51
|
Roskos K, Hickerson AI, Lu HW, Ferguson TM, Shinde DN, Klaue Y, Niemz A. Simple system for isothermal DNA amplification coupled to lateral flow detection. PLoS One 2013; 8:e69355. [PMID: 23922706 PMCID: PMC3724848 DOI: 10.1371/journal.pone.0069355] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/09/2013] [Indexed: 02/04/2023] Open
Abstract
Infectious disease diagnosis in point-of-care settings can be greatly improved through integrated, automated nucleic acid testing devices. We have developed an early prototype for a low-cost system which executes isothermal DNA amplification coupled to nucleic acid lateral flow (NALF) detection in a mesofluidic cartridge attached to a portable instrument. Fluid handling inside the cartridge is facilitated through one-way passive valves, flexible pouches, and electrolysis-driven pumps, which promotes a compact and inexpensive instrument design. The closed-system disposable prevents workspace amplicon contamination. The cartridge design is based on standard scalable manufacturing techniques such as injection molding. Nucleic acid amplification occurs in a two-layer pouch that enables efficient heat transfer. We have demonstrated as proof of principle the amplification and detection of Mycobacterium tuberculosis (M.tb) genomic DNA in the cartridge, using either Loop Mediated Amplification (LAMP) or the Exponential Amplification Reaction (EXPAR), both coupled to NALF detection. We envision that a refined version of this cartridge, including upstream sample preparation coupled to amplification and detection, will enable fully-automated sample-in to answer-out infectious disease diagnosis in primary care settings of low-resource countries with high disease burden.
Collapse
Affiliation(s)
- Kristina Roskos
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
| | - Anna I. Hickerson
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
| | - Hsiang-Wei Lu
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
| | - Tanya M. Ferguson
- Claremont BioSolutions, Upland, California, United States of America
| | - Deepali N. Shinde
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
| | - Yvonne Klaue
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
| | - Angelika Niemz
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
- * E-mail:
| |
Collapse
|
52
|
|
53
|
Abstract
Background Hand, foot and mouth disease (HFMD) is caused by members of the family Picornaviridae in the genus Enterovirus. It has been reported that coxsackievirus A6 (CVA6) infections are emerging as a new and major cause of epidemic HFMD. Sporadic HFMD cases positive for CVA6 were detected in the mainland of China in recent years. To strengthen the surveillance of CVA6 infections and outbreak control, the clinical diagnosis is urgently needed to distinguish the CVA6 infection disease from other infections. Methods In order to develop a sensitive quantitative real-time RT-PCR assay for rapid detection of CVA6 RNA, primers and probe were designed to target the VP1 gene segment of CVA6. The conservation of the target segment was firstly analyzed by bioinformatic technology. The specificity of the real-time RT-PCR was further confirmed by detecting other related viruses and standard curves were established for the sensitivity evaluation. The pharyngeal swab samples from the EV71 and CVA16 unrelated HFMD patients were applied for CVA6 detection through the established method. Results Based on the primer–probe set to detect the target VP1 gene segment of CVA6, the quantitative real-time RT-PCR assay could discriminate CVA6 infection from other resemble viral diseases with a potential detection limit of 10 viral copies/ml. The specificity of the assay was determined by sequence alignment and experimentally tested on various related viruses. The standard curve showed that the amplification efficiency of templates with different concentrations of templates was almost the same (R2 >0.99). Evaluation of the established method with pharyngeal swabs samples showed good accordance with the results from serology diagnosis. Conclusion This study is the first report developing a VP1 gene-based quantitative real-time RT-PCR for rapid, stable and specific detection of CVA6 virus. The real-time RT-PCR established in this study can be used as a reliable method for early diagnosis of CVA6 infection.
Collapse
|
54
|
Chandler DP, Bryant L, Griesemer SB, Gu R, Knickerbocker C, Kukhtin A, Parker J, Zimmerman C, George KS, Cooney CG. Integrated Amplification Microarrays for Infectious Disease Diagnostics. MICROARRAYS 2012; 1:107-24. [PMID: 27605339 PMCID: PMC5003434 DOI: 10.3390/microarrays1030107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 10/31/2012] [Accepted: 11/07/2012] [Indexed: 11/17/2022]
Abstract
This overview describes microarray-based tests that combine solution-phase amplification chemistry and microarray hybridization within a single microfluidic chamber. The integrated biochemical approach improves microarray workflow for diagnostic applications by reducing the number of steps and minimizing the potential for sample or amplicon cross-contamination. Examples described herein illustrate a basic, integrated approach for DNA and RNA genomes, and a simple consumable architecture for incorporating wash steps while retaining an entirely closed system. It is anticipated that integrated microarray biochemistry will provide an opportunity to significantly reduce the complexity and cost of microarray consumables, equipment, and workflow, which in turn will enable a broader spectrum of users to exploit the intrinsic multiplexing power of microarrays for infectious disease diagnostics.
Collapse
Affiliation(s)
- Darrell P Chandler
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Lexi Bryant
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Sara B Griesemer
- Laboratory of Viral Diseases, Wadsworth Center, New York State Dept of Health, 120 New Scotland Avenue, Albany, NY 12208, USA.
| | - Rui Gu
- Laboratory of Viral Diseases, Wadsworth Center, New York State Dept of Health, 120 New Scotland Avenue, Albany, NY 12208, USA.
| | | | - Alexander Kukhtin
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Jennifer Parker
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Cynthia Zimmerman
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Kirsten St George
- Laboratory of Viral Diseases, Wadsworth Center, New York State Dept of Health, 120 New Scotland Avenue, Albany, NY 12208, USA.
| | - Christopher G Cooney
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| |
Collapse
|
55
|
Morinha F, Cabral J, Bastos E. Molecular sexing of birds: A comparative review of polymerase chain reaction (PCR)-based methods. Theriogenology 2012; 78:703-14. [DOI: 10.1016/j.theriogenology.2012.04.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/18/2012] [Accepted: 04/26/2012] [Indexed: 02/08/2023]
|
56
|
Faltin B, Wadle S, Roth G, Zengerle R, von Stetten F. Mediator probe PCR: a novel approach for detection of real-time PCR based on label-free primary probes and standardized secondary universal fluorogenic reporters. Clin Chem 2012; 58:1546-56. [PMID: 22923452 DOI: 10.1373/clinchem.2012.186734] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The majority of established techniques for monitoring real-time PCR amplification involve individual target-specific fluorogenic probes. For analysis of numerous different targets the synthesis of these probes contributes to the overall cost during assay development. Sequence-dependent universal detection techniques overcome this drawback but are prone to detection of unspecific amplification products. We developed the mediator probe PCR as a solution to these problems. METHODS A set of label-free sequence-specific primary probes (mediator probes), each comprising a target-specific region and a standardized mediator tag, is cleaved upon annealing to its target sequence by the polymerases' 5' nuclease activity. Release of a mediator triggers signal generation by cleavage of a complementary fluorogenic reporter probe. RESULTS Real-time PCR amplification of human papillomavirus 18 (HPV18), Staphylococcus aureus, Escherichia coli, and Homo sapiens DNA dilution series showed exceptional linearity when detected either by novel mediator probes (r(2) = 0.991-0.999) or state-of-the-art hydrolysis probes (TaqMan probes) (r(2) = 0.975-0.993). For amplification of HPV18 DNA the limits of detection were 78.3 and 85.1 copies per 10-μL reaction when analyzed with the mediator probe and hydrolysis probe, respectively. Duplex amplification of HPV18 target DNA and internal standard had no effects on back calculation of target copy numbers when quantified with either the mediator probe PCR (r(2) = 0.998) or the hydrolysis probe PCR (r(2) = 0.988). CONCLUSIONS The mediator probe PCR has equal performance to hydrolysis probe PCR and has reduced costs because of the use of universal fluorogenic reporters.
Collapse
Affiliation(s)
- Bernd Faltin
- Laboratory for MEMS Applications, Department of Microsystems Engineering-IMTEK, University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
57
|
Rienzo M, Schiano C, Casamassimi A, Grimaldi V, Infante T, Napoli C. Identification of valid reference housekeeping genes for gene expression analysis in tumor neovascularization studies. Clin Transl Oncol 2012; 15:211-8. [PMID: 22855186 DOI: 10.1007/s12094-012-0904-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/25/2012] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Real time RT-PCR is a widely used technique to evaluate and confirm gene expression data obtained in different cell systems and experimental conditions. However, there are many conflicting reports about the same gene or sets of gene expression. A common method is to report the interest gene expression relative to an internal control, usually a housekeeping gene (HKG), which should be constant in cells independently of experimental conditions. MATERIALS AND METHODS In this study, the expression stability of ten HKGs was considered in parallel in two cell systems (endothelial and osteosarcoma cells): beta actin (ACTB), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), TATA box binding protein (TBP), hypoxanthine phosphoribosyl-transferase 1 (HPRT1), Cyclophilin A (PPIA), beta-2-microglobulin (B2M), glucuronidase beta (GUSB), eukaryotic translation elongation factor 1 alpha1 (EEF1A1), transferrin receptor (TFRC), ribosomal protein S18 (RPS18). In order to study the stability of candidate reference genes, data have been also analyzed by several algorithms (geNorm, NormFinder, BestKeeper and delta-Ct method). RESULTS AND CONCLUSIONS The overall analysis obtained by the comprehensive ranking showed that RPS18 and PPIA are appropriate internal reference genes for tumor neovascularization studies where it is necessary to analyze both systems at the same time.
Collapse
Affiliation(s)
- Monica Rienzo
- Department of General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138, Naples, Italy.
| | | | | | | | | | | |
Collapse
|
58
|
Rastogi SK, Gibson CM, Branen JR, Aston DE, Branen AL, Hrdlicka PJ. DNA detection on lateral flow test strips: enhanced signal sensitivity using LNA-conjugated gold nanoparticles. Chem Commun (Camb) 2012; 48:7714-6. [PMID: 22745937 DOI: 10.1039/c2cc33430e] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A lateral flow test strip assay, enabling sensitive detection of DNA specific to the foodborne pathogen E. coli O157:H7, is described. The use of LNA-conjugated gold nanoparticle probes, along with signal amplification protocols, results in minimum detectable concentrations of ~0.4 nM.
Collapse
Affiliation(s)
- Shiva K Rastogi
- Biosensors and Nanotechnology Applications Laboratory, University of Idaho, Coeur d'Alene, ID 83814-2277, USA.
| | | | | | | | | | | |
Collapse
|
59
|
Tian Q, Wong W, Xu Y, Chan Y, Ho HK, Pastorin G, Ang WH. Immobilisation of quantum dots by bio-orthogonal PCR amplification and labelling for direct gene detection and quantitation. Chem Commun (Camb) 2012; 48:5467-9. [PMID: 22540122 DOI: 10.1039/c2cc30680h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sensitive and versatile detection scheme based on quantum dot immobilisation on a solid support through bio-orthogonal PCR amplification and labelling has been developed for detection and quantification of gene targets in complex DNA mixtures.
Collapse
Affiliation(s)
- Quan Tian
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | | | | | | | | | | | | |
Collapse
|
60
|
He Y, Zhang X, Zhang S, Kris MKL, Man FC, Liu G. Visual detection of single-base mismatches in DNA using hairpin oligonucleotide with double-target DNA binding sequences and gold nanoparticles. Biosens Bioelectron 2012; 34:37-43. [PMID: 22386491 PMCID: PMC4110906 DOI: 10.1016/j.bios.2011.12.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/24/2011] [Accepted: 12/28/2011] [Indexed: 10/14/2022]
Abstract
We describe a hairpin oligonucleotide (HO) with double-target DNA binding sequences in the loop and 11-base in the stem for visual detection of single-base mismatches (SBM) in DNA with highly specificity. The thiol-modified HO was immobilized on gold nanoparticle (Au-NP) surface through a self-assembling process. The strategy of detecting SBM depends on the unique molecular recognition properties of HO to the perfect-matched DNA and SBM to generate different quantities of duplex DNA on the Au-NP surface, which are captured on the test zone of lateral flow test strip via the DNA hybridization reaction between the duplex DNA and preimmobilized DNA probe. Accumulation of Au-NPs produces the characteristic red bands, enabling visual detection of SBM. It was found that the ability of HO to differentiate perfect-matched DNA and SBM was increased dramatically by incorporating double-target DNA binding sequences in the loop of HO. The signal ratio between perfect-matched DNA and SBM was up to 28, which is much higher than that of conventional HO or molecular beacon. The approach was applied to detect the mutation sites, Arg142Cys and Gly529Ile, of transglutaminase 1 gene in autosomal recessive congenital ichthyosis. The results presented here show that the new HO is a potential molecular recognition probe for the future development of nucleic acid-based biosensors and bioassays. The approach can be used for point-of-care diagnosis of genetic diseases and detecting infectious agents or warning against bio-warfare agents.
Collapse
Affiliation(s)
- Yuqing He
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou 510095, PR China
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58105
| | - Xibao Zhang
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou 510095, PR China
| | - Sanquan Zhang
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou 510095, PR China
| | - Mak Ka Long Kris
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hongkong
| | - Fong Chi Man
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hongkong
| | - Guodong Liu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58105
| |
Collapse
|
61
|
Jones MS, Hudson NR, Gibbins C, Fischer SL. Evaluation of type-specific real-time PCR assays using the LightCycler and J.B.A.I.D.S. for detection of adenoviruses in species HAdV-C. PLoS One 2011; 6:e26862. [PMID: 22046386 PMCID: PMC3203158 DOI: 10.1371/journal.pone.0026862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 10/05/2011] [Indexed: 11/23/2022] Open
Abstract
Sporadically, HAdVs from species HAdV-C are detected in acute respiratory disease outbreaks. To rapidly type these viruses, we designed real-time PCR assays that detect and discriminate between adenovirus types HAdV-C1, -C2, -C5, and -C6. Sixteen clinical isolates from the California Department of Public Health were used to validate the new assays. Type-specific TaqMan real-time PCR assays were designed and used independently to successfully identify 16 representative specimens. The lower limit of detection for our LightCycler singleplex real-time PCR assays were calculated to be 100, 100, 100, and 50 genomic copies per reaction for HAdV-C1, HAdV-C2, HAdV-C5 and HAdV-C6, respectively. The results for the singleplex J.B.A.I.D.S. assays were similar. Our assays did not cross-react with other adenoviruses outside of species HAdV-C, respiratory syncytial virus, influenza, or respiratory disease causing bacteria. These assays have the potential to be useful as diagnostic tools for species HAdV-C infection.
Collapse
Affiliation(s)
- Morris S Jones
- Viral and Rickettsial Disease Laboratory, California Department of Health Services, Richmond, California, United States of America.
| | | | | | | |
Collapse
|
62
|
He Y, Zeng K, Zhang S, Gurung AS, Baloda M, Zhang X, Liu G. Visual detection of gene mutations based on isothermal strand-displacement polymerase reaction and lateral flow strip. Biosens Bioelectron 2011; 31:310-5. [PMID: 22133519 DOI: 10.1016/j.bios.2011.10.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/10/2011] [Accepted: 10/19/2011] [Indexed: 10/15/2022]
Abstract
Here, we describe a simple and sensitive approach for visual detection of gene mutations based on isothermal strand-displacement polymerase reactions (ISDPR) and lateral flow strip (LFS). The concept was first demonstrated by detecting the R156H-mutant gene of keratin 10 in Epidermolytic hyperkeratosis (EHK). In the presence of biotin-modified hairpin DNA and digoxin-modified primer, the R156H-mutant DNA triggered the ISDPR to produce numerous digoxin- and biotin-attached duplex DNA products. The product was detected on the LFS through dual immunoreactions (anti-digoxin antibody on the gold nanoparticle (Au-NP) and digoxin on the duplex, anti-biotin antibody on the LFS test zone and biotin on the duplex). The accumulation of Au-NPs produced the characteristic red band, enabling visual detection of the mutant gene without instrumentation. After systematic optimization of the ISDPR experimental conditions and the parameters of the assay, the current approach was capable of detecting as low as 1-fM R156H-mutant DNA within 75 min without instrumentation. Differentiation of R156H- and R156C-mutant DNA on the R156 mutation site was realized by using fluorescein- and biotin-modified hairpin probes in the ISDPR process. The approach thus provides a simple, sensitive, and low-cost tool for the detection of gene mutations.
Collapse
Affiliation(s)
- Yuqing He
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou 510095, China.
| | | | | | | | | | | | | |
Collapse
|
63
|
Rossmanith P, Wagner M. A novel poisson distribution-based approach for testing boundaries of real-time PCR assays for food pathogen quantification. J Food Prot 2011; 74:1404-12. [PMID: 21902908 DOI: 10.4315/0362-028x.jfp-10-458] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The validation of quantitative real-time PCR systems and above all, proof of the detection limit of this method, is a frequently and intensively discussed topic in food pathogen detection. Among proper sample collection, assay design, careful experimental design, execution of real-time PCR, and data analysis, the validation of the method per se ensuring reliable quantification data is of prime importance. The purpose of this study was to evaluate a novel validation tool for real-time PCR assays, based on the theoretical possibility of the amplification of a single DNA target. The underlying mathematical basis for the work is Poisson distribution, which describes patterns of low particle numbers in a volume. In this context, we focused on the quantitative aspect of real-time PCR for the first time. This allowed for demonstration of the reliable amplification of a lone target DNA molecule and the demonstration of the distinct discrimination between integer molecular numbers when using low initial copy numbers. A real-time PCR assay amplifying a 274-bp fragment of the positive regulatory protein A locus of Listeria monocytogenes was used for this work. Evidence for a linear range of quantification from a single target copy to 10 ng of target DNA was experimentally demonstrated, and evidence for the significance of this novel validation approach is presented here.
Collapse
Affiliation(s)
- Peter Rossmanith
- Christian Doppler Laboratory for Molecular Biological Food Analytics, Veterinärplatz 1, 1210 Vienna, Austria.
| | | |
Collapse
|
64
|
Abstract
In clinical practice, a rapid and accurate identification of pathogens causing viral respiratory tract infections can be problematic because of nonspecific clinical presentations, lack of rapid and sensitive tests, and the emergence of new and mutating viral pathogens. Nucleic acid-targeted molecular techniques are increasingly being used to provide high sensitivity and specificity, short test turnaround time, and automatic and high-throughput processing. In-house and commercially available molecular methods have been developed to qualitatively and quantitatively detect and identify a single or a panel of clinically encountered respiratory tract viruses in a single reaction. Molecular techniques are being gradually introduced in routine laboratory diagnosis of viral respiratory tract infections. However, their performance characteristics and limitations must be clearly understood by both laboratory personnel and clinicians to ensure proper utilization and interpretation.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Yi-Wei Tang
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 USA
- Molecular Infectious Disease Laboratory, Vanderbilt University Hospital, 4605 TVC, Nashville, TN 37232-5310 USA
| |
Collapse
|
65
|
Cnops L, Boderie M, Gillet P, Van Esbroeck M, Jacobs J. Rapid diagnostic tests as a source of DNA for Plasmodium species-specific real-time PCR. Malar J 2011; 10:67. [PMID: 21435256 PMCID: PMC3075219 DOI: 10.1186/1475-2875-10-67] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 03/24/2011] [Indexed: 11/25/2022] Open
Abstract
Background This study describes the use of malaria rapid diagnostic tests (RDTs) as a source of DNA for Plasmodium species-specific real-time PCR. Methods First, the best method to recover DNA from RDTs was investigated and then the applicability of this DNA extraction method was assessed on 12 different RDT brands. Finally, two RDT brands (OptiMAL Rapid Malaria Test and SDFK60 malaria Ag Plasmodium falciparum/Pan test) were comprehensively evaluated on a panel of clinical samples submitted for routine malaria diagnosis at ITM. DNA amplification was done with the 18S rRNA real-time PCR targeting the four Plasmodium species. Results of PCR on RDT were compared to those obtained by PCR on whole blood samples. Results Best results were obtained by isolating DNA from the proximal part of the nitrocellulose component of the RDT strip with a simple DNA elution method. The PCR on RDT showed a detection limit of 0.02 asexual parasites/μl, which was identical to the same PCR on whole blood. For all 12 RDT brands tested, DNA was detected except for one brand when a low parasite density sample was applied. In RDTs with a plastic seal covering the nitrocellulose strip, DNA extraction was hampered. PCR analysis on clinical RDT samples demonstrated correct identification for single species infections for all RDT samples with asexual parasites of P. falciparum (n = 60), Plasmodium vivax (n = 10), Plasmodium ovale (n = 10) and Plasmodium malariae (n = 10). Samples with only gametocytes were detected in all OptiMAL and in 10 of the 11 SDFK60 tests. None of the negative samples (n = 20) gave a signal by PCR on RDT. With PCR on RDT, higher Ct-values were observed than with PCR on whole blood, with a mean difference of 2.68 for OptiMAL and 3.53 for SDFK60. Mixed infections were correctly identified with PCR on RDT in 4/5 OptiMAL tests and 2/5 SDFK60 tests. Conclusions RDTs are a reliable source of DNA for Plasmodium real-time PCR. This study demonstrates the best method of RDT fragment sampling for a wide range of RDT brands in combination with a simple and low cost extraction method, allowing RDT quality control.
Collapse
Affiliation(s)
- Lieselotte Cnops
- Department of Clinical Sciences, Institute of Tropical Medicine (ITM), Antwerp, Belgium.
| | | | | | | | | |
Collapse
|
66
|
Kurkina T, Vlandas A, Ahmad A, Kern K, Balasubramanian K. Label-free detection of few copies of DNA with carbon nanotube impedance biosensors. Angew Chem Int Ed Engl 2011; 50:3710-4. [PMID: 21425218 DOI: 10.1002/anie.201006806] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/07/2011] [Indexed: 11/06/2022]
Affiliation(s)
- Tetiana Kurkina
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
67
|
Kurkina T, Vlandas A, Ahmad A, Kern K, Balasubramanian K. Label-Free Detection of Few Copies of DNA with Carbon Nanotube Impedance Biosensors. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
68
|
Huang Q, Zheng L, Zhu Y, Zhang J, Wen H, Huang J, Niu J, Zhao X, Li Q. Multicolor combinatorial probe coding for real-time PCR. PLoS One 2011; 6:e16033. [PMID: 21264249 PMCID: PMC3021529 DOI: 10.1371/journal.pone.0016033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 12/06/2010] [Indexed: 11/19/2022] Open
Abstract
The target volume of multiplex real-time PCR assays is limited by the number of fluorescent dyes available and the number of fluorescence acquisition channels present in the PCR instrument. We hereby explored a probe labeling strategy that significantly increased the target volume of real-time PCR detection in one reaction. The labeling paradigm, termed "Multicolor Combinatorial Probe Coding" (MCPC), uses a limited number (n) of differently colored fluorophores in various combinations to label each probe, enabling one of 2(n)-1 genetic targets to be detected in one reaction. The proof-of-principle of MCPC was validated by identification of one of each possible 15 human papillomavirus types, which is the maximum target number theoretically detectable by MCPC with a 4-color channel instrument, in one reaction. MCPC was then improved from a one-primer-pair setting to a multiple-primer-pair format through Homo-Tag Assisted Non-Dimer (HAND) system to allow multiple primer pairs to be included in one reaction. This improvement was demonstrated via identification of one of the possible 10 foodborne pathogen candidates with 10 pairs of primers included in one reaction, which had limit of detection equivalent to the uniplex PCR. MCPC was further explored in detecting combined genotypes of five β-globin gene mutations where multiple targets were co-amplified. MCPC strategy could expand the scope of real-time PCR assays in applications which are unachievable by current labeling strategy.
Collapse
Affiliation(s)
- Qiuying Huang
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, Department of Biomedical Sciences and the Key Laboratory of Cell Biology and Tumor Cell Engineering of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, China
| | - Linlin Zheng
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, Department of Biomedical Sciences and the Key Laboratory of Cell Biology and Tumor Cell Engineering of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yumei Zhu
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, Department of Biomedical Sciences and the Key Laboratory of Cell Biology and Tumor Cell Engineering of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiafeng Zhang
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, Department of Biomedical Sciences and the Key Laboratory of Cell Biology and Tumor Cell Engineering of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huixin Wen
- Department of Microbiology, Xiamen Centre for Disease Control and Prevention, Xiamen, China
| | - Jianwei Huang
- Department of Microbiology, Xiamen Centre for Disease Control and Prevention, Xiamen, China
| | - Jianjun Niu
- Department of Microbiology, Xiamen Centre for Disease Control and Prevention, Xiamen, China
| | - Xilin Zhao
- Public Health Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Qingge Li
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, Department of Biomedical Sciences and the Key Laboratory of Cell Biology and Tumor Cell Engineering of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
69
|
Manduzio H, Ezan E, Fenaille F. Evaluation of the LTQ-Orbitrap mass spectrometer for the analysis of polymerase chain reaction products. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:3501-3509. [PMID: 21080500 DOI: 10.1002/rcm.4800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We have investigated the potential and robustness of the off-line coupling of polymerase chain reaction (PCR) with electrospray ionization mass spectrometry (ESI-MS), for further applications in the screening of single-nucleotide polymorphisms (SNPs). This was based on recently reported data demonstrating that anion-exchange solid-phase extraction was the most efficient technique for efficiently desalting PCR products, with a recovery of ∼70%. Results showed that this purification approach efficiently removes almost all the chemicals commonly added to PCR buffers. ESI-MS analysis of a model 114-bp PCR product performed on the LTQ-Orbitrap instrument demonstrated that detection limits in the nM range along with an average mass measurement uncertainty of 9.15 ± 7.11 ppm can be routinely obtained using an external calibration. The PCR/ESI-MS platform was able to detect just a few copies of a targeted oligonucleotide. However, it was shown that if two PCR products are present in a mixture in a ratio higher than 10 to 1, the lower abundance one might not be reproducibly detected. Applications to SNPs demonstrated that an LTQ-Orbitrap with a resolution of 30 000 (at m/z 400) easily identified a single (A ↔ G) switch, i.e. a 16 Da difference, in binary mixtures of ∼ 35 kDa PCR products. Complementary experiments also showed that the combination of endonucleases and ESI-MS could be used to confirm base composition and sequence, and thus to screen for unknown polymorphisms in specific sequences. For example, a single (T ↔ A) switch (9 Da mass difference) was successfully identified in a 114-bp PCR product.
Collapse
Affiliation(s)
- Hélène Manduzio
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, 91191 Gif-sur-Yvette, France
| | | | | |
Collapse
|
70
|
Capek P, Kirkconnell KS, Dickerson TJ. A bacteriophage-based platform for rapid trace detection of proteases. J Am Chem Soc 2010; 132:13126-8. [PMID: 20812737 DOI: 10.1021/ja104572f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sensitive, inexpensive, and rapid protease activity assays are of great merit for clinical diagnostics. Detection of protease-based toxins produced by Clostridium botulinum and Bacillus anthracis represents a particularly challenging task, as exceptional sensitivity is a prerequisite because of the extreme potency of the toxins. Here we present an inexpensive and sensitive assay platform for activity-based protease quantification utilizing filamentous bacteriophage as an exponentially amplifiable reporter and its application to the detection of these bacterial toxins. The assay is based on specific cleavage of bacteriophage from a solid support and its subsequent quantification by means of infectivity or quantitative PCR. Detection of botulinum neurotoxin (BoNT) serotypes A and B and anthrax lethal factor in the picomolar range was demonstrated with a limit of detection of 2 pM for BoNT/A under optimized conditions.
Collapse
Affiliation(s)
- Petr Capek
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
71
|
Cafarchia C, Gasser RB, Figueredo LA, Latrofa MS, Otranto D. Advances in the identification of Malassezia. Mol Cell Probes 2010; 25:1-7. [PMID: 21193026 DOI: 10.1016/j.mcp.2010.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 12/22/2010] [Accepted: 12/22/2010] [Indexed: 11/25/2022]
Abstract
Members of the genus Malassezia are lypophilic and/or lipid-dependent, unipolar budding yeasts that can become pathogenic under the influence of particular predisposing factors (e.g., changes in the cutaneous microenvironment and/or alterations in host defences). This genus comprises at least 14 species, which have been identified traditionally based on their morphology and biochemical features. However, phenetic characteristics often do not allow the identification or delineation of closely related Malassezia spp., such that molecular tools need to be used to assist in fundamental studies of the epidemiology and ecology of Malassezia as well as aspects of the pathogenesis and disease caused by members of this genus. This article briefly reviews the morphological and biochemical methods commonly used for the identification of Malassezia as well as DNA technological methods that have been established for the specific identification of members of this genus and the diagnosis of their infections. New avenues for the development of improved molecular-diagnostic methods to overcome diagnostic limitations and to underpin fundamental investigations of this interesting group of yeasts are proposed.
Collapse
Affiliation(s)
- Claudia Cafarchia
- Dipartimento di Sanità Pubblica e Zootecnia, Facoltà di Medicina Veterinaria, Università di Bari, Str. prov. le per Casamassima Km 3, 70010 Valenzano, Bari, Italy
| | | | | | | | | |
Collapse
|
72
|
Rossmanith P, Wagner M. The challenge to quantify Listeria monocytogenes--a model leading to new aspects in molecular biological food pathogen detection. J Appl Microbiol 2010; 110:605-17. [PMID: 21182577 DOI: 10.1111/j.1365-2672.2010.04915.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In this work, we discuss the latest insights concerning advantages and disadvantages and the nature of microbiological and molecular methods for quantitative food pathogen detection. The assessment of molecular methods must be brought on a basis that considers the nature of molecular methods and their underlying mechanism. A potential approach to setting up the development, validation and structure of an analytical chain is presented based on quantitative real-time PCR (qPCR). This is analysed exemplary on the basis of recent work using the model organism Listeria monocytogenes. Several prerequisites for successful quantitative detection of this pathogen will be discussed. In particular, sample preparation, controls for all methodical steps and the validation of the core assay qPCR are addressed, which constitute the basis for a reliable analytical detection chain for molecular biological pathogen detection from food. Microbiological methods are analysed based on growth of the single cell, which is the fundament of these traditional methods.
Collapse
Affiliation(s)
- P Rossmanith
- Christian Doppler Laboratory for Molecular Food Analytics, Vienna, Austria
| | | |
Collapse
|
73
|
Shin GW, Hwang HS, Oh MH, Doh J, Jung GY. Simultaneous quantitative detection of 12 pathogens using high-resolution CE-SSCP. Electrophoresis 2010; 31:2405-10. [PMID: 20568262 DOI: 10.1002/elps.201000091] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several methods based on screening for a 16S ribosomal RNA gene marker have been developed for rapid and sensitive detection of pathogenic microorganisms. One such method, CE-based SSCP (CE-SSCP), has enormous potential because the technique can separate sequence variants using a simple procedure. However, conventional CE-SSCP systems have limited resolution and cannot separate most 16S ribosomal RNA gene-specific markers unless combined with additional modification steps. A high-resolution CE-SSCP system that uses a poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) triblock copolymer matrix was recently developed and shown to effectively separate highly similar PCR products. In this study, we developed a method based on a high-resolution CE-SSCP system using a poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) triblock copolymer that is capable of simultaneous and quantitative detection of 12 clinically important pathogens. Pathogen markers were amplified by PCR using universal primers and separated by CE-SSCP; each marker peak was well separated at baseline and showed a characteristic mobility, allowing easy identification of pathogens. A series of experiments using different amounts of genomic pathogen DNA showed that the method had a limit of detection of 0.31-1.56 pg and a dynamic range of approximately 10(2). These results indicate that high-resolution CE-SSCP systems have considerable potential in the clinical diagnosis of bacteria-induced diseases.
Collapse
Affiliation(s)
- Gi Won Shin
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | | | |
Collapse
|
74
|
Rossmanith P, Röder B, Frühwirth K, Vogl C, Wagner M. Mechanisms of degradation of DNA standards for calibration function during storage. Appl Microbiol Biotechnol 2010; 89:407-17. [PMID: 20967442 DOI: 10.1007/s00253-010-2943-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/07/2010] [Accepted: 10/09/2010] [Indexed: 02/06/2023]
Abstract
Establishment of molecular diagnostics offering quantitative technology is directly associated with real-time polymerase chain reaction (PCR). This rapid, accurate and sensitive method requires careful execution, including reliable calibration standards. The storage of such standards is crucial to prevent nucleic acid decay and to ensure stable results using real-time PCR. In this study, a broad investigation of possible causes of DNA degradation during storage was performed, including GC-content of the fragments, long-term storage, rapid freeze-and-thaw experiments, genomic DNA and short DNA fragments of different species, the influence of shear stress and the effect of nuclease remaining after DNA isolation. Several known chemical DNA degradation mechanisms have been matched with the experimental data through a process of elimination. Protocols for practical application, as well as a theoretical model describing the underlying mechanisms of deviation of real-time PCR results due to decay of standard DNA, have been developed. Primary amines in the buffer composition, which enhance depurination of the DNA helix, and shear stress due to ice crystal formation, could be identified as major sources of interaction. This results in degradation of the standard DNA, as well as in the probability of occurrence of mismatches affecting real-time PCR performance.
Collapse
Affiliation(s)
- Peter Rossmanith
- Christian Doppler Laboratory for Molecular Food Analytics, Veterinärplatz 1, 1210 Vienna, Austria.
| | | | | | | | | |
Collapse
|
75
|
Rossmanith P, Mester P, Wagner M, Schoder D. Demonstration of the effective performance of a combined enrichment /real-time PCR method targeting the prfA gene of Listeria monocytogenes by testing fresh naturally contaminated acid curd cheese. Lett Appl Microbiol 2010; 51:480-4. [DOI: 10.1111/j.1472-765x.2010.02925.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
76
|
Impact of long-term storage on stability of standard DNA for nucleic acid-based methods. J Clin Microbiol 2010; 48:4260-2. [PMID: 20810770 DOI: 10.1128/jcm.01230-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Real-time PCR is dependent upon a calibration function for quantification. While long-term storage of standards saves cost and time, solutions of DNA are prone to degradation. We present here the benchmark treatment for preservation of DNA standards, involving storage in 50% glycerol-double-distilled water, whereby a deviation of 0.2 threshold cycle (C(T)) values resulted after 100 days of storage.
Collapse
|
77
|
Abstract
Extremophiles can be defined as organisms that can survive in extreme environments that cannot support mammalian life. They include microorganisms that can tolerate temperature extremes, extremes of pH, salinity, hydrostatic pressure and ionizing radiation, as well as low oxygen tension, desiccation and the presence of heavy metals. Psychrophilic organisms also include fish in polar waters and animals that withstand freezing. Rare examples of thermophilic pathogens exist, and the main category of extremophilic animal pathogens comprises psychrophilic and psychrotrophic microorganisms that cause fish diseases, e.g. Flavobacterium psychrophilum, Moritella viscosa, Aliivibrio wodanis and Aliivibrio salmonicida. The most widely known application of an extremophile product in veterinary medicine is DNA polymerase from thermophiles, which is a mainstay of PCR-based diagnostics for an extensive range of animal pathogens. DNA polymerases and other extremophile enzymes are also used in many molecular biology applications and animal genomics. Other extremophile products may find application in veterinary medicine in the future. These include enzymes in biosensors, compatible solutes in skin care products, drug excipients, treatments for respiratory disease, radioprotectants, peptide antibiotics, archaeal lipids for drug delivery and anti-cancer therapeutics.
Collapse
Affiliation(s)
- Jane Ann Irwin
- Veterinary Sciences Centre, UCD School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
78
|
Summerer D, Hevroni D, Jain A, Oldenburger O, Parker J, Caruso A, Stähler CF, Stähler PF, Beier M. A flexible and fully integrated system for amplification, detection and genotyping of genomic DNA targets based on microfluidic oligonucleotide arrays. N Biotechnol 2010; 27:149-55. [DOI: 10.1016/j.nbt.2010.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 03/02/2010] [Accepted: 03/23/2010] [Indexed: 11/15/2022]
|
79
|
Sisti D, Guescini M, Rocchi MBL, Tibollo P, D'Atri M, Stocchi V. Shape based kinetic outlier detection in real-time PCR. BMC Bioinformatics 2010; 11:186. [PMID: 20385019 PMCID: PMC2873533 DOI: 10.1186/1471-2105-11-186] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 04/12/2010] [Indexed: 11/25/2022] Open
Abstract
Background Real-time PCR has recently become the technique of choice for absolute and relative nucleic acid quantification. The gold standard quantification method in real-time PCR assumes that the compared samples have similar PCR efficiency. However, many factors present in biological samples affect PCR kinetic, confounding quantification analysis. In this work we propose a new strategy to detect outlier samples, called SOD. Results Richards function was fitted on fluorescence readings to parameterize the amplification curves. There was not a significant correlation between calculated amplification parameters (plateau, slope and y-coordinate of the inflection point) and the Log of input DNA demonstrating that this approach can be used to achieve a "fingerprint" for each amplification curve. To identify the outlier runs, the calculated parameters of each unknown sample were compared to those of the standard samples. When a significant underestimation of starting DNA molecules was found, due to the presence of biological inhibitors such as tannic acid, IgG or quercitin, SOD efficiently marked these amplification profiles as outliers. SOD was subsequently compared with KOD, the current approach based on PCR efficiency estimation. The data obtained showed that SOD was more sensitive than KOD, whereas SOD and KOD were equally specific. Conclusion Our results demonstrated, for the first time, that outlier detection can be based on amplification shape instead of PCR efficiency. SOD represents an improvement in real-time PCR analysis because it decreases the variance of data thus increasing the reliability of quantification.
Collapse
Affiliation(s)
- Davide Sisti
- Dipartimento DiSUAN, Sezione di Biomatematica, Università degli Studi di Urbino Carlo Bo, Campus Scientifico Sogesta; Località Crocicchia - 61029 Urbino, Italy.
| | | | | | | | | | | |
Collapse
|
80
|
Tuomi JM, Voorbraak F, Jones DL, Ruijter JM. Bias in the Cq value observed with hydrolysis probe based quantitative PCR can be corrected with the estimated PCR efficiency value. Methods 2010; 50:313-22. [DOI: 10.1016/j.ymeth.2010.02.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 01/24/2010] [Accepted: 02/03/2010] [Indexed: 10/19/2022] Open
|
81
|
Evaluation of multiplex type-specific real-time PCR assays using the LightCycler and joint biological agent identification and diagnostic system platforms for detection and quantitation of adult human respiratory adenoviruses. J Clin Microbiol 2010; 48:1397-403. [PMID: 20053853 DOI: 10.1128/jcm.01600-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Every year, thousands of basic military trainees in each service of the U.S. Armed Forces experience acute respiratory disease. The majority of this disease burden results from infection with human adenoviruses. We designed single- and multiplex assays that detect and discriminate adenovirus types B3, E4, B7, B11, B14, and B21. A total of 116 oropharyngeal swab specimens obtained from patients at the Naval Health Research Center were used to validate the new assays. Type-specific singleplex assays were designed and used independently to successfully identify 94 representative patient specimens. The lower limits of detection for our singleplex real-time PCR assays were calculated to be 50, 500, 500, 50, 50, and 50 genomic copies per reaction for human adenovirus type B3 (HAdV-B3), HAdV-E4, HAdV-B7, HAdV-B11, HAdV-B14, and HAdV-B21, respectively. These were then multiplexed to increase efficiency and tested against singleplex assays using titrated controls. The HAdV-B3/B11 and HAdV-E4/B7 multiplex assays were as sensitive and specific as they were individually. The HAdV-B14/B21 multiplex assay was not as efficient at detecting HAdV-B14 as the singleplex assay. Interestingly, a statistically significant difference was found between the viral loads of HAdV-B14 and those of HAdV-B3, -E4, -B7, and -B21 (P < 0.001). The assays did not cross-react with other adenoviruses, influenza virus, respiratory syncytial virus, or respiratory disease-causing bacteria. These assays have the potential to be useful as clinical diagnostic tools for the detection of HAdV infection in adult populations.
Collapse
|
82
|
Shin GW, Cho YS, Hwang HS, Oh MH, Nam HG, Park JH, Jung GY. A new single-step quantitative pathogen detection system: template-tagging followed by multiplex asymmetric PCR using common primers and CE-SSCP. Electrophoresis 2009; 30:2728-36. [PMID: 19621380 DOI: 10.1002/elps.200900074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid diagnosis of bacterial infection is important for patient management and appropriate therapy during the early phase of bacteria-induced disease. Among the existing techniques for identifying microbial, CE-SSCP combined with 16S ribosomal RNA gene-specific PCR has the benefits of excellent sensitivity, resolution, and reproducibility. However, even though CE-SSCP can separate PCR products with high-resolution, multiplex detection and quantification are complicated by primer-dimer formation and non-specific amplification. Here, we describe a novel technique for multiplex detection and quantification of pathogens by template-tagging followed by multiplex asymmetric PCR and subsequent CE-SSCP. More specifically, we reverse transcribed 16S ribosomal RNAs from seven septicemia-inducing pathogens, tagged the templates with common end sequences, and amplified them using common primers. The resulting amplicons could be successfully separated by CE-SSCP and quantified by comparison to an internal standard. This method yielded results that illustrate the potential of this system for diagnosing infectious disease.
Collapse
Affiliation(s)
- Gi Won Shin
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | | | | | | | |
Collapse
|
83
|
Shaheen BW, Wang C, Johnson CM, Kaltenboeck B, Boothe DM. Detection of fluoroquinolone resistance level in clinical canine and feline Escherichia coli pathogens using rapid real-time PCR assay. Vet Microbiol 2009; 139:379-85. [DOI: 10.1016/j.vetmic.2009.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Revised: 05/04/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
|
84
|
Wang C, Ahluwalia SK, Li Y, Gao D, Poudel A, Chowdhury E, Boudreaux MK, Kaltenboeck B. Frequency and therapy monitoring of canine Babesia spp. infection by high-resolution melting curve quantitative FRET-PCR. Vet Parasitol 2009; 168:11-8. [PMID: 19931290 DOI: 10.1016/j.vetpar.2009.10.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 10/06/2009] [Accepted: 10/16/2009] [Indexed: 11/16/2022]
Abstract
Babesia gibsoni and Babesia canis are the etiological agents of canine babesiosis, a protozoal hemolytic disease with global significance. Canine babesiosis has been diagnosed by microscopic identification of intra-erythrocytic trophozoites in blood smear, and by serological testing. Here we developed a quantitative fluorescence resonance energy transfer (FRET)-PCR that amplifies a fragment of the Babesia spp. 18S rRNA gene with high sensitivity and specificity. Melting curve analysis differentiates B. gibsoni, B. canis canis/B. canis vogeli, and B. canis rossi by the disassociation temperature of the fluorescent probes. Babesia gibsoni infection was detected in 8 of 48 canine breeds (17%) and 24 of a total of 235 specimens (10.2%) submitted from 22 states of the continental United States of America. A potential blood donor was positive for B. canis vogeli infection. In Hong Kong (China), B. gibsoni infection was detected in 30 of 64 specimens (46.9%) from 15 of the 24 breeds (63%). While the frequency of canine babesiosis did not associate with seasonal change in Hong Kong, positivity in the USA for Babesia spp. infection was higher in Spring and Summer than in Autumn and Winter. The data suggest that environmental factors associated with tick vector exposure rather than genetic susceptibility determine the incidence of canine babesiosis. Babesia spp. burdens in blood declined significantly with increasing age of the infected dogs, and therapy with atovaquone and tilmicosin eliminated B. gibsoni while doxcycline and berenil did not. This demonstrates that high-resolution real-time PCR analysis may advance diagnosis and therapy monitoring of canine babesiosis.
Collapse
Affiliation(s)
- Chengming Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 270 Greene Hall, Auburn, AL 36849-5519, USA
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Hoffmann B, Beer M, Reid SM, Mertens P, Oura CAL, van Rijn PA, Slomka MJ, Banks J, Brown IH, Alexander DJ, King DP. A review of RT-PCR technologies used in veterinary virology and disease control: sensitive and specific diagnosis of five livestock diseases notifiable to the World Organisation for Animal Health. Vet Microbiol 2009; 139:1-23. [PMID: 19497689 DOI: 10.1016/j.vetmic.2009.04.034] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 04/15/2009] [Accepted: 04/28/2009] [Indexed: 12/31/2022]
Abstract
Real-time, reverse transcription polymerase chain reaction (rRT-PCR) has become one of the most widely used methods in the field of molecular diagnostics and research. The potential of this format to provide sensitive, specific and swift detection and quantification of viral RNAs has made it an indispensable tool for state-of-the-art diagnostics of important human and animal viral pathogens. Integration of these assays into automated liquid handling platforms for nucleic acid extraction increases the rate and standardisation of sample throughput and decreases the potential for cross-contamination. The reliability of these assays can be further enhanced by using internal controls to validate test results. Based on these advantageous characteristics, numerous robust rRT-PCRs systems have been developed and validated for important epizootic diseases of livestock. Here, we review the rRT-PCR assays that have been developed for the detection of five RNA viruses that cause diseases that are notifiable to the World Organisation for Animal Health (OIE), namely: foot-and-mouth disease, classical swine fever, bluetongue disease, avian influenza and Newcastle disease. The performance of these tests for viral diagnostics and disease control and prospects for improved strategies in the future are discussed.
Collapse
Affiliation(s)
- Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Mao X, Ma Y, Zhang A, Zhang L, Zeng L, Liu G. Disposable Nucleic Acid Biosensors Based on Gold Nanoparticle Probes and Lateral Flow Strip. Anal Chem 2009; 81:1660-8. [PMID: 19159221 DOI: 10.1021/ac8024653] [Citation(s) in RCA: 260] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xun Mao
- Department of Chemistry and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105, DiaCarta LLC, 6519 Dumbarton Circle, Fremont, California 94555, Panomics, Inc., 6519 Dumbarton Circle, Fremont, California 94555, Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York 14642-8647, and Laboratory of Molecular Diagnostics, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China, 510663
| | - Yunqing Ma
- Department of Chemistry and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105, DiaCarta LLC, 6519 Dumbarton Circle, Fremont, California 94555, Panomics, Inc., 6519 Dumbarton Circle, Fremont, California 94555, Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York 14642-8647, and Laboratory of Molecular Diagnostics, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China, 510663
| | - Aiguo Zhang
- Department of Chemistry and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105, DiaCarta LLC, 6519 Dumbarton Circle, Fremont, California 94555, Panomics, Inc., 6519 Dumbarton Circle, Fremont, California 94555, Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York 14642-8647, and Laboratory of Molecular Diagnostics, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China, 510663
| | - Lurong Zhang
- Department of Chemistry and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105, DiaCarta LLC, 6519 Dumbarton Circle, Fremont, California 94555, Panomics, Inc., 6519 Dumbarton Circle, Fremont, California 94555, Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York 14642-8647, and Laboratory of Molecular Diagnostics, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China, 510663
| | - Lingwen Zeng
- Department of Chemistry and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105, DiaCarta LLC, 6519 Dumbarton Circle, Fremont, California 94555, Panomics, Inc., 6519 Dumbarton Circle, Fremont, California 94555, Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York 14642-8647, and Laboratory of Molecular Diagnostics, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China, 510663
| | - Guodong Liu
- Department of Chemistry and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105, DiaCarta LLC, 6519 Dumbarton Circle, Fremont, California 94555, Panomics, Inc., 6519 Dumbarton Circle, Fremont, California 94555, Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York 14642-8647, and Laboratory of Molecular Diagnostics, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China, 510663
| |
Collapse
|
87
|
Internal control for nucleic acid testing based on the use of purified Bacillus atrophaeus subsp. globigii spores. J Clin Microbiol 2009; 47:751-7. [PMID: 19144808 DOI: 10.1128/jcm.01746-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Commonly used internal controls (ICs) to monitor the efficiency of nucleic acid testing (NAT) assays do not allow verification of nucleic acid extraction efficiency. Since microbial cells are often difficult to lyse, it is important to ensure that nucleic acids are efficiently extracted from any target organism. For this purpose, we developed a cellular IC based on the use of nonpathogenic Bacillus spores. Purified Bacillus atrophaeus subsp. globigii (referred to hereafter as simply B. atrophaeus) spores were added to vaginal and anal samples, which were then subjected to rapid DNA extraction and subsequent PCR amplification. The proof of concept of this cellular IC was made through the use of both manual and automated DNA extraction methods, using vaginal or anal samples spiked with B. atrophaeus spores, combined with a multiplex real-time PCR assay for the specific detection of group B streptococci (GBS) and B. atrophaeus. The performance of the cellular IC was compared to that of a standard IC plasmid added to PCRs. Approximately 500 B. atrophaeus spores per PCR was found to be optimal since this did not interfere significantly with GBS detection for either DNA extraction method and yielded reproducible amplification and/or detection of B. atrophaeus genomic DNA serving as an IC template. Performance of the cellular IC was comparable to that of the standard IC. This novel IC system using nonpathogenic and hard-to-lyse B. atrophaeus spores allowed validation of both the DNA extraction procedure and the amplification and detection process. Use of a spore-based control also provides a universal control for microbial cell lysis.
Collapse
|
88
|
Li Y, Wang C, Allen KE, Little SE, Ahluwalia SK, Gao D, Macintire DK, Blagburn BL, Kaltenboeck B. Diagnosis of canine Hepatozoon spp. infection by quantitative PCR. Vet Parasitol 2008; 157:50-8. [DOI: 10.1016/j.vetpar.2008.06.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 04/23/2008] [Accepted: 06/23/2008] [Indexed: 11/29/2022]
|
89
|
Mapes S, Leutenegger CM, Pusterla N. Nucleic acid extraction methods for detection of EHV-1 from blood and nasopharyngeal secretions. Vet Rec 2008; 162:857-9. [PMID: 18587063 DOI: 10.1136/vr.162.26.857] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- S Mapes
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
90
|
Fearnley C, Wakeley P, Gallego-Beltran J, Dalley C, Williamson S, Gaudie C, Woodward M. The development of a real-time PCR to detect pathogenic Leptospira species in kidney tissue. Res Vet Sci 2008; 85:8-16. [DOI: 10.1016/j.rvsc.2007.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 08/20/2007] [Accepted: 09/04/2007] [Indexed: 11/30/2022]
|
91
|
Bhattacharya P, Sharma S, Gochhait S, Bamezai RNK. Biophysical characterization of double-stranded oligonucleotides using ETBR and isothermal fluorescence spectroscopy: implication for SNP genotyping. ACTA ACUST UNITED AC 2007; 70:1163-73. [PMID: 18177945 DOI: 10.1016/j.jprot.2007.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 07/11/2007] [Accepted: 10/22/2007] [Indexed: 10/22/2022]
Abstract
The UV-absorption, fluorescence and CD spectra of aps 23 bp oligoduplexes were performed for potential diagnostic purpose. These oligonucleotide sequences were mimicked from natural mutations (mitochondrial genome) of human population (unpublished). This work was designed on the basis of hybridization of non-self complementary oligoduplexes (aps) containing no mismatch, one-mismatch and two-mismatches. Since melting temperature is dependent on concentration of the oligoduplex, various concentrations were used in this study protocol. The thermal spectra profiles (UV absorbance and fluorescence) of these oligoduplexes (aps) are different for a particular concentration, and can be implicated for mutations. -dF/dT (or dA/dT) vs T, lnK (or RlnK) vs TM, DeltaG vs TM, DeltaS vs TM and DeltaH vs TM are also variable for those sequences. All these thermodynamic data were calculated from absorbance (at 260 nm) data. On the contrary to the 23 bp oligoduplexes (aps), the PCR products of 97 bp and 256 bp length were genotyped with ETBR (excitation 530 nm, emission 600 nm) fluorimetrically. But our attempts to genotype these PCR sequences with isothermal UV absorbance spectroscopy were unsuccessful. Isothermal UV absorbance spectra has a limitation of sequence length. However, the structural conformation (all B-type) of the oligoduplexes (aps) was determined using CD. The minor discrepancy in CD spectra of these oligoduplexes are not significant for mutational analysis. 97 bp nested PCR product was an amplicon having either GcT or AcC mutation of mitochondria of normal human population, whereas 256 bp PCR product was an amplicon of human BRCA2 gene (NCBI Accession No. AY151039) of chromosome 13 having either A or G mutation at position -26.
Collapse
Affiliation(s)
- Pradip Bhattacharya
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | | | | | | |
Collapse
|
92
|
Huang Q, Hu Q, Li Q. Identification of 8 Foodborne Pathogens by Multicolor Combinational Probe Coding Technology in a Single Real-Time PCR. Clin Chem 2007; 53:1741-8. [PMID: 17693526 DOI: 10.1373/clinchem.2007.087502] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Real-time PCR assays have been widely used for detecting foodborne pathogens but have been much less frequently applied in species identification, mainly because of the low number of species they can distinguish in 1 reaction. The present study used a new probe coding/labeling strategy, termed multicolor combinational probe coding (MCPC), to increase the number of targets that can be distinguished in a single real-time PCR for rapid and reliable species identification.
Methods: With MCPC, 8 pairs of species-specific tagged primers, 1 pair of universal primers, and 8 unilabeled or mix-labeled molecular beacon probes were included in a single reaction tube. Real-time PCR was performed, and the identity of each of the 8 pathogens was determined by amplification profile comparison. The method was validated via blind assessment of 118 bacterial strains, including clinical isolates and isolates from food products.
Results: The blind test with 118 samples gave no false-positive or -negative results for the target genes. The template DNA suitable for MCPC analysis was simply prepared by heating lysis, and the total PCR analysis was finished within 2.5 h, excluding template preparation.
Conclusions: MCPC is suitable for rapid and reliable identification of foodborne pathogens at the species level.
Collapse
Affiliation(s)
- Qiuying Huang
- Molecular Diagnostics Laboratory, Department of Biomedical Sciences, Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | | | | |
Collapse
|
93
|
Zhong JF, Weiner LP, Burke K, Taylor CR. Viral RNA extraction for in-the-field analysis. J Virol Methods 2007; 144:98-102. [PMID: 17548117 PMCID: PMC3635480 DOI: 10.1016/j.jviromet.2007.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 04/16/2007] [Accepted: 04/25/2007] [Indexed: 11/22/2022]
Abstract
Retroviruses encode their genetic information with RNA molecules, and have a high genomic recombination rate which allows them to mutate more rapidly, thereby posting a higher risk to humans. One important way to help combat a pandemic of viral infectious diseases is early detection before large-scale outbreaks occur. The polymerase chain reaction (PCR) and reverse transcription-PCR (RT-PCR) have been used to identify precisely different strains of some very closely related pathogens. However, isolation and detection of viral RNA in the field are difficult due to the unstable nature of viral RNA molecules. Consequently, performing in-the-field nucleic acid analysis to monitor the spread of viruses is financially and technologically challenging in remote and underdeveloped regions that are high-risk areas for outbreaks. A simplified rapid viral RNA extraction method is reported to meet the requirements for in-the-field viral RNA extraction and detection. The ability of this device to perform viral RNA extraction with subsequent RT-PCR detection of retrovirus is demonstrated. This inexpensive device has the potential to be distributed on a large scale to underdeveloped regions for early detection of retrovirus, with the possibility of reducing viral pandemic events.
Collapse
Affiliation(s)
- Jiang F Zhong
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | |
Collapse
|
94
|
Deepak SA, Kottapalli KR, Rakwal R, Oros G, Rangappa KS, Iwahashi H, Masuo Y, Agrawal GK. Real-Time PCR: Revolutionizing Detection and Expression Analysis of Genes. Curr Genomics 2007; 8:234-51. [PMID: 18645596 PMCID: PMC2430684 DOI: 10.2174/138920207781386960] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 02/27/2007] [Accepted: 03/02/2007] [Indexed: 02/06/2023] Open
Abstract
Invention of polymerase chain reaction (PCR) technology by Kary Mullis in 1984 gave birth to real-time PCR. Real-time PCR - detection and expression analysis of gene(s) in real-time - has revolutionized the 21(st) century biological science due to its tremendous application in quantitative genotyping, genetic variation of inter and intra organisms, early diagnosis of disease, forensic, to name a few. We comprehensively review various aspects of real-time PCR, including technological refinement and application in all scientific fields ranging from medical to environmental issues, and to plant.
Collapse
Affiliation(s)
- SA Deepak
- Department of Studies in Applied Botany and Biotechnology, University of Mysore, Manasagangotri, Mysore 570006,
India
| | - KR Kottapalli
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-
8602, Ibaraki, Japan
| | - R Rakwal
- Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science
and Technology (AIST), Tsukuba West, 16-1 Onogawa, Tsukuba 305-8569, Ibaraki, Japan
- Research Laboratory for
Agricultural Biotechnology and Biochemistry (RLABB), GPO Box 8207, Kathmandu, Nepal
| | - G Oros
- Plant Protection Institute,
Hungarian Academy of Sciences, Budapest, Hungary
| | - KS Rangappa
- Department of Studies in Chemistry, University of Mysore,
Manasagangotri, Mysore 570006, India
| | - H Iwahashi
- Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science
and Technology (AIST), Tsukuba West, 16-1 Onogawa, Tsukuba 305-8569, Ibaraki, Japan
| | - Y Masuo
- Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science
and Technology (AIST), Tsukuba West, 16-1 Onogawa, Tsukuba 305-8569, Ibaraki, Japan
| | - GK Agrawal
- Research Laboratory for
Agricultural Biotechnology and Biochemistry (RLABB), GPO Box 8207, Kathmandu, Nepal
| |
Collapse
|
95
|
Cheng ZJ, Hu LH, Fu WR, Li YR. Rapid quantification of hepatitis B virus DNA by direct real-time PCR from serum without DNA extraction. J Med Microbiol 2007; 56:766-771. [PMID: 17510261 DOI: 10.1099/jmm.0.47154-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was to quantify hepatitis B virus DNA by direct real-time PCR from serum without the need for DNA extraction. Crossing point (Cp) values were determined automatically using the second derivative maximum mode. Since serum samples from patients are inevitably haemolysed, lipaemic or icteric, the interference of endogenous substances from the serum in real-time PCR was evaluated. The result showed that, although serum protein quenched the intensity of fluorescence, the Cp value adopted to calculate the quantity of DNA copies remained unchanged. Importantly, real-time PCR from serum with or without DNA extraction reached a high level of concordance. This direct serum PCR method without the DNA extraction and gel electrophoresis allows for substantial labour and cost savings. In addition, it is also suitable for rapid DNA quantification during clinical diagnosis.
Collapse
Affiliation(s)
- Zheng-Jiang Cheng
- Clinical Laboratory Medicine Department, Xiangfan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Xiangfan 441021, People's Republic of China
- Clinical Laboratory Medicine Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Li-Hua Hu
- Clinical Laboratory Medicine Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Wen-Rong Fu
- Pathology Department, Xiangfan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Xiangfan 441021, People's Republic of China
| | - Yi-Rong Li
- Clinical Laboratory Medicine Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
96
|
Ryan MT, Sweeney T. Integrating molecular biology into the veterinary curriculum. JOURNAL OF VETERINARY MEDICAL EDUCATION 2007; 34:658-673. [PMID: 18326779 DOI: 10.3138/jvme.34.5.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The modern discipline of molecular biology is gaining increasing relevance in the field of veterinary medicine. This trend must be reflected in the curriculum if veterinarians are to capitalize on opportunities arising from this field and direct its development toward their own goals as a profession. This review outlines current applications of molecular-based technologies that are relevant to the veterinary profession. In addition, the current techniques and technologies employed within the field of molecular biology are discussed. Difficulties associated with teaching a subject such as molecular biology within a veterinary curriculum can be alleviated by effectively integrating molecular topics throughout the curriculum, pitching the subject at an appropriate depth, and employing varied teaching methods throughout.
Collapse
Affiliation(s)
- Marion T Ryan
- College of Life Sciences, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Dublin, Ireland.
| | | |
Collapse
|
97
|
Hein AE, Bodendorf U. Real-time PCR: Duplexing without optimization. Anal Biochem 2007; 360:41-6. [PMID: 17113022 DOI: 10.1016/j.ab.2006.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 10/10/2006] [Accepted: 10/11/2006] [Indexed: 11/30/2022]
Abstract
Real-time PCR applications generally require determination of the threshold cycle of a gene of interest in parallel with an endogenous control. In standard situations, the gene-specific and control reactions are run as separate samples (singleplex). In contrast, duplex approaches combine both reactions within a single well, thereby saving time, cost, and material. However, establishing duplex reactions usually requires laborious optimization justifiable only for the analysis of large sample series. Hence, in research settings, singleplex approaches are used most commonly. To establish conditions for duplexing without the need of optimization, we tested the performance of 40 premade TaqMan gene expression assays in duplex reactions with an endogenous control using three different polymerase mixes. The results were compared with singleplex reactions. Duplexing results obtained with one of the multiplex polymerase mixes correlated extremely well (r(2)=0.95) with the singleplex reference. The findings of our study demonstrate that the combination of this polymerase mix and premade gene expression assays will yield reliable and reproducible results in duplex approaches without preceding optimization.
Collapse
Affiliation(s)
- Andreas Edgar Hein
- Novartis Pharma, NIBR, Expertise Program Proteases, CH-4057 Basel, Switzerland.
| | | |
Collapse
|
98
|
Felsani A, Mileo AM, Maresca V, Picardo M, Paggi MG. New technologies used in the study of human melanoma. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 261:247-86. [PMID: 17560284 DOI: 10.1016/s0074-7696(07)61006-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The amount of information on tumor biology has expanded enormously, essentially due to the completion of the human genome sequencing and to the application of new technologies that represent an exciting breakthrough in molecular analysis. Often these data spring from experimental procedures, such as a serial analysis of gene expression (SAGE) and DNA microarrays, which cannot be defined as hypothesis-driven: it may appear to be a "brute force" approach through which no information can be directly generated concerning the specific functions of selected genes in a definite context. However, interesting results are fruitfully generated, and thus it is important to consider the enormous potential these new technologies possess and to learn how to apply this novel form of knowledge in the emerging field of molecular medicine. This review, after a limited outline regarding several classic aspects of human cutaneous melanoma biology, genetics, and clinical approaches, will focus on the proficient use of up-to-date technologies in the study of the neoplastic disease and on their capability to provide effective support to conventional approaches in melanoma diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Armando Felsani
- CNR, Istituto di Neurobiologia e Medicina Molecolare, 00143 Rome, Italy
| | | | | | | | | |
Collapse
|
99
|
Steensma DP. JAK2 V617F in myeloid disorders: molecular diagnostic techniques and their clinical utility: a paper from the 2005 William Beaumont Hospital Symposium on Molecular Pathology. J Mol Diagn 2006; 8:397-411; quiz 526. [PMID: 16931578 PMCID: PMC1867618 DOI: 10.2353/jmoldx.2006.060007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In early 2005, several groups of investigators studying myeloid malignancies described a novel somatic point mutation (V617F) in the conserved autoinhibitory pseudokinase domain of the Janus kinase 2 (JAK2) protein, which plays an important role in normal hematopoietic growth factor signaling. The V617F mutation is present in blood and marrow from a large proportion of patients with classic BCR/ABL-negative chronic myeloproliferative disorders and of a few patients with other clonal hematological diseases such as myelodysplastic syndrome, atypical myeloproliferative disorders, and acute myeloid leukemia. The JAK2 V617F mutation causes constitutive activation of the kinase, with deregulated intracellular signaling that mimics continuous hematopoietic growth factor stimulation. Within 7 months of the first electronic publication describing this new mutation, clinical molecular diagnostic laboratories in the United States and Europe began offering JAK2 mutation testing on a fee-for-service basis. Here, I review the various techniques used by research groups and clinical laboratories to detect the genetic mutation underlying JAK2 V617F, including fluorescent dye chemistry sequencing, allele-specific polymerase chain reaction (PCR), real-time PCR, DNA-melting curve analysis, pyrosequencing, and others. I also discuss diagnostic sensitivity, performance, and other practical concerns relevant to the clinical laboratorian in addition to the potential diagnostic utility of JAK2 mutation tests.
Collapse
Affiliation(s)
- David P Steensma
- Division of Hematology, Department of Medicine, Mayo Building West 10, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| |
Collapse
|