51
|
Pohl SÖG, Pervaiz S, Dharmarajan A, Agostino M. Gene expression analysis of heat-shock proteins and redox regulators reveals combinatorial prognostic markers in carcinomas of the gastrointestinal tract. Redox Biol 2019; 25:101060. [PMID: 30578123 PMCID: PMC6859565 DOI: 10.1016/j.redox.2018.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/14/2018] [Accepted: 11/25/2018] [Indexed: 01/18/2023] Open
Abstract
Heat shock proteins (HSPs) are a large family of ubiquitously expressed proteins with diverse functions, including protein assembly and folding/unfolding. These proteins have been associated with the progression of various gastrointestinal tumours. Dysregulation of cellular redox has also been associated with gastrointestinal carcinogenesis, however, a link between HSPs and dysregulation of cellular redox in carcinogenesis remains unclear. In this study, we analysed mRNA co-expression and methylation patterns, as well as performed survival analysis and gene set enrichment analysis, on gastrointestinal cancer data sets (oesophageal, stomach and colorectal carcinomas) to determine whether HSP activity and cellular redox dysregulation are linked. A widespread relationship between HSPs and cellular redox was identified, with specific combinatorial co-expression patterns demonstrated to significantly alter patient survival outcomes. This comprehensive analysis provides the foundation for future studies aimed at deciphering the mechanisms of cooperativity between HSPs and redox regulatory enzymes, which may be a target for future therapeutic intervention for gastrointestinal tumours.
Collapse
Affiliation(s)
- Sebastian Öther-Gee Pohl
- Stem Cell and Cancer Biology Laboratory, Curtin University, Perth, WA, Australia; School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia; Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Shazib Pervaiz
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia; Department of Physiology and Medical Science Cluster Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore; National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, Curtin University, Perth, WA, Australia; School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia; Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Mark Agostino
- Stem Cell and Cancer Biology Laboratory, Curtin University, Perth, WA, Australia; School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia; Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; Curtin Institute for Computation, Curtin University, Perth, WA 6102, Australia.
| |
Collapse
|
52
|
Krewing M, Stepanek JJ, Cremers C, Lackmann JW, Schubert B, Müller A, Awakowicz P, Leichert LIO, Jakob U, Bandow JE. The molecular chaperone Hsp33 is activated by atmospheric-pressure plasma protecting proteins from aggregation. J R Soc Interface 2019; 16:20180966. [PMID: 31213177 PMCID: PMC6597770 DOI: 10.1098/rsif.2018.0966] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/24/2019] [Indexed: 11/12/2022] Open
Abstract
Non-equilibrium atmospheric-pressure plasmas are an alternative means to sterilize and disinfect. Plasma-mediated protein aggregation has been identified as one of the mechanisms responsible for the antibacterial features of plasma. Heat shock protein 33 (Hsp33) is a chaperone with holdase function that is activated when oxidative stress and unfolding conditions coincide. In its active form, it binds unfolded proteins and prevents their aggregation. Here we analyse the influence of plasma on the structure and function of Hsp33 of Escherichia coli using a dielectric barrier discharge plasma. While most other proteins studied so far were rapidly inactivated by atmospheric-pressure plasma, exposure to plasma activated Hsp33. Both, oxidation of cysteine residues and partial unfolding of Hsp33 were observed after plasma treatment. Plasma-mediated activation of Hsp33 was reversible by reducing agents, indicating that cysteine residues critical for regulation of Hsp33 activity were not irreversibly oxidized. However, the reduction yielded a protein that did not regain its original fold. Nevertheless, a second round of plasma treatment resulted again in a fully active protein that was unfolded to an even higher degree. These conformational states were not previously observed after chemical activation with HOCl. Thus, although we could detect the formation of HOCl in the liquid phase during plasma treatment, we conclude that other species must be involved in plasma activation of Hsp33. E. coli cells over-expressing the Hsp33-encoding gene hslO from a plasmid showed increased survival rates when treated with plasma while an hslO deletion mutant was hypersensitive emphasizing the importance of protein aggregation as an inactivation mechanism of plasma.
Collapse
Affiliation(s)
- Marco Krewing
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Jennifer Janina Stepanek
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Claudia Cremers
- Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jan-Wilm Lackmann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Britta Schubert
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Alexandra Müller
- Microbial Biochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Peter Awakowicz
- Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Sciences, Ruhr University Bochum, Bochum, Germany
| | - Lars I. O. Leichert
- Microbial Biochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Ursula Jakob
- Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
53
|
Bacterial functional amyloids: Order from disorder. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:954-960. [PMID: 31195143 DOI: 10.1016/j.bbapap.2019.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022]
Abstract
The discovery of intrinsic disorderness in proteins and peptide regions has given a new and useful insight into the working of biological systems. Due to enormous plasticity and heterogeneity, intrinsically disordered proteins or regions in proteins can perform myriad of functions. The flexibility in disordered proteins allows them to undergo conformation transition to form homopolymers of proteins called amyloids. Amyloids are highly structured protein aggregates associated with many neurodegenerative diseases. However, amyloids have gained much appreciation in recent years due to their functional roles. A functional amyloid fiber called curli is assembled on the bacterial cell surface as a part of the extracellular matrix during biofilm formation. The extracellular matrix that encases cells in a biofilm protects the cells and provides resistance against many environmental stresses. Several of the Csg (curli specific genes) proteins that are required for curli amyloid assembly are predicted to be intrinsically disordered. Therefore, curli amyloid formation is highly orchestrated so that these intrinsically disordered proteins do not inappropriately aggregate at the wrong time or place. The curli proteins are compartmentalized and there are chaperone-like proteins that prevent inappropriate aggregation and allow the controlled assembly of curli amyloids. Here we review the biogenesis of curli amyloids and the role that intrinsically disordered proteins play in the process.
Collapse
|
54
|
Lukacs M, Gilley J, Zhu Y, Orsomando G, Angeletti C, Liu J, Yang X, Park J, Hopkin RJ, Coleman MP, Zhai RG, Stottmann RW. Severe biallelic loss-of-function mutations in nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) in two fetuses with fetal akinesia deformation sequence. Exp Neurol 2019; 320:112961. [PMID: 31136762 DOI: 10.1016/j.expneurol.2019.112961] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
The three nicotinamide mononucleotide adenylyltransferase (NMNAT) family members synthesize the electron carrier nicotinamide adenine dinucleotide (NAD+) and are essential for cellular metabolism. In mammalian axons, NMNAT activity appears to be required for axon survival and is predominantly provided by NMNAT2. NMNAT2 has recently been shown to also function as a chaperone to aid in the refolding of misfolded proteins. Nmnat2 deficiency in mice, or in its ortholog dNmnat in Drosophila, results in axon outgrowth and survival defects. Peripheral nerve axons in NMNAT2-deficient mice fail to extend and innervate targets, and skeletal muscle is severely underdeveloped. In addition, removing NMNAT2 from established axons initiates axon death by Wallerian degeneration. We report here on two stillborn siblings with fetal akinesia deformation sequence (FADS), severely reduced skeletal muscle mass and hydrops fetalis. Clinical exome sequencing identified compound heterozygous NMNAT2 variant alleles in both cases. Both protein variants are incapable of supporting axon survival in mouse primary neuron cultures when overexpressed. In vitro assays demonstrate altered protein stability and/or defects in NAD+ synthesis and chaperone functions. Thus, both patient NMNAT2 alleles are null or severely hypo-morphic. These data indicate a previously unknown role for NMNAT2 in human neurological development and provide the first direct molecular evidence to support the involvement of Wallerian degeneration in a human axonal disorder. SIGNIFICANCE: Nicotinamide Mononucleotide Adenylyltransferase 2 (NMNAT2) both synthesizes the electron carrier Nicotinamide Adenine Dinucleotide (NAD+) and acts a protein chaperone. NMNAT2 has emerged as a major neuron survival factor. Overexpression of NMNAT2 protects neurons from Wallerian degeneration after injury and declining levels of NMNAT2 have been implicated in neurodegeneration. While the role of NMNAT2 in neurodegeneration has been extensively studied, the role of NMNAT2 in human development remains unclear. In this work, we present the first human variants in NMNAT2 identified in two fetuses with severe skeletal muscle hypoplasia and fetal akinesia. Functional studies in vitro showed that the mutations impair both NMNAT2 NAD+ synthase and chaperone functions. This work identifies the critical role of NMNAT2 in human development.
Collapse
Affiliation(s)
- Marshall Lukacs
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA..
| | - Jonathan Gilley
- John van Geest Centre for Brain Repair, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.; Signalling ISPG, The Babraham Institute, Babraham, Cambridge CB22 3AT, UK.
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Giuseppe Orsomando
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60131, Ancona, Italy.
| | - Carlo Angeletti
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, 60131, Ancona, Italy.
| | - Jiaqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China.
| | - Xiuna Yang
- John van Geest Centre for Brain Repair, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Joun Park
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA..
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.; Signalling ISPG, The Babraham Institute, Babraham, Cambridge CB22 3AT, UK.
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China.
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA.; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA..
| |
Collapse
|
55
|
Fu X, Chang Z. Biogenesis, quality control, and structural dynamics of proteins as explored in living cells via site-directed photocrosslinking. Protein Sci 2019; 28:1194-1209. [PMID: 31002747 DOI: 10.1002/pro.3627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/16/2019] [Indexed: 02/06/2023]
Abstract
Protein biogenesis and quality control are essential to maintaining a functional pool of proteins and involve numerous protein factors that dynamically and transiently interact with each other and with the substrate proteins in living cells. Conventional methods are hardly effective for studying dynamic, transient, and weak protein-protein interactions that occur in cells. Herein, we review how the site-directed photocrosslinking approach, which relies on the genetic incorporation of a photoreactive unnatural amino acid into a protein of interest at selected individual amino acid residue positions and the covalent trapping of the interacting proteins upon ultraviolent irradiation, has become a highly efficient way to explore the aspects of protein contacts in living cells. For example, in the past decade, this approach has allowed the profiling of the in vivo substrate proteins of chaperones or proteases under both physiologically optimal and stressful (e.g., acidic) conditions, mapping residues located at protein interfaces, identifying new protein factors involved in the biogenesis of membrane proteins, trapping transiently formed protein complexes, and snapshotting different structural states of a protein. We anticipate that the site-directed photocrosslinking approach will play a fundamental role in dissecting the detailed mechanisms of protein biogenesis, quality control, and dynamics in the future.
Collapse
Affiliation(s)
- Xinmiao Fu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, 350117, China
| | - Zengyi Chang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Center for Protein Science, Beijing, 100871, China
| |
Collapse
|
56
|
Unique Unfoldase/Aggregase Activity of a Molecular Chaperone Hsp33 in its Holding-Inactive State. J Mol Biol 2019; 431:1468-1480. [DOI: 10.1016/j.jmb.2019.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 11/21/2022]
|
57
|
Reichmann D, Voth W, Jakob U. Maintaining a Healthy Proteome during Oxidative Stress. Mol Cell 2019; 69:203-213. [PMID: 29351842 DOI: 10.1016/j.molcel.2017.12.021] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/11/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022]
Abstract
Some of the most challenging stress conditions that organisms encounter during their lifetime involve the transient accumulation of reactive oxygen and chlorine species. Extremely reactive to amino acid side chains, these oxidants cause widespread protein unfolding and aggregation. It is therefore not surprising that cells draw on a variety of different strategies to counteract the damage and maintain a healthy proteome. Orchestrated largely by direct changes in the thiol oxidation status of key proteins, the response strategies involve all layers of protein protection. Reprogramming of basic biological functions helps decrease nascent protein synthesis and restore redox homeostasis. Mobilization of oxidative stress-activated chaperones and production of stress-resistant non-proteinaceous chaperones prevent irreversible protein aggregation. Finally, redox-controlled increase in proteasome activity removes any irreversibly damaged proteins. Together, these systems pave the way to restore protein homeostasis and enable organisms to survive stress conditions that are inevitable when living an aerobic lifestyle.
Collapse
Affiliation(s)
- Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Wilhelm Voth
- Department of Molecular, Cellular, and Developmental Biology and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-1048, USA.
| |
Collapse
|
58
|
Xie K, Bunse C, Marcus K, Leichert LI. Quantifying changes in the bacterial thiol redox proteome during host-pathogen interaction. Redox Biol 2018; 21:101087. [PMID: 30682706 PMCID: PMC6351232 DOI: 10.1016/j.redox.2018.101087] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
Phagocyte-derived production of a complex mixture of different oxidants is a major mechanism of the host defense against microbial intruders. On the protein level, a major target of these oxidants is the thiol group of the amino acid cysteine in proteins. Oxidation of thiol groups is a widespread regulatory post-translational protein modification. It is used by bacteria to respond to and to overcome oxidative stress. Numerous redox proteomic studies have shown that protein thiols in bacteria, such as Escherichia coli react towards a number of oxidants in specific ways. However, our knowledge about protein thiols in bacteria exposed to the complex mixture of oxidants encountered in the phagolysosome is still limited. In this study, we used a quantitative redox proteomic method (OxICAT) to assess the in vivo thiol oxidation status of phagocytized E. coli. The majority (65.5%) of identified proteins harbored thiols that were significantly oxidized (> 30%) upon phagocytosis. A substantial number of these proteins are from major metabolic pathways or are involved in cell detoxification and stress response, suggesting a systemic breakdown of the bacterial cysteine proteome in phagocytized bacteria. 16 of the oxidized proteins provide E. coli with a significant growth advantage in the presence of H2O2, when compared to deletion mutants lacking these proteins, and 11 were shown to be essential under these conditions.
Collapse
Affiliation(s)
- Kaibo Xie
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, 44780 Bochum, Germany
| | - Christina Bunse
- Ruhr University Bochum, Medizinisches Proteom-Center, 44801 Bochum, Germany
| | - Katrin Marcus
- Ruhr University Bochum, Medizinisches Proteom-Center, 44801 Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, 44780 Bochum, Germany.
| |
Collapse
|
59
|
Lai CY, Dong QY, Zhao HP. Oxygen exposure deprives antimonate-reducing capability of a methane fed biofilm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:1152-1159. [PMID: 30743828 DOI: 10.1016/j.scitotenv.2018.07.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 06/09/2023]
Abstract
This work is aiming at achieving antimonate (Sb(V)) bio-reduction in a methane (CH4) based membrane biofilm reactor (MBfR), and elucidating the effect of oxygen (O2) on the performance of the biofilm. Scanning electron microscope (SEM), energy dispersive X-ray (EDS) and X-ray photoelectron spectroscopy (XPS) confirm Sb2O3 precipitates were the main product formed from Sb(V) reduction in the CH4-fed biofilm. Illumina sequencing shows Thermomonas may be responsible for Sb(V) reduction. Moreover, we found 8 mg/L of O2 in the influent irreversibly inhibited Sb(V) reduction. Metagenomic prediction by Reconstruction of Unobserved State (PICRUSt) shows that the biofilm lacked efficient defense system to the oxidative stress, leading to the great suppress of key biological metabolisms such as TCA cycle, glycolysis and DNA replication, as well as potential Sb(V) reductases, by O2. However, methanotrophs Methylomonas and Methylosinus were enriched in the biofilm with O2 intrusion, in accordance with the enhanced abundance of genes encoding aerobic CH4 oxidation. These insights evoke the theoretical guidance of microbial remediation using CH4 as the electron donor towards Sb(V) contamination, and will give us a strong reference with regard to wastewater disposal.
Collapse
Affiliation(s)
- Chun-Yu Lai
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, China; Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Qiu-Yi Dong
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - He-Ping Zhao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, China; Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China; MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
60
|
Lodha TD, B I, Ch S, Ch V R. Transcriptome analysis of hopanoid deficient mutant of Rhodopseuodomonas palustris TIE-1. Microbiol Res 2018; 218:108-117. [PMID: 30454652 DOI: 10.1016/j.micres.2018.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/20/2018] [Accepted: 10/27/2018] [Indexed: 10/28/2022]
Abstract
All three domains of life have an ordered plasma membrane which is pivotal in the selective fitness of primitive life. Like cholesterol in eukaryotes, hopanoids are important in bacteria to modulate membrane order. Hopanoids are pentacyclic triterpenoid lipids biosynthesised in many eubacteria, few ferns and lichens. Hopanoid modulates outer membrane order and hopanoid deficiency results in the weakened structural integrity of the membrane which may in turn affect the other structures within or spanning the cell envelope and contributing to various membrane functions. Hence, to decipher the role of hopanoid, genome-wide transcriptome of wild-type and Δshc mutant of Rhodopseudomonas palustris TIE-1 was studied which indicated 299 genes were upregulated and 306 genes were downregulated in hopanoid deficient mutant, representing ∼11.5% of the genome. Thirty-eight genes involved in chemotaxis, response to stimuli and signal transduction were differentially regulated and impaired motility in hopanoid deficient mutant showed that hopanoid plays a crucial role in chemotaxis. The docking study demonstrated that diguanylate cyclase which catalyses the synthesis of secondary messenger exhibited the capability to interact with hopanoids and might be confederating in chemotaxis and signal transduction. Seventy-four genes involved in membrane transport were differentially expressed and cell assays also explicit that the multidrug transport is compromised in Δshc mutant. Membrane transport is reliant on hopanoids which may explain the basis for previous observations linking hopanoids to antibiotic resistance. Disturbing the membrane order by targeting lipid synthesis can be a possible novel approach in developing new antimicrobials and hopanoid biosynthesis could be a potential target.
Collapse
Affiliation(s)
- Tushar D Lodha
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500 046, India; National Centre for Microbial Resource, National Centre for Cell Science, Pune, 411011, India
| | - Indu B
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500 046, India
| | - Sasikala Ch
- Bacterial Discovery Laboratory, Centre for Environment, IST, JNT University Hyderabad, Kukatpally, Hyderabad, 500 085, India
| | - Ramana Ch V
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500 046, India.
| |
Collapse
|
61
|
de Almeida FA, Carneiro DG, de Oliveira Mendes TA, Barros E, Pinto UM, de Oliveira LL, Vanetti MCD. N-dodecanoyl-homoserine lactone influences the levels of thiol and proteins related to oxidation-reduction process in Salmonella. PLoS One 2018; 13:e0204673. [PMID: 30304064 PMCID: PMC6179229 DOI: 10.1371/journal.pone.0204673] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/12/2018] [Indexed: 01/09/2023] Open
Abstract
Quorum sensing is a cell-cell communication mechanism mediated by chemical signals that leads to differential gene expression in response to high population density. Salmonella is unable to synthesize the autoinducer-1 (AI-1), N-acyl homoserine lactone (AHL), but is able to recognize AHLs produced by other microorganisms through SdiA protein. This study aimed to evaluate the fatty acid and protein profiles of Salmonella enterica serovar Enteritidis PT4 578 throughout time of cultivation in the presence of AHL. The presence of N-dodecanoyl-homoserine lactone (C12-HSL) altered the fatty acid and protein profiles of Salmonella cultivated during 4, 6, 7, 12 and 36 h in anaerobic condition. The profiles of Salmonella Enteritidis at logarithmic phase of growth (4 h of cultivation), in the presence of C12-HSL, were similar to those of cells at late stationary phase (36 h). In addition, there was less variation in both protein and fatty acid profiles along growth, suggesting that this quorum sensing signal anticipated a stationary phase response. The presence of C12-HSL increased the abundance of thiol related proteins such as Tpx, Q7CR42, Q8ZP25, YfgD, AhpC, NfsB, YdhD and TrxA, as well as the levels of free cellular thiol after 6 h of cultivation, suggesting that these cells have greater potential to resist oxidative stress. Additionally, the LuxS protein which synthesizes the AI-2 signaling molecule was differentially abundant in the presence of C12-HSL. The NfsB protein had its abundance increased in the presence of C12-HSL at all evaluated times, which is a suggestion that the cells may be susceptible to the action of nitrofurans or that AHLs present some toxicity. Overall, the presence of C12-HSL altered important pathways related to oxidative stress and stationary phase response in Salmonella.
Collapse
Affiliation(s)
| | | | | | - Edvaldo Barros
- Núcleo de Análise de Biomoléculas, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Uelinton Manoel Pinto
- Food Research Center, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
62
|
Serebryany E, Yu S, Trauger SA, Budnik B, Shakhnovich EI. Dynamic disulfide exchange in a crystallin protein in the human eye lens promotes cataract-associated aggregation. J Biol Chem 2018; 293:17997-18009. [PMID: 30242128 DOI: 10.1074/jbc.ra118.004551] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/14/2018] [Indexed: 12/31/2022] Open
Abstract
Increased light scattering in the eye lens due to aggregation of the long-lived lens proteins, crystallins, is the cause of cataract disease. Several mutations in the gene encoding human γD-crystallin (HγD) cause misfolding and aggregation. Cataract-associated substitutions at Trp42 cause the protein to aggregate in vitro from a partially unfolded intermediate locked by an internal disulfide bridge, and proteomic evidence suggests a similar aggregation precursor is involved in age-onset cataract. Surprisingly, WT HγD can promote aggregation of the W42Q variant while itself remaining soluble. Here, a search for a biochemical mechanism for this interaction has revealed a previously unknown oxidoreductase activity in HγD. Using in vitro oxidation, mutational analysis, cysteine labeling, and MS, we have assigned this activity to a redox-active internal disulfide bond that is dynamically exchanged among HγD molecules. The W42Q variant acts as a disulfide sink, reducing oxidized WT and forming a distinct internal disulfide that kinetically traps the aggregation-prone intermediate. Our findings suggest a redox "hot potato" competition among WT and mutant or modified polypeptides wherein variants with the lowest kinetic stability are trapped in aggregation-prone intermediate states upon accepting disulfides from more stable variants. Such reactions may occur in other long-lived proteins that function in oxidizing environments. In these cases, aggregation may be forestalled by inhibiting disulfide flow toward mutant or damaged polypeptides.
Collapse
Affiliation(s)
- Eugene Serebryany
- From the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Shuhuai Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu, China
| | | | - Bogdan Budnik
- Mass Spectrometry and Proteomics Resource Laboratory, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts 02138
| | - Eugene I Shakhnovich
- From the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138.
| |
Collapse
|
63
|
Ortega-Villasante C, Burén S, Blázquez-Castro A, Barón-Sola Á, Hernández LE. Fluorescent in vivo imaging of reactive oxygen species and redox potential in plants. Free Radic Biol Med 2018; 122:202-220. [PMID: 29627452 DOI: 10.1016/j.freeradbiomed.2018.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are by-products of aerobic metabolism, and excessive production can result in oxidative stress and cell damage. In addition, ROS function as cellular messengers, working as redox regulators in a multitude of biological processes. Understanding ROS signalling and stress responses requires methods for precise imaging and quantification to monitor local, subcellular and global ROS dynamics with high selectivity, sensitivity and spatiotemporal resolution. In this review, we summarize the present knowledge for in vivo plant ROS imaging and detection, using both chemical probes and fluorescent protein-based biosensors. Certain characteristics of plant tissues, for example high background autofluorescence in photosynthetic organs and the multitude of endogenous antioxidants, can interfere with ROS and redox potential detection, making imaging extra challenging. Novel methods and techniques to measure in vivo plant ROS and redox changes with better selectivity, accuracy, and spatiotemporal resolution are therefore desirable to fully acknowledge the remarkably complex plant ROS signalling networks.
Collapse
Affiliation(s)
- Cristina Ortega-Villasante
- Fisiología Vegetal, Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Stefan Burén
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Alfonso Blázquez-Castro
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ángel Barón-Sola
- Fisiología Vegetal, Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Luis E Hernández
- Fisiología Vegetal, Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
64
|
Fassler R, Edinger N, Rimon O, Reichmann D. Defining Hsp33's Redox-regulated Chaperone Activity and Mapping Conformational Changes on Hsp33 Using Hydrogen-deuterium Exchange Mass Spectrometry. J Vis Exp 2018. [PMID: 29939186 DOI: 10.3791/57806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Living organisms regularly need to cope with fluctuating environments during their life cycle, including changes in temperature, pH, the accumulation of reactive oxygen species, and more. These fluctuations can lead to a widespread protein unfolding, aggregation, and cell death. Therefore, cells have evolved a dynamic and stress-specific network of molecular chaperones, which maintain a "healthy" proteome during stress conditions. ATP-independent chaperones constitute one major class of molecular chaperones, which serve as first-line defense molecules, protecting against protein aggregation in a stress-dependent manner. One feature these chaperones have in common is their ability to utilize structural plasticity for their stress-specific activation, recognition, and release of the misfolded client. In this paper, we focus on the functional and structural analysis of one such intrinsically disordered chaperone, the bacterial redox-regulated Hsp33, which protects proteins against aggregation during oxidative stress. Here, we present a toolbox of diverse techniques for studying redox-regulated chaperone activity, as well as for mapping conformational changes of the chaperone, underlying its activity. Specifically, we describe a workflow which includes the preparation of fully reduced and fully oxidized proteins, followed by an analysis of the chaperone anti-aggregation activity in vitro using light-scattering, focusing on the degree of the anti-aggregation activity and its kinetics. To overcome frequent outliers accumulated during aggregation assays, we describe the usage of Kfits, a novel graphical tool which allows easy processing of kinetic measurements. This tool can be easily applied to other types of kinetic measurements for removing outliers and fitting kinetic parameters. To correlate the function with the protein structure, we describe the setup and workflow of a structural mass spectrometry technique, hydrogen-deuterium exchange mass spectrometry, that allows the mapping of conformational changes on the chaperone and substrate during different stages of Hsp33 activity. The same methodology can be applied to other protein-protein and protein-ligand interactions.
Collapse
Affiliation(s)
- Rosi Fassler
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem
| | - Nufar Edinger
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem
| | - Oded Rimon
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem;
| |
Collapse
|
65
|
Goemans CV, Vertommen D, Agrebi R, Collet JF. CnoX Is a Chaperedoxin: A Holdase that Protects Its Substrates from Irreversible Oxidation. Mol Cell 2018; 70:614-627.e7. [PMID: 29754824 DOI: 10.1016/j.molcel.2018.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/22/2018] [Accepted: 04/03/2018] [Indexed: 02/01/2023]
Abstract
Bleach (HOCl) is a powerful oxidant that kills bacteria in part by causing protein aggregation. It inactivates ATP-dependent chaperones, rendering cellular proteins mostly dependent on holdases. Here we identified Escherichia coli CnoX (YbbN) as a folding factor that, when activated by bleach via chlorination, functions as an efficient holdase, protecting the substrates of the major folding systems GroEL/ES and DnaK/J/GrpE. Remarkably, CnoX uniquely combines this function with the ability to prevent the irreversible oxidation of its substrates. This dual activity makes CnoX the founding member of a family of proteins, the "chaperedoxins." Because CnoX displays a thioredoxin fold and a tetratricopeptide (TPR) domain, two structural motifs conserved in all organisms, this investigation sets the stage for the discovery of additional chaperedoxins in bacteria and eukaryotes that could cooperate with proteins from both the Hsp60 and Hsp70 families.
Collapse
Affiliation(s)
- Camille V Goemans
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Didier Vertommen
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Rym Agrebi
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Jean-François Collet
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium.
| |
Collapse
|
66
|
The Type VI Secretion System Engages a Redox-Regulated Dual-Functional Heme Transporter for Zinc Acquisition. Cell Rep 2018; 20:949-959. [PMID: 28746878 DOI: 10.1016/j.celrep.2017.06.081] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/15/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022] Open
Abstract
The type VI secretion system was recently reported to be involved in zinc acquisition, but the underlying mechanism remains unclear. Here, we report that Burkholderia thailandensis T6SS4 is involved in zinc acquisition via secretion of a zinc-scavenging protein, TseZ, that interacts with the outer membrane heme transporter HmuR. We find that HmuR is a redox-regulated dual-functional transporter that transports heme iron under normal conditions but zinc upon sensing extracellular oxidative stress, triggered by formation of an intramolecular disulfide bond. Acting as the first line of defense against oxidative stress, HmuR not only guarantees an immediate response to the changing environment but also provides a fine-tuned mechanism that allows a gradual response to perceived stress. The T6SS/HmuR-mediated active zinc transport system is also involved in bacterial virulence and contact-independent bacterial competition. We describe a sophisticated bacterial zinc acquisition mechanism affording insights into the role of metal ion transport systems.
Collapse
|
67
|
The Role of Free Radicals in Autophagy Regulation: Implications for Ageing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2450748. [PMID: 29682156 PMCID: PMC5846360 DOI: 10.1155/2018/2450748] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/05/2018] [Accepted: 01/16/2018] [Indexed: 12/19/2022]
Abstract
Reactive oxygen and nitrogen species (ROS and RNS, resp.) have been traditionally perceived solely as detrimental, leading to oxidative damage of biological macromolecules and organelles, cellular demise, and ageing. However, recent data suggest that ROS/RNS also plays an integral role in intracellular signalling and redox homeostasis (redoxtasis), which are necessary for the maintenance of cellular functions. There is a complex relationship between cellular ROS/RNS content and autophagy, which represents one of the major quality control systems in the cell. In this review, we focus on redox signalling and autophagy regulation with a special interest on ageing-associated changes. In the last section, we describe the role of autophagy and redox signalling in the context of Alzheimer's disease as an example of a prevalent age-related disorder.
Collapse
|
68
|
Alcock LJ, Perkins MV, Chalker JM. Chemical methods for mapping cysteine oxidation. Chem Soc Rev 2018; 47:231-268. [DOI: 10.1039/c7cs00607a] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Methods to characterise oxidative modifications of cysteine help clarify their role in protein function in both healthy and diseased cells.
Collapse
Affiliation(s)
- Lisa J. Alcock
- College of Science and Engineering
- Flinders University
- South Australia
- Australia
| | - Michael V. Perkins
- College of Science and Engineering
- Flinders University
- South Australia
- Australia
| | - Justin M. Chalker
- College of Science and Engineering
- Flinders University
- South Australia
- Australia
| |
Collapse
|
69
|
Rimon O, Suss O, Goldenberg M, Fassler R, Yogev O, Amartely H, Propper G, Friedler A, Reichmann D. A Role of Metastable Regions and Their Connectivity in the Inactivation of a Redox-Regulated Chaperone and Its Inter-Chaperone Crosstalk. Antioxid Redox Signal 2017; 27:1252-1267. [PMID: 28394178 DOI: 10.1089/ars.2016.6900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS A recently discovered group of conditionally disordered chaperones share a very unique feature; they need to lose structure to become active as chaperones. This activation mechanism makes these chaperones particularly suited to respond to protein-unfolding stress conditions, such as oxidative unfolding. However, the role of this disorder in stress-related activation, chaperone function, and the crosstalk with other chaperone systems is not yet clear. Here, we focus on one of the members of the conditionally disordered chaperones, a thiol-redox switch of the bacterial proteostasis system, Hsp33. RESULTS By modifying the Hsp33's sequence, we reveal that the metastable region has evolved to abolish redox-dependent chaperone activity, rather than enhance binding affinity for client proteins. The intrinsically disordered region of Hsp33 serves as an anchor for the reduced, inactive state of Hsp33, and it dramatically affects the crosstalk with the synergetic chaperone system, DnaK/J. Using mass spectrometry, we describe the role that the metastable region plays in determining client specificity during normal and oxidative stress conditions in the cell. Innovation and Conclusion: We uncover a new role of protein plasticity in Hsp33's inactivation, client specificity, crosstalk with the synergistic chaperone system DnaK/J, and oxidative stress-specific interactions in bacteria. Our results also suggest that Hsp33 might serve as a member of the house-keeping proteostasis machinery, tasked with maintaining a "healthy" proteome during normal conditions, and that this function does not depend on the metastable linker region. Antioxid. Redox Signal. 27, 1252-1267.
Collapse
Affiliation(s)
- Oded Rimon
- 1 Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem , Jerusalem, Israel
| | - Ohad Suss
- 1 Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem , Jerusalem, Israel
| | - Mor Goldenberg
- 1 Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem , Jerusalem, Israel
| | - Rosi Fassler
- 1 Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem , Jerusalem, Israel
| | - Ohad Yogev
- 1 Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem , Jerusalem, Israel
| | - Hadar Amartely
- 2 Institute of Chemistry, The Hebrew University of Jerusalem , Safra Campus Givat Ram, Jerusalem, Israel
| | - Guy Propper
- 1 Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem , Jerusalem, Israel
| | - Assaf Friedler
- 2 Institute of Chemistry, The Hebrew University of Jerusalem , Safra Campus Givat Ram, Jerusalem, Israel
| | - Dana Reichmann
- 1 Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem , Jerusalem, Israel
| |
Collapse
|
70
|
Voth W, Jakob U. Stress-Activated Chaperones: A First Line of Defense. Trends Biochem Sci 2017; 42:899-913. [PMID: 28893460 DOI: 10.1016/j.tibs.2017.08.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 10/18/2022]
Abstract
Proteins are constantly challenged by environmental stress conditions that threaten their structure and function. Especially problematic are oxidative, acid, and severe heat stress which induce very rapid and widespread protein unfolding and generate conditions that make canonical chaperones and/or transcriptional responses inadequate to protect the proteome. We review here recent advances in identifying and characterizing stress-activated chaperones which are inactive under non-stress conditions but become potent chaperones under specific protein-unfolding stress conditions. We discuss the post-translational mechanisms by which these chaperones sense stress, and consider the role that intrinsic disorder plays in their regulation and function. We examine their physiological roles under both non-stress and stress conditions, their integration into the cellular proteostasis network, and their potential as novel therapeutic targets.
Collapse
Affiliation(s)
- Wilhelm Voth
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular Biology, Universitätsmedizin Göttingen, 37073 Göttingen, Germany
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
71
|
Nagakannan P, Eftekharpour E. Differential redox sensitivity of cathepsin B and L holds the key to autophagy-apoptosis interplay after Thioredoxin reductase inhibition in nutritionally stressed SH-SY5Y cells. Free Radic Biol Med 2017; 108:819-831. [PMID: 28478025 DOI: 10.1016/j.freeradbiomed.2017.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 01/10/2023]
Abstract
Reactive oxygen species (ROS) are essential for induction of protective autophagy, however unexpected rise in cellular ROS levels overpowers the cellular defense and therefore promotes the programmed apoptotic cell death. We recently reported that inhibition of thioredoxin reductase (TrxR) in starving SH-SY5Y cells interrupted autophagy flux by induction of lysosomal deficiency and promoted apoptosis. (Free Radic Biol Med. 2016: 101:53-70). Here, we aimed to elucidate the underlying mechanisms during autophagy-apoptosis interplay, and focused on regulation of cathepsin B (CTSB) and L (CTSL), the pro-apoptotic and pro-autophagy cathepsins respectively. Inhibition of TrxR by Auranofin, caused lysosomal membrane permeabilization (LMP) that was associated with a significant upregulation of CTSB activity, despite no significant changes in CTSB protein level. Conversely, a significant rise in CTSL protein levels was observed without any apparent change in CTSL activity. Using thiol-trapping techniques to examine the differential sensitivity of cathepsins to oxidative stress, we discovered that Auranofin-mediated oxidative stress interferes with CTSL processing and thereby interrupts its pro-autophagy function. No evidence of CTSB susceptibility to oxidative stress was observed. Our data suggest that cellular fate in these conditions is mediated by two concurrent systems: while oxidative stress prevents the protective autophagy by inhibition of CTSL processing, concomitantly, apoptosis is induced by increasing lysosomal membrane permeability and leakage of CTSB into cytoplasm. Inhibition of CTSB in these conditions inhibited apoptosis and increased cell viability. To our knowledge this is the first report uncovering the impact of redox environment on autophagy-apoptosis interplay in neuronal cells.
Collapse
Affiliation(s)
- Pandian Nagakannan
- Regenerative Medicine Program, Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Eftekhar Eftekharpour
- Regenerative Medicine Program, Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
72
|
Interaction of tankyrase and peroxiredoxin II is indispensable for the survival of colorectal cancer cells. Nat Commun 2017; 8:40. [PMID: 28659575 PMCID: PMC5489516 DOI: 10.1038/s41467-017-00054-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 05/02/2017] [Indexed: 12/16/2022] Open
Abstract
Mammalian 2-Cys peroxiredoxin (Prx) enzymes are overexpressed in most cancer tissues, but their specific signaling role in cancer progression is poorly understood. Here we demonstrate that Prx type II (PrxII) plays a tumor-promoting role in colorectal cancer by interacting with a poly(ADP-ribose) polymerase (PARP) tankyrase. PrxII deletion in mice with inactivating mutation of adenomatous polyposis coli (APC) gene reduces intestinal adenomatous polyposis via Axin/β-catenin axis and thereby promotes survival. In human colorectal cancer cells with APC mutations, PrxII depletion consistently reduces the β-catenin levels and the expression of β-catenin target genes. Essentially, PrxII depletion hampers the PARP-dependent Axin1 degradation through tankyrase inactivation. Direct binding of PrxII to tankyrase ARC4/5 domains seems to be crucial for protecting tankyrase from oxidative inactivation. Furthermore, a chemical compound targeting PrxII inhibits the expansion of APC-mutant colorectal cancer cells in vitro and in vivo tumor xenografts. Collectively, this study reveals a redox mechanism for regulating tankyrase activity and implicates PrxII as a targetable antioxidant enzyme in APC-mutation-positive colorectal cancer. 2-Cys peroxiredoxin (Prx) enzymes are highly expressed in most cancers but how they promote cancer progression is unclear. Here the authors show that in colorectal cancers with APC mutation, PrxII binds to tankyrase and prevents its oxidative inactivation, thereby preventing Axin1-dependent degradation of ²b-catenin.
Collapse
|
73
|
Read SA, O'Connor KS, Suppiah V, Ahlenstiel CLE, Obeid S, Cook KM, Cunningham A, Douglas MW, Hogg PJ, Booth D, George J, Ahlenstiel G. Zinc is a potent and specific inhibitor of IFN-λ3 signalling. Nat Commun 2017; 8:15245. [PMID: 28513591 PMCID: PMC5442324 DOI: 10.1038/ncomms15245] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/12/2017] [Indexed: 12/24/2022] Open
Abstract
Lambda interferons (IFNL, IFN-λ) are pro-inflammatory cytokines important in acute and chronic viral infection. Single-nucleotide polymorphisms rs12979860 and rs8099917 within the IFNL gene locus predict hepatitis C virus (HCV) clearance, as well as inflammation and fibrosis progression in viral and non-viral liver disease. The underlying mechanism, however, is not defined. Here we show that the rs12979860 CC genotype correlates with increased hepatic metallothionein expression through increased systemic zinc levels. Zinc interferes with IFN-λ3 binding to IFNL receptor 1 (IFNLR1), resulting in decreased antiviral activity and increased viral replication (HCV, influenza) in vitro. HCV patients with high zinc levels have low hepatocyte antiviral and inflammatory gene expression and high viral loads, confirming the inhibitory role of zinc in vivo. We provide the first evidence that zinc can act as a potent and specific inhibitor of IFN-λ3 signalling and highlight its potential as a target of therapeutic intervention for IFN-λ3-mediated chronic disease.
Collapse
Affiliation(s)
- Scott A. Read
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Kate S. O'Connor
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Vijay Suppiah
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Chantelle L. E. Ahlenstiel
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Stephanie Obeid
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Kristina M. Cook
- The Centenary Institute, Camperdown, New South Wales 2050, Australia
| | - Anthony Cunningham
- Centre of Virus Research, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Mark W. Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales 2145, Australia
- Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Philip J. Hogg
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - David Booth
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Golo Ahlenstiel
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales 2145, Australia
| |
Collapse
|
74
|
Xing J, Xu H, Wang Y, Tang X, Sheng X, Zhan W. Protective efficacy of six immunogenic recombinant proteins of Vibrio anguillarum and evaluation them as vaccine candidate for flounder (Paralichthys olivaceus). Microb Pathog 2017; 107:155-163. [PMID: 28351709 DOI: 10.1016/j.micpath.2017.03.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 01/09/2023]
Abstract
Vibrio anguillarum is a severe bacterium that causes terminal haemorrhagic septicaemia in freshwater and marine fish. Virulence-associated proteins play an important role in bacterial pathogenicity and could be applied for immunoprophylaxis. In this study, six antigenic proteins from V. anguillarum were selected and the immune protective efficacy of their recombinant proteins was investigated. VirA, CheR, FlaC, OmpK, OmpR and Hsp33 were recombinantly produced and the reactions of recombinant proteins to flounder-anti-V. anguillarum antibodies (fV-ab) were detected, respectively. Then the recombinant proteins were injected to fish, after immunization, the percentages of surface membrane immunoglobulin-positive (sIg+) cell in lymphocytes, total antibodies, antibodies against V. anguillarum, antibodies against recombinant proteins and relative percent survival (RPS) were analyzed, respectively. The results showed that all the recombinant proteins could react to fV-ab, proliferate sIg + cells in lymphocytes and induce production of total antibodies, specific antibodies against V. anguillarum or the recombinant proteins; the RPS of rVirA, rCheR, rFlaC, rOmpK, rOmpR and rHsp33 against V. anguillarum was 70.27%, 27.03%, 16.22%, 62.16%, 45.95% and 81.08%, respectively. The results revealed that rHsp33, rVirA and rOmpK have good protections against V. anguillarum and could be vaccine candidates against V. anguillarum.
Collapse
Affiliation(s)
- Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Hongsen Xu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Yang Wang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, China.
| |
Collapse
|
75
|
Dahl JU, Koldewey P, Bardwell JCA, Jakob U. Detection of the pH-dependent Activity of Escherichia coli Chaperone HdeB In Vitro and In Vivo. J Vis Exp 2016. [PMID: 27805614 DOI: 10.3791/54527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Bacteria are frequently exposed to environmental changes, such as alterations in pH, temperature, redox status, light exposure or mechanical force. Many of these conditions cause protein unfolding in the cell and have detrimental impact on the survival of the organism. A group of unrelated, stress-specific molecular chaperones have been shown to play essential roles in the survival of these stress conditions. While fully folded and chaperone-inactive before stress, these proteins rapidly unfold and become chaperone-active under specific stress conditions. Once activated, these conditionally disordered chaperones bind to a large number of different aggregation-prone proteins, prevent their aggregation and either directly or indirectly facilitate protein refolding upon return to non-stress conditions. The primary approach for gaining a more detailed understanding about the mechanism of their activation and client recognition involves the purification and subsequent characterization of these proteins using in vitro chaperone assays. Follow-up in vivo stress assays are absolutely essential to independently confirm the obtained in vitro results. This protocol describes in vitro and in vivo methods to characterize the chaperone activity of E. coli HdeB, an acid-activated chaperone. Light scattering measurements were used as a convenient read-out for HdeB's capacity to prevent acid-induced aggregation of an established model client protein, MDH, in vitro. Analytical ultracentrifugation experiments were applied to reveal complex formation between HdeB and its client protein LDH, to shed light into the fate of client proteins upon their return to non-stress conditions. Enzymatic activity assays of the client proteins were conducted to monitor the effects of HdeB on pH-induced client inactivation and reactivation. Finally, survival studies were used to monitor the influence of HdeB's chaperone function in vivo.
Collapse
Affiliation(s)
- Jan-Ulrik Dahl
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan;
| | - Philipp Koldewey
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan; Howard Hughes Medical Institute, University of Michigan
| | - James C A Bardwell
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan; Howard Hughes Medical Institute, University of Michigan;
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan
| |
Collapse
|
76
|
Ortega-Villasante C, Burén S, Barón-Sola Á, Martínez F, Hernández LE. In vivo ROS and redox potential fluorescent detection in plants: Present approaches and future perspectives. Methods 2016; 109:92-104. [DOI: 10.1016/j.ymeth.2016.07.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 11/16/2022] Open
|
77
|
Hristozova N, Tompa P, Kovacs D. A Novel Method for Assessing the Chaperone Activity of Proteins. PLoS One 2016; 11:e0161970. [PMID: 27564234 PMCID: PMC5001627 DOI: 10.1371/journal.pone.0161970] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/15/2016] [Indexed: 12/02/2022] Open
Abstract
Protein chaperones are molecular machines which function both during homeostasis and stress conditions in all living organisms. Depending on their specific function, molecular chaperones are involved in a plethora of cellular processes by playing key roles in nascent protein chain folding, transport and quality control. Among stress protein families-molecules expressed during adverse conditions, infection, and diseases-chaperones are highly abundant. Their molecular functions range from stabilizing stress-susceptible molecules and membranes to assisting the refolding of stress-damaged proteins, thereby acting as protective barriers against cellular damage. Here we propose a novel technique to test and measure the capability for protective activity of known and putative chaperones in a semi-high throughput manner on a plate reader. The current state of the art does not allow the in vitro measurements of chaperone activity in a highly parallel manner with high accuracy or high reproducibility, thus we believe that the method we report will be of significant benefit in this direction. The use of this method may lead to a considerable increase in the number of experimentally verified proteins with such functions, and may also allow the dissection of their molecular mechanism for a better understanding of their function.
Collapse
Affiliation(s)
- Nevena Hristozova
- Structural Biology Department, Flemish Institute of Biotechnology, Brussels, Belgium
- Structural Biology Department, Free University Brussels, Brussels, Belgium
| | - Peter Tompa
- Structural Biology Department, Flemish Institute of Biotechnology, Brussels, Belgium
- Structural Biology Department, Free University Brussels, Brussels, Belgium
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Denes Kovacs
- Structural Biology Department, Flemish Institute of Biotechnology, Brussels, Belgium
- Structural Biology Department, Free University Brussels, Brussels, Belgium
| |
Collapse
|
78
|
The anti-sigma factor RsrA responds to oxidative stress by reburying its hydrophobic core. Nat Commun 2016; 7:12194. [PMID: 27432510 PMCID: PMC4960319 DOI: 10.1038/ncomms12194] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/08/2016] [Indexed: 12/22/2022] Open
Abstract
Redox-regulated effector systems that counteract oxidative stress are essential for all forms of life. Here we uncover a new paradigm for sensing oxidative stress centred on the hydrophobic core of a sensor protein. RsrA is an archetypal zinc-binding anti-sigma factor that responds to disulfide stress in the cytoplasm of Actinobacteria. We show that RsrA utilizes its hydrophobic core to bind the sigma factor σR preventing its association with RNA polymerase, and that zinc plays a central role in maintaining this high-affinity complex. Oxidation of RsrA is limited by the rate of zinc release, which weakens the RsrA–σR complex by accelerating its dissociation. The subsequent trigger disulfide, formed between specific combinations of RsrA's three zinc-binding cysteines, precipitates structural collapse to a compact state where all σR-binding residues are sequestered back into its hydrophobic core, releasing σR to activate transcription of anti-oxidant genes. Counteracting oxidative stress is essential in all organisms. Here, the authors outline a mechanism used by actinomycete bacteria in which oxidation of zinc-binding RsrA blocks its interaction with σR by sequestering hydrophobic residues used to bind σR within its own core.
Collapse
|
79
|
Buhr F, Jha S, Thommen M, Mittelstaet J, Kutz F, Schwalbe H, Rodnina MV, Komar AA. Synonymous Codons Direct Cotranslational Folding toward Different Protein Conformations. Mol Cell 2016; 61:341-351. [PMID: 26849192 DOI: 10.1016/j.molcel.2016.01.008] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/12/2015] [Accepted: 12/24/2015] [Indexed: 11/26/2022]
Abstract
In all genomes, most amino acids are encoded by more than one codon. Synonymous codons can modulate protein production and folding, but the mechanism connecting codon usage to protein homeostasis is not known. Here we show that synonymous codon variants in the gene encoding gamma-B crystallin, a mammalian eye-lens protein, modulate the rates of translation and cotranslational folding of protein domains monitored in real time by Förster resonance energy transfer and fluorescence-intensity changes. Gamma-B crystallins produced from mRNAs with changed codon bias have the same amino acid sequence but attain different conformations, as indicated by altered in vivo stability and in vitro protease resistance. 2D NMR spectroscopic data suggest that structural differences are associated with different cysteine oxidation states of the purified proteins, providing a link between translation, folding, and the structures of isolated proteins. Thus, synonymous codons provide a secondary code for protein folding in the cell.
Collapse
Affiliation(s)
- Florian Buhr
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Sujata Jha
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Michael Thommen
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Joerg Mittelstaet
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Felicitas Kutz
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Anton A Komar
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA.,Department of Biochemistry and Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
80
|
Mukhopadyay R, Sudasinghe N, Schaub T, Yukl ET. Heme-independent Redox Sensing by the Heme-Nitric Oxide/Oxygen-binding Protein (H-NOX) from Vibrio cholerae. J Biol Chem 2016; 291:17547-56. [PMID: 27358409 DOI: 10.1074/jbc.m116.733337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Indexed: 11/06/2022] Open
Abstract
Heme nitric oxide/oxygen (H-NOX)-binding proteins act as nitric oxide (NO) sensors among various bacterial species. In several cases, they act to mediate communal behavior such as biofilm formation, quorum sensing, and motility by influencing the activity of downstream signaling proteins such as histidine kinases (HisKa) in a NO-dependent manner. An H-NOX/HisKa regulatory circuit was recently identified in Vibrio cholerae, and the H-NOX protein has been spectroscopically characterized. However, the influence of the H-NOX protein on HisKa autophosphorylation has not been evaluated. This process may be important for persistence and pathogenicity in this organism. Here, we have expressed and purified the V. cholerae HisKa (HnoK) and H-NOX in its heme-bound (holo) and heme-free (apo) forms. Autophosphorylation assays of HnoK in the presence of H-NOX show that the holoprotein in the Fe(II)-NO and Fe(III) forms is a potent inhibitor of HnoK. Activity of the Fe(III) form and aerobic instability of the Fe(II) form suggested that Vibrio cholerae H-NOX may act as a sensor of the redox state as well as NO. Remarkably, the apoprotein also showed robust HnoK inhibition that was dependent on the oxidation of cysteine residues to form disulfide bonds at a highly conserved zinc site. The importance of cysteine in this process was confirmed by mutagenesis, which also showed that holo Fe(III), but not Fe(II)-NO, H-NOX relied heavily upon cysteine for activation. These results highlight a heme-independent mechanism for activation of V. cholerae H-NOX that implicates this protein as a dual redox/NO sensor.
Collapse
Affiliation(s)
| | - Nilusha Sudasinghe
- Chemical Analysis and Instrumentation Laboratory, New Mexico State University, Las Cruces, New Mexico 88003
| | - Tanner Schaub
- Chemical Analysis and Instrumentation Laboratory, New Mexico State University, Las Cruces, New Mexico 88003
| | - Erik T Yukl
- From the Department of Chemistry and Biochemistry and
| |
Collapse
|
81
|
Kumar CS, Swamy MJ. A pH Switch Regulates the Inverse Relationship between Membranolytic and Chaperone-like Activities of HSP-1/2, a Major Protein of Horse Seminal Plasma. Biochemistry 2016; 55:3650-7. [DOI: 10.1021/acs.biochem.5b01374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C. Sudheer Kumar
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Musti J. Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
82
|
Lafaye C, Van Molle I, Tamu Dufe V, Wahni K, Boudier A, Leroy P, Collet JF, Messens J. Sulfur Denitrosylation by an Engineered Trx-like DsbG Enzyme Identifies Nucleophilic Cysteine Hydrogen Bonds as Key Functional Determinant. J Biol Chem 2016; 291:15020-8. [PMID: 27226614 DOI: 10.1074/jbc.m116.729426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 11/06/2022] Open
Abstract
Exposure of bacteria to NO results in the nitrosylation of cysteine thiols in proteins and low molecular weight thiols such as GSH. The cells possess enzymatic systems that catalyze the denitrosylation of these modified sulfurs. An important player in these systems is thioredoxin (Trx), a ubiquitous, cytoplasmic oxidoreductase that can denitrosylate proteins in vivo and S-nitrosoglutathione (GSNO) in vitro However, a periplasmic or extracellular denitrosylase has not been identified, raising the question of how extracytoplasmic proteins are repaired after nitrosative damage. In this study, we tested whether DsbG and DsbC, two Trx family proteins that function in reducing pathways in the Escherichia coli periplasm, also possess denitrosylating activity. Both DsbG and DsbC are poorly reactive toward GSNO. Moreover, DsbG is unable to denitrosylate its specific substrate protein, YbiS. Remarkably, by borrowing the CGPC active site of E. coli Trx-1 in combination with a T200M point mutation, we transformed DsbG into an enzyme highly reactive toward GSNO and YbiS. The pKa of the nucleophilic cysteine, as well as the redox and thermodynamic properties of the engineered DsbG are dramatically changed and become similar to those of E. coli Trx-1. X-ray structural insights suggest that this results from a loss of two direct hydrogen bonds to the nucleophilic cysteine sulfur in the DsbG mutant. Our results highlight the plasticity of the Trx structural fold and reveal that the subtle change of the number of hydrogen bonds in the active site of Trx-like proteins is the key factor that thermodynamically controls reactivity toward nitrosylated compounds.
Collapse
Affiliation(s)
- Céline Lafaye
- From the de Duve Institute, Université Catholique de Louvain, B-1200 Brussels, Belgium, WELBIO, B-1200 Brussels, Belgium, the Brussels Center for Redox Biology, B-1050 Brussels, Belgium
| | - Inge Van Molle
- the Brussels Center for Redox Biology, B-1050 Brussels, Belgium, the Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, B-1050 Brussels, Belgium, the Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium, and
| | - Veronica Tamu Dufe
- From the de Duve Institute, Université Catholique de Louvain, B-1200 Brussels, Belgium, WELBIO, B-1200 Brussels, Belgium, the Brussels Center for Redox Biology, B-1050 Brussels, Belgium, the Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, B-1050 Brussels, Belgium, the Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium, and
| | - Khadija Wahni
- the Brussels Center for Redox Biology, B-1050 Brussels, Belgium, the Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, B-1050 Brussels, Belgium, the Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium, and
| | - Ariane Boudier
- the Université de Lorraine, Faculté de Pharmacie, 54000 Nancy, France
| | - Pierre Leroy
- the Université de Lorraine, Faculté de Pharmacie, 54000 Nancy, France
| | - Jean-François Collet
- From the de Duve Institute, Université Catholique de Louvain, B-1200 Brussels, Belgium, WELBIO, B-1200 Brussels, Belgium, the Brussels Center for Redox Biology, B-1050 Brussels, Belgium,
| | - Joris Messens
- the Brussels Center for Redox Biology, B-1050 Brussels, Belgium, the Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, B-1050 Brussels, Belgium, the Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium, and
| |
Collapse
|
83
|
Rule CS, Patrick M, Camberg JL, Maricic N, Hol WG, Sandkvist M. Zinc coordination is essential for the function and activity of the type II secretion ATPase EpsE. Microbiologyopen 2016; 5:870-882. [PMID: 27168165 PMCID: PMC5061722 DOI: 10.1002/mbo3.376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 11/10/2022] Open
Abstract
The type II secretion system Eps in Vibrio cholerae promotes the extracellular transport of cholera toxin and several hydrolytic enzymes and is a major virulence system in many Gram‐negative pathogens which is structurally related to the type IV pilus system. The cytoplasmic ATPase EpsE provides the energy for exoprotein secretion through ATP hydrolysis. EpsE contains a unique metal‐binding domain that coordinates zinc through a tetracysteine motif (CXXCX29CXXC), which is also present in type IV pilus assembly but not retraction ATPases. Deletion of the entire domain or substitution of any of the cysteine residues that coordinate zinc completely abrogates secretion in an EpsE‐deficient strain and has a dominant negative effect on secretion in the presence of wild‐type EpsE. Consistent with the in vivo data, chemical depletion of zinc from purified EpsE hexamers results in loss of in vitro ATPase activity. In contrast, exchanging the residues between the two dicysteines with those from the homologous ATPase XcpR from Pseudomonas aeruginosa does not have a significant impact on EpsE. These results indicate that, although the individual residues in the metal‐binding domain are generally interchangeable, zinc coordination is essential for the activity and function of EpsE.
Collapse
Affiliation(s)
- Chelsea S Rule
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Marcella Patrick
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jodi L Camberg
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Rockville, Maryland
| | - Natalie Maricic
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Wim G Hol
- Department of Biochemistry, Biomolecular Structure Center, University of Washington, Seattle, Washington
| | - Maria Sandkvist
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
84
|
Love DT, Barrett TJ, White MY, Cordwell SJ, Davies MJ, Hawkins CL. Cellular targets of the myeloperoxidase-derived oxidant hypothiocyanous acid (HOSCN) and its role in the inhibition of glycolysis in macrophages. Free Radic Biol Med 2016; 94:88-98. [PMID: 26898502 DOI: 10.1016/j.freeradbiomed.2016.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 12/20/2022]
Abstract
Myeloperoxidase (MPO) released at sites of inflammation catalyzes the formation of the oxidants hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN) from H2O2 and halide and pseudo-halide ions. HOCl, a major oxidant produced under physiological conditions reacts rapidly with many biological molecules, and is strongly linked with tissue damage during inflammatory disease. The role of HOSCN in disease is less clear, though it can initiate cellular damage by pathways involving the selective oxidation of thiol-containing proteins. Utilizing a thiol-specific proteomic approach, we explored the cellular targets of HOSCN in macrophages (J774A.1). We report that multiple thiol-containing proteins involved in metabolism and glycolysis; fructose bisphosphate aldolase, triosephosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and creatine kinase, together with a number of chaperone, antioxidant and structural proteins, were modified in a reversible manner in macrophages treated with HOSCN. The modification of the metabolic enzymes was associated with a decrease in basal glycolysis, glycolytic reserve, glycolytic capacity and lactate release, which was only partly reversible on further incubation in the absence of HOSCN. Inhibition of glycolysis preceded cell death and was seen in cells exposed to low concentrations (≤25µM) of HOSCN. The ability of HOSCN to inhibit glycolysis and perturb energy production is likely to contribute to the cell death seen in macrophages on further incubation after the initial treatment period, which may be relevant for the propagation of inflammatory disease in smokers, who have elevated plasma levels of the HOSCN precursor, thiocyanate.
Collapse
Affiliation(s)
- Dominic T Love
- The Heart Research Institute, 7 Eliza St., Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Tessa J Barrett
- The Heart Research Institute, 7 Eliza St., Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Melanie Y White
- School of Molecular Bioscience, School of Medical Sciences, and Charles Perkins Centre, University of Sydney, 2006, Australia
| | - Stuart J Cordwell
- School of Molecular Bioscience, School of Medical Sciences, and Charles Perkins Centre, University of Sydney, 2006, Australia
| | - Michael J Davies
- The Heart Research Institute, 7 Eliza St., Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| | - Clare L Hawkins
- The Heart Research Institute, 7 Eliza St., Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
85
|
Docter BE, Horowitz S, Gray MJ, Jakob U, Bardwell JCA. Do nucleic acids moonlight as molecular chaperones? Nucleic Acids Res 2016; 44:4835-45. [PMID: 27105849 PMCID: PMC4889950 DOI: 10.1093/nar/gkw291] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/08/2016] [Indexed: 01/17/2023] Open
Abstract
Organisms use molecular chaperones to combat the unfolding and aggregation of proteins. While protein chaperones have been widely studied, here we demonstrate that DNA and RNA exhibit potent chaperone activity in vitro Nucleic acids suppress the aggregation of classic chaperone substrates up to 300-fold more effectively than the protein chaperone GroEL. Additionally, RNA cooperates with the DnaK chaperone system to refold purified luciferase. Our findings reveal a possible new role for nucleic acids within the cell: that nucleic acids directly participate in maintaining proteostasis by preventing protein aggregation.
Collapse
Affiliation(s)
- Brianne E Docter
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott Horowitz
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael J Gray
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - James C A Bardwell
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
86
|
Abstract
Neutrophils are essential for killing bacteria and other microorganisms, and they also have a significant role in regulating the inflammatory response. Stimulated neutrophils activate their NADPH oxidase (NOX2) to generate large amounts of superoxide, which acts as a precursor of hydrogen peroxide and other reactive oxygen species that are generated by their heme enzyme myeloperoxidase. When neutrophils engulf bacteria they enclose them in small vesicles (phagosomes) into which superoxide is released by activated NOX2 on the internalized neutrophil membrane. The superoxide dismutates to hydrogen peroxide, which is used by myeloperoxidase to generate other oxidants, including the highly microbicidal species hypochlorous acid. NOX activation occurs at other sites in the cell, where it is considered to have a regulatory function. Neutrophils also release oxidants, which can modify extracellular targets and affect the function of neighboring cells. We discuss the identity and chemical properties of the specific oxidants produced by neutrophils in different situations, and what is known about oxidative mechanisms of microbial killing, inflammatory tissue damage, and signaling.
Collapse
Affiliation(s)
- Christine C Winterbourn
- Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch 8011, New Zealand; , ,
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch 8011, New Zealand; , ,
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch 8011, New Zealand; , ,
| |
Collapse
|
87
|
Deponte M, Lillig CH. Enzymatic control of cysteinyl thiol switches in proteins. Biol Chem 2016; 396:401-13. [PMID: 25581754 DOI: 10.1515/hsz-2014-0280] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/23/2014] [Indexed: 01/08/2023]
Abstract
The spatiotemporal modification of specific cysteinyl residues in proteins has emerged as a novel concept in signal transduction. Such modifications alter the redox state of the cysteinyl thiol group, with implications for the structure and biological function of the protein. Regulatory cysteines are therefore classified as 'thiol switches'. In this review we emphasize the relevance of enzymes for specific and efficient redox sensing, evaluate prerequisites and general properties of redox switches, and highlight mechanistic principles for toggling thiol switches. Moreover, we provide an overview of potential mechanisms for the initial formation of regulatory disulfide bonds. In brief, we address the three basic questions (i) what defines a thiol switch, (ii) which parameters confer signal specificity, and (iii) how are thiol switches oxidized?
Collapse
|
88
|
Hammerling U. Retinol as electron carrier in redox signaling, a new frontier in vitamin A research. Hepatobiliary Surg Nutr 2016; 5:15-28. [PMID: 26904553 PMCID: PMC4739943 DOI: 10.3978/j.issn.2304-3881.2016.01.02] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/06/2015] [Indexed: 01/26/2023]
Abstract
Nature uses carotenoids and retinoids as chromophores for diverse energy conversion processes. The key structural feature enabling the interaction with light and other manifestations of electro-magnetism is the conjugated double-bond system that all members of this superfamily share in common. Among retinoids, retinaldehyde alone was long known as the active chromophore of vision in vertebrates and invertebrates, as well of various light-driven proton and ion pumps in Archaea. Until now, vitamin A (retinol) was solely regarded as a biochemical precursor for bioactive retinoids such as retinaldehyde and retinoic acid (RA), but recent results indicate that this compound has its own physiology. It functions as an electron carrier in mitochondria. By electronically coupling protein kinase Cδ (PCKδ) with cytochrome c, vitamin A enables the redox activation of this enzyme. This review focuses on the biochemistry and biology of the PCKδ signaling system, comprising PKCδ, the adapter protein p66Shc, cytochrome c and retinol. This complex positively regulates the conversion of pyruvate to acetyl-coenzyme A (CoA) by the pyruvate dehydrogenase enzyme. Vitamin A therefore plays a key role in glycolytic energy generation. The emerging paradigm of retinol as electron-transfer agent is potentially transformative, opening new frontiers in retinoid research.
Collapse
|
89
|
Moscoso JA, Schramke H, Zhang Y, Tosi T, Dehbi A, Jung K, Gründling A. Binding of Cyclic Di-AMP to the Staphylococcus aureus Sensor Kinase KdpD Occurs via the Universal Stress Protein Domain and Downregulates the Expression of the Kdp Potassium Transporter. J Bacteriol 2016; 198:98-110. [PMID: 26195599 PMCID: PMC4686210 DOI: 10.1128/jb.00480-15] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/14/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Nucleotide signaling molecules are important intracellular messengers that regulate a wide range of biological functions. The human pathogen Staphylococcus aureus produces the signaling nucleotide cyclic di-AMP (c-di-AMP). This molecule is common among Gram-positive bacteria and in many organisms is essential for survival under standard laboratory growth conditions. In this study, we investigated the interaction of c-di-AMP with the S. aureus KdpD protein. The sensor kinase KdpD forms a two-component signaling system with the response regulator KdpE and regulates the expression of the kdpDE genes and the kdpFABC operon coding for the Kdp potassium transporter components. Here we show that the S. aureus KdpD protein binds c-di-AMP specifically and with an affinity in the micromolar range through its universal stress protein (USP) domain. This domain is located within the N-terminal cytoplasmic region of KdpD, and amino acids of a conserved SXS-X20-FTAXY motif are important for this binding. We further show that KdpD2, a second KdpD protein found in some S. aureus strains, also binds c-di-AMP, and our bioinformatics analysis indicates that a subclass of KdpD proteins in c-di-AMP-producing bacteria has evolved to bind this signaling nucleotide. Finally, we show that c-di-AMP binding to KdpD inhibits the upregulation of the kdpFABC operon under salt stress, thus indicating that c-di-AMP is a negative regulator of potassium uptake in S. aureus. IMPORTANCE Staphylococcus aureus is an important human pathogen and a major cause of food poisoning in Western countries. A common method for food preservation is the use of salt to drive dehydration. This study sheds light on the regulation of potassium uptake in Staphylococcus aureus, an important aspect of this bacterium's ability to tolerate high levels of salt. We show that the signaling nucleotide c-di-AMP binds to a regulatory component of the Kdp potassium uptake system and that this binding has an inhibitory effect on the expression of the kdp genes encoding a potassium transporter. c-di-AMP binds to the USP domain of KdpD, thus providing for the first time evidence for the ability of such a domain to bind a cyclic dinucleotide.
Collapse
Affiliation(s)
- Joana A Moscoso
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| | - Hannah Schramke
- Center for Integrated Protein Science (CiPSM), Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Yong Zhang
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| | - Tommaso Tosi
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| | - Amina Dehbi
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| | - Kirsten Jung
- Center for Integrated Protein Science (CiPSM), Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Angelika Gründling
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| |
Collapse
|
90
|
Abstract
For the past century, vitamin A has been considered to serve as a precursor for retinoids that facilitate vision or as a precursor for retinoic acid (RA), a signaling molecule that modulates gene expression. However, vitamin A circulates in plasma at levels that far exceed the amount needed for vision or the synthesis of nanomolar levels of RA, and this suggests that vitamin A alcohol (i.e. retinol) may possess additional biological activity. We have pursued this question for the last 20 years, and in this chapter, we unfold the story of our quest and the data that support a novel and distinct role for vitamin A (alcohol) action. Our current model supports direct binding of vitamin A to the activation domains of serine/threonine kinases, such as protein kinase C (PKC) and Raf isoforms, where it is involved in redox activation of these proteins. Redox activation of PKCs was first described by the founders of the PKC field, but several hurdles needed to be overcome before a detailed understanding of the biochemistry could be provided. Two discoveries moved the field forward. First, was the discovery that the PKCδ isoform was activated by cytochrome c, a protein with oxidoreduction activity in mitochondria. Second, was the revelation that both PKCδ and cytochrome c are tethered to p66Shc, an adapter protein that brings the PKC zinc-finger substrate into close proximity with its oxidizing partner. Detailed characterization of the PKCδ signalosome complex was made possible by the work of many investigators. Our contribution was determining that vitamin A is a vital co-factor required to support an unprecedented redox-activation mechanism. This unique function of vitamin A is the first example of a general system that connects the one-electron redox chemistry of a heme protein (cytochrome c) with the two-electron chemistry of a classical phosphoprotein (PKCδ). Furthermore, contributions to the regulation of mitochondrial energetics attest to biological significance of vitamin A alcohol action.
Collapse
Affiliation(s)
- Ulrich Hammerling
- Member Emeritus, Immunology Program, Sloan-Kettering Institute for Cancer Research, 10065, New York, NY, USA.
| |
Collapse
|
91
|
Lee YS, Kim JH, Seo MD, Ryu KS, Kim EH, Won HS. Oxidation-induced conformational change of Hsp33, monitored by NMR. JOURNAL OF THE KOREAN MAGNETIC RESONANCE SOCIETY 2015. [DOI: 10.6564/jkmrs.2015.19.3.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
92
|
Lee YS, Lee J, Ryu KS, Lee Y, Jung TG, Jang JH, Sim DW, Kim EH, Seo MD, Lee KW, Won HS. Semi-Empirical Structure Determination of Escherichia coli Hsp33 and Identification of Dynamic Regulatory Elements for the Activation Process. J Mol Biol 2015; 427:3850-61. [DOI: 10.1016/j.jmb.2015.09.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 09/21/2015] [Accepted: 09/30/2015] [Indexed: 11/27/2022]
|
93
|
Alternative splicing of Drosophila Nmnat functions as a switch to enhance neuroprotection under stress. Nat Commun 2015; 6:10057. [PMID: 26616331 PMCID: PMC4674693 DOI: 10.1038/ncomms10057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 10/28/2015] [Indexed: 01/09/2023] Open
Abstract
Nicotinamide mononucleotide adenylyltransferase (NMNAT) is a conserved enzyme in the NAD synthetic pathway. It has also been identified as an effective and versatile neuroprotective factor. However, it remains unclear how healthy neurons regulate the dual functions of NMNAT and achieve self-protection under stress. Here we show that Drosophila Nmnat (DmNmnat) is alternatively spliced into two mRNA variants, RA and RB, which translate to protein isoforms with divergent neuroprotective capacities against spinocerebellar ataxia 1-induced neurodegeneration. Isoform PA/PC translated from RA is nuclear-localized with minimal neuroprotective ability, and isoform PB/PD translated from RB is cytoplasmic and has robust neuroprotective capacity. Under stress, RB is preferably spliced in neurons to produce the neuroprotective PB/PD isoforms. Our results indicate that alternative splicing functions as a switch that regulates the expression of functionally distinct DmNmnat variants. Neurons respond to stress by driving the splicing switch to produce the neuroprotective variant and therefore achieve self-protection. Nicotinamide mononucleotide adenylyltransferase (NMNAT) acts in the NAD biosynthesis pathway and has neuroprotective activity. Ruan et al. show that the neuroprotective activity of NMNAT is restricted to a splice variant of the enzyme, and that this variant is preferentially spliced in response to stress.
Collapse
|
94
|
Abstract
The ancestors of Escherichia coli and Salmonella ultimately evolved to thrive in air-saturated liquids, in which oxygen levels reach 210 μM at 37°C. However, in 1976 Brown and colleagues reported that some sensitivity persists: growth defects still become apparent when hyperoxia is imposed on cultures of E. coli. This residual vulnerability was important in that it raised the prospect that normal levels of oxygen might also injure bacteria, albeit at reduced rates that are not overtly toxic. The intent of this article is both to describe the threat that molecular oxygen poses for bacteria and to detail what we currently understand about the strategies by which E. coli and Salmonella defend themselves against it. E. coli mutants that lack either superoxide dismutases or catalases and peroxidases exhibit a variety of growth defects. These phenotypes constitute the best evidence that aerobic cells continually generate intracellular superoxide and hydrogen peroxide at potentially lethal doses. Superoxide has reduction potentials that allow it to serve in vitro as either a weak univalent reductant or a stronger univalent oxidant. The addition of micromolar hydrogen peroxide to lab media will immediately block the growth of most cells, and protracted exposure will result in the loss of viability. The need for inducible antioxidant systems seems especially obvious for enteric bacteria, which move quickly from the anaerobic gut to fully aerobic surface waters or even to ROS-perfused phagolysosomes. E. coli and Salmonella have provided two paradigmatic models of oxidative-stress responses: the SoxRS and OxyR systems.
Collapse
|
95
|
Lebrun V, Tron A, Lebrun C, Latour J, McClenaghan ND, Sénèque O. Reactivity of a Zn(Cys)
2
(His)
2
Zinc Finger with Singlet Oxygen: Oxidation Directed toward Cysteines but not Histidines. Chemistry 2015; 21:14002-10. [DOI: 10.1002/chem.201501749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Vincent Lebrun
- Univ. Grenoble Alpes, LCBM/PMB and CEA, IRTSV/CBM/PMB and CNRS, LCBM UMR 5249, PMB, 38000 Grenoble (France)
| | - Arnaud Tron
- Univ. Bordeaux and CNRS, ISM, 33405 Talence (France)
| | - Colette Lebrun
- Univ. Grenoble Alpes and CEA, INAC/SCIB/RICC, 38000 Grenoble (France)
| | - Jean‐Marc Latour
- Univ. Grenoble Alpes, LCBM/PMB and CEA, IRTSV/CBM/PMB and CNRS, LCBM UMR 5249, PMB, 38000 Grenoble (France)
| | | | - Olivier Sénèque
- Univ. Grenoble Alpes, LCBM/PMB and CEA, IRTSV/CBM/PMB and CNRS, LCBM UMR 5249, PMB, 38000 Grenoble (France)
| |
Collapse
|
96
|
Suss O, Reichmann D. Protein plasticity underlines activation and function of ATP-independent chaperones. Front Mol Biosci 2015; 2:43. [PMID: 26284255 PMCID: PMC4516975 DOI: 10.3389/fmolb.2015.00043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/13/2015] [Indexed: 12/31/2022] Open
Abstract
One of the key issues in biology is to understand how cells cope with protein unfolding caused by changes in their environment. Self-protection is the natural immediate response to any sudden threat and for cells the critical issue is to prevent aggregation of existing proteins. Cellular response to stress is therefore indistinguishably linked to molecular chaperones, which are the first line of defense and function to efficiently recognize misfolded proteins and prevent their aggregation. One of the major protein families that act as cellular guards includes a group of ATP-independent chaperones, which facilitate protein folding without the consumption of ATP. This review will present fascinating insights into the diversity of ATP-independent chaperones, and the variety of mechanisms by which structural plasticity is utilized in the fine-tuning of chaperone activity, as well as in crosstalk within the proteostasis network. Research into this intriguing class of chaperones has introduced new concepts of stress response to a changing cellular environment, and paved the way to uncover how this environment affects protein folding.
Collapse
Affiliation(s)
- Ohad Suss
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| |
Collapse
|
97
|
Stroud DA, Maher MJ, Lindau C, Vögtle FN, Frazier AE, Surgenor E, Mountford H, Singh AP, Bonas M, Oeljeklaus S, Warscheid B, Meisinger C, Thorburn DR, Ryan MT. COA6 is a mitochondrial complex IV assembly factor critical for biogenesis of mtDNA-encoded COX2. Hum Mol Genet 2015; 24:5404-15. [PMID: 26160915 DOI: 10.1093/hmg/ddv265] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/06/2015] [Indexed: 01/29/2023] Open
Abstract
Biogenesis of complex IV of the mitochondrial respiratory chain requires assembly factors for subunit maturation, co-factor attachment and stabilization of intermediate assemblies. A pathogenic mutation in COA6, leading to substitution of a conserved tryptophan for a cysteine residue, results in a loss of complex IV activity and cardiomyopathy. Here, we demonstrate that the complex IV defect correlates with a severe loss in complex IV assembly in patient heart but not fibroblasts. Complete loss of COA6 activity using gene editing in HEK293T cells resulted in a profound growth defect due to complex IV deficiency, caused by impaired biogenesis of the copper-bound mitochondrial DNA-encoded subunit COX2 and subsequent accumulation of complex IV assembly intermediates. We show that the pathogenic mutation in COA6 does not affect its import into mitochondria but impairs its maturation and stability. Furthermore, we show that COA6 has the capacity to bind copper and can associate with newly translated COX2 and the mitochondrial copper chaperone SCO1. Our data reveal that COA6 is intricately involved in the copper-dependent biogenesis of COX2.
Collapse
Affiliation(s)
- David A Stroud
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Melbourne, Australia
| | - Megan J Maher
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, 3086 Melbourne, Australia
| | - Caroline Lindau
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, 3086 Melbourne, Australia
| | - F-Nora Vögtle
- Institut für Biochemie und Molekularbiologie, ZBMZ, University of Freiburg, 79104 Freiburg, Germany
| | - Ann E Frazier
- Murdoch Childrens Research Institute and Victorian Clinical Genetics Services, Royal Children's Hospital, University of Melbourne and Department of Pediatrics, University of Melbourne, 3052 Melbourne, Australia and
| | - Elliot Surgenor
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Melbourne, Australia
| | - Hayley Mountford
- Murdoch Childrens Research Institute and Victorian Clinical Genetics Services, Royal Children's Hospital, University of Melbourne and Department of Pediatrics, University of Melbourne, 3052 Melbourne, Australia and
| | - Abeer P Singh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, 3086 Melbourne, Australia
| | - Matteo Bonas
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, 3086 Melbourne, Australia
| | - Silke Oeljeklaus
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Chris Meisinger
- Institut für Biochemie und Molekularbiologie, ZBMZ, University of Freiburg, 79104 Freiburg, Germany, Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - David R Thorburn
- Institut für Biochemie und Molekularbiologie, ZBMZ, University of Freiburg, 79104 Freiburg, Germany
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Melbourne, Australia,
| |
Collapse
|
98
|
Segal N, Shapira M. HSP33 in eukaryotes - an evolutionary tale of a chaperone adapted to photosynthetic organisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:850-860. [PMID: 25892083 DOI: 10.1111/tpj.12855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/06/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
HSP33 was originally identified in bacteria as a redox-sensitive chaperone that protects unfolded proteins from aggregation. Here, we describe a eukaryote ortholog of HSP33 from the green algae Chlamydomonas reinhardtii, which appears to play a protective role under light-induced oxidizing conditions. The algal HSP33 exhibits chaperone activity, as shown by citrate synthase aggregation assays. Studies from the Jakob laboratory established that activation of the bacterial HSP33 upon its oxidation initiates by the release of pre-bound Zn from the well conserved Zn-binding motif Cys-X-Cys-Xn -Cys-X-X-Cys, and is followed by significant structural changes (Reichmann et al., ). Unlike the bacterial protein, the HSP33 from C. reinhardtii had lost the first cysteine residue of its center, diminishing Zn-binding activity under all conditions. As a result, the algal protein can be easily activated by minor structural changes in response to oxidation and/or excess heat. An attempt to restore the missing first cysteine did not have a major effect on Zn-binding and on the mode of activation. Replacement of all remaining cysteines abolished completely any residual Zn binding, although the chaperone activation was maintained. A phylogenetic analysis of the algal HSP33 showed that it clusters with the cyanobacterial protein, in line with its biochemical localization to the chloroplast. Indeed, expression of the algal HSP33 increases in response to light-induced oxidative stress, which is experienced routinely by photosynthetic organisms. Despite the fact that no ortholog could be found in higher eukaryotes, its abundance in all algal species examined could have a biotechnological relevance.
Collapse
Affiliation(s)
- Na'ama Segal
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Michal Shapira
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
99
|
Malik A, Alsenaidy AM, Elrobh M, Khan W, Alanazi MS, Bazzi MD. Optimization of expression and purification of HSPA6 protein from Camelus dromedarius in E. coli. Saudi J Biol Sci 2015; 23:410-9. [PMID: 27081368 PMCID: PMC4818323 DOI: 10.1016/j.sjbs.2015.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/23/2015] [Accepted: 04/26/2015] [Indexed: 11/29/2022] Open
Abstract
The HSPA6, one of the members of large family of HSP70, is significantly up-regulated and has been targeted as a biomarker of cellular stress in several studies. Herein, conditions were optimized to increase the yield of recombinant camel HSPA6 protein in its native state, primarily focusing on the optimization of upstream processing parameters that lead to an increase in the specific as well as volumetric yield of the protein. The results showed that the production of cHSPA6 was increased proportionally with increased incubation temperature up to 37 °C. Induction with 10 μM IPTG was sufficient to induce the expression of cHSPA6 which was 100 times less than normally used IPTG concentration. Furthermore, the results indicate that induction during early to late exponential phase produced relatively high levels of cHSPA6 in soluble form. In addition, 5 h of post-induction incubation was found to be optimal to produce folded cHSPA6 with higher specific and volumetric yield. Subsequently, highly pure and homogenous cHSPA6 preparation was obtained using metal affinity and size exclusion chromatography. Taken together, the results showed successful production of electrophoretically pure recombinant HSPA6 protein from Camelus dromedarius in Escherichia coli in milligram quantities from shake flask liquid culture.
Collapse
Key Words
- 2× LB, double strength Luria–Bertani
- DTT, dithiothreitol
- EDTA, ethylenediaminetetraacetic acid
- Expression optimization
- FPLC, fast protein liquid chromatography
- Fast protein liquid chromatography
- Heat shock protein
- Hsp70
- IPTG, isopropyl β-d-1-thiogalactopyranoside
- LB, Luria–Bertani
- Molecular chaperone
- NB, nutrient broth
- Ni–NTA, nickel–nitrilotriacetic acid
- OD600, optical density at 600 nm
- PMSF, phenylmethylsulfonyl fluoride
- Recombinant
- TB, terrific broth
- amp, ampicillin
- rpm, rotations per minute
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman M Alsenaidy
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed Elrobh
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia; Biochemistry Department, Faculty of Science, Ain-Shams University, Abbassia 11381, Cairo, Egypt
| | - Wajahatullah Khan
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, PO Box 3660, Riyadh 11426, Saudi Arabia
| | - Mohammed S Alanazi
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad D Bazzi
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia; Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
100
|
Dahl JU, Gray MJ, Jakob U. Protein quality control under oxidative stress conditions. J Mol Biol 2015; 427:1549-63. [PMID: 25698115 PMCID: PMC4357566 DOI: 10.1016/j.jmb.2015.02.014] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 12/22/2022]
Abstract
Accumulation of reactive oxygen and chlorine species (RO/CS) is generally regarded to be a toxic and highly undesirable event, which serves as contributing factor in aging and many age-related diseases. However, it is also put to excellent use during host defense, when high levels of RO/CS are produced to kill invading microorganisms and regulate bacterial colonization. Biochemical and cell biological studies of how bacteria and other microorganisms deal with RO/CS have now provided important new insights into the physiological consequences of oxidative stress, the major targets that need protection, and the cellular strategies employed by organisms to mitigate the damage. This review examines the redox-regulated mechanisms by which cells maintain a functional proteome during oxidative stress. We will discuss the well-characterized redox-regulated chaperone Hsp33, and we will review recent discoveries demonstrating that oxidative stress-specific activation of chaperone function is a much more widespread phenomenon than previously anticipated. New members of this group include the cytosolic ATPase Get3 in yeast, the Escherichia coli protein RidA, and the mammalian protein α2-macroglobulin. We will conclude our review with recent evidence showing that inorganic polyphosphate (polyP), whose accumulation significantly increases bacterial oxidative stress resistance, works by a protein-like chaperone mechanism. Understanding the relationship between oxidative and proteotoxic stresses will improve our understanding of both host-microbe interactions and how mammalian cells combat the damaging side effects of uncontrolled RO/CS production, a hallmark of inflammation.
Collapse
Affiliation(s)
- Jan-Ulrik Dahl
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Michael J Gray
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.
| |
Collapse
|