51
|
van der Velden YU, Kleibeuker W, Harwig A, Klaver B, Siteur-van Rijnstra E, Frankin E, Berkhout B, Das AT. Construction of Nef-positive doxycycline-dependent HIV-1 variants using bicistronic expression elements. Virology 2015; 488:96-107. [PMID: 26615334 DOI: 10.1016/j.virol.2015.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/14/2015] [Accepted: 11/06/2015] [Indexed: 11/19/2022]
Abstract
Conditionally replicating HIV-1 variants that can be switched on and off at will are attractive tools for HIV research. We previously developed a genetically modified HIV-1 variant that replicates exclusively when doxycycline (dox) is administered. The nef gene in this HIV-rtTA variant was replaced with the gene encoding the dox-dependent rtTA transcriptional activator. Because loss of Nef expression compromises virus replication in primary cells and precludes studies on Nef function, we tested different approaches to restore Nef production in HIV-rtTA. Strategies that involved translation via an EMCV or synthetic internal ribosome entry site (IRES) failed because these elements were incompatible with efficient virus replication. Fusion protein approaches with the FMDV 2A peptide and human ubiquitin were successful and resulted in genetically-stable Nef-expressing HIV-rtTA strains that replicate more efficiently in primary T-cells and human immune system (HIS) mice than Nef-deficient variants, thus confirming the positive effect of Nef on in vivo virus replication.
Collapse
Affiliation(s)
- Yme U van der Velden
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Wendy Kleibeuker
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex Harwig
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bep Klaver
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther Siteur-van Rijnstra
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Esmay Frankin
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
52
|
Das AT, Zhou X, Metz SW, Vink MA, Berkhout B. Selecting the optimal Tet-On system for doxycycline-inducible gene expression in transiently transfected and stably transduced mammalian cells. Biotechnol J 2015; 11:71-9. [PMID: 26333522 DOI: 10.1002/biot.201500236] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/14/2015] [Accepted: 09/02/2015] [Indexed: 11/05/2022]
Abstract
The doxycycline (dox)-inducible Tet-On system is widely used to control gene expression in mammalian cells. This system is based on the bacterial Tet operon, which has been modified and improved for its function in eukaryotic cells. To identify the optimal system for different applications, we compared Tet-On variants in frequently used cell types that were either transiently transfected with the relevant plasmids or stably transduced with an "all-in-one" lentiviral vector. The V10 variant performed optimally in the transiently transfected cells and demonstrated no background activity without dox, high dox-induced activity and the highest fold-induction. Because of its very high dox-sensitivity, the V16 system may be preferred if only low intracellular dox concentrations can be reached. V16 performed optimally in the transduced cells and demonstrated the highest activity and dox-sensitivity without background activity. Moreover, V16 demonstrated more robust induction of gene expression after a latency period without dox. This study provides important findings for choosing the optimal Tet-On system for diverse cell culture settings. V10 is the best system for most applications in which the DNA is episomally present in cells, whereas V16 may be optimal when the Tet-On components are stably integrated in the cellular genome.
Collapse
Affiliation(s)
- Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Xue Zhou
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Stefan W Metz
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Monique A Vink
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
53
|
Askari N, Yaghoobi MM, Shamsara M, Esmaeili-Mahani S. Tetracycline-regulated expression of OLIG2 gene in human dental pulp stem cells lead to mouse sciatic nerve regeneration upon transplantation. Neuroscience 2015; 305:197-208. [PMID: 26254831 DOI: 10.1016/j.neuroscience.2015.07.088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 12/29/2022]
Abstract
Numerous studies have indicated dental pulp stem cells (DPSCs) potency to differentiate into several types of cell lineages. Oligodendrocyte lineage transcription factor 2 (OLIG2) plays an important role in the oligodendrogenic pathway. In this study, a tetracycline (Tet)-inducible system expressing OLIG2 gene was transfected into human DPSCs to direct their differentiation toward oligodendrocyte progenitor cells (OPCs). Following induction, the expression of stage-specific markers was studied by Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR), immunocytochemistry and western blotting. In the following, the cells were transplanted into the mouse model of local sciatic demyelination damage by lysolecithin. Recovery of lysolecithin-induced lesions in sciatic nerve was studied by treadmill exercise, von Frey filament test and hind paw withdrawal in response to a thermal stimulus. Improvement of behavioral symptoms was efficiently observed from the second week to the sixth week post-transplantation. Our findings showed that exogenous expression of the OLIG2 gene by a Tet-regulated system could be used as an efficient way to induce the differentiation of DPSCs into functional oligodendrocytes. Meanwhile, the DPSC-derived OPCs have relevant therapeutic potential in the animal model of sciatic nerve injury and therefore might represent a valuable tool for stem cell-based therapy in inflammatory and degenerative diseases of the peripheral and central nervous systems (CNSs).
Collapse
Affiliation(s)
- N Askari
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - M M Yaghoobi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - M Shamsara
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - S Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
54
|
Strobel B, Klauser B, Hartig JS, Lamla T, Gantner F, Kreuz S. Riboswitch-mediated Attenuation of Transgene Cytotoxicity Increases Adeno-associated Virus Vector Yields in HEK-293 Cells. Mol Ther 2015; 23:1582-91. [PMID: 26137851 DOI: 10.1038/mt.2015.123] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/21/2015] [Indexed: 01/24/2023] Open
Abstract
Cytotoxicity of transgenes carried by adeno-associated virus (AAV) vectors might be desired, for instance, in oncolytic virotherapy or occur unexpectedly in exploratory research when studying sparsely characterized genes. To date, most AAV-based studies use constitutively active promoters (e.g., the CMV promoter) to drive transgene expression, which often hampers efficient AAV production due to cytotoxic, antiproliferative, or unknown transgene effects interfering with producer cell performance. Therefore, we explored artificial riboswitches as novel tools to control transgene expression during AAV production in mammalian cells. Our results demonstrate that the guanine-responsive GuaM8HDV aptazyme efficiently attenuates transgene expression and associated detrimental effects, thereby boosting AAV vector yields up to 23-fold after a single addition of guanine. Importantly, riboswitch-harboring vectors preserved their ability to express functional transgene at high levels in the absence of ligand, as demonstrated in a mouse model of AAV-TGFβ1-induced pulmonary fibrosis. Thus, our study provides the first application-ready biotechnological system-based on aptazymes, which should enable high viral vector yields largely independent of the transgene used. Moreover, the RNA-intrinsic, small-molecule regulatable mode of action of riboswitches provides key advantages over conventional transcription factor-based regulatory systems. Therefore, such riboswitch vectors might be ultimately applied to temporally control therapeutic transgene expression in vivo.
Collapse
Affiliation(s)
- Benjamin Strobel
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Benedikt Klauser
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Jörg S Hartig
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Thorsten Lamla
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Florian Gantner
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Sebastian Kreuz
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
55
|
Gershburg S, Geltz J, Peterson KE, Halford WP, Gershburg E. The UL13 and US3 Protein Kinases of Herpes Simplex Virus 1 Cooperate to Promote the Assembly and Release of Mature, Infectious Virions. PLoS One 2015; 10:e0131420. [PMID: 26115119 PMCID: PMC4482649 DOI: 10.1371/journal.pone.0131420] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/02/2015] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) encodes two bona fide serine/threonine protein kinases, the US3 and UL13 gene products. HSV-1 ΔUS3 mutants replicate with wild-type efficiency in cultured cells, and HSV-1 ΔUL13 mutants exhibit <10-fold reduction in infectious viral titers. Given these modest phenotypes, it remains unclear how the US3 and UL13 protein kinases contribute to HSV-1 replication. In the current study, we designed a panel of HSV-1 mutants, in which portions of UL13 and US3 genes were replaced by expression cassettes encoding mCherry protein or green fluorescent protein (GFP), respectively, and analyzed DNA replication, protein expression, and spread of these mutants in several cell types. Loss of US3 function alone had largely negligible effect on viral DNA accumulation, gene expression, virion release, and spread. Loss of UL13 function alone also had no appreciable effects on viral DNA levels. However, loss of UL13 function did result in a measurable decrease in the steady-state levels of two viral glycoproteins (gC and gD), release of total and infectious virions, and viral spread. Disruption of both genes did not affect the accumulation of viral DNA, but resulted in further reduction in gC and gD steady-state levels, and attenuation of viral spread and infectious virion release. These data show that the UL13 kinase plays an important role in the late phase of HSV-1 infection, likely by affecting virion assembly and/or release. Moreover, the data suggest that the combined activities of the US3 and UL13 protein kinases are critical to the efficient assembly and release of infectious virions from HSV-1-infected cells.
Collapse
Affiliation(s)
- Svetlana Gershburg
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794–9626, United States of America
| | - Joshua Geltz
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794–9626, United States of America
| | - Karin E. Peterson
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT 59840, United States of America
| | - William P. Halford
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794–9626, United States of America
| | - Edward Gershburg
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794–9626, United States of America
- * E-mail:
| |
Collapse
|
56
|
Conditionally replicating HIV and SIV variants. Virus Res 2015; 216:66-75. [PMID: 25982510 DOI: 10.1016/j.virusres.2015.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 01/11/2023]
Abstract
Conditionally replicating human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) variants that can be switched on and off at will are attractive tools for HIV and SIV research. We constructed HIV and SIV variants in which the natural transcription control mechanism was replaced by the doxycycline (dox)-inducible Tet-On gene expression mechanism. These HIV-rtTA and SIV-rtTA variants are fully replication-competent, but replication is critically dependent on dox administration. We here describe how the dox-dependent virus variants may improve the safety of live-attenuated virus vaccines and how they can be used to study the immune responses that correlate with vaccine-induced protection. Furthermore, we review how these variants were initially designed and subsequently optimized by spontaneous viral evolution. These efforts yielded efficiently replicating and tightly dox-controlled HIV-rtTA and SIV-rtTA variants that replicate in a variety of cell and tissue culture systems, and in human immune system (HIS) mice and macaques, respectively. These viruses can be used as a tool in HIV and SIV biology studies and in vaccine research. We review how HIV-rtTA and SIV-rtTA were used to study the role of the viral TAR and Tat elements in virus replication.
Collapse
|
57
|
Hildebrandt E, Mulky A, Ding H, Dai Q, Aleksandrov AA, Bajrami B, Diego PA, Wu X, Ray M, Naren AP, Riordan JR, Yao X, DeLucas LJ, Urbatsch IL, Kappes JC. A stable human-cell system overexpressing cystic fibrosis transmembrane conductance regulator recombinant protein at the cell surface. Mol Biotechnol 2015; 57:391-405. [PMID: 25577540 PMCID: PMC4405497 DOI: 10.1007/s12033-014-9830-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent human clinical trials results demonstrated successful treatment for certain genetic forms of cystic fibrosis (CF). To extend treatment opportunities to those afflicted with other genetic forms of CF disease, structural and biophysical characterization of CF transmembrane conductance regulator (CFTR) is urgently needed. In this study, CFTR was modified with various tags, including a His10 purification tag, the SUMOstar (SUMO*) domain, an extracellular FLAG epitope, and an enhanced green fluorescent protein (EGFP), each alone or in various combinations. Expressed in HEK293 cells, recombinant CFTR proteins underwent complex glycosylation, compartmentalized with the plasma membrane, and exhibited regulated chloride-channel activity with only modest alterations in channel conductance and gating kinetics. Surface CFTR expression level was enhanced by the presence of SUMO* on the N-terminus. Quantitative mass-spectrometric analysis indicated approximately 10% of the total recombinant CFTR (SUMO*-CFTR(FLAG)-EGFP) localized to the plasma membrane. Trial purification using dodecylmaltoside for membrane protein extraction reproducibly recovered 178 ± 56 μg SUMO*-CFTR(FLAG)-EGFP per billion cells at 80% purity. Fluorescence size-exclusion chromatography indicated purified CFTR was monodisperse. These findings demonstrate a stable mammalian cell expression system capable of producing human CFTR of sufficient quality and quantity to augment future CF drug discovery efforts, including biophysical and structural studies.
Collapse
Affiliation(s)
- Ellen Hildebrandt
- Department of Cell Biology and Biochemistry, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - Alok Mulky
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Qun Dai
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Andrei A. Aleksandrov
- Department of Biochemistry & Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Bekim Bajrami
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| | - Pamela Ann Diego
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| | - Xing Wu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Marjorie Ray
- Department of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294
| | | | - John R. Riordan
- Department of Biochemistry & Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Xudong Yao
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| | - Lawrence J. DeLucas
- Department of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ina L. Urbatsch
- Department of Cell Biology and Biochemistry, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL 35233
| |
Collapse
|
58
|
Sladitschek HL, Neveu PA. MXS-Chaining: A Highly Efficient Cloning Platform for Imaging and Flow Cytometry Approaches in Mammalian Systems. PLoS One 2015; 10:e0124958. [PMID: 25909630 PMCID: PMC4409215 DOI: 10.1371/journal.pone.0124958] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/19/2015] [Indexed: 11/25/2022] Open
Abstract
The continuous improvement of imaging technologies has driven the development of sophisticated reporters to monitor biological processes. Such constructs should ideally be assembled in a flexible enough way to allow for their optimization. Here we describe a highly reliable cloning method to efficiently assemble constructs for imaging or flow cytometry applications in mammalian cell culture systems. We bioinformatically identified a list of restriction enzymes whose sites are rarely found in human and mouse cDNA libraries. From the best candidates, we chose an enzyme combination (MluI, XhoI and SalI: MXS) that enables iterative chaining of individual building blocks. The ligation scar resulting from the compatible XhoI- and SalI-sticky ends can be translated and hence enables easy in-frame cloning of coding sequences. The robustness of the MXS-chaining approach was validated by assembling constructs up to 20 kb long and comprising up to 34 individual building blocks. By assessing the success rate of 400 ligation reactions, we determined cloning efficiency to be 90% on average. Large polycistronic constructs for single-cell imaging or flow cytometry applications were generated to demonstrate the versatility of the MXS-chaining approach. We devised several constructs that fluorescently label subcellular structures, an adapted version of FUCCI (fluorescent, ubiquitination-based cell cycle indicator) optimized to visualize cell cycle progression in mouse embryonic stem cells and an array of artificial promoters enabling dosage of doxycyline-inducible transgene expression. We made publicly available through the Addgene repository a comprehensive set of MXS-building blocks comprising custom vectors, a set of fluorescent proteins, constitutive promoters, polyadenylation signals, selection cassettes and tools for inducible gene expression. Finally, detailed guidelines describe how to chain together prebuilt MXS-building blocks and how to generate new customized MXS-building blocks.
Collapse
Affiliation(s)
- Hanna L. Sladitschek
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Baden-Württemberg, Germany
| | - Pierre A. Neveu
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Baden-Württemberg, Germany
- * E-mail:
| |
Collapse
|
59
|
Christel CJ, Schmied P, Jagusch V, Schrödel S, Thirion C, Schmitt K, Salomon M. Versatile Viral Vector Strategies for Postscreening Target Validation and RNAi ON-Target Control. ACTA ACUST UNITED AC 2015; 20:976-84. [PMID: 25873558 DOI: 10.1177/1087057115581803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/24/2015] [Indexed: 12/11/2022]
Abstract
Our approach aims to optimize postscreening target validation strategies using viral vector-driven RNA interference (RNAi) cell models. The RNAiONE validation platform is an array of plasmid-based expression vectors that each drives tandem expression of the gene of interest (GOI) with one small hairpin RNA (shRNA) from a set of computed candidate sequences. The best-performing shRNA (>85% silencing efficiency) is then integrated in an inducible, all-in-one lentiviral vector to transduce pharmacologically relevant cell types that endogenously express the GOI. VariCHECK is used subsequently to combine the inducible knockdown with an equally inducible rescue of the GOI for ON-target phenotype verification. The complete RNAiONE-VariCHECK system relies on three key elements to ensure high predictability: (1) maximized silencing efficiencies by a focused shRNA validation process, (2) homogeneity of the RNAi cell pools by application of sophisticated viral vector technologies, and (3) exploiting the advantages of inducible expression systems. By using a reversible expression system, our strategy adds critical information to hot candidates from RNAi screens and avoids potential side effects that may be caused by other, irreversible genomic manipulation methods such as transcription activator-like effector nucleases (TALEN) or clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas). This approach will add credibility to top-hit screening candidates and protect researchers from costly misinterpretations early in the preclinical drug development process.
Collapse
|
60
|
A system for creating stable cell lines that express a gene of interest from a bidirectional and regulatable herpes simplex virus type 1 promoter. PLoS One 2015; 10:e0122253. [PMID: 25823013 PMCID: PMC4378986 DOI: 10.1371/journal.pone.0122253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/10/2015] [Indexed: 12/03/2022] Open
Abstract
Expression systems used to study the biological function of a gene of interest can have limited utility due to three major factors: i) weak or heterogeneous gene expression; ii) poorly controlled gene expression; and iii) low efficiencies of stable integration and persistent expression. We envisioned that the ideal system should be tightly controlled and coupled with the ability to efficiently create and identify stable cell lines. Herein, we describe a system based upon a bidirectional Herpes simplex virus type 1 promoter that is naturally responsive to the VP16 transactivator and modified to permit tetracycline-regulated transcription on one side while maintaining constitutive activity on the other side. Incorporation of this element into the Sleeping Beauty transposon resulted in a novel bidirectional system with the capacity for high-efficiency stable integration. Using this system, we created stable cell lines in which expression of a gene of interest was tightly and uniformly controlled across a broad range of levels via a novel combination of doxycycline-sensitive de-repression and VP16-mediated sequence-specific induction. The unique characteristics of this system address major limitations of current methods and provide an excellent strategy to investigate the effects of gene dosing in mammalian models.
Collapse
|
61
|
Herpes simplex virus 2 (HSV-2) infected cell proteins are among the most dominant antigens of a live-attenuated HSV-2 vaccine. PLoS One 2015; 10:e0116091. [PMID: 25658852 PMCID: PMC4319894 DOI: 10.1371/journal.pone.0116091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/04/2014] [Indexed: 01/23/2023] Open
Abstract
Virion glycoproteins such as glycoprotein D (gD) are believed to be the dominant antigens of herpes simplex virus 2 (HSV-2). We have observed that mice immunized with a live HSV-2 ICP0- mutant virus, HSV-2 0ΔNLS, are 10 to 100 times better protected against genital herpes than mice immunized with a HSV-2 gD subunit vaccine (PLoS ONE 6:e17748). In light of these results, we sought to determine which viral proteins were the dominant antibody-generators (antigens) of the live HSV-2 0ΔNLS vaccine. Western blot analyses indicated the live HSV-2 0ΔNLS vaccine elicited an IgG antibody response against 9 or more viral proteins. Many antibodies were directed against infected-cell proteins of >100 kDa in size, and only 10 ± 5% of antibodies were directed against gD. Immunoprecipitation (IP) of total HSV-2 antigen with 0ΔNLS antiserum pulled down 19 viral proteins. Mass spectrometry suggested 44% of immunoprecipitated viral peptides were derived from two HSV-2 infected cells proteins, RR-1 and ICP8, whereas only 14% of immunoprecipitated peptides were derived from HSV-2’s thirteen glycoproteins. Collectively, the results suggest the immune response to the live HSV-2 0ΔNLS vaccine includes antibodies specific for infected cell proteins, capsid proteins, tegument proteins, and glycoproteins. This increased breadth of antibody-generating proteins may contribute to the live HSV-2 vaccine’s capacity to elicit superior protection against genital herpes relative to a gD subunit vaccine.
Collapse
|
62
|
ERG induces taxane resistance in castration-resistant prostate cancer. Nat Commun 2014; 5:5548. [PMID: 25420520 PMCID: PMC4244604 DOI: 10.1038/ncomms6548] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/09/2014] [Indexed: 12/14/2022] Open
Abstract
Taxanes are the only chemotherapies used to treat patients with metastatic castration-resistant prostate cancer (CRPC). Despite the initial efficacy of taxanes in treating CRPC, all patients ultimately fail due to the development of drug resistance. In this study, we show that ERG overexpression in in vitro and in vivo models of CRPC is associated with decreased sensitivity to taxanes. ERG affects several parameters of microtubule dynamics and inhibits effective drug-target engagement of docetaxel or cabazitaxel with tubulin. Finally, analysis of a cohort of 34 men with metastatic CRPC treated with docetaxel chemotherapy reveals that ERG-overexpressing prostate cancers have twice the chance of docetaxel resistance than ERG-negative cancers. Our data suggest that ERG plays a role beyond regulating gene expression and functions outside the nucleus to cooperate with tubulin towards taxane insensitivity. Determining ERG rearrangement status may aid in patient selection for docetaxel or cabazitaxel therapy and/or influence co-targeting approaches. Metastatic castration-resistant prostate cancer is treated with the microtubule-stabilizing drugs taxanes, but resistance ultimately develops. Here Galletti et al. show that ERG, a transcription factor commonly overexpressed in prostate cancers, confers taxane resistance by binding to soluble tubulin.
Collapse
|
63
|
Heterologous expression of equine CYP3A94 and investigation of a tunable system to regulate co-expressed NADPH P450 oxidoreductase levels. PLoS One 2014; 9:e113540. [PMID: 25415624 PMCID: PMC4240602 DOI: 10.1371/journal.pone.0113540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 10/28/2014] [Indexed: 02/07/2023] Open
Abstract
The activity of cytochrome P450 enzymes depends on the enzyme NADPH P450 oxidoreductase (POR). The aim of this study was to investigate the activity of the equine CYP3A94 using a system that allows to regulate the POR protein levels in mammalian cells. CYP3A94 and the equine POR were heterologously expressed in V79 cells. In the system used, the POR protein regulation is based on a destabilizing domain (DD) that transfers its instability to a fused protein. The resulting fusion protein is therefore degraded by the ubiquitin-proteasome system (UPS). Addition of “Shield-1” prevents the DD fusion protein from degradation. The change of POR levels at different Shield-1 concentrations was demonstrated by cytochrome c reduction, Western immunoblot analysis, and immunocytochemistry. The alteration of CYP3A94 activity was investigated using a substrate (BFC) known to detect CYP3A4 activity. Equine CYP3A94 was demonstrated to be metabolically active and its activity could be significantly elevated by co-expression of POR. Cytochrome c reduction was significantly increased in V79-CYP3A94/DD-POR cells compared to V79-CYP3A94 cells. Surprisingly, incubation with different Shield-1 concentrations resulted in a decrease in POR protein shown by Western immunoblot analysis. Cytochrome c reduction did not change significantly, but the CYP3A94 activity decreased more than 4-fold after incubation with 500 nM and 1 µM Shield-1 for 24 hours. No differences were obtained when V79-CYP3A94 POR cells with and without Shield-1 were compared. The basal activity levels of V79-CYP3A94/DD-POR cells were unexpectedly high, indicating that DD/POR is not degraded without Shield-1. Shield-1 decreased POR protein levels and CYP3A94 activity suggesting that Shield-1 might impair POR activity by an unknown mechanism. Although regulation of POR with the pPTuner system could not be obtained, the cell line V79-CYP3A94/DD-POR system can be used for further experiments to characterize the equine CYP3A94 since the CYP activity was significantly enhanced with co-expressed POR.
Collapse
|
64
|
Abstract
Engineered transcription activator-like effectors, or TALEs, have emerged as a new class of designer DNA-binding proteins. Their DNA recognition sites can be specified with great flexibility. When fused to appropriate transcriptional regulatory domains, they can serve as designer transcription factors, modulating the activity of targeted promoters. We created tet operator (tetO)-specific TALEs (tetTALEs), with an identical DNA-binding site as the Tet repressor (TetR) and the TetR-based transcription factors that are extensively used in eukaryotic transcriptional control systems. Different constellations of tetTALEs and tetO modified chromosomal transcription units were analyzed for their efficacy in mammalian cells. We find that tetTALE-silencers can entirely abrogate expression from the strong human EF1α promoter when binding upstream of the transcriptional control sequence. Remarkably, the DNA-binding domain of tetTALE alone can effectively counteract trans-activation mediated by the potent tettrans-activator and also directly interfere with RNA polymerase II transcription initiation from the strong CMV promoter. Our results demonstrate that TALEs can act as highly versatile tools in genetic engineering, serving as trans-activators, trans-silencers and also competitive repressors.
Collapse
Affiliation(s)
- Jeannette Werner
- Helmholtz-Zentrum Geesthacht (HZG), Institute of Biomaterial Science, Teltow 14513, Germany Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Föhrer Strasse 15, 13353 Berlin, Germany
| | - Manfred Gossen
- Helmholtz-Zentrum Geesthacht (HZG), Institute of Biomaterial Science, Teltow 14513, Germany Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Föhrer Strasse 15, 13353 Berlin, Germany
| |
Collapse
|
65
|
Feng J, Liu JP, Miao L, He GX, Li D, Wang HD, Jing T. Conditional expression of the type 2 angiotensin II receptor in mesenchymal stem cells inhibits neointimal formation after arterial injury. J Cardiovasc Transl Res 2014; 7:635-43. [PMID: 25119854 DOI: 10.1007/s12265-014-9576-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/13/2014] [Indexed: 01/23/2023]
Abstract
Percutaneous coronary interventions (PCIs) are an effective treatment for obstructive coronary artery diseases. However, the procedure's success is limited by remodeling and formation of neointima. In the present study, we engineered rat mesenchymal stem cells (MSCs) to express type 2 angiotensin II receptor (AT2R) using a tetracycline-regulated system that can strictly regulate AT2R expression. We tested the ability of the modified MSCs to reduce neointima formation following arterial injury. We subjected rats to balloon injury, and reverse transcriptase polymerase chain reaction (RT-PCR) indicated no significant AT2R expression in normal rat arteries. Low expression of AT2R was observed at 28 days after balloon-induced injury. Interestingly, MSCs alone were unable to reduce neointimal hyperplasia after balloon-induced injury; after transplantation of modified MSCs, doxycycline treatment significantly upregulated neointimal AT2R expression and inhibited osteopontin mRNA expression, as well as neointimal formation. Taken together, these results suggest that transplantation of MSCs conditionally expressing AT2R could effectively suppress neointimal hyperplasia following balloon-induced injury. Therefore, MSCs with a doxycycline-controlled gene induction system may be useful for the management of arterial injury after PCI.
Collapse
Affiliation(s)
- Jian Feng
- Department of Cardiology, Southwest Hospital, Third Military Medical University and Chongqing Institute of Interventional Cardiology, Chongqing, 400038, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
66
|
Schmidt S, Berens C, Klotzsche M. A novel TetR-regulating peptide turns off rtTA-mediated activation of gene expression. PLoS One 2014; 9:e96546. [PMID: 24810590 PMCID: PMC4014509 DOI: 10.1371/journal.pone.0096546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/09/2014] [Indexed: 11/18/2022] Open
Abstract
Conditional regulation of gene expression is a powerful and indispensable method for analyzing gene function. The “Tet-On” system is a tool widely used for that purpose. Here, the transregulator rtTA mediates expression of a gene of interest after addition of the small molecule effector doxycycline. Although very effective in rapidly turning on gene expression, the system is hampered by the long half-life of doxycycline which makes shutting down gene expression rapidly very difficult to achieve. We isolated an rtTA-binding peptide by in vivo selection that acts as a doxycycline antagonist and leads to rapid and efficient shut down of rtTA-mediated reporter gene expression in a human cell line. This peptide represents the basis for novel effector molecules which complement the “Tet-system” by enabling the investigator to rapidly turn gene expression not just on at will, but now also off.
Collapse
Affiliation(s)
- Sebastian Schmidt
- Lehrstuhl für Mikrobiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Berens
- Lehrstuhl für Mikrobiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marcus Klotzsche
- Lehrstuhl für Mikrobiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
67
|
Hoyng SA, Gnavi S, de Winter F, Eggers R, Ozawa T, Zaldumbide A, Hoeben RC, Malessy MJA, Verhaagen J. Developing a potentially immunologically inert tetracycline-regulatable viral vector for gene therapy in the peripheral nerve. Gene Ther 2014; 21:549-57. [PMID: 24694534 DOI: 10.1038/gt.2014.22] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/18/2013] [Accepted: 02/03/2014] [Indexed: 12/12/2022]
Abstract
Viral vector-mediated gene transfer of neurotrophic factors is an emerging and promising strategy to promote the regeneration of injured peripheral nerves. Unfortunately, the chronic exposure to neurotrophic factors results in local trapping of regenerating axons or other unwanted side effects. Therefore, tight control of therapeutic gene expression is required. The tetracycline/doxycycline-inducible system is considered to be one of the most promising systems for regulating heterologous gene expression. However, an immune response directed against the transactivator protein rtTA hampers further translational studies. Immunogenic proteins fused with the Gly-Ala repeat of the Epstein-Barr virus Nuclear Antigen-1 protein have been shown to successfully evade the immune system. In this article, we used this strategy to demonstrate that a chimeric transactivator, created by fusing the Gly-Ala repeat with rtTA and embedded in a lentiviral vector (i) retained its transactivator function in vitro, in muscle explants, and in vivo following injection into the rat peripheral nerve, (ii) exhibited a reduced leaky expression, and (iii) had an immune-evasive advantage over rtTA as shown in a novel bioassay for human antigen presentation. The current findings are an important step toward creating a clinically applicable potentially immune-evasive tetracycline-regulatable viral vector system.
Collapse
Affiliation(s)
- S A Hoyng
- 1] Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands [2] Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - S Gnavi
- 1] Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands [2] Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO), Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - F de Winter
- 1] Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands [2] Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - R Eggers
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - T Ozawa
- Department of Chemistry, School of Science, University of Tokyo, Tokyo, Japan
| | - A Zaldumbide
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - R C Hoeben
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - M J A Malessy
- 1] Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands [2] Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - J Verhaagen
- 1] Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands [2] Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
68
|
Sharma S, Zhu J. Immunologic applications of conditional gene modification technology in the mouse. ACTA ACUST UNITED AC 2014; 105:10.34.1-10.34.13. [PMID: 24700321 DOI: 10.1002/0471142735.im1034s105] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since the success of homologous recombination in altering mouse genome and the discovery of Cre-loxP system, the combination of these two breakthroughs has created important applications for studying the immune system in the mouse. Here, we briefly summarize the general principles of this technology and its applications in studying immune cell development and responses; such implications include conditional gene knockout and inducible and/or tissue-specific gene over-expression, as well as lineage fate mapping. We then discuss the pros and cons of a few commonly used Cre-expressing mouse lines for studying lymphocyte development and functions. We also raise several general issues, such as efficiency of gene deletion, leaky activity of Cre, and Cre toxicity, all of which may have profound impacts on data interpretation. Finally, we selectively list some useful links to the Web sites as valuable mouse resources.
Collapse
Affiliation(s)
- Suveena Sharma
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
69
|
Kono M, Tucker AE, Tran J, Bergner JB, Turner EM, Proia RL. Sphingosine-1-phosphate receptor 1 reporter mice reveal receptor activation sites in vivo. J Clin Invest 2014; 124:2076-86. [PMID: 24667638 DOI: 10.1172/jci71194] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 01/23/2014] [Indexed: 12/19/2022] Open
Abstract
Activation of the GPCR sphingosine-1-phosphate receptor 1 (S1P1) by sphingosine-1-phosphate (S1P) regulates key physiological processes. S1P1 activation also has been implicated in pathologic processes, including autoimmunity and inflammation; however, the in vivo sites of S1P1 activation under normal and disease conditions are unclear. Here, we describe the development of a mouse model that allows in vivo evaluation of S1P1 activation. These mice, known as S1P1 GFP signaling mice, produce a S1P1 fusion protein containing a transcription factor linked by a protease cleavage site at the C terminus as well as a β-arrestin/protease fusion protein. Activated S1P1 recruits the β-arrestin/protease, resulting in the release of the transcription factor, which stimulates the expression of a GFP reporter gene. Under normal conditions, S1P1 was activated in endothelial cells of lymphoid tissues and in cells in the marginal zone of the spleen, while administration of an S1P1 agonist promoted S1P1 activation in endothelial cells and hepatocytes. In S1P1 GFP signaling mice, LPS-mediated systemic inflammation activated S1P1 in endothelial cells and hepatocytes via hematopoietically derived S1P. These data demonstrate that S1P1 GFP signaling mice can be used to evaluate S1P1 activation and S1P1-active compounds in vivo. Furthermore, this strategy could be potentially applied to any GPCR to identify sites of receptor activation during normal physiology and disease.
Collapse
|
70
|
Davila D, Thibault K, Fiacco TA, Agulhon C. Recent molecular approaches to understanding astrocyte function in vivo. Front Cell Neurosci 2013; 7:272. [PMID: 24399932 PMCID: PMC3871966 DOI: 10.3389/fncel.2013.00272] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/06/2013] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are a predominant glial cell type in the nervous systems, and are becoming recognized as important mediators of normal brain function as well as neurodevelopmental, neurological, and neurodegenerative brain diseases. Although numerous potential mechanisms have been proposed to explain the role of astrocytes in the normal and diseased brain, research into the physiological relevance of these mechanisms in vivo is just beginning. In this review, we will summarize recent developments in innovative and powerful molecular approaches, including knockout mouse models, transgenic mouse models, and astrocyte-targeted gene transfer/expression, which have led to advances in understanding astrocyte biology in vivo that were heretofore inaccessible to experimentation. We will examine the recently improved understanding of the roles of astrocytes – with an emphasis on astrocyte signaling – in the context of both the healthy and diseased brain, discuss areas where the role of astrocytes remains debated, and suggest new research directions.
Collapse
Affiliation(s)
- David Davila
- Glia-Glia and Glia-Neuron Interactions Group, National Center for Scientific Research, UFR Biomedicale, Paris Descartes University Paris, France
| | - Karine Thibault
- Glia-Glia and Glia-Neuron Interactions Group, National Center for Scientific Research, UFR Biomedicale, Paris Descartes University Paris, France
| | - Todd A Fiacco
- Department of Cell Biology and Neuroscience, and Center for Glial-Neuronal Interactions and Program in Cellular, Molecular and Developmental Biology, University of California at Riverside Riverside, CA, USA
| | - Cendra Agulhon
- Glia-Glia and Glia-Neuron Interactions Group, National Center for Scientific Research, UFR Biomedicale, Paris Descartes University Paris, France
| |
Collapse
|
71
|
McIsaac RS, Oakes BL, Botstein D, Noyes MB. Rapid synthesis and screening of chemically activated transcription factors with GFP-based reporters. J Vis Exp 2013:e51153. [PMID: 24300440 PMCID: PMC3992113 DOI: 10.3791/51153] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Synthetic biology aims to rationally design and build synthetic circuits with desired quantitative properties, as well as provide tools to interrogate the structure of native control circuits. In both cases, the ability to program gene expression in a rapid and tunable fashion, with no off-target effects, can be useful. We have constructed yeast strains containing the ACT1 promoter upstream of a URA3 cassette followed by the ligand-binding domain of the human estrogen receptor and VP16. By transforming this strain with a linear PCR product containing a DNA binding domain and selecting against the presence of URA3, a constitutively expressed artificial transcription factor (ATF) can be generated by homologous recombination. ATFs engineered in this fashion can activate a unique target gene in the presence of inducer, thereby eliminating both the off-target activation and nonphysiological growth conditions found with commonly used conditional gene expression systems. A simple method for the rapid construction of GFP reporter plasmids that respond specifically to a native or artificial transcription factor of interest is also provided.
Collapse
Affiliation(s)
- R Scott McIsaac
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University
| | | | | | | |
Collapse
|
72
|
Mueller F, Stasevich TJ, Mazza D, McNally JG. Quantifying transcription factor kinetics: at work or at play? Crit Rev Biochem Mol Biol 2013; 48:492-514. [PMID: 24025032 DOI: 10.3109/10409238.2013.833891] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transcription factors (TFs) interact dynamically in vivo with chromatin binding sites. Here we summarize and compare the four different techniques that are currently used to measure these kinetics in live cells, namely fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), single molecule tracking (SMT) and competition ChIP (CC). We highlight the principles underlying each of these approaches as well as their advantages and disadvantages. A comparison of data from each of these techniques raises an important question: do measured transcription kinetics reflect biologically functional interactions at specific sites (i.e. working TFs) or do they reflect non-specific interactions (i.e. playing TFs)? To help resolve this dilemma we discuss five key unresolved biological questions related to the functionality of transient and prolonged binding events at both specific promoter response elements as well as non-specific sites. In support of functionality, we review data suggesting that TF residence times are tightly regulated, and that this regulation modulates transcriptional output at single genes. We argue that in addition to this site-specific regulatory role, TF residence times also determine the fraction of promoter targets occupied within a cell thereby impacting the functional status of cellular gene networks. Thus, TF residence times are key parameters that could influence transcription in multiple ways.
Collapse
Affiliation(s)
- Florian Mueller
- Institut Pasteur, Computational Imaging and Modeling Unit, CNRS , Paris , France
| | | | | | | |
Collapse
|
73
|
Abstract
Cells expressing the dopamine D1 receptor (DRD1) have significant functional roles in diverse physiological processes including locomotion and drug addiction. The present work presents a novel in vivo DRD1-Bacterial Artificial Chromosome (BAC) Tet-on system allowing for the inducible activation of tet-operated transgenes specifically within DRD1-expressing cells of transgenic mice. It is shown that the DRD1-rtTA BAC-driven expression of a tet-operated reporter is under tight regulation by doxycycline and is restricted to DRD1-expressing brain regions. The model will be a useful research tool in studies of movement and reward and associated pathologies such as Parkinson’s disease and addiction.
Collapse
|
74
|
Generation and characterization of a transgenic zebrafish expressing the reverse tetracycline transactivator. J Genet Genomics 2013; 40:523-31. [PMID: 24156918 DOI: 10.1016/j.jgg.2013.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/20/2013] [Accepted: 06/19/2013] [Indexed: 01/27/2023]
Abstract
Conditional expression of a target gene during zebrafish development is a powerful approach to elucidate gene functions. The tetracycline-controlled systems have been successfully used in the modulation of gene expression in mammalian cells, but few lines of zebrafish carrying these systems are currently available. In this study, we had generated a stable transgenic zebrafish line that ubiquitously expressed the second-generation of reverse Tet transactivator (rtTA-M2). Southern blotting analysis and high-throughput genome sequencing verified that a single copy of rtTA-M2 gene had stably integrated into the zebrafish genome. After induction with doxycycline (Dox), a strong green fluorescent protein (GFP) was seen in rtTA-transgenic eggs injected with pTRE-EGFP plasmids. The fluorescent signal gradually decreased after the withdrawal of Dox and disappeared. However, leaky expression of GFP was undetectable before Dox-induction. Additionally, transgenic embryos expressing rtTA-M2 exhibited no obvious defects in morphological phenotypes, hatching behavior and expression patterns of developmental marker genes, suggesting that rtTA-M2 had little effect on the development of transgenic zebrafish. Moreover, expressed Dickkopf-1 (DKK1) in pTRE-DKK1-injected embryos led to alterations in the expression of marker genes associated with Wnt signaling. Thus, this rtTA-transgenic zebrafish can be utilized to dissect functions of genes in a temporal manner.
Collapse
|
75
|
van der Weyden L, Adams DJ. Cancer of mice and men: old twists and new tails. J Pathol 2013; 230:4-16. [PMID: 23436574 DOI: 10.1002/path.4184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 01/28/2013] [Accepted: 02/16/2013] [Indexed: 12/18/2022]
Abstract
In this review we set out to celebrate the contribution that mouse models of human cancer have made to our understanding of the fundamental mechanisms driving tumourigenesis. We take the opportunity to look forward to how the mouse will be used to model cancer and the tools and technologies that will be applied, and indulge in looking back at the key advances the mouse has made possible.
Collapse
|
76
|
Bai J, Li J, Mao Q. Construction of a single lentiviral vector containing tetracycline-inducible Alb-uPA for transduction of uPA expression in murine hepatocytes. PLoS One 2013; 8:e61412. [PMID: 23626683 PMCID: PMC3634076 DOI: 10.1371/journal.pone.0061412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/08/2013] [Indexed: 01/22/2023] Open
Abstract
The SCID-beige/Alb-uPA mouse model is currently the best small animal model available for viral hepatitis infection studies [1]. But the construction procedure is often costly and time-consuming due to logistic and technical difficulties. Thus, the widespread application of these chimeric mice has been hampered [2]. In order to optimize the procedure, we constructed a single lentiviral vector containing modified tetracycline-regulated system to control Alb-uPA gene expression in the cultured hepatocytes. The modified albumin promoter controlled by tetracycline (Tet)-dependent transactivator rtTA2S-M2 was integrated into a lentiviral vector. The full-length uPA cDNA was inserted into another lentiviral vector containing PTight, a modified Tet-responsive promoter. Two vectors were then digested by specific enzymes and ligated by DNA ligase 4. The ligated DNA fragment was inserted into a modified pLKO.1 cloning vector and the final lentiviral vector was then successfully constructed. H2.35 cell, Lewis lung carcinoma, primary kidney, primary hepatic interstitial and CT26 cells were infected with recombinant lentivirus at selected MOI. The expression of uPA induced by DOX was detectable only in the infected H2.35 cells, which was confirmed by real-time PCR and Western blot analysis. Moreover, DOX induced uPA expression on the infected H2.35 cells in a dose-dependent manner. The constructed single lentiviral vector has many biological advantages, including that the interested gene expression under "Tet-on/off" system is controlled by DOX in a dose-depending fashion only in murine liver cells, which provides an advantage for simplifying generation of conditional transgenic animals.
Collapse
Affiliation(s)
- Jiasi Bai
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jungang Li
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qing Mao
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
77
|
Oral ingestion of transgenic RIDL Ae. aegypti larvae has no negative effect on two predator Toxorhynchites species. PLoS One 2013; 8:e58805. [PMID: 23527029 PMCID: PMC3604150 DOI: 10.1371/journal.pone.0058805] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/05/2013] [Indexed: 01/29/2023] Open
Abstract
Dengue is the most important mosquito-borne viral disease. No specific treatment or vaccine is currently available; traditional vector control methods can rarely achieve adequate control. Recently, the RIDL (Release of Insect carrying Dominant Lethality) approach has been developed, based on the sterile insect technique, in which genetically engineered ‘sterile’ homozygous RIDL male insects are released to mate wild females; the offspring inherit a copy of the RIDL construct and die. A RIDL strain of the dengue mosquito, Aedes aegypti, OX513A, expresses a fluorescent marker gene for identification (DsRed2) and a protein (tTAV) that causes the offspring to die. We examined whether these proteins could adversely affect predators that may feed on the insect. Aedes aegypti is a peri-domestic mosquito that typically breeds in small, rain-water-filled containers and has no specific predators. Toxorhynchites larvae feed on small aquatic organisms and are easily reared in the laboratory where they can be fed exclusively on mosquito larvae. To evaluate the effect of a predator feeding on a diet of RIDL insects, OX513A Ae. aegypti larvae were fed to two different species of Toxorhynchites (Tx. splendens and Tx. amboinensis) and effects on life table parameters of all life stages were compared to being fed on wild type larvae. No significant negative effect was observed on any life table parameter studied; this outcome and the benign nature of the expressed proteins (tTAV and DsRed2) indicate that Ae. aegypti OX513A RIDL strain is unlikely to have any adverse effects on predators in the environment.
Collapse
|
78
|
Mass spectrometry reveals changes in MHC I antigen presentation after lentivector expression of a gene regulation system. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e75. [PMID: 23403517 PMCID: PMC3586803 DOI: 10.1038/mtna.2013.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The rapamycin-inducible gene regulation system was designed to minimize immune reactions in man and may thus be suited for gene therapy. We assessed whether this system indeed induces no immune responses. The protein components of the regulation system were produced in the human cell lines HEK 293T, D407, and HER 911 following lentiviral transfer of the corresponding genes. Stable cell lines were established, and the peptides presented by major histocompatibility complex class I (MHC I) molecules on transduced and wild-type (wt) cells were compared by differential mass spectrometry. In all cell lines examined, expression of the transgenes resulted in prominent changes in the repertoire of MHC I-presented self-peptides. No MHC I ligands originating from the transgenic proteins were detected. In vitro analysis of immunogenicity revealed that transduced D407 cells displayed slightly higher capacity than wt controls to promote proliferation of cytotoxic T cells. These results indicate that therapeutic manipulations within the genome of target cells may affect pathways involved in the processing of peptide antigens and their presentation by MHC I. This makes the genomic modifications visible to the immune system which may recognize these events and respond. Ultimately, the findings call attention to a possible immune risk.
Collapse
|
79
|
Analysis of the combined action of miR-143 and miR-145 on oncogenic pathways in colorectal cancer cells reveals a coordinate program of gene repression. Oncogene 2012; 32:4806-13. [PMID: 23128394 DOI: 10.1038/onc.2012.495] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 09/10/2012] [Accepted: 09/13/2012] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) from the gene cluster miR-143-145 are diminished in cells of colorectal tumor origin when compared with normal colon epithelia. Until now, no report has addressed the coordinate action of these miRNAs in colorectal cancer (CRC). In this study, we performed a comprehensive molecular and functional analysis of the miRNA cluster regulatory network. First, we evaluated proliferation, migration, anchorage-independent growth and chemoresistance in the colon tumor cell lines after miR-143 and miR-145 restoration. Then, we assessed the contribution of single genes targeted by miR-143 and miR-145 by reinforcing their expression and checking functional recovery. Restoring miR-143 and miR-145 in colon cancer cells decreases proliferation, migration and chemoresistance. We identified cluster of differentiation 44 (CD44), Kruppel-like factor 5 (KLF5), Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) and v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) as proteins targeted by miR-143 and miR-145. Their re-expression can partially revert a decrease in transformation properties caused by the overexpression of miR-143 and miR-145. In addition, we determined a set of mRNAs that are diminished after reinforcing miR-143 and miR-145 expression. The whole transcriptome analysis ascertained that downregulated transcripts are enriched in predicted target genes in a statistically significant manner. A number of additional genes, whose expression decreases as a direct or indirect consequence of miR-143 and miR-145, reveals a complex regulatory network that affects cell signaling pathways involved in transformation. In conclusion, we identified a coordinated program of gene repression by miR-143 and miR-145, in CRC, where either of the two miRNAs share a target transcript, or where the target transcripts share a common signaling pathway. Major mediators of the oncosuppression by miR-143 and miR-145 are genes belonging to the growth factor receptor-mitogen-activated protein kinase network and to the p53 signaling pathway.
Collapse
|
80
|
Liu Q, Hill PJ, Karamitri A, Ryan KJP, Chen HY, Lomax MA. Construction of a doxycycline inducible adipogenic lentiviral expression system. Plasmid 2012; 69:96-103. [PMID: 23099229 PMCID: PMC3556778 DOI: 10.1016/j.plasmid.2012.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/02/2012] [Accepted: 10/15/2012] [Indexed: 11/11/2022]
Abstract
To provide a tool for research on regulating adipocyte differentiation, tetracycline inducible (Tet on) lentiviral expression vectors under the control of an adipose-specific promoter were constructed. The lowest basal expression in the absence of doxycycline and most efficient dose-dependent, doxycycline-induced transient overexpression was observed using vectors constructed with a combination of Tetracycline Responsive Element (TRE) and reverse tetracycline-controlled TransActivator advanced (rtTAadv), transfected in white (3T3-L1) and brown (HIB-1B) preadipocytes cell lines. The results demonstrate that doxycycline adipogenic inducible expression can be achieved using a pLenti TRE / rtTA adv under the control of the truncated aP2 promoter in HIB-1B preadipocytes.
Collapse
Affiliation(s)
- Q Liu
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | | | | | | | | | | |
Collapse
|
81
|
Abstract
The number of structures of integral membrane proteins from higher eukaryotes is steadily increasing due to a number of innovative protein engineering and crystallization strategies devised over the last few years. However, it is sobering to reflect that these structures represent only a tiny proportion of the total number of membrane proteins encoded by a mammalian genome. In addition, the structures determined to date are of the most tractable membrane proteins, i.e., those that are expressed functionally and to high levels in yeast or in insect cells using the baculovirus expression system. However, some membrane proteins that are expressed inefficiently in these systems can be produced at sufficiently high levels in mammalian cells to allow structure determination. Mammalian expression systems are an under-used resource in structural biology and represent an effective way to produce fully functional membrane proteins for structural studies. This review will discuss examples of vertebrate membrane protein overexpression in mammalian cells using a variety of viral, constitutive or inducible expression systems.
Collapse
Affiliation(s)
- Juni Andréll
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
82
|
Abstract
Control is intrinsic to biological organisms, whose cells are in a constant state of sensing and response to numerous external and self-generated stimuli. Diverse means are used to study the complexity through control-based approaches in these cellular systems, including through chemical and genetic manipulations, input-output methodologies, feedback approaches, and feed-forward approaches. We first discuss what happens in control-based approaches when we are not actively examining or manipulating cells. We then present potential methods to determine what the cell is doing during these times and to reverse-engineer the cellular system. Finally, we discuss how we can control the cell's extracellular and intracellular environments, both to probe the response of the cells using defined experimental engineering-based technologies and to anticipate what might be achieved by applying control-based approaches to affect cellular processes. Much work remains to apply simplified control models and develop new technologies to aid researchers in studying and utilizing cellular and molecular processes.
Collapse
Affiliation(s)
- Philip R LeDuc
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
83
|
Abstract
The history of the tetracyclines involves the collective contributions of thousands of dedicated researchers, scientists, clinicians, and business executives over the course of more than 60 years. Discovered as natural products from actinomycetes soil bacteria, the tetracyclines were first reported in the scientific literature in 1948. They were noted for their broad spectrum antibacterial activity and were commercialized with clinical success beginning in the late 1940s to the early 1950s. The second-generation semisynthetic analogs and more recent third-generation compounds show the continued evolution of the tetracycline scaffold toward derivatives with increased potency as well as efficacy against tetracycline-resistant bacteria, with improved pharmacokinetic and chemical properties. Their biologic activity against a wide spectrum of microbial pathogens and their uses in mammalian models of inflammation, neurodegeneration, and other biological systems indicate that the tetracyclines will continue to be successful therapeutics in infectious diseases and as potential therapeutics against inflammation-based mammalian cell diseases.
Collapse
Affiliation(s)
- Mark L Nelson
- Paratek Pharmaceuticals, Inc., Boston, Massachusetts 02111, USA.
| | | |
Collapse
|
84
|
Chesler L, Weiss WA. Genetically engineered murine models--contribution to our understanding of the genetics, molecular pathology and therapeutic targeting of neuroblastoma. Semin Cancer Biol 2011; 21:245-55. [PMID: 21958944 PMCID: PMC3504935 DOI: 10.1016/j.semcancer.2011.09.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 09/14/2011] [Indexed: 01/01/2023]
Abstract
Genetically engineered mouse models (GEMM) have made major contributions to a molecular understanding of several adult cancers and these results are increasingly being translated into the pre-clinical setting where GEMM will very likely make a major impact on the development of targeted therapeutics in the near future. The relationship of pediatric cancers to altered developmental programs, and their genetic simplicity relative to adult cancers provides unique opportunities for the application of new advances in GEMM technology. In neuroblastoma the well-characterized TH-MYCN GEMM is increasingly used for a variety of molecular-genetic, developmental and pre-clinical therapeutics applications. We discuss: the present and historical application of GEMM to neuroblastoma research, future opportunities, and relevant targets suitable for new GEMM strategies in neuroblastoma. We review the potential of these models to contribute both to an understanding of the developmental nature of neuroblastoma and to improved therapy for this disease.
Collapse
Affiliation(s)
- Louis Chesler
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research & The Royal Marsden NHS Trust, Sutton, Surrey SM2 5NG, United Kingdom.
| | | |
Collapse
|
85
|
Tassi E, McDonnell K, Gibby KA, Tilan JU, Kim SE, Kodack DP, Schmidt MO, Sharif GM, Wilcox CS, Welch WJ, Gallicano GI, Johnson MD, Riegel AT, Wellstein A. Impact of fibroblast growth factor-binding protein-1 expression on angiogenesis and wound healing. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2220-32. [PMID: 21945411 DOI: 10.1016/j.ajpath.2011.07.043] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/07/2011] [Accepted: 07/13/2011] [Indexed: 12/30/2022]
Abstract
Fibroblast growth factors (FGFs) participate in embryonic development, in maintenance of tissue homeostasis in the adult, and in various diseases. FGF-binding proteins (FGFBP) are secreted proteins that chaperone FGFs stored in the extracellular matrix to their receptor, and can thus modulate FGF signaling. FGFBP1 (alias BP1, FGF-BP1, or HBp17) expression is required for embryonic survival, can modulate FGF-dependent vascular permeability in embryos, and is an angiogenic switch in human cancers. To determine the function of BP1 in vivo, we generated tetracycline-regulated conditional BP1 transgenic mice. BP1-expressing adult mice are viable, fertile, and phenotypically indistinguishable from their littermates. Induction of BP1 expression increased mouse primary fibroblast motility in vitro, increased angiogenic sprouting into subcutaneous matrigel plugs in animals and accelerated the healing of excisional skin wounds. FGF-receptor kinase inhibitors blocked these effects. Healing skin wounds showed increased macrophage invasion as well as cell proliferation after BP1 expression. Also, BP1 expression increased angiogenesis during the healing of skin wounds as well as after ischemic injury to hindlimb skeletal muscles. We conclude that BP1 can enhance FGF effects that are required for the healing and repair of injured tissues in adult animals.
Collapse
Affiliation(s)
- Elena Tassi
- Lombardi Cancer Center, Georgetown University, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Schmidt E, Eriksson M. A previously functional tetracycline-regulated transactivator fails to target gene expression to the bone. BMC Res Notes 2011; 4:282. [PMID: 21835026 PMCID: PMC3169473 DOI: 10.1186/1756-0500-4-282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 08/11/2011] [Indexed: 11/25/2022] Open
Abstract
Background The tetracycline-controlled transactivator system is a powerful tool to control gene expression in vitro and to generate consistent and conditional transgenic in vivo model organisms. It has been widely used to study gene function and to explore pathological mechanisms involved in human diseases. The system permits the regulation of the expression of a target gene, both temporally and quantitatively, by the application of tetracycline or its derivative, doxycycline. In addition, it offers the possibility to restrict gene expression in a spatial fashion by utilizing tissue-specific promoters to drive the transactivator. Findings In this study, we report our problems using a reverse tetracycline-regulated transactivator (rtTA) in a transgenic mouse model system for the bone-specific expression of the Hutchinson-Gilford progeria syndrome mutation. Even though prior studies have been successful utilizing the same rtTA, expression analysis of the transactivator revealed insufficient activity for regulating the transgene expression in our system. The absence of transactivator could not be ascribed to differences in genetic background because mice in a mixed genetic background and in congenic mouse lines showed similar results. Conclusions The purpose of this study is to report our negative experience with previously functional transactivator mice, to raise caution in the use of tet-based transgenic mouse lines and to reinforce the need for controls to ensure the stable functionality of generated tetracycline-controlled transactivators over time.
Collapse
Affiliation(s)
- Eva Schmidt
- Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet, Karolinska University Hospital, Huddinge, Novum, SE-14183 Stockholm, Sweden.
| | | |
Collapse
|
87
|
Ellwood-Yen K, Keilhack H, Kunii K, Dolinski B, Connor Y, Hu K, Nagashima K, O'Hare E, Erkul Y, Di Bacco A, Gargano D, Shomer NH, Angagaw M, Leccese E, Andrade P, Hurd M, Shin MK, Vogt TF, Northrup A, Bobkova EV, Kasibhatla S, Bronson RT, Scott ML, Draetta G, Richon V, Kohl N, Blume-Jensen P, Andersen JN, Kraus M. PDK1 attenuation fails to prevent tumor formation in PTEN-deficient transgenic mouse models. Cancer Res 2011; 71:3052-65. [PMID: 21493594 DOI: 10.1158/0008-5472.can-10-2282] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PDK1 activates AKT suggesting that PDK1 inhibition might suppress tumor development. However, while PDK1 has been investigated intensively as an oncology target, selective inhibitors suitable for in vivo studies have remained elusive. In this study we present the results of in vivo PDK1 inhibition through a universally applicable RNAi approach for functional drug target validation in oncogenic pathway contexts. This approach, which relies on doxycycline-inducible shRNA expression from the Rosa26 locus, is ideal for functional studies of genes like PDK1 where constitutive mouse models lead to strong developmental phenotypes or embryonic lethality. We achieved more than 90% PDK1 knockdown in vivo, a level sufficient to impact physiological functions resulting in hyperinsulinemia and hyperglycemia. This phenotype was reversible on PDK1 reexpression. Unexpectedly, long-term PDK1 knockdown revealed a lack of potent antitumor efficacy in 3 different mouse models of PTEN-deficient cancer. Thus, despite efficient PDK1 knockdown, inhibition of the PI3K pathway was marginal suggesting that PDK1 was not a rate limiting factor. Ex vivo analysis of pharmacological inhibitors revealed that AKT and mTOR inhibitors undergoing clinical development are more effective than PDK1 inhibitors at blocking activated PI3K pathway signaling. Taken together our findings weaken the widely held expectation that PDK1 represents an appealing oncology target.
Collapse
|
88
|
Chaturvedi AK, Lazzell AL, Saville SP, Wormley FL, Monteagudo C, Lopez-Ribot JL. Validation of the tetracycline regulatable gene expression system for the study of the pathogenesis of infectious disease. PLoS One 2011; 6:e20449. [PMID: 21633704 PMCID: PMC3102114 DOI: 10.1371/journal.pone.0020449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/20/2011] [Indexed: 12/28/2022] Open
Abstract
Understanding the pathogenesis of infectious disease requires the examination and successful integration of parameters related to both microbial virulence and host responses. As a practical and powerful method to control microbial gene expression, including in vivo, the tetracycline-regulatable system has recently gained the favor of many investigative groups. However, some immunomodulatory effects of the tetracyclines, including doxycycline, could potentially limit its use to evaluate host responses during infection. Here we have used a well-established murine model of disseminated candidiasis, which is highly dependent on both the virulence displayed by the fungal cells and on the host immune status, to validate the use of this system. We demonstrate that the pathogenesis of the wild type C. albicans CAF2-1 strain, which does not contain any tet-regulatable element, is not affected by the presence of doxycycline. Moreover levels of key cytokines, chemokines and many other biomarkers, as determined by multi-analyte profiling, remain essentially unaltered by the presence of the antibiotic during infection. Our results indicate that the levels of doxycycline needed to control the tetracycline regulatable promoter gene expression system have no detectable effect on global host responses during candidiasis. Because tet-regulatable systems are now being increasingly used in a variety of pathogenic microorganisms, these observations have wide implications in the field of infectious diseases.
Collapse
Affiliation(s)
- Ashok K. Chaturvedi
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, Texas, United States of America
| | - Anna L. Lazzell
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, Texas, United States of America
| | - Stephen P. Saville
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, Texas, United States of America
| | - Floyd L. Wormley
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, Texas, United States of America
| | - Carlos Monteagudo
- Departmento de Patología, Facultad de Medicina y Odontología, Universidad de Valencia, Valencia, Spain
| | - Jose L. Lopez-Ribot
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
89
|
Handy CR, Krudy C, Boulis N, Federici T. Pain in amyotrophic lateral sclerosis: a neglected aspect of disease. Neurol Res Int 2011; 2011:403808. [PMID: 21766021 PMCID: PMC3135011 DOI: 10.1155/2011/403808] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 03/06/2011] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder marked by progressive loss of motor neurons, muscle wasting, and respiratory dysfunction. With disease progression, secondary symptoms arise creating new problematic conditions for ALS patients. Amongst these is pain. Although not a primary consequence of disease, pain occurs in a substantial number of individuals. Yet, studies investigating its pathomechanistic properties in the ALS patient are lacking. Therefore, more exploratory efforts into its scope, severity, impact, and treatment should be initiated. Several studies investigating the use of Clostridial neurotoxins for the reduction of pain in ALS patients suggest the potential for a neural specific approach involving focal drug delivery. Gene therapy represents a way to accomplish this. Therefore, the use of viral vectors to express transgenes that modulate the nociceptive cascade could prove to be an effective way to achieve meaningful benefit in conditions of pain in ALS.
Collapse
Affiliation(s)
- Chalonda R. Handy
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA
| | - Christina Krudy
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA
| | - Nicholas Boulis
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA
| | - Thais Federici
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA
| |
Collapse
|
90
|
Hayashi H, Sakai T. Animal models for the study of liver fibrosis: new insights from knockout mouse models. Am J Physiol Gastrointest Liver Physiol 2011; 300:G729-G738. [PMID: 21350186 PMCID: PMC3094136 DOI: 10.1152/ajpgi.00013.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fibrosis arises as part of a would-healing response that maintains organ structure and integrity following tissue damage but also contributes to a variety of human pathologies such as liver fibrosis. Liver fibrosis is an abnormal response of the liver to persistent injury with the excessive accumulation of collagenous extracellular matrices. Currently there is no effective treatment, and many patients end up with a progressive form of the disease, eventually requiring a liver transplant. The clarification of mechanisms underlying pathogenesis of liver fibrosis and the development of effective therapy are of clinical importance. Experimental animal models, in particular targeted gene knockouts (loss of function) in mice, have become a powerful resource to address the molecular mechanisms or significance of the targeted gene in hepatic functions and diseases. This review will focus on the recent advances in knowledge obtained from genetically engineered mice that provide novel insights into the pathophysiology of liver fibrosis.
Collapse
Affiliation(s)
- Hiromitsu Hayashi
- Dept. of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| | | |
Collapse
|
91
|
Hosoda H, Miyao T, Uchida S, Sakai S, Kida S. Development of a tightly-regulated tetracycline-dependent transcriptional activator and repressor co-expression system for the strong induction of transgene expression. Cytotechnology 2011; 63:211-6. [PMID: 21336964 DOI: 10.1007/s10616-011-9335-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022] Open
Abstract
The teteracycline (Tc)-dependent and -inducible transcriptional activator (rtTA) system has been used to express regulated transgene expression in vitro and in vivo. However, previous reports have demonstrated that, even in the absence of Tc, the rtTA binds weakly to the tetracycline response element (TRE), leading to a low level of background activity. In order to reduce the leaky gene expression induced by rtTA, we previously established a tightly regulated system (A-IRES-R system) that makes use of both the rtTA (A) and a Tc-dependent repressor (TetR-Kruppel-associated box; KRAB) (R). In addition, others have described a transactivator rtTA2-M2 (M2) that displays higher sensitivity to Dox than rtTA. In this study, to further develop the A-IRES-R system, we generated a derivative Tc system (M2-IRES-R system) that co-expresses both rtTA-M2 and TetR-KRAB from a single vector. We show that compared to the A-IRES-R system, the M2-IRES-R system leads to a greater level of induced TRE-mediated transcription in the presence of doxycycline (Dox) and yet displays a similar level of basal TRE-mediated transcription in the absence of Dox. Furthermore, the M2-IRES-R system also displays less leaky gene expression in the absence of Dox compared to rtTA-M2 and rtTA systems. Taken together, our results suggest that the M2-IRES-R system enables to tightly regulate and highly induce the expression of transgene compared to other systems.
Collapse
Affiliation(s)
- Hiroshi Hosoda
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | | | | | | | | |
Collapse
|
92
|
Florczyk U, Golda S, Zieba A, Cisowski J, Jozkowicz A, Dulak J. Overexpression of biliverdin reductase enhances resistance to chemotherapeutics. Cancer Lett 2010; 300:40-7. [PMID: 20934804 DOI: 10.1016/j.canlet.2010.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 11/19/2022]
Abstract
Biliverdin reductase (BVR) converts biliverdin to bilirubin. Additionally, acting as a transcription factor and possessing a capacity of a serine/threonine kinase, it may modulate signaling pathways. In order to gain better understanding of BVR functions, we used genetically modified line of mouse fibroblasts with reversible overexpression of BVR. Current study revealed that enhanced activity of BVR may protect cells in stressful conditions arising from anti-cancer drugs, cisplatin and doxorubicin, the effect most probably related to PKC α/β activity, as its inhibition reversed BVR action. Therefore activity of BVR may be of significance in tumors and may influence the effectiveness of therapies.
Collapse
Affiliation(s)
- Urszula Florczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | | | | | | | | | | |
Collapse
|
93
|
Development of a BAC vector for integration-independent and tight regulation of transgenes in rodents via the Tet system. Transgenic Res 2010; 20:709-20. [PMID: 20640885 DOI: 10.1007/s11248-010-9427-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 07/03/2010] [Indexed: 01/02/2023]
Abstract
The establishment of functional transgenic mouse lines is often limited by problems caused by integration site effects on the expression construct. Similarly, tetracycline (Tet) controlled transcription units most commonly used for conditional transgene expression in mice are strongly influenced by their genomic surrounding. Using bacterial artificial chromosome (BAC) technology in constitutive expression systems, it has been shown that integration site effects resulting in unwanted expression patterns can be largely eliminated. Here we describe a strategy to minimize unfavourable integration effects on conditional expression constructs based on a 75 kb genomic BAC fragment. This fragment was derived from a transgenic mouse line, termed LC-1, which carries the Tet-inducible genes luciferase and cre (Schönig et al. 2002). Animals of this mouse line have previously been shown to exhibit optimal expression properties in terms of tightness in the off state and the absolute level of induction, when mated to appropriate transactivator expressing mice. Here we report the cloning and identification of the transgenic LC-1 integration site which was subsequently inserted into a bacterial artificial chromosome. We demonstrate that this vector facilitates the efficient generation of transgenic mouse and rat lines, where the Tet-controlled expression unit is shielded from perturbations caused by the integration site.
Collapse
|
94
|
Berger SM, Pesold B, Reber S, Schönig K, Berger AJ, Weidenfeld I, Miao J, Berger MR, Gruss OJ, Bartsch D. Quantitative analysis of conditional gene inactivation using rationally designed, tetracycline-controlled miRNAs. Nucleic Acids Res 2010; 38:e168. [PMID: 20639530 PMCID: PMC2943624 DOI: 10.1093/nar/gkq616] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The combination of RNA interference (RNAi) with the tetracycline-controlled transcription activation (tet) system promises to become a powerful method for conditional gene inactivation in cultured cells and in whole organisms. Here, we tested critical sequence elements that originated from miRNA mR-30 for optimal efficiency of RNAi-based gene knockdown in mammalian cells. Rationally designed miRNAs, expressed conditionally via the tet system, led to an efficient knockdown of the expression of both reporter genes and the endogenous mitotic spindle protein TPX2 in HeLa cells. Quantitative studies of the tet-controlled gene inactivation revealed that the residual expression of the target gene is an intrinsic attribute of all cells that cannot be eliminated either by increasing the miRNA to target mRNA ratio or by simultaneous expression of miRNAs targeting different sequences within the transcript. The kinetic analysis of the reversibility of the miRNA mediated knockdown suggests that the recovery of target gene expression is primarily driven by cell division. Our miRNA design provides a useful tool for conditional gene inactivation in combination with the RNA-polymerase II based tet system. The identified characteristics of the conditional RNAi-mediated knockdown need to be considered for its application in cell culture or in vivo.
Collapse
Affiliation(s)
- Stefan M Berger
- Central Institute of Mental Health, Department of Molecular Biology, D-68159 Mannheim, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Das AT, Berkhout B. HIV-1 evolution: frustrating therapies, but disclosing molecular mechanisms. Philos Trans R Soc Lond B Biol Sci 2010; 365:1965-73. [PMID: 20478891 PMCID: PMC2880118 DOI: 10.1098/rstb.2010.0072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Replication of HIV-1 under selective pressure frequently results in the evolution of virus variants that replicate more efficiently under the applied conditions. For example, in patients on antiretroviral therapy, such evolution can result in variants that are resistant to the HIV-1 inhibitors, thus frustrating the therapy. On the other hand, virus evolution can help us to understand the molecular mechanisms that underlie HIV-1 replication. For example, evolution of a defective virus mutant can result in variants that overcome the introduced defect by restoration of the original sequence or by the introduction of additional mutations in the viral genome. Analysis of the evolution pathway can reveal the requirements of the element under study and help to understand its function. Analysis of the escape routes may generate new insight in the viral life cycle and result in the identification of unexpected biological mechanisms. We have developed in vitro HIV-1 evolution into a systematic research tool that allows the study of different aspects of the viral replication cycle. We will briefly review this method of forced virus evolution and provide several examples that illustrate the power of this approach.
Collapse
Affiliation(s)
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
96
|
Das AT, Jeeninga RE, Berkhout B. Possible applications for replicating HIV 1 vectors. ACTA ACUST UNITED AC 2010; 4:361-369. [PMID: 20582153 DOI: 10.2217/hiv.10.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Since its discovery some 25 years ago, much has been learned about HIV type 1 and the molecular details of its replication cycle. This insight has been used to develop lentiviral vector systems that have advantages over conventional retroviral vector systems. For safety reasons, the lentiviral vector systems are replication incompetent and the risk of generating a replication competent virus has been minimized. Nevertheless, there may be certain applications for replication competent HIV based vector systems, and we will review our activities in this particular field. This includes the generation of a conditionally replicating HIV 1 variant as a safe live attenuated virus vaccine, the construction of mini HIV variants as cancer selective viruses for virotherapy against leukemia, and the use of a conditionally live anti HIV gene therapy vector. Although safety concerns will undoubtedly remain for the use of replication competent HIV based vector systems, some of the results in cell culture systems are very promising and warrant further testing in appropriate animal models.
Collapse
Affiliation(s)
- Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | |
Collapse
|
97
|
Aleksandrov A, Schuldt L, Hinrichs W, Simonson T. Tetracycline-tet repressor binding specificity: insights from experiments and simulations. Biophys J 2010; 97:2829-38. [PMID: 19917238 DOI: 10.1016/j.bpj.2009.08.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/19/2009] [Accepted: 08/31/2009] [Indexed: 11/16/2022] Open
Abstract
Tetracycline (Tc) antibiotics have been put to new uses in the construction of artificial gene regulation systems, where they bind to the Tet repressor protein (TetR) and modulate its affinity for DNA. Many Tc variants have been produced, both to overcome bacterial resistance and to achieve a broad range of binding strengths. To better understand TetR-Tc binding, we investigate a library of 16 tetracyclines, using fluorescence experiments and molecular dynamics free energy simulations (MDFE). The relative TetR binding free energies are computed by reversibly transforming one Tc variant into another during the simulation, with no adjustable parameters. The chemical variations involve polar and nonpolar substitutions along one entire edge of the elongated Tc structure, which provides many of the protein-ligand contacts. The binding constants span five orders of magnitude. The simulations reproduce the experimental binding free energies, when available, within the uncertainty of either method (+/-0.5 kcal/mol), and reveal many additional details. Contributions of individual Tc substituents are evaluated, along with their additivity and transferability among different positions on the Tc scaffold; differences between D- and B-class repressors are quantified. With increasing computer power, the MDFE approach provides an attractive complement to experiment and should play an increasing role in the understanding and engineering of protein-ligand recognition.
Collapse
Affiliation(s)
- Alexey Aleksandrov
- Laboratoire de Biochimie, Department of Biology, Ecole Polytechnique, Centre National de la Recherche Scientifique UMR 7654, Palaiseau, France
| | | | | | | |
Collapse
|
98
|
Therapeutic Nucleic Acids. Gene Ther 2010. [DOI: 10.1007/978-88-470-1643-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
99
|
New mouse lines for the analysis of neuronal morphology using CreER(T)/loxP-directed sparse labeling. PLoS One 2009; 4:e7859. [PMID: 19924248 PMCID: PMC2775668 DOI: 10.1371/journal.pone.0007859] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 10/20/2009] [Indexed: 12/30/2022] Open
Abstract
Background Pharmacologic control of Cre-mediated recombination using tamoxifen-dependent activation of a Cre-estrogen receptor ligand binding domain fusion protein [CreER(T)] is widely used to modify and/or visualize cells in the mouse. Methods and Findings We describe here two new mouse lines, constructed by gene targeting to the Rosa26 locus to facilitate Cre-mediated cell modification. These lines should prove particularly useful in the context of sparse labeling experiments. The R26rtTACreER line provides ubiquitous expression of CreER under transcriptional control by the tetracycline reverse transactivator (rtTA); dual control by doxycycline and tamoxifen provides an extended dynamic range of Cre-mediated recombination activity. The R26IAP line provides high efficiency Cre-mediated activation of human placental alkaline phosphatase (hPLAP), complementing the widely used, but low efficiency, Z/AP line. By crossing with mouse lines that direct cell-type specific CreER expression, the R26IAP line has been used to produce atlases of labeled cholinergic and catecholaminergic neurons in the mouse brain. The R26IAP line has also been used to visualize the full morphologies of retinal dopaminergic amacrine cells, among the largest neurons in the mammalian retina. Conclusions The two new mouse lines described here expand the repertoire of genetically engineered mice available for controlled in vivo recombination and cell labeling using the Cre-lox system.
Collapse
|
100
|
Stieger K, Belbellaa B, Le Guiner C, Moullier P, Rolling F. In vivo gene regulation using tetracycline-regulatable systems. Adv Drug Deliv Rev 2009; 61:527-41. [PMID: 19394373 PMCID: PMC7103297 DOI: 10.1016/j.addr.2008.12.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 12/15/2008] [Indexed: 10/26/2022]
Abstract
Numerous preclinical studies have demonstrated the efficacy of viral gene delivery vectors, and recent clinical trials have shown promising results. However, the tight control of transgene expression is likely to be required for therapeutic applications and in some instances, for safety reasons. For this purpose, several ligand-dependent transcription regulatory systems have been developed. Among these, the tetracycline-regulatable system is by far the most frequently used and the most advanced towards gene therapy trials. This review will focus on this system and will describe the most recent progress in the regulation of transgene expression in various organs, including the muscle, the retina and the brain. Since the development of an immune response to the transactivator was observed following gene transfer in the muscle of nonhuman primate, focus will be therefore, given on the immune response to transgene products of the tetracycline inducible promoter.
Collapse
Affiliation(s)
- Knut Stieger
- INSERM UMR U649, CHU-Hotel Dieu, Nantes, France
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|