTR and 399 bp of the full-length 1.234 kb intron was 41%. Arabidopsis plants transformed with uidA under GUBQ1 showed moderate GUS expression throughout young leaves and in the vasculature of older leaves. The highest levels of transient GUS expression in Gladiolus have been achieved using the GUBQ1 promoter. This promoter should be useful for genetic engineering of disease resistance in Gladiolus, rose, and freesia, where high levels of gene expression are important.
Collapse
Affiliation(s)
- Young Hee Joung
- School of Biological Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | | |
Collapse
|
62
|
Sivamani E, Qu R. Expression enhancement of a rice polyubiquitin gene promoter. PLANT MOLECULAR BIOLOGY 2006; 60:225-39. [PMID: 16429261 DOI: 10.1007/s11103-005-3853-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 10/06/2005] [Indexed: 05/06/2023]
Abstract
An 808 bp promoter from a rice polyubiquitin gene, rubi3, has been isolated. The rubi3 gene contained an open reading frame of 1,140 bp encoding a pentameric polyubiquitin arranged as five tandem, head-to-tail repeats of 76 aa. The 1,140 bp 5' UTR intron of the gene enhanced its promoter activity in transient expression assays by 20-fold. Translational fusion of the GUS reporter gene to the coding sequence of the ubiquitin monomer enhanced GUS enzyme activity in transient expression assays by 4.3-fold over the construct containing the original rubi3 promoter (including the 5' UTR intron) construct. The enhancing effect residing in the ubiquitin monomer coding sequence has been narrowed down to the first 9 nt coding for the first three amino acid residues of the ubiquitin protein. Mutagenesis at the third nucleotide of this 9 nt sequence still maintains the enhancing effect, but leads to translation of the native GUS protein rather than a fusion protein. The resultant 5' regulatory sequence, consisting of the rubi3 promoter, 5' UTR exon and intron, and the mutated first 9 nt coding sequence, has an activity nearly 90-fold greater than the rubi3 promoter only (without the 5' UTR intron), and 2.2-fold greater than the maize Ubi1 gene promoter (including its 5' UTR intron). The newly created expression vector is expected to enhance transgene expression in monocot plants. Considering the high conservation of the polyubiquitin gene structure in higher plants, the observed enhancement in gene expression may apply to 5' regulatory sequences of other plant polyubiquitin genes.
Collapse
Affiliation(s)
- Elumalai Sivamani
- Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7620, USA
| | | |
Collapse
|
63
|
Tian L, Wu K, Hannam C, Latoszek-Green M, Sibbald S, Hu M, Brown DCW, Miki B. Analysis and use of the tobacco eIF4A-10 promoter elements for transgene expression. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:1355-66. [PMID: 16425454 DOI: 10.1016/j.jplph.2005.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The eIF4A gene family codes for proteins which unwind secondary structures of mRNA during translational initiation. The tobacco eIF4A-10 promoter is one of a few of constitutive promoters found in plants. Research was conducted to identify the proximal promoter elements and to evaluate the potential application of the promoter for regulating transgene expression in a range of crop plants. A large intron (892 bp) in the leader sequence was found to be dispensable for constitutive promoter activity and did not contribute to the overall performance of the promoter. Deletion analysis showed that the upstream region between -151 bp and -73bp relative to the transcriptional start site was essential for the high level of expression and the constitutive activity. The data indicated that the elements in this region may coordinate and compensate each other for the high levels of promoter expression. The downstream leader sequence also contained a strong quantitative enhancer element that was essential for the full activity of the eIF4A-10 promoter. The eIF-4A10 promoter was found to be active in a wide range of plant species and tissues indicating that it will be useful for the constitutive expression of transgenes in plants.
Collapse
Affiliation(s)
- Lining Tian
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ont, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Cazzonelli CI, McCallum EJ, Lee R, Botella JR. Characterization of a strong, constitutive mung bean (Vigna radiata L.) promoter with a complex mode of regulation in planta. Transgenic Res 2005; 14:941-67. [PMID: 16315097 DOI: 10.1007/s11248-005-2539-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 08/25/2005] [Indexed: 10/25/2022]
Abstract
We report the cloning and characterization in tobacco and Arabidopsis of a Vigna radiata L. (mung bean) promoter that controls the expression of VR-ACS1, an auxin-inducible ACC synthase gene. The VR-ACS1 promoter exhibits a very unusual behavior when studied in plants different from its original host, mung bean. GUS and luciferase in situ assays of transgenic plants containing VR-ACS1 promoter fusions show strong constitutive reporter gene expression throughout tobacco and Arabidopsis development. In vitro quantitative analyses show that transgenic plants harboring VR-ACS1 promoter-reporter constructs have on average 4-6 fold higher protein and activity levels of both reporter genes than plants transformed with comparable CaMV 35S promoter fusions. Similar transcript levels are present in VR-ACS1 and CaMV 35S promoter lines, suggesting that the high levels of gene product observed for the VR-ACS1 promoter are the combined result of transcriptional and translational activation. All tested deletion constructs retaining the core promoter region can drive strong constitutive promoter activity in transgenic plants. This is in contrast to mung bean, where expression of the native VR-ACS1 gene is almost undetectable in plants grown under normal conditions, but is rapidly and highly induced by a variety of stimuli. The constitutive behavior of the VR-ACS1 promoter in heterologous hosts is surprising, suggesting that the control mechanisms active in mung bean are impaired in tobacco and Arabidopsis. The 'aberrant' behavior of the VR-ACS1 promoter is further emphasized by its failure to respond to auxin and cycloheximide in heterologous hosts. VR-ACS1 promoter regulatory mechanisms seem to be different from all previously characterized auxin-inducible promoters.
Collapse
Affiliation(s)
- Christopher I Cazzonelli
- Department of Botany, Plant Genetic Engineering Laboratory, University of Queensland, Brisbane, Australia
| | | | | | | |
Collapse
|
65
|
Obertello M, Santi C, Sy MO, Laplaze L, Auguy F, Bogusz D, Franche C. Comparison of four constitutive promoters for the expression of transgenes in the tropical nitrogen-fixing tree Allocasuarina verticillata. PLANT CELL REPORTS 2005; 24:540-8. [PMID: 15940528 DOI: 10.1007/s00299-005-0963-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 03/01/2005] [Accepted: 03/08/2005] [Indexed: 05/02/2023]
Abstract
Allocasuarina verticillata is an actinorhizal tree that lives in symbiotic association with a nitrogen fixing actinomycete called Frankia. In the search for promoters that drive strong constitutive expression in this tropical tree, we studied the organ specificity of four different constitutive promoters (CaMV 35S, e35S, e35S-4ocs and UBQ1 from Arabidopsis thaliana) in stably transformed A. verticillata plants. The ss-glucuronidase (gus) gene was used as a reporter and expression studies were carried out by histochemical analyses on shoots, roots and actinorhizal nodules. While the 35S promoter was poorly expressed in the shoot apex and lateral roots, both the e35S and e35S-4ocs were found to drive high constitutive expression in the transgenic non-nodulated plants. In contrast, the UBQ1 promoter was very poorly expressed and appeared unsuitable for A. verticillata. We also showed that none of the promoters studied were active in the nodule infected cells, whatever the developmental stage studied.
Collapse
Affiliation(s)
- Mariana Obertello
- Groupe Rhizogénèse Symbiotique, UMR 1098, IRD (Institut de Recherche pour le Développement), 911 avenue Agropolis, BP 5045, 34394 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
66
|
Lilley CJ, Atkinson HJ, Urwin PE. Molecular aspects of cyst nematodes. MOLECULAR PLANT PATHOLOGY 2005; 6:577-88. [PMID: 20565681 DOI: 10.1111/j.1364-3703.2005.00306.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
UNLABELLED SUMMARY Taxonomy: Superkingdom Eukaryota; kingdom Metazoa; phylum Nematoda; class Chromadorea; order Tylenchida; suborder Tylenchina; superfamily Tylenchoidea; family Heteroderidae; subfamily Heteroderinae; main genera Heterodera and Globodera. HOST RANGE Cyst nematodes comprise approximately 100 known species in six genera. They are pathogens of temperate, subtropical and tropical plant species and the host range of many species is narrow. The most economically important species are within the Globodera and Heterodera genera. Globodera pallida and G. rostochiensis are important pathogens of potato crops. There are many economic species in the Heterodera genus, including Heterodera glycines (soybean cyst nematode), H. avenae (cereal cyst nematode) and H. schachtii (sugar beet cyst nematode), the last of which attacks a range of Chenopodiaceae and Cruciferae, including Arabidopsis thaliana. Disease symptoms: Field symptoms of severe cyst nematode infection are often stunting, wilting and chlorosis, but considerable yield loss can occur without obvious symptoms. The only unique indicator of cyst nematode infection is the presence of adult female nematodes attached to host roots after several weeks of parasitism. Disease control: This is usually achieved by using integrated pest management involving cultural practices such as crop rotation, resistant cultivars if available and chemical control when economically justified.
Collapse
|
67
|
Capitani F, Biondi S, Falasca G, Ziosi V, Balestrazzi A, Carbonera D, Torrigiani P, Altamura MM. Methyl jasmonate disrupts shoot formation in tobacco thin cell layers by over-inducing mitotic activity and cell expansion. PLANTA 2005; 220:507-19. [PMID: 15365837 DOI: 10.1007/s00425-004-1362-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 06/29/2004] [Indexed: 05/24/2023]
Abstract
The aim of the present study was to determine early cyto-histological events associated with the reduced number of shoots formed at the end of culture in tobacco (Nicotiana tabacum L.) thin cell layers treated with methyl jasmonate (MJ) [S. Biondi et al. (2001) J Exp Bot 52:1-12]. The results show that 0.1-10 microM MJ strongly stimulated mitotic activity early in culture relative to untreated controls. Treatment with MJ also induced anomalous mitoses. Enhanced proliferative growth was confirmed by northern analysis and in situ hybridisation using cDNA probes of the G1/S phase-specific genes ubiquitin carboxyl-extension protein (ubi-CEP), topoisomerase 1 (top1) and ribonucleotide reductase (RNR). The formation of meristematic cell clusters on day 5 was also enhanced by 1 muM MJ, but subsequent development of these cell clusters into meristemoids and shoot primordia was reduced by all MJ concentrations in a dose-dependent manner. Cell expansion was stimulated by MJ concentrations ranging from 0.001 to 10 microM; expanded cells frequently occurred around and within meristemoids and shoot primordia, and displayed thickened and suberised cell walls; cell wall thickness increased with increasing MJ concentration. These cytological events caused alterations in the tunica and stem differentiation of the shoot dome. The apparently paradoxical role of MJ, which deregulates shoot formation through a stimulation of growth events, i.e., mitotic activity and cell expansion, is discussed.
Collapse
Affiliation(s)
- F Capitani
- Dipartimento di Biologia Vegetale, Università di Roma La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Johnson MA, von Besser K, Zhou Q, Smith E, Aux G, Patton D, Levin JZ, Preuss D. Arabidopsis hapless mutations define essential gametophytic functions. Genetics 2004; 168:971-82. [PMID: 15514068 PMCID: PMC1448849 DOI: 10.1534/genetics.104.029447] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 06/17/2004] [Indexed: 11/18/2022] Open
Abstract
In flowering plants, the egg develops within a haploid embryo sac (female gametophyte) that is encased within the pistil. The haploid pollen grain (male gametophyte) extends a pollen tube that carries two sperm cells within its cytoplasm to the embryo sac. This feat requires rapid, precisely guided, and highly polarized growth through, between, and on the surface of the cells of the stigma, style, and ovary. Pollen tube migration depends on a series of long-range signals from diploid female cells as well as a short-range attractant emitted by the embryo sac that guides the final stage of tube growth. We developed a genetic screen in Arabidopsis thaliana that tags mutant pollen with a cell-autonomous marker carried on an insertion element. We found 32 haploid-disrupting (hapless) mutations that define genes required for pollen grain development, pollen tube growth in the stigma and style, or pollen tube growth and guidance in the ovary. We also identified genomic DNA flanking the insertion element for eleven hap mutants and showed that hap1 disrupts AtMago, a gene whose ortholog is important for Drosophila cell polarity.
Collapse
Affiliation(s)
- Mark A Johnson
- Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Sigareva M, Spivey R, Willits MG, Kramer CM, Chang YF. An efficient mannose selection protocol for tomato that has no adverse effect on the ploidy level of transgenic plants. PLANT CELL REPORTS 2004; 23:236-245. [PMID: 15197480 DOI: 10.1007/s00299-004-0809-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 04/19/2004] [Accepted: 04/20/2004] [Indexed: 05/24/2023]
Abstract
A protocol for Agrobacterium-mediated transformation with mannose selection was developed for cotyledon petiole, hypocotyl and leaf explants of tomato (Lycopersicon esculentum L. Mill). More than 400 transgenic plants from three tomato varieties were selected with 1% mannose in combination with 0.1-0.5% glucose. Average transformation frequencies ranged from 2.0 to 15.5% depending on the construct, genotype and type of tissue used for transformation. The highest transformation rate was obtained for hypocotyl explants from tomato variety SG048. The ploidy levels of 264 independent transgenic events and 233 non-transgenic plants regenerated from tissue culture were assessed by flow cytometry. The incidence of polyploids within the total population of transgenic plants varied from 10 to 78% and was not significantly different from the non-transgenic population. The greatest variation in the proportion of polyploids was observed in plants derived from different explant types, both in transgenic and non-transgenic regenerants, across three studied genotypes. Transgenic and non-transgenic plants regenerated from leaves included the highest number of normal diploid plants (82-100%), followed by cotyledon petiole-derived plants (63-78%). Transgenic plants produced from hypocotyls contained 22-58% diploids depending on the genotype used in transformation. Results described in this study demonstrate that, although transformation frequencies for leaf tissue are still lower under current protocols, the high percentage of diploids obtained make leaf tissue an attractive transformation target.
Collapse
Affiliation(s)
- Marina Sigareva
- Syngenta Biotechnology, 3054 Cornwallis Road, Research Triangle Park, NC 27709-2257, USA.
| | | | | | | | | |
Collapse
|
70
|
Tytgat T, Vanholme B, De Meutter J, Claeys M, Couvreur M, Vanhoutte I, Gheysen G, Van Criekinge W, Borgonie G, Coomans A, Gheysen G. A new class of ubiquitin extension proteins secreted by the dorsal pharyngeal gland in plant parasitic cyst nematodes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:846-52. [PMID: 15305605 DOI: 10.1094/mpmi.2004.17.8.846] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
By performing cDNA AFLP on pre- and early parasitic juveniles, we identified genes encoding a novel type of ubiquitin extension proteins secreted by the dorsal pharyngeal gland in the cyst nematode Heterodera schachtii. The proteins consist of three domains, a signal peptide for secretion, a mono-ubiquitin domain, and a short C-terminal positively charged domain. A gfp-fusion of this protein is targeted to the nucleolus in tobacco BY-2 cells. We hypothesize that the C-terminal peptide might have a regulatory function during syncytium formation in plant roots.
Collapse
Affiliation(s)
- Tom Tytgat
- Department of Biology, Section Nematology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Much of plant physiology, growth, and development is controlled by the selective removal of short-lived regulatory proteins. One important proteolytic pathway involves the small protein ubiquitin (Ub) and the 26S proteasome, a 2-MDa protease complex. In this pathway, Ub is attached to proteins destined for degradation; the resulting Ub-protein conjugates are then recognized and catabolized by the 26S proteasome. This review describes our current understanding of the pathway in plants at the biochemical, genomic, and genetic levels, using Arabidopsis thaliana as the model. Collectively, these analyses show that the Ub/26S proteasome pathway is one of the most elaborate regulatory mechanisms in plants. The genome of Arabidopsis encodes more than 1400 (or >5% of the proteome) pathway components that can be connected to almost all aspects of its biology. Most pathway components participate in the Ub-ligation reactions that choose with exquisite specificity which proteins should be ubiquitinated. What remains to be determined is the identity of the targets, which may number in the thousands in plants.
Collapse
Affiliation(s)
- Jan Smalle
- Department of Genetics, 445 Henry Mall, University of Wisconsin-Madison, Madison, Wisconsin 53706-1574, USA
| | | |
Collapse
|
72
|
Gao B, Allen R, Maier T, Davis EL, Baum TJ, Hussey RS. The parasitome of the phytonematode Heterodera glycines. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:720-6. [PMID: 12906116 DOI: 10.1094/mpmi.2003.16.8.720] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Parasitism genes expressed in the esophageal gland cells of phytonematodes encode secretions that control the complex process of plant parasitism. In the soybean cyst nematode, Heterodera glycines, the parasitome, i.e., the secreted products of parasitism genes, facilitate nematode migration in soybean roots and mediate the modification of root cells into elaborate feeding cells required to support the growth and development of the nematode. With very few exceptions, the identities of these secretions are unknown, and the mechanisms of cyst nematode parasitism, therefore, remain obscure. The most direct and efficient approach for cloning parasitism genes and rapidly advancing our understanding of the molecular interactions during nematode parasitism of plants is to create gland cell-specific cDNA libraries using cytoplasm microaspirated from the esophageal gland cells of various parasitic stages. By combining expressed sequence tag analysis of a gland cell cDNA library with high throughput in situ expression localization of clones encoding secretory proteins, we obtained the first comprehensive parasitome profile for a parasitic nematode. We identified 51 new H. glycines gland-expressed candidate parasitism genes, of which 38 genes constitute completely novel sequences. Individual parasitome members showed distinct gland cell expression patterns throughout the parasitic cycle. The parasitome complexity discovered paints a more elaborate picture of host cellular events under specific control by the nematode parasite than previously hypothesized.
Collapse
Affiliation(s)
- Bingli Gao
- Department of Plant Pathology, University of Georgia, Athens 30602-7274, USA
| | | | | | | | | | | |
Collapse
|
73
|
Wang H, Tang W, Zhu C, Perry SE. A chromatin immunoprecipitation (ChIP) approach to isolate genes regulated by AGL15, a MADS domain protein that preferentially accumulates in embryos. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:831-843. [PMID: 12472697 DOI: 10.1046/j.1365-313x.2002.01455.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
AGAMOUS-like-15 (AGL15) is a member of the MADS-domain family of DNA-binding regulatory factors that accumulates preferentially in tissue developing in an embryonic mode. To better understand how AGL15 functions, we developed a chromatin immunoprecipitation (ChIP) approach to isolate genes regulated directly by AGL15. ChIP allows purification of in vivo protein-DNA complexes. The co-purified DNA is recovered and used to isolate the putatively regulated gene. Several tests must be performed to show that the putative downstream target gene is truly regulated by the DNA-binding protein. The DNA-binding regulatory protein must interact with cis regulatory elements. The downstream gene expression pattern should respond to the level of the trans-acting regulatory factor. The cis element should be able to confer regulation in response to the trans-acting factor. We describe, in this report, our ChIP protocol, and discuss in detail, tests to confirm regulation by AGL15 for two targets identified by ChIP. These targets are referred to as Downstream Target of AGL15 (DTA1 and DTA2). Expression of DTA1, which encodes a protein with high similarity to GA-2 oxidase-like proteins, is induced by AGL15. DTA2 encodes a novel protein and expression of this target is repressed by AGL15.
Collapse
Affiliation(s)
- Huai Wang
- Department of Agronomy, University of Kentucky, Lexington 40546-0091, USA
| | | | | | | |
Collapse
|
74
|
Cai Y, Jia JW, Crock J, Lin ZX, Chen XY, Croteau R. A cDNA clone for beta-caryophyllene synthase from Artemisia annua. PHYTOCHEMISTRY 2002; 61:523-9. [PMID: 12409018 DOI: 10.1016/s0031-9422(02)00265-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An homology-based cloning strategy yielded a full-length cDNA from Artemisia annua that encoded a protein of 60.3 kDa which resembled a sesquiterpene synthase in sequence. Heterologous expression of the gene in Escherichia coli provided a soluble recombinant enzyme capable of catalyzing the divalent metal ion-dependent conversion of farnesyl diphosphate to beta-caryophyllene, a sesquiterpene olefin found in the essential oil of A. annua. In reaction parameters and kinetic properties, beta-caryophyllene synthase resembles other sesquiterpene synthases of angiosperms. The beta-caryophyllene synthase gene is expressed in most plant tissues during early development, and is induced in mature tissue in response to fungal elicitor thus suggesting a role for beta-caryophyllene in plant defense.
Collapse
Affiliation(s)
- Yu Cai
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, P R, China
| | | | | | | | | | | |
Collapse
|
75
|
Guan X, Stege J, Kim M, Dahmani Z, Fan N, Heifetz P, Barbas CF, Briggs SP. Heritable endogenous gene regulation in plants with designed polydactyl zinc finger transcription factors. Proc Natl Acad Sci U S A 2002; 99:13296-301. [PMID: 12271125 PMCID: PMC130627 DOI: 10.1073/pnas.192412899] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2002] [Indexed: 11/18/2022] Open
Abstract
Zinc finger transcription factors (TFs(ZF)) were designed and applied to transgene and endogenous gene regulation in stably transformed plants. The target of the TFs(ZF) is the Arabidopsis gene APETALA3 (AP3), which encodes a transcription factor that determines floral organ identity. A zinc finger protein (ZFP) was designed to specifically bind to a region upstream of AP3. AP3 transcription was induced by transformation of leaf protoplasts with a transformation vector that expressed a TF(ZF) consisting of the ZFP fused to the tetrameric repeat of herpes simplex VP16's minimal activation domain. Histochemical staining of beta-glucuronidase (GUS) activity in transgenic AP3GUS reporter plants expressing GUS under control of the AP3 promoter was increased dramatically in petals when the AP3-specific TF(ZF) activator was cointroduced. TF(ZF)-amplified GUS expression signals were also evident in sepal tissues of these double-transgenic plants. Floral phenotype changes indicative of endogenous AP3 factor coactivation were also observed. The same AP3-specific ZFP(AP3) was also fused to a human transcriptional repression domain, the mSIN3 interaction domain, and introduced into either AP3GUS-expressing plants or wild-type Arabidopsis plants. Dramatic repression of endogenous AP3 expression in floral tissue resulted when a constitutive promoter was used to drive the expression of this TF(ZF). These plants were also sterile. When a floral tissue-specific promoter from APETALA1 (AP1) gene was used, floral phenotype changes were also observed, but in contrast the plants were fertile. Our results demonstrate that artificial transcriptional factors based on synthetic zinc finger proteins are capable of stable and specific regulation of endogenous genes through multiple generations in multicellular organisms.
Collapse
Affiliation(s)
- Xuen Guan
- Torrey Mesa Research Institute, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Nozawa A, Koizumi N, Sano H. An Arabidopsis SNF1-related protein kinase, AtSR1, interacts with a calcium-binding protein, AtCBL2, of which transcripts respond to light. PLANT & CELL PHYSIOLOGY 2001; 42:976-81. [PMID: 11577192 DOI: 10.1093/pcp/pce126] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
AtSR1 is a protein kinase of Arabidopsis thaliana, which belongs to the SNF1-related protein kinase subfamily 3. We previously showed accumulation of its transcripts to be responsive to light. In this study, we examined the interaction between AtSR1 and six calcineurin B like proteins of Arabidopsis and found that AtSR1 prominently interacts with one of them, AtCBL2, by yeast two-hybrid assay. Interaction between AtSR1 and AtCBL2 could also be directly confirmed in vitro by pull down assay. RNA blot and reverse transcription-polymerase chain reaction analyses showed that transcripts of AtCBL2, and also of AtCBL1, another CBL, increased upon illumination of leaves. The physiological meaning of the interaction of AtSR1and AtCBL2 is not clear, but they presumably function in signal transduction of light.
Collapse
Affiliation(s)
- A Nozawa
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Ikoma, Nara, 630-0101 Japan
| | | | | |
Collapse
|
77
|
Kato A, Nishi R, Ozaki M. Isolation and characterization of two genes encoding ubiquitin fused to a ribosomal protein of 53 amino acids in rice. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 12:53-8. [PMID: 11697144 DOI: 10.3109/10425170109042050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We isolated and determined the nucleotide sequences of two genes encoding ubiquitin fused to a ribosomal protein, Ub-CEP52, from rice (Oryza sativa L.). The deduced amino-acid sequences of the two genes were found to be completely identical. The N-terminal region of 76 residues corresponds to ubiquitin, and the C-terminal region of 53 residues corresponds to ribosomal protein L40. A putative TATA-like sequence, a polypyrimidine sequence, and a similar sequence to telo-box were found in the promoter regions of the two genes. Furthermore, the putative tRNA(Pro) gene was found in the 5'-upstream region of one of them.
Collapse
MESH Headings
- Amino Acid Sequence
- Artificial Gene Fusion
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Genes, Plant
- Molecular Sequence Data
- Nucleic Acid Conformation
- Oryza/genetics
- Plant Proteins/genetics
- Protein Precursors/genetics
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Transfer, Pro/chemistry
- RNA, Transfer, Pro/genetics
- Ribosomal Proteins/genetics
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Ubiquitin/genetics
- Ubiquitins/genetics
Collapse
Affiliation(s)
- A Kato
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | | | | |
Collapse
|
78
|
Wang J, Jiang J, Oard JH. Structure, expression and promoter activity of two polyubiquitin genes from rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 156:201-211. [PMID: 10936527 DOI: 10.1016/s0168-9452(00)00255-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have isolated two rice polyubiquitin genes designated as RUBQ1 and RUBQ2 by screening a Bacterial Artificial Chromosome (BAC) genomic library with a 32P-labeled ubiquitin cDNA probe. DNA sequence data revealed that both genes contained an open reading frame encoding a hexameric precursor ubiquitin and an intron immediate upstream of the initiation codon. The deduced amino acid sequences of both genes were identical to each other and to other plant ubiquitin sequences. Several putative regulatory elements such as enhancer core and heat shock consensus sequences were found in the 5'-upstream regions of both genes. Northern blot analyses using the 3'-untranslated region as gene specific probes showed that both genes were actively expressed in all rice plant tissues tested. Differential expression was observed in roots where RUBQ2 appeared to be predominantly expressed. Chimeric genes containing the 5'-upstream region including the intron of RUBQ1 or RUBQ2 and the beta-glucuronidase (GUS) coding region were constructed and transferred into rice suspension cells via particle bombardment. GUS activity from constructs containing RUBQ1 and RUBQ2 promoters in rice suspension cells was ten to 15-fold greater than those using the Cauliflower Mosaic Virus 35S (CaMV 35S) promoter, and two to threefold greater than constructs with the maize polyubiquitin Ubi1 promoter. The results demonstrate the potential usefulness of the two rice polyubiquitin promoters in rice or other monocot transformation systems.
Collapse
Affiliation(s)
- J Wang
- Department of Agronomy, Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center, 70803, Baton Rouge, LA, USA
| | | | | |
Collapse
|
79
|
Hua J, Meyerowitz EM. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 1998; 94:261-71. [PMID: 9695954 DOI: 10.1016/s0092-8674(00)81425-7] [Citation(s) in RCA: 566] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A family of genes including ETR1, ETR2, EIN4, ERS1, and ERS2 is implicated in ethylene perception in Arabidopsis thaliana. As only dominant mutations were previously available for these genes, it was unclear whether all of them are components in the ethylene signaling pathway and whether they code for positive or negative regulators of ethylene responses. In this study, we have isolated loss-of-function mutations of four of these genes (ETR1, ETR2, EIN4, and ERS2) and identified an ethylene-independent role of ETR1 in promoting cell elongation. Quadruple mutants had constitutive ethylene responses, revealing that these proteins negatively regulate ethylene responses and that the induction of ethylene response in Arabidopsis is through inactivation rather than activation of these proteins.
Collapse
Affiliation(s)
- J Hua
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
80
|
Mottus RC, Whitehead IP, O'Grady M, Sobel RE, Burr RH, Spiegelman GB, Grigliatti TA. Unique gene organization: alternative splicing in Drosophila produces two structurally unrelated proteins. Gene 1997; 198:229-36. [PMID: 9370286 DOI: 10.1016/s0378-1119(97)00319-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Ub80 gene in eukaryotes produces a ubiquitin fusion protein in which ubiquitin is fused in frame to a tail protein (Redman and Rechsteiner, 1988; Finley et al., 1989; Barrio et al., 1994). The tail protein is incorporated into the ribosome, and ubiquitin is thought to act as a chaperone. The DUb80 gene of Drosophila melanogaster was cloned by Barrio et al. (1994) and contains a 5'-untranslated exon, followed by a large intron and then the first coding exon. We report that the large intron of DUb80 contains an open reading frame, which produces a 259-aa protein (IP259) that is conserved in eukaryotes from yeast to mammals. Transcription of the DUb80 and IP259 mRNAs begins at the same start sites. However, alternate splicing of the primary transcript produces two structurally unrelated proteins. This is the second reported instance of two structurally unrelated proteins being produced via alternate splicing, suggesting that this form of genomic organization may be more common than previously thought.
Collapse
Affiliation(s)
- R C Mottus
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
81
|
Mezquita J, Pau M, Mezquita C. Characterization and expression of two chicken cDNAs encoding ubiquitin fused to ribosomal proteins of 52 and 80 amino acids. Gene X 1997; 195:313-9. [PMID: 9305777 DOI: 10.1016/s0378-1119(97)00189-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have determined the complete nucleotide sequence of two chicken cDNAs, Ub-t52 and Ub-t80, encoding ubiquitin fused to ribosomal proteins of 52 and 80 amino acids. The deduced amino acid sequences of the ribosomal proteins are identical or very similar to the homologous human and rat proteins and to the corresponding proteins of other species. Unexpectedly, the ubiquitin moiety of the Ub-t52 protein showed two amino acid substitutions: serine-20 has been replaced by asparagine and serine-57 by alanine. Ubiquitin is a protein strongly conserved during evolution, with no changes in sequence previously reported in vertebrates. Ub-t52 and Ub-t80 are highly expressed in early embryogenesis and during postmitotic stages of spermatogenesis, in parallel with the expression of the polyubiquitin gene UbII. Whereas the 5' untranslated regions (5'UTRs) of the chicken polyubiquitin mRNAs showed marked differences in mature testes in relation to somatic tissues, no differences were observed in the 5'UTRs of the ubiquitin-ribosomal protein mRNAs. These mRNAs possess a 5'-terminal oligopyrimidine tract that could be used as a mechanism to postpone translation during postmitotic stages of spermatogenesis, as has been proposed in quiescent cells.
Collapse
Affiliation(s)
- J Mezquita
- Molecular Genetics Research Group, Faculty of Medicine, University of Barcelona, Casanova, Spain.
| | | | | |
Collapse
|
82
|
Liang F, Cunningham KW, Harper JF, Sze H. ECA1 complements yeast mutants defective in Ca2+ pumps and encodes an endoplasmic reticulum-type Ca2+-ATPase in Arabidopsis thaliana. Proc Natl Acad Sci U S A 1997; 94:8579-84. [PMID: 9238019 PMCID: PMC23025 DOI: 10.1073/pnas.94.16.8579] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/1997] [Accepted: 05/27/1997] [Indexed: 02/04/2023] Open
Abstract
To understand the structure, role, and regulation of individual Ca2+ pumps in plants, we have used yeast as a heterologous expression system to test the function of a gene from Arabidopsis thaliana (ECA1). ECA1 encoded a 116-kDa polypeptide that has all the conserved domains common to P-type Ca2+ pumps (EC 3.6.1.38). The amino acid sequence shared more identity with sarcoplasmic/endoplasmic reticulum (53%) than with plasma membrane (32%) Ca2+ pumps. Yeast mutants defective in a Golgi Ca2+ pump (pmr1) or both Golgi and vacuolar Ca2+ pumps (pmr1 pmc1 cnb1) were sensitive to growth on medium containing 10 mM EGTA or 3 mM Mn2+. Expression of ECA1 restored growth of either mutant on EGTA. Membranes were isolated from the pmr1 pmc1 cnb1 mutant transformed with ECA1 to determine if the ECA1 polypeptide (ECA1p) could be phosphorylated as intermediates of the reaction cycle of Ca2+-pumping ATPases. In the presence of [gamma-32P]ATP, ECA1p formed a Ca2+-dependent [32P]phosphoprotein of 106 kDa that was sensitive to hydroxylamine. Cyclopiazonic acid, a blocker of animal sarcoplasmic/endoplasmic reticulum Ca2+ pumps, inhibited the formation of the phosphoprotein, whereas thapsigargin did not. Immunoblotting with an antibody against the carboxyl tail showed that ECA1p was associated mainly with the endoplasmic reticulum membranes isolated from Arabidopsis plants. The results support the model that ECA1 encodes an endoplasmic reticulum-type Ca2+ pump in Arabidopsis. The ability of ECA1p to restore growth of mutant pmr1 on medium containing Mn2+, and the formation of a Mn2+-dependent phosphoprotein suggested that ECA1p may also regulate Mn2+ homeostasis by pumping Mn2+ into endomembrane compartments of plants.
Collapse
Affiliation(s)
- F Liang
- Department of Plant Biology, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
83
|
Serres R, McCown B, Zeldin E. Detectableβ-glucuronidase activity in transgenic cranberry is affected by endogenous inhibitors and plant development. PLANT CELL REPORTS 1997; 16:641-646. [PMID: 30727611 DOI: 10.1007/bf01275507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/1996] [Revised: 02/07/1997] [Accepted: 02/24/1997] [Indexed: 06/09/2023]
Abstract
Extracts of cranberry, rich in flavonols and proanthocyanins, inactivatedβ-glucuronidase (GUS) in assays using either purified bacterial GUS or preparations of transgenic tobacco (Nicotiana tabacum L.) or transgenic cranberry (Vaccinium macrocarpon Ait.) expressing thegusA gene. Histochemical GUS assays produced random and generally unpredictable staining. The addition of poly-vinylpolypyrrolidone (PVPP) during the preparation of transgenic cranberry leaf extracts increased the detectable GUS activity in fluorogenic assays more than 200-fold. Detectable GUS activity varied among transclones and also within a transclone depending on the developmental and physiological state of the tissue, as well as the growth environment. Use of PVPP altered the relative ranking of plants based on their total transgenic enzyme activity and resulted in different conclusions as to the effects of genotype or growth environment on transgene expression.
Collapse
Affiliation(s)
- R Serres
- Department of Horticulture, University of Wisconsin-Madison, 53706, Madison, WI, USA
| | - B McCown
- Department of Horticulture, University of Wisconsin-Madison, 53706, Madison, WI, USA
| | - E Zeldin
- Department of Horticulture, University of Wisconsin-Madison, 53706, Madison, WI, USA
| |
Collapse
|
84
|
Abstract
Proteolysis is essential for many aspects of plant physiology and development. It is responsible for cellular housekeeping and the stress response by removing abnormal/misfolded proteins, for supplying amino acids needed to make new proteins, for assisting in the maturation of zymogens and peptide hormones by limited cleavages, for controlling metabolism, homeosis, and development by reducing the abundance of key enzymes and regulatory proteins, and for the programmed cell death of specific plant organs or cells. It also has potential biotechnological ramifications in attempts to improve crop plants by modifying protein levels. Accumulating evidence indicates that protein degradation in plants is a complex process involving a multitude of proteolytic pathways with each cellular compartment likely to have one or more. Many of these have homologous pathways in bacteria and animals. Examples include the chloroplast ClpAP protease, vacuolar cathepsins, the KEX2-like proteases of the secretory system, and the ubiquitin/26S proteasome system in the nucleus and cytoplasm. The ubiquitin-dependent pathway requires that proteins targeted for degradation become conjugated with chains of multiple ubiquitins; these chains then serve as recognition signals for selective degradation by the 26S proteasome, a 1.5 MDa multisubunit protease complex. The ubiquitin pathway is particularly important for developmental regulation by selectively removing various cell-cycle effectors, transcription factors, and cell receptors such as phytochrome A. From insights into this and other proteolytic pathways, the use of phosphorylation/dephosphorylation and/or the addition of amino acid tags to selectively mark proteins for degradation have become recurring themes.
Collapse
Affiliation(s)
- R D Vierstra
- Department of Horticulture, University of Wisconsin-Madison 53706, USA
| |
Collapse
|
85
|
Thoma S, Sullivan ML, Vierstra RD. Members of two gene families encoding ubiquitin-conjugating enzymes, AtUBC1-3 and AtUBC4-6, from Arabidopsis thaliana are differentially expressed. PLANT MOLECULAR BIOLOGY 1996; 31:493-505. [PMID: 8790283 DOI: 10.1007/bf00042223] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Covalent attachment of ubiquitin to other intracellular proteins is essential for many physiological processes in eukaryotes, including selective protein degradation. Selection of proteins for ubiquitin conjugation is accomplished, in part, by a group of enzymes designated E2s or ubiquitin-conjugating enzymes (UBCs). At least six types of E2s have been identified in the plant Arabidopsis thaliana; each type is encoded by a small gene family. Previously, we described the isolation and characterization of two three-member gene families, designated AtUBC1-3 and AtUBC4-6, encoding two of these E2 types. Here, we investigated the expression patterns, of the AtUBC1-3 and AtUBC4-6 genes by the histochemical analysis of transgenic Arabidopsis containing the corresponding promoters fused to the beta-glucuronidase-coding region. Staining patterns showed that these genes are active in many stages of development and some aspects of cell death, but are not induced by heat stress. Within the two gene families, individual members exhibited both overlapping and complementary expression patterns, indicating that at least one member of each gene family is expressed in most cell types and at most developmental stages. Different composite patterns of expression were observed between the AtUBC1-3 and AtUBC4-6 families, suggesting distinct biochemical and/or physiological functions for the encoded E2s in Arabidopsis.
Collapse
Affiliation(s)
- S Thoma
- Department of Horticulture, University of Wisconsin-Madison 53706, USA
| | | | | |
Collapse
|
86
|
Lippuner V, Cyert MS, Gasser CS. Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast. J Biol Chem 1996; 271:12859-66. [PMID: 8662738 DOI: 10.1074/jbc.271.22.12859] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The salt-sensitive phenotype of yeast cells deficient in the phosphoprotein phosphatase, calcineurin, was used to identify genes from the higher plant Arabidopsis thaliana that complement this phenotype. cDNA clones corresponding to two different sequences, designated STO (salt tolerance) and STZ (salt tolerance zinc finger), were found to increased tolerance of calcineurin mutants and of wild-type yeast to both Li+ and Na+ ions. STZ is related to Cys2/His2-type zinc-finger proteins found in higher plants, and STO is similar to the Arabidopsis CONSTANS protein in regions that may also be zinc fingers. Although neither protein has sequence similarity to any protein phosphatase, STO was able to at least partially compensate for all tested additional phenotypic effects of calcineurin deficiency, and STZ compensated for a subset of these effects. Salt tolerance produced by STZ appeared to be partially dependent on ENA1/PMR2, a P-type ATPase required for Li+ and Na+ efflux in yeast, whereas the effect of STO on salt tolerance was independent of ENA1/PMR2. STZ and STO were found to be expressed in Arabidopsis roots and leaves, whereas only STO message was detectable in flowers. An apparent increase in the level of STZ mRNA was observed in response NaCl exposure in Arabidopsis seedlings, but the level of STO mRNA was not altered by this treatment.
Collapse
Affiliation(s)
- V Lippuner
- Section of Molecular and Cellular Biology, Division of Biological Sciences, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
87
|
van Nocker S, Walker JM, Vierstra RD. The Arabidopsis thaliana UBC7/13/14 genes encode a family of multiubiquitin chain-forming E2 enzymes. J Biol Chem 1996; 271:12150-8. [PMID: 8647807 DOI: 10.1074/jbc.271.21.12150] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Covalent modification of proteins by attachment of multiubiquitin chains serves as an essential signal for selective protein degradation in eukaryotes. The specificity of ubiquitin-protein conjugation is controlled in part by a diverse group of ubiquitin-conjugating enzymes (E2s or UBCs). We have previously reported that the product of the wheat TaUBC7 gene recognizes ubiquitin as a substrate for ubiquitination in vitro, catalyzing the condensation of free ubiquitin into multiubiquitin chains linked via lysine 48 (van Nocker, S., and vierstra, R. D. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 10297-10301). Based on this activity, this E2 may play a central role in the ubiquitin proteolytic pathway by assembling chains in vivo. Here, we describe the cloning and characterization of a three-member gene family from Arabidopsis thaliana (designated AtUBC7/13/14) encoding structural homologs of TaUBC7. Like TaUBC7, recombinant AtUBC7/13/14 proteins formed multiubiquitin chains in vitro. AtUBC7/13/14 mRNAs were found in all tissues examined, and unlike related UBCs from yeast, the levels of mRNA were not elevated by heat stress or cadmium exposure. Transgenic Arabidopsis were engineered to express increased levels of active AtUBC7, for the first time altering the level of an E2 in a higher eukaryote. Plants expressing high levels of AtUBC7 exhibited no phenotypic abnormalities and were not noticeably enriched in multiubiquitinated conjugates. These findings indicate that the in vivo synthesis of multiubiquitin chains is not rate-limited by the abundance of AtUC7 and/or involves other, yet undefined components.
Collapse
Affiliation(s)
- S van Nocker
- Department of Horticulture, University of Wisconsin-Madison, 53706, USA
| | | | | |
Collapse
|
88
|
Liu L, Maillet DS, Frappier JR, d'Ailly K, Walden DB, Atkinson BG. Characterization, chromosomal mapping, and expression of different ubiquitin fusion protein genes in tissues from control and heat-shocked maize seedlings. Biochem Cell Biol 1996; 74:9-19. [PMID: 9035694 DOI: 10.1139/o96-002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Organisms possess at least two multigene families of ubiquitins: the polyubiquitins, with few to several repeat units, which encode a ubiquitin monomer, and the ubiquitin fusion (or extension) protein genes, which encode a single ubiquitin monomer and a specific protein. This report provides details about two ubiquitin fusion protein genes in maize referred to as MubG7 (uwo 1) and MubG10 (uwo 2). Each has one nearly identical ubiquitin coding unit fused without an intervening nucleotide to an unrelated, 237-nucleotide sequence that encodes for a 79 amino acid protein. The derived amino acid sequences of the two fusion proteins show that they differ by five amino acids (substitution by either a serine or threonine). MubG7 maps to chromosome 8L162 and MubG10 maps to chromosome 1L131. Analyses of the role(s) of these genes in response to heat shock (1 h at 42.5 degrees C) reveal that the level of these fusion protein mRNAs in the radicles or plumules from 2-day-old seedlings does not change; however, heat shock does cause a marked reduction in the accumulation of these same gene-specific mRNAs in the radicles and plumules of 5-day-old seedlings. These data confirm the suggestion from our earlier work that there is precise modulation, in a gene-specific manner, of the response to developmental as well as environmental signals.
Collapse
Affiliation(s)
- L Liu
- Department of Zoology, University of Western Ontario, London, Canada
| | | | | | | | | | | |
Collapse
|
89
|
Holtorf S, Apel K, Bohlmann H. Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 1995; 29:637-46. [PMID: 8541491 DOI: 10.1007/bf00041155] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We compared the organ specificity and the strength of different constitutive (CaMV-35S, CaMV-35Somega, Arabidopsis ubiquitin UBQ1, and barley leaf thionin BTH6 promoter) and one inducible promoter (soybean heat-shock promoter Gmhsp17.3) in stably transformed Arabidopsis thaliana plants. For this purpose we constructed a set of plant expression vectors equipped with the different promoters. Using the uidA reporter gene we could show that the CaMV-35S promoter has the highest expression level which was enhanced two- to threefold by the addition of a translational enhancer (TMV omega element) without altering the organ specificity of the promoter. The barley leaf thionin promoter was almost inactive in the majority of lines whereas the ubiquitin promoter exhibited an intermediate strength. The heat-shock promoter was inducible up to 18-fold but absolute levels were lower than in the case of the ubiquitin promoter. Conclusive quantitative results for different organs and developmental stages were obtained by the analysis of 24 stably transformed lines per promoter construct.
Collapse
Affiliation(s)
- S Holtorf
- Swiss Federal Institute of Technology (ETH), Institute for Plant Sciences, ETH-Zentrum, Zürich, Switzerland
| | | | | |
Collapse
|
90
|
Perera IY, Li X, Sze H. Several distinct genes encode nearly identical to 16 kDa proteolipids of the vacuolar H(+)-ATPase from Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 1995; 29:227-244. [PMID: 7579175 DOI: 10.1007/bf00043648] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To understand the subcellular roles and the regulation of vacuolar H(+)-ATPases, we have begun to identify the genes encoding the major subunits and to determine their patterns of expression in Arabidopsis thaliana. Two distinct cDNAs (AVA-P1 and AVA-P2) and one genomic sequence (AVA-P3) encoding the 16 kDa subunit have been isolated. The 16 kDa proteolipid is a major component of the membrane integral sector that forms the proton conductance pathway and is required for assembly of the V-ATPase complex. Interestingly, the open reading frame of one full-length cDNA (AVA-P1) and a genomic sequence (AVA-P3) encoded an identical polypeptide of 164 amino acids with a molecular mass of 16,570. The deduced amino acid sequences of the two cDNAs were nearly identical (99%) and hydropathy plots suggested a molecule with four membrane-spanning domains characteristic of V-ATPase proteolipids. The three genes differed mainly in their codon usage and in their 3'-untranslated regions. The coding region of the genomic sequence, AVA-P3, was interrupted by two introns located at the codons for Cys-26 and Arg-121. The presence of additional 16 kDa proteolipid genes was suggested from several polymerase chain reaction (PCR)-amplified fragments that differed from one another in the size of the second intron. PCR 1 had an intron of ca. 800 bp and its identity as AVA-P4, a fourth member of the gene family, was confirmed from sequence analyses of an EST cDNA. The mRNAs of three genes (AVA-P1, AVA-P2 and AVA-P3) were detected in Arabidopsis leaf, root, flower and silique; yet expression of AVA-P1 and AVA-P2 was lower in roots. All three genes were expressed in light- or dark-grown seedlings; however mRNA levels of AVA-P2 were enhanced in etiolated plants. Arabidopsis thaliana, therefore, has at least four distinct genes encoding nearly identical 16 kDa proteolipids, and the enhanced expression of AVA-P2 transcript in etiolated seedlings suggests that an increase in V-ATPase could accompany cell expansion.
Collapse
Affiliation(s)
- I Y Perera
- Department of Plant Biology, University of Maryland, College Park 20742, USA
| | | | | |
Collapse
|
91
|
Jardinaud MF, Souvré A, Beckert M, Alibert G. Optimisation of DNA transfer and transientβ-glucuronidase expression in electroporated maize (Zea mays L.) microspores. PLANT CELL REPORTS 1995; 15:55-58. [PMID: 24185654 DOI: 10.1007/bf01690253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/1994] [Revised: 01/18/1995] [Indexed: 06/02/2023]
Abstract
The ability to deliver free DNA into microspores of a highly androgenic hybrid of maize was assessed by electroporation, using a square wave pulse discharge apparatus. The electroporation medium was chosen according to its ability to maintain a high level of regeneration. Nuclease activities were analyzed and were inhibited by the addition of 100 mM KNO3 and MgSO4 in the electroporation medium. Seven expression vectors withUid A as the reporter gene under the control of cauliflower mosaic virus 35S, Lat 52-7, Zmg 13, Emu, Ubiq-1, Al, or Actl promoters were tested in relation to the level of ß-glucuronidase expression in maize microspores. The highest level of expression was obtained when theUid A gene was driven by the Actl promoter. Therefore, this vector was further used to define optimal conditions leading to highest levels of ß-glucuronidase expression. The parameters determined in this study could provide an ideal starting point for the obtention of transgenic maize plants from electroporated microspores.
Collapse
Affiliation(s)
- M F Jardinaud
- Laboratoire de Biotechnologie et Amélioration des Plantes, Unité Associée INPT/INRA, ENSAT, 145 Av. de Muret, F-31076, Toulouse, France
| | | | | | | |
Collapse
|
92
|
Genschik P, Marbach J, Uze M, Feuerman M, Plesse B, Fleck J. Structure and promoter activity of a stress and developmentally regulated polyubiquitin-encoding gene of Nicotiana tabacum. Gene 1994; 148:195-202. [PMID: 7958945 DOI: 10.1016/0378-1119(94)90689-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A polyubiquitin-encoding gene was identified from a Nicotiana tabacum genomic library using a specific probe spanning the 3' untranslated region of the corresponding cDNA. The gene, Ubi.U4, is expressed in various amounts in the whole plant, except in just-fully-expanded leaves. Genomic blots indicate that it originates from N. tomentosiformis. Sequence analyses reveal that the gene consists of four ubiquitin monomers extended by a fifth truncated subunit. It is disrupted by a single 457-bp intron in close proximity to the start codon of translation. Primer extension experiments localized the transcription start point (tsp). Transient gene expression in N. tabacum protoplasts indicates that the deletion of the intron has no significant influence on gene expression. Mutagenesis on putative cis-regulatory elements indicates at least three important motifs in the proximal promoter: an 'ACGT' core element, an A + T-rich sequence and a less clearly defined cis-element located between bp -162 and -113.
Collapse
Affiliation(s)
- P Genschik
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
93
|
Mitra A, Higgins DW. The Chlorella virus adenine methyltransferase gene promoter is a strong promoter in plants. PLANT MOLECULAR BIOLOGY 1994; 26:85-93. [PMID: 7948908 DOI: 10.1007/bf00039522] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
An upstream region isolated from a eukaryotic algal virus adenine methyltransferase gene was tested for promoter function in plants. Fusion of this region to the chloramphenicol acetyltransferase reporter gene resulted in significantly higher expression than fusion with the cauliflower mosaic virus 35S promoter. Strong levels of expression were also found in electroporated monocot plant cells. The promoter activity in transgenic tobacco plants showed tissue-specific expression. Leaves had the highest expression followed by stems and flowers. The promoter activity was not detected in root tissue. Environmental cues, such as light, and the phytohormones auxin and cytokinines had no effect on the promoter's expression. This promoter might be utilized to achieve high levels of expression of introduced genes in higher plants.
Collapse
Affiliation(s)
- A Mitra
- Department of Plant Pathology, University of Nebraska, Lincoln 68583-0722
| | | |
Collapse
|
94
|
Tarawneh KA, Anumula KR, Free SJ. The isolation and characterization of a Neurospora crassa gene (ubi::crp-6) encoding a ubiquitin-40S ribosomal protein fusion protein. Gene 1994; 147:137-40. [PMID: 8088539 DOI: 10.1016/0378-1119(94)90053-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have isolated and sequenced a Neurospora crassa gene encoding a single copy of ubiquitin (UBI) fused to the S27a ribosomal (r) protein. We have opted to name this gene the ubiquitin/cytoplasmic r-protein gene 6 (ubi::crp-6). The ubi::crp-6 gene generates a 700-nucleotide (nt) transcript. It shares a 700-bp regulatory region with the cytoplasmic r-protein gene 5 (crp-5), a gene encoding the N. crassa S26 r-protein. The two genes are transcribed divergently from the common regulatory region and their mRNA levels are regulated in parallel during growth on a variety of carbon sources.
Collapse
Affiliation(s)
- K A Tarawneh
- Department of Biological Sciences, State University of New York at Buffalo 14260
| | | | | |
Collapse
|
95
|
Genschik P, Durr A, Fleck J. Differential expression of several E2-type ubiquitin carrier protein genes at different developmental stages in Arabidopsis thaliana and Nicotiana sylvestris. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:548-56. [PMID: 8078482 DOI: 10.1007/bf00583906] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We characterized three genes encoding different E2-type ubiquitin carrier proteins involved in the ubiquitin-mediated proteolytic pathway: UbcAt3 shows homologies to the yeast CDC34 gene and Ub-cAt4a and UbcAt4b are two different genes homologous to the Ubc1/4/5 subfamily in yeast. Their accumulation was analysed and compared with that of the different families encoding polyubiquitins, as well as the monoubiquitin fusion protein, which is considered as a marker for cell division, during various developmental stages including G0/S transition and senescence of higher plant cells. Our results imply that these Ubc genes are under the control of complex mechanisms, and are differentially regulated, but not necessarily co-regulated with ubiquitin genes. Even the closely related UbcAt4a and UbcAt4b genes of the same multigene subfamily are controlled by distinct regulatory mechanisms.
Collapse
Affiliation(s)
- P Genschik
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, Strasbourg, France
| | | | | |
Collapse
|
96
|
Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K. Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) in Arabidopsis thaliana L.: identification of three ERDs as HSP cognate genes. PLANT MOLECULAR BIOLOGY 1994; 25:791-8. [PMID: 8075396 DOI: 10.1007/bf00028874] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In Arabidopsis thaliana L., accumulation of abscisic acid (ABA) began to increase 2 h after plants had been subjected to dehydration stress and reached maximum levels after 10 h. Differential hybridization was used to isolate 26 Arabidopsis cDNAs with gene expression induced by a 1 h dehydration treatment. The cDNA clones were classified into 16 groups based on Southern blot hybridization, and named ERD (early-responsive to dehydration) clones. Partial sequencing of the cDNA clones revealed that three ERDs were identical to those of HSP cognates (Athsp70-1, Athsp81-2, and ubiquitin extension protein). Dehydration stress strongly induced the expression of genes for the three ERDs, while application of ABA, which is known to act as a signal transmitter in dehydration-stressed plants, did not significantly affect the ERD gene expression. This result suggests that these HSP cognates are preferentially responsive to dehydration stress in A. thaliana, and that signaling pathways for the expression of these genes under conditions of dehydration stress are not mainly mediated by ABA. We also discuss the possible functions of these three ERD gene products against dehydration stress.
Collapse
Affiliation(s)
- T Kiyosue
- Laboratory of Plant Molecular Biology, Tsukuba Life Science Center, Ibaraki, Japan
| | | | | |
Collapse
|
97
|
Greenberg JT, Guo A, Klessig DF, Ausubel FM. Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 1994; 77:551-63. [PMID: 8187175 DOI: 10.1016/0092-8674(94)90217-8] [Citation(s) in RCA: 323] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In plants, the hypersensitive response (HR) to pathogens involves rapid cell death, which is hypothesized to arise from the activation of a cell death program. We describe mutant A. thaliana plants that contain lesions in a single accelerated cell death (ACD) gene called ACD2 and that bypass the need for pathogen exposure to induce the HR. acd2 plants that develop spontaneous lesions show typical HR characteristics both within the necrotic tissue and within the healthy part of the plant, including: modification of plant cell walls, resistance to bacterial pathogens, and accumulation of defense-related gene transcripts, the signal molecule salicylic acid and an antimicrobial compound. We propose that the ACD2 gene is involved in a pathway(s) that negatively regulates a genetically programmed HR.
Collapse
Affiliation(s)
- J T Greenberg
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | | | | | | |
Collapse
|
98
|
Jacinto A, Neves AM, Vassilevskaia TD, Ricardo CP, Rodrigues-Pousada C. Cloning and characterization of two ubiquitin::79-amino-acid extension protein-encoding fusion genes from Lupinus albus. Gene X 1994; 139:201-5. [PMID: 8112604 DOI: 10.1016/0378-1119(94)90755-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Two different ubiquitin::79-amino-acid (aa) extension protein-encoding fusion genes were isolated from a Lupinus albus nuclear DNA library and sequenced. Both genes have 465-nucleotide open reading frames encoding a single ubiquitin (Ub) monomer fused in frame to a 79-aa extension (Ext) protein. The deduced aa sequences of the encoded Ub are identical to the aa sequences of Ub from other plants. The encoded Ext proteins are putative ribosomal proteins, highly basic, differing by 2 aa from each other, and have a high degree of similarity to Ext proteins from other plants.
Collapse
Affiliation(s)
- A Jacinto
- Laboratório de Genética Molecular, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | | | | |
Collapse
|
99
|
Schiedlmeier B, Schmitt R. Repetitious structure and transcription control of a polyubiquitin gene in Volvox carteri. Curr Genet 1994; 25:169-77. [PMID: 8087887 DOI: 10.1007/bf00309544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Southern analysis indicated the presence of at least four ubiquitin gene loci in the Volvox carteri genome. Three of these, a polyubiquitin gene described here and a non-segregating ubiquitin gene pair, were assigned to two different linkage groups by RFLP mapping; the non-polymorphic fourth gene locus remained unassigned. The polyubiquitin gene was cloned and its 2,116-bp sequence determined. It contains six exons each interrupted by an intron at Gly35, and it encodes a pentameric polyubiquitin polypeptide consisting of five runs of 76 identical amino-acid residues and a C-terminal extension of one leucine. The five tandem repeats of coding units plus introns exhibit an unusually high degree of overall sequence identity indicating an efficient process of gene homogenization in this region of the V. carteri genome. S1 mapping revealed two closely-spaced transcription starts, 24 and 28 nucleotides downstream from a putative TATA sequence. Preceding the TATA box are two 14-bp conserved heat-shock elements (HSEs) and two octameric sequences closely resembling an yesat HSE. Consistent with a 1.6-kb transcript seen on Northern blots are two polyadenylation signals (TGTAA) located 99 bp and 169 bp downstream from the TGA translational stop. The polyubiquitin gene was transcribed throughout the Volvox life cycle with peaks in the 1.6-kb mRNA levels during pre-cleavage, cleavage, and post-inversion. In contrast, an 0.6-kb monoubiquitin transcript was abundant only at the pre-cleavage stage suggesting a different type of gene control. Heat shock increased the level of polyubiquitin mRNA, whereas the level of monoubiquitin mRNA was down-regulated.
Collapse
|
100
|
Redman KL. The smaller protein formed as a ubiquitin fusion in Drosophila is processed from ubiquitin and found on the 60S ribosomal subunit. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1994; 24:191-201. [PMID: 8111427 DOI: 10.1016/0965-1748(94)90085-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The only gene in Drosophila melanogaster for a 52 amino acid ribosomal protein (CEP52) is fused to a ubiquitin coding sequence. This study examines expression and proteolytic processing of the encoded fusion protein. Most antibody preparations made against a portion of human CEP52 readily detect the insect protein. The size of the immunoreactive polypeptide indicates that CEP52 is cleaved from ubiquitin and this apparent proteolytic processing was confirmed by amino-terminal sequence analysis of CEP52 isolated by two-dimensional gel electrophoresis. Ribosomes from embryonic, larval and adult Drosophila melanogaster contain equivalent amounts of CEP52 and the protein is associated with the large ribosomal subunit. Stained two-dimensional gels indicate that the quantity of CEP52 associated with ribosomes is similar to that of other ribosomal proteins of corresponding size. A previous investigation had indicated the possibility of intact ubiquitin-CEP52 fusion protein in Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster. One of three antibody preparations used in this study of insect CEP52 reacts with a 40S subunit protein that is the correct size to be the uncleaved fusion protein. However, the putative fusion protein does not react with ubiquitin antibodies and has negligible positive charge at pH5, demonstrating that it is not unprocessed ubiquitin-CEP52.
Collapse
Affiliation(s)
- K L Redman
- Department of Biological Sciences, University of Alabama, Tuscaloosa 35487
| |
Collapse
|