51
|
Sharma S, Rakoczy S, Brown-Borg H. Assessment of spatial memory in mice. Life Sci 2010; 87:521-36. [PMID: 20837032 PMCID: PMC6457258 DOI: 10.1016/j.lfs.2010.09.004] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/09/2010] [Accepted: 09/04/2010] [Indexed: 11/17/2022]
Abstract
Improvements in health care have greatly increased life span in the United States. The focus is now shifting from physical well-being to improvement in mental well-being or maintenance of cognitive function in old age. It is known that elderly people suffer from cognitive impairment, even without neurodegeneration, as a part of 'normal aging'. This 'age-associated memory impairment' (AAMI), can have a devastating impact on the social and economic life of an individual as well as the society. Scientists have been experimenting to find methods to prevent the memory loss associated with aging. The major factor involved in these experiments is the use of animal models to assess hippocampal-based spatial memory. This review describes the different types of memory including hippocampal-based memory that is vulnerable to aging. A detailed overview of various behavioral paradigms used to assess spatial memory including the T-maze, radial maze, Morris water maze, Barnes maze and others is presented. The review also describes the molecular basis of memory in hippocampus called as 'long-term potentiation'. The advantages and limitations of the behavioral models in assessing memory and the link to the long-term potentiation are discussed. This review should assist investigators in choosing suitable methods to assess spatial memory in mice.
Collapse
Affiliation(s)
- Sunita Sharma
- University of North Dakota School of Medicine and Health Sciences,
Grand Forks, ND 58203, United States
| | - Sharlene Rakoczy
- University of North Dakota School of Medicine and Health Sciences,
Grand Forks, ND 58203, United States
| | - Holly Brown-Borg
- University of North Dakota School of Medicine and Health Sciences,
Grand Forks, ND 58203, United States
| |
Collapse
|
52
|
Aubele T, Kritzer MF. Gonadectomy and hormone replacement affects in vivo basal extracellular dopamine levels in the prefrontal cortex but not motor cortex of adult male rats. Cereb Cortex 2010; 21:222-32. [PMID: 20466748 DOI: 10.1093/cercor/bhq083] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gonadectomy in adult male rats is known to impair performance on dopamine (DA)-dependent prefrontal cortical tasks and selectively dysregulate end points in the mesoprefrontal DA system including axon density. In this study, in vivo microdialysis and high-pressure liquid chromatography were used to determine whether short (4 day)- and/or long-term (28 day) gonadectomy and hormone replacement might also influence the more functionally relevant metric of basal extracellular DA level/tone. Assessments in medial prefrontal cortex revealed that DA levels were significantly lower than control in 4-day gonadectomized rats and similar to control in 4-day gonadectomized animals supplemented with both testosterone and estradiol. Among the long-term treatment groups, DA levels were significantly higher than control in gonadectomized rats and gonadectomized rats given estradiol but were similar to control in rats given testosterone. In contrast, extracellular DA levels measured in motor cortex were unaffected by long- or short-term gonadectomy. The effects of gonadectomy and hormone replacement on prefrontal cortical DA levels observed here parallel previously identified effects on prefrontal DA axon density and could represent hormone actions relevant to the modulation of DA-dependent prefrontal cortical function and perhaps its dysfunction in disorders such as schizophrenia, attention deficit hyperactivity disorder, and autism where males are disproportionately affected relative to females.
Collapse
Affiliation(s)
- T Aubele
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794-5230, USA.
| | | |
Collapse
|
53
|
Gonadal hormones modulate the potency of the disruptive effects of donepezil in male rats responding under a nonspatial operant learning and performance task. Behav Pharmacol 2010; 21:121-34. [PMID: 20177375 DOI: 10.1097/fbp.0b013e328337be3a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In contrast to estrogen in female rats, testosterone in male rats may decrease cholinergic activity in the brain, thereby attenuating behaviors mediated by the cholinergic system. To investigate this possibility, the interactive effects of the gonadal hormones and donepezil, an acetylcholinesterase (AChE) inhibitor, on the responding of male rats were examined under a multiple schedule of repeated acquisition and performance of response sequences and on AChE activity in specific brain regions. Donepezil dose-effect curves (0.56-10 mg/kg) were determined in males that were gonadally intact, gonadectomized (GX), GX with testosterone replacement (GX+T) or GX with estradiol replacement (GX+E). In all four groups, donepezil produced dose-dependent rate-decreasing and error-increasing effects in the acquisition and performance components. However, disruptions of response rate and accuracy in both components occurred at lower doses in GX and GX+E males than in intact males. The GX+E males also had the highest percentage of errors under control (saline) conditions in the acquisition components. In terms of AChE activity, GX males had higher levels in the prefrontal cortex, striatum and hippocampus, but lower levels in the midbrain, compared with intact males; hypothalamic and cortical levels were comparable for the GX and intact groups. Together, these results in male rats indicate that the potency of donepezil's disruptive effects on the responding under a complex operant procedure requiring learning and performance of response sequences depends upon the gonadal hormone status, and that the effects of testosterone on cholinergic activity vary among brain regions.
Collapse
|
54
|
Gonadectomy and hormone replacement exert region- and enzyme isoform-specific effects on monoamine oxidase and catechol-O-methyltransferase activity in prefrontal cortex and neostriatum of adult male rats. Neuroscience 2009; 165:850-62. [PMID: 19909795 DOI: 10.1016/j.neuroscience.2009.11.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 11/02/2009] [Accepted: 11/04/2009] [Indexed: 12/23/2022]
Abstract
Sex differences and gonadal hormone influences are well known for diverse aspects of forebrain amine and indolamine neurotransmitter systems, the cognitive and affective functions they govern and their malfunction in mental illness. This study explored whether hormone regulation/dysregulation of these systems could be related to gonadal steroid effects on catechol-O-methyltransferase and monoamine oxidase which are principal enzymatic controllers of forebrain dopamine, serotonin and norepinephrine levels. Driven by male over female differences in cortical enzyme activities, by male-specific associations between monoamine oxidase and catechol-O-methyltransferase gene polymorphisms and cognitive and dysfunction in disease and by male-specific consequences of gene knockouts in mice, the question of hormone sensitivity was addressed here using a male rat model where prefrontal dopamine levels and related behaviors are also known to be affected. Specifically, quantitative O-methylation and oxidative deamination assays were used to compare the activities of catechol-O-methyltransferase's soluble and membrane-bound isoforms and of monoamine oxidase's A and B isoforms in the pregenual medial prefrontal cortex and dorsal striatum of male rats that were sham operated, gonadectomized or gonadectomized and supplemented with testosterone propionate or with estradiol for 28 days. These studies revealed significant effects of hormone replacement but not gonadectomy on the soluble but not the membrane-bound isorfom of catechol-O-methyltransferase in both striatum and cortex. A significant, cortex-specific testosterone-but not estradiol-attenuated effect (increase) of gonadectomy on monoamine oxidase's A but not B isoform was also observed. Although none of these actions suggest potential roles in the regulation/dysregulation of prefrontal dopamine, the suppressive effects of testosterone on cortical monoamine oxidase-A that were observed could have bearing on the increased incidence of cognitive deficits and symptoms of depression and anxiety that are repeatedly observed in males in conditions of hypogonadalism related to aging, other biological factors or in prostate cancer where androgen deprivation is used as a neoadjuvant treatment.
Collapse
|
55
|
Endocrine disrupting polyhalogenated organic pollutants interfere with thyroid hormone signalling in the developing brain. THE CEREBELLUM 2009; 7:26-37. [PMID: 18418666 DOI: 10.1007/s12311-008-0004-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Persistent polyhalogenated organic pollutants are present worldwide and accumulate along the food chain. They interfere with human and animal health and are particularly harmful for pre- and perinatal neurodevelopment. The mechanisms behind the observed effects vary depending on the specific compound investigated. Co-planar polychlorinated biphenyls (PCBs) can act via the arylhydrocarbon receptor while many ortho-substituted PCBs disrupt intracellular Ca(2+) homeostasis. A common mechanism for a wide variety of PCBs is interference with thyroid hormone (TH) signalling in developing brain, by changing intracellular TH availability or by interacting directly at the level of the TH receptors. Studies on gene expression in cortex and cerebellum revealed both hypothyroid- and hyperthyroid-like effects. However, since THdependent gene expression plays a crucial role in the coordination of neuronal proliferation, migration, synaptogenesis, myelination, etc., both reduced/delayed and increased/premature expression may result in permanent structural changes in neuronal communication networks, leading to lifelong deficits in cognitive performance, motor functions, and psychobehavior. In a similar way, PCBs are able to interfere with estrogen- and androgen-dependent brain development and in some studies neurobehavioral outcome was shown to be gender-specific. Other persistent organohalogens like polychlorinated dibenzo-p-dioxins (PCDDs) and polybrominated diphenyl ethers (PBDEs) also act as endocrine disrupters in the developing brain. Several of the mechanisms involved are similar to those of PCBs, but each group also works via own specific pathways. The fact that persistent organohalogens can amplify the neurotoxic effects of other environmental pollutants, such as heavy metals, further increases their risk for human and animal neurodevelopment.
Collapse
|
56
|
Paul CM, Magda G, Abel S. Spatial memory: Theoretical basis and comparative review on experimental methods in rodents. Behav Brain Res 2009; 203:151-64. [PMID: 19467271 DOI: 10.1016/j.bbr.2009.05.022] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 05/17/2009] [Indexed: 02/08/2023]
Abstract
The assessment of learning and memory in animal models has been widely employed in scientific research for a long time. Among these models, those representing diseases with primary processes of affected memory - such as amnesia, dementia, brain aging, etc. - studies dealing with the toxic effects of specific drugs, and other exploring neurodevelopment, trauma, epilepsy and neuropsychiatric disorders, are often called on to employ these tools. There is a diversity of experimental methods assessing animal learning and memory skills. Overall, mazes are the devices mostly used today to test memory in rodents; there are several types of them, but their real usefulness, advantages and applications remain to be fully established and depend on the particular variant selected by the experimenter. The aims of the present article are first, to briefly review the accumulated knowledge in regard to spatial memory tasks; second, to bring the reader information on the different types of rodent mazes available to test spatial memory; and third, to elucidate the usefulness and limitations of each of these devices.
Collapse
Affiliation(s)
- Carrillo-Mora Paul
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico.
| | | | | |
Collapse
|
57
|
Dalla C, Shors TJ. Sex differences in learning processes of classical and operant conditioning. Physiol Behav 2009; 97:229-38. [PMID: 19272397 DOI: 10.1016/j.physbeh.2009.02.035] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/05/2009] [Accepted: 02/20/2009] [Indexed: 12/12/2022]
Abstract
Males and females learn and remember differently at different times in their lives. These differences occur in most species, from invertebrates to humans. We review here sex differences as they occur in laboratory rodent species. We focus on classical and operant conditioning paradigms, including classical eyeblink conditioning, fear-conditioning, active avoidance and conditioned taste aversion. Sex differences have been reported during acquisition, retention and extinction in most of these paradigms. In general, females perform better than males in the classical eyeblink conditioning, in fear-potentiated startle and in most operant conditioning tasks, such as the active avoidance test. However, in the classical fear-conditioning paradigm, in certain lever-pressing paradigms and in the conditioned taste aversion, males outperform females or are more resistant to extinction. Most sex differences in conditioning are dependent on organizational effects of gonadal hormones during early development of the brain, in addition to modulation by activational effects during puberty and adulthood. Critically, sex differences in performance account for some of the reported effects on learning and these are discussed throughout the review. Because so many mental disorders are more prevalent in one sex than the other, it is important to consider sex differences in learning when applying animal models of learning for these disorders. Finally, we discuss how sex differences in learning continue to alter the brain throughout the lifespan. Thus, sex differences in learning are not only mediated by sex differences in the brain, but also contribute to them.
Collapse
Affiliation(s)
- Christina Dalla
- Department of Psychology and Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
58
|
van der Staay FJ, Arndt SS, Nordquist RE. Evaluation of animal models of neurobehavioral disorders. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2009; 5:11. [PMID: 19243583 PMCID: PMC2669803 DOI: 10.1186/1744-9081-5-11] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 02/25/2009] [Indexed: 02/01/2023]
Abstract
Animal models play a central role in all areas of biomedical research. The process of animal model building, development and evaluation has rarely been addressed systematically, despite the long history of using animal models in the investigation of neuropsychiatric disorders and behavioral dysfunctions. An iterative, multi-stage trajectory for developing animal models and assessing their quality is proposed. The process starts with defining the purpose(s) of the model, preferentially based on hypotheses about brain-behavior relationships. Then, the model is developed and tested. The evaluation of the model takes scientific and ethical criteria into consideration.Model development requires a multidisciplinary approach. Preclinical and clinical experts should establish a set of scientific criteria, which a model must meet. The scientific evaluation consists of assessing the replicability/reliability, predictive, construct and external validity/generalizability, and relevance of the model. We emphasize the role of (systematic and extended) replications in the course of the validation process. One may apply a multiple-tiered 'replication battery' to estimate the reliability/replicability, validity, and generalizability of result.Compromised welfare is inherent in many deficiency models in animals. Unfortunately, 'animal welfare' is a vaguely defined concept, making it difficult to establish exact evaluation criteria. Weighing the animal's welfare and considerations as to whether action is indicated to reduce the discomfort must accompany the scientific evaluation at any stage of the model building and evaluation process. Animal model building should be discontinued if the model does not meet the preset scientific criteria, or when animal welfare is severely compromised. The application of the evaluation procedure is exemplified using the rat with neonatal hippocampal lesion as a proposed model of schizophrenia.In a manner congruent to that for improving animal models, guided by the procedure expounded upon in this paper, the developmental and evaluation procedure itself may be improved by careful definition of the purpose(s) of a model and by defining better evaluation criteria, based on the proposed use of the model.
Collapse
Affiliation(s)
- F Josef van der Staay
- Program 'Emotion and Cognition', Department of Farm Animal Health, Veterinary Faculty, Utrecht University, PO Box 80166, 3508 TD Utrecht, the Netherlands
| | - Saskia S Arndt
- Division of Laboratory Animal Science, Department of Animals, Science and Society, Veterinary Faculty, Utrecht University, the Netherlands
| | - Rebecca E Nordquist
- Program 'Emotion and Cognition', Department of Farm Animal Health, Veterinary Faculty, Utrecht University, PO Box 80166, 3508 TD Utrecht, the Netherlands
| |
Collapse
|
59
|
Meyers B, Kritzer MF. In vitro binding assays using (3)H nisoxetine and (3)H WIN 35,428 reveal selective effects of gonadectomy and hormone replacement in adult male rats on norepinephrine but not dopamine transporter sites in the cerebral cortex. Neuroscience 2008; 159:271-82. [PMID: 19138725 DOI: 10.1016/j.neuroscience.2008.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 11/20/2008] [Accepted: 12/06/2008] [Indexed: 12/18/2022]
Abstract
The prefrontal cortices mediate cognitive functions that critically depend on local dopamine levels. In male rats, many prefrontal tasks where performance is disrupted by changes in dopamine signaling are also impaired by gonadectomy, a manipulation that increases cortical dopamine concentration, prefrontal dopamine axon density and possibly extracellular prefrontal dopamine levels as well. Because these actions could be responsible for the impairing effects of gonadectomy on prefrontal function, the question of how they might arise comes to the fore. Accordingly, the present studies asked whether dopamine levels might be increased via a hormone sensitivity of transporter-mediated dopamine uptake. Specifically, (3)H WIN 35,428 and (3)H nisoxetine, ligands selective for the dopamine (DAT)- and norepinephrine transporter (NET) respectively, were used in in vitro binding assays to ask whether gonadectomy altered transporter affinity (Kd) and/or binding site number (Bmax) in prefrontal cortex, sensorimotor cortex and/or caudate. Assays performed on tissues dissected from sham-operated, gonadectomized and gonadectomized rats supplemented with testosterone propionate or estradiol for 4 or 28 days revealed no significant group differences or obvious trends in Kd or Bmax for DAT binding or in measures of Bmax for NET binding. However, affinity constants for (3)H nisoxetine were found to be significantly higher in sensorimotor and/or prefrontal cortex of rats gonadectomized and gonadectomized and supplemented with estradiol for 4 or 28 days but similar to control in gonadectomized rats given testosterone. Because the NET contributes substantially to extracellular prefrontal dopamine clearance, these androgen-mediated effects could influence prefrontal dopamine levels and might thus be relevant for observed effects of gonadectomy on dopamine-dependent prefrontal behaviors. A hormone sensitivity of the NET could also have bearing on the prefrontal dopamine dysfunction seen in disorders like schizophrenia that disproportionately affect males, whose severity correlates with abnormal testosterone levels, and for which the NET is among suspected sites of pathology.
Collapse
Affiliation(s)
- B Meyers
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794-5230, USA
| | | |
Collapse
|
60
|
Region and sex differences in constituent dopamine neurons and immunoreactivity for intracellular estrogen and androgen receptors in mesocortical projections in rats. J Neurosci 2008; 28:9525-35. [PMID: 18799684 DOI: 10.1523/jneurosci.2637-08.2008] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Many cortical and prefrontal functions show sex differences in their development, adult capacity, and dysfunction in disorders like schizophrenia. Correlations between circulating gonadal hormones and certain prefrontal functions have also been identified in humans and experimental animal models. Although multiple mechanisms may be involved, such hormone sensitivities/sex differences could be related to gonadal steroid actions on another regulator of cortical/prefrontal cortical function, the mesocortical dopamine system. Thus, although it is well known that perturbations in prefrontal dopamine signaling induce behavioral deficits, it is also known that several endpoints of these afferents are sensitive to gonadal steroids and/or are sexually dimorphic. This study explored possible substrates for this in two ways: by comparing the distributions of immunoreactivity for intracellular estrogen (alpha and beta) and androgen receptors among retrogradely labeled dopaminergic and nondopaminergic mesocortical neurons projecting to prefrontal, premotor, and primary motor cortices, areas in which male rat dopamine axons are differentially hormone-sensitive; and by comparing anatomical data in males and females. These analyses revealed region-, cell-, and sex-specific specializations in receptor localization that paralleled established patterns of mesocortical hormone sensitivity, including the androgen sensitivity of dopamine axons and dopamine-dependent functions in prefrontal cortex. It was also found that the proportions of dopamine neurons making up mesocortical projections were approximately 30% in males, whereas in females, significantly more constituent cells were dopaminergic. Together, these features may be part of the neurobiology giving mesocortical afferents their hormone sensitivities and/or sex differences in physiology, function, and dysfunction in disease.
Collapse
|
61
|
Abstract
Reduced androgen levels in aged men and women might be risk factors for age-related cognitive decline and Alzheimer's disease (AD). Ongoing clinical trials are designed to evaluate the potential benefit of estrogen in women and of testosterone in men. In this review, we discuss the potential beneficial effects of androgens and androgen receptors (ARs) in males and females. In addition, we discuss the hypothesis that AR interacts with apolipoprotein (apoE)4, encoded by epsilon4 and a risk factor for age-related cognitive decline and AD, and the potential consequences of this interaction.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Division of Neuroscience, ONPRC, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
62
|
Prenatal testosterone improves the spatial learning and memory by protein synthesis in different lobes of the brain in the male and female rat. Open Life Sci 2008. [DOI: 10.2478/s11535-008-0003-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AbstractThe high density of the steroid hormone receptors in the structures of temporal lobe involved in learning and memory, such as the hippocampus, perirhinal cortex, entorhinal cortex and amigdaloid complex, shows that there must be a direct relationship between gonadal hormones and organizational effects of steroid hormones in those structures during development of the nervous system. The present study was undertaken in order to investigate the effect of testosterone administration during the third week of gestation on the spatial memory formation of the offspring rats and the level of soluble proteins in the temporal lobe and frontal lobe of brain, as evidence of important organizational effects of androgens during prenatal development in brain sexual dimorphism. Animals have received testosterone undecanoate on days 14, 15, 16 and 19, 20, 21 of gestation. Learning and memory tests were started 100 days after the testosterone treatment. At the end of the experiments, the temporal and frontal lobes of brain were removed for assessing the level of soluble proteins. Testosterone treatment significantly improved spontaneous alternations percentage of male offspring in Y-maze task comparative with female offspring and reference memory in radial 8 arm-maze task (decreasing in number of reference memory errors in both male and female offspring groups), suggesting effects of both short and long-term memory. Also, testosterone significantly increased the brain soluble protein level of treated female rats in 14–16 prenatal days compared with the control group as well as the brain soluble protein level of treated male rats. These results suggest that steroid hormones play an important role in the spatial learning and memory formation by means of protein synthesis in different lobes of the brain.
Collapse
|
63
|
Spritzer MD, Gill M, Weinberg A, Galea LAM. Castration differentially affects spatial working and reference memory in male rats. ARCHIVES OF SEXUAL BEHAVIOR 2008; 37:19-29. [PMID: 18058217 DOI: 10.1007/s10508-007-9264-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A male advantage for spatial learning and memory tasks is well documented among humans and rodents. A possible physiological cause for this male advantage is activational effects of androgens among males. The spatial memory of eight castrated and eight sham-castrated adult male rats was compared using a working-reference memory version of the eight-arm radial arm maze followed by a reference memory version of the Morris water maze. After maze testing, blood was collected from each rat, and testosterone levels were determined using radioimmunoassay. In the radial arm maze, castrates committed significantly more working memory errors and significantly fewer reference memory errors than did shams. In the water maze, no statistically significant differences were found for acquisition or retention. There was a trend for shams with higher testosterone levels to have better retention in the water maze, but this seemed to be due to higher levels of perseverance rather than better reference memory. Castration may have affected performance in the radial arm maze and not in the water maze because the radial arm maze was a more difficult task or because the water maze was aversively motivated while the radial arm maze was appetitively motivated. Our results indicate that androgens improve working memory and may impair reference memory, but the effects of androgens on reference memory seem to be task dependent.
Collapse
Affiliation(s)
- Mark D Spritzer
- Department of Psychology, Neuroscience Program, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | |
Collapse
|
64
|
Leonard ST, Moerschbaecher JM, Winsauer PJ. Testosterone potentiates scopolamine-induced disruptions of nonspatial learning in gonadectomized male rats. Exp Clin Psychopharmacol 2007; 15:48-57. [PMID: 17295584 DOI: 10.1037/1064-1297.15.1.48] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Whereas research into the effects of the gonadal hormones on learning and memory has primarily focused on estrogen in females, recent evidence suggests that testosterone can also modulate learning in males through an interaction with the cholinergic system. In the present study, the interactive effects of testosterone and scopolamine (0.1- 0.32 mg/kg), a muscarinic receptor antagonist, on complex behavioral processes were investigated in male rats trained to respond under a multiple schedule of repeated acquisition and performance. In the acquisition component, subjects acquired a different 3-response sequence each session, whereas in the performance component, they responded on the same 3-response sequence each session. Although gonadectomy did not disrupt responding in either component, gonadectomized rats were less sensitive to the disruptive effects of scopolamine on both response rate and accuracy. In contrast, after receiving exogenous testosterone replacement, these gonadectomized males were more sensitive to the behavioral disruptions produced by scopolamine (i.e., the effects of scopolamine were similar to those obtained in gonadally intact males). These results suggest that testosterone replacement can enhance scopolamine-induced behavioral effects in gonadectomized male rats responding under a multiple schedule of repeated acquisition and performance, a finding that is in contrast to those previously found for certain spatial tasks. Furthermore, the present findings suggest that testosterone may decrease the activity of the cholinergic system during nonspatial tasks and thereby work in concert with the antagonism produced by scopolamine.
Collapse
Affiliation(s)
- Stuart T Leonard
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
65
|
Edinger KL, Frye CA. Androgens’ performance-enhancing effects in the inhibitory avoidance and water maze tasks may involve actions at intracellular androgen receptors in the dorsal hippocampus. Neurobiol Learn Mem 2007; 87:201-8. [PMID: 17029870 DOI: 10.1016/j.nlm.2006.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 08/18/2006] [Accepted: 08/22/2006] [Indexed: 11/23/2022]
Abstract
Androgens can have performance-enhancing effects in some cognitive tasks, but the mechanism of these effects has not been established. Experiments examined whether androgens' actions to bind to intracellular androgen receptors (ARs) in the hippocampus are necessary to enhance cognitive performance in the inhibitory avoidance and water maze tasks. If androgens' binding at ARs are essential, then blocking them through intrahippocampal administration of flutamide, an AR receptor antagonist, should attenuate androgens' performance-enhancing effects in the inhibitory avoidance and water maze tasks. In Experiments 1 and 2, flutamide was administered through intrahippocampal inserts to intact male rats immediately pre- and post-training in the inhibitory avoidance and water maze tasks. Both pre- and post-training administration of flutamide to the dorsal hippocampus, but not missed sites, produced significantly poorer performance in the inhibitory avoidance and water maze tasks, without influencing control measures such as flinch/jump threshold or swim speed. In Experiment 3, flutamide administration to the hippocampus was delayed two hours following training in the inhibitory avoidance and water maze tasks. There was no significant effect of delayed administration of flutamide on performance in either of these tasks. Together, these findings suggest that blocking ARs in the dorsal hippocampus with flutamide administration immediately pre- or post-training can produce decrements in cognitive performance, which implies that androgens' performance-enhancing effects may occur, in part, through binding at intracellular androgen receptors in the dorsal hippocampus.
Collapse
Affiliation(s)
- Kassandra L Edinger
- Department of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA
| | | |
Collapse
|
66
|
Kritzer MF, Brewer A, Montalmant F, Davenport M, Robinson JK. Effects of gonadectomy on performance in operant tasks measuring prefrontal cortical function in adult male rats. Horm Behav 2007; 51:183-94. [PMID: 16942768 DOI: 10.1016/j.yhbeh.2006.07.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/17/2006] [Accepted: 07/19/2006] [Indexed: 11/28/2022]
Abstract
Previous studies have shown that gonadectomy in adult male rats influences the acquisition and performance of spatial and other working memory tasks that depend in part on the medial prefrontal cortex and its dopamine innervation. Stimulated by previous findings that gonadectomy alters dopamine axon density in not only medial but several other prefrontal fields, the present studies asked whether gonadectomy might also broadly impact dopamine-dependent prefrontal functions, and whether these effects bore any relation to hormone modulation of mesoprefrontal dopamine afferents. Specifically, control, gonadectomized, and gonadectomized rats given estradiol or testosterone propionate were tested on a series of operant tasks that together measured medial prefrontal functions of spatial working memory, impulsivity and extradimensional set shifting and orbital prefrontal functions of reversal learning/perseveration and motivation. Afterwards, animals were sacrificed, their bulbospongiosus muscles were removed and weighed, their brains were processed for immunocytochemistry for the dopamine-synthesizing enzyme tyrosine hydroxylase, and axon densities were measured in orbital and medial prefrontal fields. Statistical evaluations of group effects on behavior and regression analyses comparing individual performance with muscle weights and axon density measures revealed androgen-reversible effects of gonadectomy on acquisition of spatial working memory and extradimensional set shifting that were correlated with bulbospongiosus weight and medial prefrontal dopamine axon density, estrogen-sensitive influences of gonadectomy on motivation and response withholding that were correlated with bulbospongiosus weight but not with dopamine innervation, and still other prefrontal functions, i.e., impulsivity, reversal learning, that were insensitive to gonadectomy and unrelated to gonadectomy-induced changes in muscle weight or prefrontal dopamine innervation.
Collapse
Affiliation(s)
- M F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA.
| | | | | | | | | |
Collapse
|
67
|
van der Staay FJ. Animal models of behavioral dysfunctions: Basic concepts and classifications, and an evaluation strategy. ACTA ACUST UNITED AC 2006; 52:131-59. [PMID: 16529820 DOI: 10.1016/j.brainresrev.2006.01.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 01/17/2006] [Accepted: 01/17/2006] [Indexed: 12/31/2022]
Abstract
In behavioral neurosciences, such as neurobiology and biopsychology, animal models make it possible to investigate brain-behavior relations, with the aim of gaining insight into normal and abnormal human behavior and its underlying neuronal and neuroendocrinological processes. Different types of animal models of behavioral dysfunctions are reviewed in this article. In order to determine the precise criteria that an animal model should fulfill, experts from different fields must define the desired characteristics of that model at the neuropathologic and behavioral level. The list of characteristics depends on the purpose of the model. The phenotype-abnormal behavior or behavioral dysfunctions-has to be translated into testable measures in animal experiments. It is essential to standardize rearing, housing, and testing conditions, and to evaluate the reliability, validity (primarily predictive and construct validity), and biological or clinical relevance of putative animal models of human behavioral dysfunctions. This evaluation, guided by a systematic strategy, is central to the development of a model. The necessity of animal models and the responsible use of animals in research are discussed briefly.
Collapse
Affiliation(s)
- F Josef van der Staay
- Wageningen University and Research Center, Animal Sciences Group, PO Box 65, 8200 AB Lelystad, The Netherlands.
| |
Collapse
|
68
|
Rizk A, Robertson J, Raber J. Behavioral performance of tfm mice supports the beneficial role of androgen receptors in spatial learning and memory. Brain Res 2005; 1034:132-8. [PMID: 15713264 DOI: 10.1016/j.brainres.2004.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2004] [Indexed: 10/25/2022]
Abstract
In adulthood, androgens and androgen receptors might contribute to the sexually dimorphic performance in spatial learning and memory, but their roles seem complex. To study the potential role of androgen receptors in spatial learning and memory, we tested adult 6-8-month-old mutant mice with a naturally occurring defect in the androgen receptor gene (testicular feminization mutant or tfm) and C57Bl/6J wild-type mice. Because the trait is X-linked, only tfm males are completely androgen insensitive while female tfm mice are heterozygous, carrying one wild-type and one tfm copy of the androgen receptor. Here we show that female tfm carrier mice outperform tfm male mice in the water maze, while there are no gender differences in water maze performance in wild-type mice. In tfm mice, there were no gender differences in measures of anxiety in the open field or plus maze or sensorimotor function, indicating that potential differences in these measures did not contribute to the differences observed in the water maze. There were no differences in tfm and wild-type female and male mice in emotional learning and memory in the passive avoidance test. These findings support a beneficial role for androgen receptors in spatial learning and memory.
Collapse
Affiliation(s)
- Angela Rizk
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
69
|
Kudo K, Qiao CX, Kanba S, Arita J. A selective increase in phosphorylation of cyclic AMP response element-binding protein in hippocampal CA1 region of male, but not female, rats following contextual fear and passive avoidance conditioning. Brain Res 2005; 1024:233-43. [PMID: 15451386 DOI: 10.1016/j.brainres.2004.08.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2004] [Indexed: 11/30/2022]
Abstract
Cyclic AMP response element-binding protein (CREB), a transcription factor on which multiple signal transduction pathways converge, has been implicated in long-term memory. We examined whether the sex difference in the performance of contextual fear or passive avoidance conditioning is associated with a change in the activation of CREB in the hippocampus, a neural structure important for long-term memory. The activation of CREB in different subregions within the hippocampus in male and female rats was determined immunohistochemically with an antibody that specifically recognizes the phosphorylated form of CREB (pCREB). With respect to the freezing time in contextual fear conditioning and the step-through latency in passive avoidance conditioning, male rats exhibited better performance than female rats. Phosphorylation of CREB (% pCREB) as revealed by the ratio of the pCREB-immunoreactive (pCREB-ir) cell number to the CREB-immunoreactive cell number was increased in the CA1 region, but not in CA3, CA4, or in the dentate gyrus following training for both types of conditioning in males. In females, such an increase in % pCREB was not found in any hippocampal subregion at any time after conditioning or by increasing the intensity of foot shock. Orchidectomy in males did not alter either the performance of contextual conditioning or conditioning-induced CREB phosphorylation in CA1. The close relationship between behavioral performance and CREB phosphorylation in the CA1 region suggests that hippocampal CREB is involved in the sex difference in some forms of learning and memory.
Collapse
Affiliation(s)
- Koutarou Kudo
- Department of Neuropsychiatry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Tamaho, Yamanashi 409-3898, Japan
| | | | | | | |
Collapse
|
70
|
Jonasson Z. Meta-analysis of sex differences in rodent models of learning and memory: a review of behavioral and biological data. Neurosci Biobehav Rev 2005; 28:811-25. [PMID: 15642623 DOI: 10.1016/j.neubiorev.2004.10.006] [Citation(s) in RCA: 378] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2003] [Revised: 10/03/2004] [Accepted: 10/08/2004] [Indexed: 10/25/2022]
Abstract
The existence of sex differences in the standard rat and mouse models of learning and memory is a controversial and contested topic in the literature. The present meta-analysis of radial maze and water maze experiments was conducted to assess the reliablility and magnitude of sex effects in the standard rodent models of learning and memory. Data were culled from published and unpublished sources. Findings indicate large reliable male advantages for rats in radial maze and water maze protocols. Significant strain differences were also identified. In each paradigm, protocol variations were associated with differential sex effects. For the water maze, smaller male advantages were associated with pretraining regimens and for the radial maze, larger significant male advantages were observed in protocols that included unbaited arms (combined reference and working memory protocols). Mouse studies exhibited a different pattern of sex effects; small female advantages were evident in the water maze, but small male advantages were evident in the radial maze. Together these findings establish the reliability of male advantages in spatial working and reference memory for rats across strains, protocols, ages and rearing environments. The findings also support an important species dichotomy between rats and mice that should be considered when transitioning from rat to mouse models. In light of these results, the biological evidence supporting theoretical explanations of sex differences is reviewed and evaluated.
Collapse
Affiliation(s)
- Zachariah Jonasson
- Neuroscience Program, Department of Psychology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
71
|
Naghdi N, Majlessi N, Bozorgmehr T. The effect of intrahippocampal injection of testosterone enanthate (an androgen receptor agonist) and anisomycin (protein synthesis inhibitor) on spatial learning and memory in adult, male rats. Behav Brain Res 2005; 156:263-8. [PMID: 15582112 DOI: 10.1016/j.bbr.2004.05.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2003] [Revised: 05/27/2004] [Accepted: 05/28/2004] [Indexed: 11/19/2022]
Abstract
In most mammals, the hippocampus has a well-documented role in spatial memory acquisition. High concentration of androgen receptors in fundamental centers of learning and memory in brain such as hippocampus shows that there may be some relationships between androgen receptors and cognitive aspects of brain. Previous studies, which have shown sex-dependent differences in hippocampal morphology and physiology, suggest a modulatory role for sex steroids in hippocampal function. Androgens have been shown to modulate some hippocampal-mediated behaviors including learning and memory. To study the mechanism of action of androgens in processes underlying learning and memory, anisomycin, a protein synthesis inhibitor was used to prevent the genomic effects of testosterone. Therefore, the effects of anisomycin and testosterone together were assessed on rat's performance in MWM. Rats received anisomycin (2.5 microg/0.5 microl), testosterone (80 microg/0.5 microl) or both anisomycin (2.5 microg/0.5 microl) and testosterone (80 microg/0.5 microl) through the connulas in the CA1 region. Anisomycin was injected 20 min and testosterone was injected 35 min before training each day. The results showed that anisomycin (2.5 microg/0.5 microl) and testosterone (80 microg/0.5 microl) increased latencies to find the invisible platform. But the group that received testosterone and anisomycin together was decrease in latency and traveled distance to find the invisible platform.
Collapse
Affiliation(s)
- Nasser Naghdi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran.
| | | | | |
Collapse
|
72
|
Naghdi N, Asadollahi A. Genomic and nongenomic effects of intrahippocampal microinjection of testosterone on long-term memory in male adult rats. Behav Brain Res 2004; 153:1-6. [PMID: 15219700 DOI: 10.1016/j.bbr.2003.10.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2003] [Revised: 10/23/2003] [Accepted: 10/23/2003] [Indexed: 11/30/2022]
Abstract
In addition to their well-known genomic effects via intracellular receptors, androgens rapidly alter neuronal excitability through a nongenomic pathway. The nongenomic effect of testosterone, as the main androgen, apart from its traditional effects, was assessed in one of the fundamental centers of learning and memory, the hippocampus, on long-term memory (LTM) in passive avoidance conditioning. Different doses of testosterone enanthate (T) or testosterone-BSA (T-BSA) bilaterally were injected into the CA1 region of the hippocampus 15 min before shock delivery (1 mA during 5 s) in a two-compartment passive avoidance apparatus. After 24 h, animals were tested for passive avoidance retrieval. Bilateral injection of 20 microg T or 55 microg T-BSA into the CA1 significantly decreases step-through latency. Therefore, it seems that testosterone can impair LTM in passive avoidance conditioning both via intracellular receptors and through nongenomic pathway.
Collapse
Affiliation(s)
- Nasser Naghdi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran.
| | | |
Collapse
|
73
|
Ravizza T, Galanopoulou AS, Velísková J, Moshé SL. Sex differences in androgen and estrogen receptor expression in rat substantia nigra during development: an immunohistochemical study. Neuroscience 2003; 115:685-96. [PMID: 12435407 DOI: 10.1016/s0306-4522(02)00491-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Gonadal hormones are important regulators of sexual differentiation of the CNS. Exposure to testosterone and estrogen during development causes permanent organizational differences between males and females. We previously described functional sex-related differences of the GABA(A)ergic circuits of the rat substantia nigra pars reticulata (SNR) involved in the control of flurothyl seizures. This sexual differentiation of the SNR is regulated by postnatal testosterone. To assess whether the organizing effects of testosterone in the SNR are mediated via the androgen receptor (AR) and/or estrogen receptors (ER), we used immunohistochemistry to study the ontogeny of AR, ERalpha and ERbeta expression in SNR and substantia nigra pars compacta (SNC) of male and female rats. Rats on the day of birth [postnatal day (PN) 0] and at PN1, PN5, PN15 and PN30 were used. AR- and ERbeta-immunopositive cells were present in SNR and SNC in both sexes and at all ages. ERalpha was not detected in male and female SNC at PN0-PN1. In both substantia nigra (SN) regions, there were developmentally regulated sex differences in AR, ERalpha and ERbeta immunoreactivity. In the SN, each receptor showed specific intracellular localization: AR was present in the nucleus, ERalpha and ERbeta were present both in nuclear and extranuclear compartments. ERalpha was detected also in processes. At PN0-PN1, quantitative analysis revealed sex and regional differences in the distribution of SN cells expressing AR and ERalpha, while ERbeta were equally present in both sexes. The presence of gonadal steroid receptors in the SN suggests that the biological effects of gonadal hormones in the CNS extend beyond reproduction-related functions and may affect and modify motor behaviors (including seizures) in a sex-specific manner. Based on the ontogeny of SNR ERbeta, we hypothesize that postnatal injections of testosterone may regulate the nigral GABA(A) system through the aromatization pathway and activation of ERbeta.
Collapse
Affiliation(s)
- T Ravizza
- Department of Neurology, Albert Einstein College of Medicine, K311, 1410 Pelham Parkway South, Bronx, NY, USA.
| | | | | | | |
Collapse
|
74
|
Brot MD, Koob GF, Britton KT. Anxiolytic effects of steroid hormones during the estrous cycle. Interactions with ethanol. RECENT DEVELOPMENTS IN ALCOHOLISM : AN OFFICIAL PUBLICATION OF THE AMERICAN MEDICAL SOCIETY ON ALCOHOLISM, THE RESEARCH SOCIETY ON ALCOHOLISM, AND THE NATIONAL COUNCIL ON ALCOHOLISM 2002; 12:243-59. [PMID: 7624546 DOI: 10.1007/0-306-47138-8_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Behavioral differences in anxiety have been observed between both males and females and across the ovarian cycle in females. However, the data are not entirely consistent and the mechanisms of this potential interaction are largely unexplored. It appears that the GABA/BZ receptor complex is a site of action for steroids as well as for many anxiolytic drugs. Both natural steroids, such as progesterone and its metabolites, and synthetic steroids, such as alphaxalone, reduce anxiety-like behavior in rats. Alphaxolone also reverses the behavioral effects of potent anxiogenic agents in the conflict test of anxiety. Studies reported here found that ethanol administered to rats in different phases of the estrous cycle was more effective as an anxiolytic when hormone levels were high. The anticonflict response to chlordiazepoxide also was examined in ovariectomized and steroid-replaced female rats. Insight into the mechanisms and sites of action for these steroids can be gained from such an approach.
Collapse
Affiliation(s)
- M D Brot
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
75
|
Kest B, Palmese CA, Hopkins E, Adler M, Juni A. Assessment of acute and chronic morphine dependence in male and female mice. Pharmacol Biochem Behav 2001; 70:149-56. [PMID: 11566152 DOI: 10.1016/s0091-3057(01)00600-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present study compared male and female mice for frequency of naloxone-precipitated jumping and naloxone ED(50) values, two common indices of physical dependence, following acute and chronic morphine administration. Both sexes displayed a positive dose-response relationship between acute morphine and naloxone doses and jumping frequency. There was a significant main effect of sex, with mean jumping frequencies greater in males. The naloxone ED(50) estimate was also fourfold lower in males, indicating greater withdrawal sensitivity than females. Jumping frequencies were similar in male and female saline-treated control mice, discounting initial sex differences as a significant factor in the unequal magnitude and sensitivity in acute morphine dependence between sexes. In contrast, males and females displayed similar mean withdrawal jumping frequencies and naloxone ED(50) values after 3 days of morphine injections. Sex difference in withdrawal jumping was also not observed when morphine treatment was increased to 7 days via daily injection or continuous subcutaneous infusion. The present study demonstrates the development of greater physical dependence in male relative to female mice following acute but not chronic morphine administration.
Collapse
Affiliation(s)
- B Kest
- Department of Psychology and Center for Developmental Neuroscience, College of Staten Island/City University of New York, Staten Island, NY 10314, USA.
| | | | | | | | | |
Collapse
|
76
|
Naghdi N, Nafisy N, Majlessi N. The effects of intrahippocampal testosterone and flutamide on spatial localization in the Morris water maze. Brain Res 2001; 897:44-51. [PMID: 11282357 DOI: 10.1016/s0006-8993(00)03261-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The high density of the androgen receptors in fundamental centers of learning and memory, such as hippocampus, shows that there must be some relationships between the androgen receptors and cognitive aspects. To determine the role of hippocampal androgen receptors in spatial learning, the current research has been conducted to assess the effect of testosterone enanthate, as the agonist, and flutamide, as the antagonist, of these receptors on spatial discrimination of rats, using the Morris water maze (MWM). Adult male rats were bilaterally cannulated into the CA1 region of their hippocampus. Different groups received different doses of flutamide (2, 5, 10 and 20 microg/0.5 microl) or testosterone enanthate (20, 40 and 80 microg/0.5 microl) through the cannulas 30 min before training for 3 days. The results showed dose-dependent increases in latencies and traveled distances to find the invisible platform both in flutamide- and testosterone-treated groups as compared to the control group, with peak effects at doses of 5 microg/0.5 microl for flutamide and 80 microg/0.5 microl for testosterone. Therefore, it seems that both androgen receptor blockade and exogenous testosterone can effect spatial localization of adult, male rats.
Collapse
Affiliation(s)
- N Naghdi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Pasteur Ave., 13164, Tehran, Iran.
| | | | | |
Collapse
|
77
|
Abstract
Recent studies have shown that chronic gonadectomy increases the density of dopaminergic axons in prefrontal but not sensorimotor cortices in adult male rats. Since supranormal prefrontal cortical dopamine stimulation is known to impair rats' performance in T-maze delayed alternation paradigms, we tested whether long-term gonadectomy might also impair T-maze performance. For comparison, sensorimotor functions were also assessed. Adult male rats were gonadectomized and placebo-, estradiol-, or testosterone propionate-treated or were sham operated and placebo-treated. Four weeks after surgery, the subjects were tested using a rotorod apparatus and in the acquisition of a T-maze delayed alternation paradigm. Gonadectomized placebo-treated and estradiol-treated rats took significantly longer to acquire the T-maze rule than controls, and gonadectomized, testosterone-treated rats acquired the task within the same time frame as controls. No group differences were detected in rotorod performance. Thus, chronic gonadectomy induced testosterone-sensitive, estradiol-insensitive acquisition deficits in a spatial learning task but had no demonstrable effects on the sensorimotor functions tested.
Collapse
Affiliation(s)
- M F Kritzer
- Department of Neurobiology and Behavior, SUNY Stony Brook, Stony Brook, New York, 11794-5230, USA.
| | | | | | | |
Collapse
|
78
|
Choleris E, Thomas AW, Ossenkopp K, Kavaliers M, Valsecchi P, Prato FS. Sex differences in conditioned taste aversion and in the effects of exposure to a specific pulsed magnetic field in deer mice Peromyscus maniculatus. Physiol Behav 2000; 71:237-49. [PMID: 11150555 DOI: 10.1016/s0031-9384(00)00323-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although conditioned taste aversion (CTA) has been investigated and described in laboratory rodents and domestic animals, less is known regarding wild rodents. Here, we describe CTA in males and females of a "wild" species of rodent, the deer mouse (Peromyscus maniculatus). In addition, as CTA has often been induced by exposure to intense electromagnetic, X or gamma, radiation, in a second study, we also investigated the effects of a specifically designed, pulsed extremely low-frequency and low-intensity magnetic field on the flavor preferences of male and female deer mice. The results of these investigations showed that: (i) deer mice quickly developed a marked CTA for a novel flavor after a single pairing with LiCl; (ii) although the intensity of the CTA was the same in males and females, there was a sex difference in the duration of the flavor aversion, with males displaying it for a longer period (4 days) than females (3 days); (iii) both males and females showed a rapid and complete extinction of the aversion, in contrast to what has been reported for laboratory rodents; (iv) there was no recovery of CTA on re-test 10 days after extinction; (v) neither male or female deer mice developed a taste aversion as a consequence of exposure to a weak electromagnetic field; and (vi) there was a sex difference in response to the magnetic field, with exposure to the magnetic field significantly enhancing novel taste preference in male but not in female deer mice. Overall, our results show that there are several sex differences in the behavior of deer mice, both in the characteristics of the CTA and in the response to magnetic field exposure. The sex differences are discussed in terms of a sexually dimorphic sensitivity to experimental manipulation and the induction of stress and/or anxiety.
Collapse
Affiliation(s)
- E Choleris
- Department of Nuclear Medicine and Magnetic Resonance, Lawson Research Institute, St. Joseph's Health Center and University of Western Ontario, 268 Grosvenor Street, N6A 4L6, London, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
79
|
Abstract
Studies comparing morphine tolerance in males and females are rare, and all studies to date have utilized the rat. To generalize from findings with rats morphine tolerance was investigated in male and female mice using the tail-withdrawal test. Three and 7 days of systemic morphine injections produced significant but unequal rightward shifts in the morphine dose-response curve such that females displayed greater increases in analgesic ED(50) values when compared to males. In a separate experiment, males and females displayed similar reductions in morphine analgesic sensitivity when %MPE (maximum possible effect) and %total (area under the curve) were compared after 3 days of morphine. Differences in initial morphine sensitivity between sexes were not observed in either study. The data demonstrate that, in contrast to rats, female mice undergo greater reductions in morphine analgesia relative to males following chronic morphine, but this sex difference may depend on the method of assessing analgesia. Furthermore, the duration and/or cumulative dose of morphine treatment does not affect the expression of sex differences in morphine tolerance.
Collapse
Affiliation(s)
- B Kest
- Department of Psychology (4S-223), The College of Staten Island/City University of New York, 2800 Victory Blvd., Staten Island, NY 10314, USA.
| | | | | |
Collapse
|
80
|
Stavnezer AJ, McDowell CS, Hyde LA, Bimonte HA, Balogh SA, Hoplight BJ, Denenberg VH. Spatial ability of XY sex-reversed female mice. Behav Brain Res 2000; 112:135-43. [PMID: 10862944 DOI: 10.1016/s0166-4328(00)00174-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Perinatal gonadal hormones significantly affect subsequent sex differences in reproductive and non-reproductive behaviors in rodents. However, the influence of the sex chromosomes on these behaviors has been largely ignored. To assess the influence of the non-pseudoautosomal region of the Y chromosome, C57BL/JEi male and female mice and mice from the C57BL/6JEi-Y(POS) consomic strain were given behavioral tests known to distinguish males from females. The C57BL/6JEi-Y(POS) strain contains sex-reversed XY-females which, when compared to their XX-female siblings, allow assessment of the influence of the Y chromosome in a female phenotype. XX-females and XY-females did not differ on open-field activity, the Lashley maze, or active avoidance learning, but XY-females were significantly better than XX-females on the Morris hidden platform spatial maze. These findings suggest that males may have both a genetic and a hormonal mechanism to ensure visuospatial superiority.
Collapse
Affiliation(s)
- A J Stavnezer
- Biobehavioral Sciences Graduate Degree Program, U-154, University of Connecticut, 3107 Horsebarn Hill Road, Storrs, CT 06269-4154, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Anderson KG, van Haaren F. Effects of SCH-23390 and raclopride on cocaine discrimination in male and female Wistar rats. Pharmacol Biochem Behav 2000; 65:671-5. [PMID: 10764921 DOI: 10.1016/s0091-3057(99)00256-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Male and female rats were trained to discriminate 10.0 mg/kg cocaine from saline in a two-lever discrimination task. Injection-appropriate responding was reinforced by food pellet presentation on a tandem random-interval 30-s fixed-ratio 10 schedule. Generalization testing was conducted in extinction 10 min following an injection of saline, 1.0, 3.0, 5.6, or 10.0 mg/kg cocaine. No differences in the generalization gradients and ED(50)s were observed between male and female rats. Following the determination of the cocaine generalization gradient, the dopamine D(1) antagonist SCH-23390 (0.01-0.10 mg/kg) and the dopamine D(2) antagonist raclopride (0.1-1.6 mg/kg) were administered (independently) prior to the injection of the training dose of cocaine (10.0 mg/kg). Cocaine-antagonism tests were conducted in extinction. It was found, for each dopamine antagonist, that as the dose increased, the percentage of cocaine-appropriate responding decreased. No sex differences were observed between these generalization gradients.
Collapse
Affiliation(s)
- K G Anderson
- Department of Psychology, University of Florida, Gainesville, FL 32611-2250, USA
| | | |
Collapse
|
82
|
Anderson KG, van Haaren F. Cocaine discrimination and time-course effects in male and female Wistar rats. Eur J Pharmacol 1999; 382:69-74. [PMID: 10528140 DOI: 10.1016/s0014-2999(99)00597-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Previously, sex differences have been observed in the behavioral effects of acute and chronic cocaine administration. In the present experiment, male and female rats were trained to discriminate intraperitoneal injections of 10.0 mg/kg cocaine from its vehicle. It was hypothesized that the subjective effects of cocaine might differ between male and female rats. It was further hypothesized that generalization gradients between male and female rats might differ as a function of the time since cocaine administration. In addition, we were interested to see whether multiple generalization gradients could be determined within the same experimental session. For that purpose, two different types of generalization tests were conducted in extinction, one in which subjects were tested both 10 min and 30 min following cocaine administration (vehicle, 1.0, 3.0, 5.6, 10 or 17 mg/kg) and one in which subjects were only tested 30 min after cocaine administration. The generalization gradients obtained 30 min following drug administration were shifted to the right of the gradient obtained 10 min following drug administration. The two 30-min gradients were not different from one another, showing that multiple generalization gradients can be obtained within the same experimental session.
Collapse
Affiliation(s)
- K G Anderson
- Department of Psychology, University of Florida, Gainesville, FL 32611-2250, USA
| | | |
Collapse
|
83
|
Ito K, Skinkle KL, Hicks TP. Age-dependent, steroid-specific effects of oestrogen on long-term potentiation in rat hippocampal slices. J Physiol 1999; 515 ( Pt 1):209-20. [PMID: 9925890 PMCID: PMC2269127 DOI: 10.1111/j.1469-7793.1999.209ad.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. Long-term potentiation (LTP) of hippocampal population spike responses and excitatory postsynaptic potentials (EPSPs) from area CA1 stratum pyramidale was induced in slices of rat hippocampus maintained in vitro following brief high-frequency stimulation (HFS) of the Schaffer collateral-commissural pathway. When administered to slices prior to HFS, 17beta-oestradiol (OE2), at a concentration as low as 0.1 nM, suppressed the magnitude of the resultant HFS-induced potentiation in slices from prepubertal animals (3 and 4 weeks old) of both sexes. 2. OE2 did not suppress the induction of LTP in slices taken from the hippocampus of adult animals of either sex. 3. There was no similar suppressant effect of 17alpha-oestradiol (OE1), progesterone (PRG) or testosterone (TST) on LTP in the young animals, even at a concentration 100 times greater than was effective for OE2. 4. The anti-oestrogen compound tamoxifen (TMX; 1.0 and 10.0 microM), which acts principally at intracellular binding sites within the nucleus, was without effect in diminishing the suppressant effect of OE2 on LTP in slices from young animals. 5. The LTP observed in slices from both 3-week-old and adult rats was AP5 sensitive and thus was shown to be dependent on activation of NMDA receptors. Results from whole-cell recording experiments suggested that OE2 caused the LTP-suppressant effect through an action on NMDA-mediated currents. 6. These data suggest an age-dependent and possibly a surface membrane receptor-mediated role for oestrogens in modulating the efficacy of input-output properties of CA1 neurones produced by HFS during a critical period in development.
Collapse
Affiliation(s)
- K Ito
- Department of Physiology, School of Medicine, Yamagata University, 2-2-2 lida Nishi, Yamagata 990-23, Japan
| | | | | |
Collapse
|
84
|
Salvador A, Moya-Albiol L, Martínez-Sanchis S, Simón VM. Lack of effects of anabolic-androgenic steroids on locomotor activity in intact male mice. Percept Mot Skills 1999; 88:319-28. [PMID: 10214660 DOI: 10.2466/pms.1999.88.1.319] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Anabolic-androgenic steroid abusers have reported hyperactivity, euphoria, and decreased fatigue, among other behavioral effects. It has been suggested that the effects of these substances on the central nervous system are similar to those of psychostimulants; however, the influence of steroids on general locomotor activity in laboratory animals is not well understood, especially how noncastrated male rodents are affected. In this study, spontaneous locomotor activity displayed by gonadally intact male mice submitted to several experimental conditions was analyzed. Different housing conditions (individual or cohabiting with a female), diverse steroids (testosterone propionate, nandrolone decanoate, and a mixture of both steroids) and single or repeated injections were employed. At 24 hours after the injection (after the three last injections in the case of chronic treatment) spontaneous locomotor activity was registered on an activity recorder for one 15-min. period. No effects due to the treatment were found in almost every experimental condition. These results contrast with the dramatic decreases in activity described for female mice after treatment with such steroids. It seems that in intact males the steroids' influence on spontaneous locomotor activity may be more subtle than expected. These effects seem very complex depending on duration of treatment and specific situations (spontaneous or forced activity) as well as the interaction with endogenous androgen levels.
Collapse
Affiliation(s)
- A Salvador
- Area de Psicobiología, Facultad de Psicología, Valencia, Spain.
| | | | | | | |
Collapse
|
85
|
Luine VN, Richards ST, Wu VY, Beck KD. Estradiol enhances learning and memory in a spatial memory task and effects levels of monoaminergic neurotransmitters. Horm Behav 1998; 34:149-62. [PMID: 9799625 DOI: 10.1006/hbeh.1998.1473] [Citation(s) in RCA: 333] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of chronic estrogen treatment on radial arm maze performance and on levels of central monoaminergic and amino acid neurotransmitters were examined in ovariectomized (Ovx) rats. In an eight arms baited paradigm, choice accuracy was enhanced following 12 days but not 3 days of treatment. In addition, performance during acquisition of the eight arms baited maze task was better in estrogen-treated Ovx rats than in Ovx rats. Performance of treated rats was also enhanced in win-shift trials conducted 12 days postestrogen treatment. Working, reference, and working-reference memory was examined when four of the eight arms were baited, and only working memory was improved by estrogen and only after long-term treatment. Activity of Ovx rats on an open field, crossings and rearings, was increased at 5 but not at 35 days following estrogen treatment. In medial prefrontal cortex, levels of NE, DA, and 5-HT were decreased but glutamate and GABA levels were not affected following chronic estrogen treatment. Basal forebrain nuclei also showed changes in monoamines following estrogen. Hippocampal subfields showed no effects of estrogen treatment on monoaminergic or amino acid transmitters. Levels of GABA were increased in the vertical diagonal bands following chronic estrogen. Results show that estrogen enhances learning/memory on a task utilizing spatial memory. Effects in Ovx rats appear to require the chronic (several days) presence of estrogen. Changes in activity of both monoaminergic and amino acid transmitters in the frontal cortex and basal forebrain may contribute to enhancing effects of estrogen on learning/memory.
Collapse
Affiliation(s)
- V N Luine
- Department of Psychology, Hunter College, 695 Park Avenue, New York, New York, 10021, USA.
| | | | | | | |
Collapse
|
86
|
Roberts AJ, Smith AD, Weiss F, Rivier C, Koob GF. Estrous Cycle Effects on Operant Responding for Ethanol in Female Rats. Alcohol Clin Exp Res 1998. [DOI: 10.1111/j.1530-0277.1998.tb03950.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
87
|
Abstract
The present paper provides a review of recent research carried out in this laboratory investigating the effects of posttraining peripheral and intrahippocampal injection of estradiol on memory in rats, and estradiol-acetylcholine interactions in memory modulation. Ovariectomized rats received an eight-trial training session in a hippocampal-dependent hidden platform water maze task. Immediately following training, rats received a posttraining peripheral or intrahippocampal injection of estradiol-cyclodextrin complex or vehicle. Twenty-four hours later rats were returned to the maze for a retention test session, and latency to escape was used as a measure of memory for the previous day's training. Peripheral posttraining injection of estradiol enhances memory relative to vehicle-treated rats. Injections of estradiol given 2 h posttraining has no effect on retention, indicating a time-dependent effect of estradiol on memory storage processes. A time-dependent memory enhancing effect of posttraining intrahippocampal injections of estradiol has also been observed in both male and ovariectomized female rats. The memory enhancing effect of peripheral posttraining injection of estradiol in ovariectomized rats is blocked by a subeffective dose of the acetylcholine muscarinic receptor antagonist scopolamine, suggesting that estradiol interacts with cholinergic systems in memory modulation. Concurrent peripheral posttraining injection of a subeffective dose of estradiol and a subeffective dose of the cholinergic agonist oxotremorine produces a synergistic memory enhancing effect. The findings suggest that: (1) estradiol selectively influences memory storage independent of an effect on nonmnemonic processes, (2) the hippocampus is a potential neuroanatomical site of action mediating estrogenic effects on memory, and (3) estradiol interacts with cholinergic systems in memory modulation.
Collapse
Affiliation(s)
- M G Packard
- Department of Psychology, University of New Orleans, New Orleans, Louisiana, 70148, USA
| |
Collapse
|
88
|
Inestrosa NC, Marzolo MP, Bonnefont AB. Cellular and molecular basis of estrogen's neuroprotection. Potential relevance for Alzheimer's disease. Mol Neurobiol 1998; 17:73-86. [PMID: 9887447 DOI: 10.1007/bf02802025] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is one of the most common types of dementia among the aged population, with a higher prevalence in women. The reason for this latter observation remained unsolved for years, but recent studies have provided evidence that a lack of circulating estrogen in postmenopausal women could be a relevant factor. Moreover, follow-up studies among postmenopausal women who had received estrogen-replacement therapy (ERT), suggested that they had a markedly reduced risk of developing AD. In addition, studies among older women who already had AD indeed confirmed that a decrease in estrogen levels was likely to be an important factor in triggering the pathogenesis of the disease. In this review article, we will discuss the evidence suggesting that estrogen may have a protective role against AD, mainly through its action as: a trophic factor for cholinergic neurons, a modulator for the expression of apolipoprotein E (ApoE) in the brain, an antioxidant compound decreasing the neuronal damage caused by oxidative stress, and a promoter of the physiological nonamyloidogenic processing of the amyloid precursor protein (APP), decreasing the production of the amyloid-beta-peptide (A beta), a key factor in the pathogenesis of AD.
Collapse
Affiliation(s)
- N C Inestrosa
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile
| | | | | |
Collapse
|
89
|
|
90
|
Aloisi AM. Sex differences in pain-induced effects on the septo-hippocampal system. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 25:397-406. [PMID: 9495566 DOI: 10.1016/s0165-0173(97)00030-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In addition to its role in the modulation of functions such as arousal and attention, learning and memory, the limbic system has repeatedly been described to be involved in the regulation of several behavioral aspects concerning the adaptation to aversive situations, including pain. A key role in these processes seems to be played by the septo-hippocampal system. This paper, far from being a comprehensive review of all the data available about the limbic system, describes some of the circuits participating in the septo-hippocampal system, with the aim of contributing to an understanding of the sex differences in the behavioral, hormonal and neuronal responses to aversive stimuli. It will appear that the complex anatomical and functional interactions between the different neurotransmitters acting at this level prevent one from indicating a certain substance as more important than others in determining a difference between the two sexes. This leads to the conclusion that the septo-hippocampal formation in toto plays a key role in determining the sex differences in the 'pain experience'.
Collapse
Affiliation(s)
- A M Aloisi
- Institute of Human Physiology, Università degli Studi di Siena, Italy.
| |
Collapse
|
91
|
Abstract
Estrogen may have a beneficial effect on the risk and course of Alzheimer's disease (AD) through several mechanisms, including improvement of cerebral blood flow, stimulation of the neuron, or gliacyte and interaction with genetic factors. In this paper, the therapeutic and etiologic research of the role of estrogen in cognitive function and dementia is reviewed. Findings to date are promising but far from conclusive. In therapeutic research, interpretation of studies is hampered by the small sizes of the studies and differences in methodology. Most etiological studies have been limited to retrospective studies in which the history of estrogen use was obtained from an informant. Follow-up studies conducted to date have yielded controversial results. Further research is needed to elucidate the role of estrogen in the pathogenesis and progression of dementia. Subjects genetically susceptible for AD may prove to be an important high-risk group to target in preventive, therapeutic and etiologic research.
Collapse
Affiliation(s)
- C M van Duijn
- Department of Epidemiology & Biostatistics, Erasmus University Medical School, Rotterdam, The Netherlands
| |
Collapse
|
92
|
Handa RJ, Hejna GM, Lorens SA. Androgen inhibits neurotransmitter turnover in the medial prefrontal cortex of the rat following exposure to a novel environment. Brain Res 1997; 751:131-8. [PMID: 9098576 DOI: 10.1016/s0006-8993(96)01394-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous studies have demonstrated that gonadal steroid hormones affect the neuroendocrine response to a novel environment and other stressors. Introduction to a novel environment also increases neurotransmitter turnover in the medial prefrontal cortex (MPFC). In this study, we examined the possibility that gonadal steroid hormones could similarly modulate the neurotransmitter response to a novel environment in the MPFC of the male rat. Male Fischer 344 rats at 3 months of age were gonadectomized (GDX'd) and implanted with Silastic capsules containing dihydrotestosterone propionate (DHTP, a non-aromatizable form of androgen), 17 beta-estradiol (E), or placebo. Control animals were left intact. Each of these groups was further divided into a group introduced to a novel environment or a home cage control group. Animals exposed to a novel environment were killed after spending 20 min in a novel open field, whereas control animals were killed immediately upon removal from their home cage. Using high performance liquid chromatography, the MPFC was assayed for tissue levels of dopamine (DA) and its metabolites, 3,4-dihydroxyphenylalanine (DOPAC) and homovanillic acid (HVA); norepinephrine (NE) and its metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG); or serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid (5-HIAA). The introduction to a novel environment caused significant increases in turnover of all three neurochemicals examined as estimated by metabolite/precursor ratios. These increases were characterized by increases in DOPAC, HVA, MHPG and 5-HIAA coupled with decreases in DA, NE and 5-HT. There was no effect of GDX on neurotransmitter turnover, however, treatment of GDX animals with DHTP prevented the open field induced increase in DOPAC/DA, MHPG/NE, and 5-HIAA/5-HT ratio. Treatment of GDX animals with estrogen had the opposite effect of DHTP, DOPAC/DA and MHPG/NE ratios increased to a greater level following the introduction to a novel environment than in GDX or intact animals. Examination of behavior in the open field showed significant decreases in activity in the DHTP-treated group but not in any other behavioral parameter (rears, nose pokes). Since the non-aromatizable androgen, DHTP, is presumably acting via androgen receptors, and E is presumably acting via estrogen receptors, these data suggest that, in the MPFC of male rats, androgen and estrogen receptors act in an opposing fashion to modify neurotransmitter turnover. This suggests that local changes in the relative levels of androgen and estrogen can have profound effects on the neurobiological response of the medial prefrontal cortex to stimuli.
Collapse
Affiliation(s)
- R J Handa
- Department of Cell Biology, Loyola University, Chicago, Stritch School of Medicine, Maywood, IL 60153, USA.
| | | | | |
Collapse
|
93
|
|
94
|
Andrews JS. Possible confounding influence of strain, age and gender on cognitive performance in rats. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 1996; 3:251-67. [PMID: 8806027 DOI: 10.1016/0926-6410(96)00011-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There are substantial differences in the performance of various rat strains in tasks of learning, memory and attention. Strain, age and sex differences are not consistent over procedures: poor performance in one paradigm does not predict poor performance in a different paradigm. Some strain differences are not readily apparent until a direct comparison is made between one or more strains. Moreover, large differences in nominally the same strain but obtained from different suppliers have been observed in behavioural, pharmacological and physiological parameters and can have important consequences for interpretation of drug effects. Longevity, and the effects of ageing can differ dramatically from one strain to another; drug effects can alter radically with increasing age and show strain (and individual) differences in their action. Sex can further complicate interpretation of results. Thus, non-cognitive factors may exert a major effect on results in cognitive testing, and strain-dependent effects may account for many conflicting results in the literature concerning mnemonic performance. Strain differences in particular must be identified and used to help identify fundamental effects on memory, rather than continue to be ignored and allowed to obscure interpretation of drug effects on cognitive processes.
Collapse
Affiliation(s)
- J S Andrews
- Scientific Development Group, NV Organon, Oss, The Netherlands
| |
Collapse
|
95
|
Schantz SL, Seo BW, Moshtaghian J, Peterson RE, Moore RW. Effects of gestational and lactational exposure to TCDD or coplanar PCBs on spatial learning. Neurotoxicol Teratol 1996; 18:305-13. [PMID: 8725643 DOI: 10.1016/s0892-0362(96)90033-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recently we reported that in utero and lactational exposure to specific ortho-substituted polychlorinated biphenyl (PCB) congeners resulted in a learning deficit on a delayed spatial alternation (DSA) task in female rats. In this study, spatial learning and memory was assessed following in utero and lactational exposure to coplanar PCBs or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Time-mated Sprague-Dawley rats were dosed with PCB 77 (3,3',4,4'-tetrachlorobiphenyl), 2 or 8 mg/kg/day; PCB 126 (3,3',4,4',5-pentachlorobiphenyl), 0.25 or 1.0 micrograms/kg/day; TCDD, 0.025 or 0.1 micrograms/kg/day; or corn oil vehicle via gavage on gestation days 10-16. Litters were culled to eight on day 2 and weaned on day 21. Beginning on day 80, one male and one female from each litter were tested on an eight-arm radial maze working memory task. The TCDD-exposed rats displayed pronounced decreases in errors relative to controls. PCB 77- and PCB 126-exposed rats showed similar, but less pronounced, decreases in errors. The same animals were later tested on a T-maze DSA task, but no differences among groups were observed. In conclusion, perinatal exposure to low doses of TCDD or structurally related coplanar PCBs appeared to facilitate acquisition of a working memory task on the radial arm maze. This effect was very different from that previously observed in rats exposed to ortho-substituted PCB congeners. The rats exposed to ortho-substituted PCBs did not differ from controls on the radial arm maze and were impaired on the T-maze DSA task. Together these findings suggest that coplanar and ortho-substituted PCBs may have different mechanisms of action on the CNS.
Collapse
Affiliation(s)
- S L Schantz
- Institute for Environmental Studies and Neuroscience Program, University of Illinois at Urbana-Champaign, 61801, USA.
| | | | | | | | | |
Collapse
|
96
|
van Luijtelaar EL, Dirksen R, Vree TB, van Haaren F. Effects of acute and chronic cocaine administration on EEG and behaviour in intact and castrated male and intact and ovariectomized female rats. Brain Res Bull 1996; 40:43-50. [PMID: 8722752 DOI: 10.1016/0361-9230(96)00005-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Intact and gonadectomized male and female WAG/ Rij rats were used to study the effects of gender and gonadal hormones on the development of sensitization and tolerance to cocaine-induced changes in EEG and behaviour. The four groups of WAG/Rij rats differed in the number of spontaneously occurring spike-wave discharges: ovariectomy decreased and castration increased the number of spike-wave discharges. This confirms that testosterone has antiabsence effects and that female gonadal hormones may promote the occurrence of spike-wave discharges. Cocaine [10 and 20 mg/kg, intraperitoneally (IP)] was administered before and after chronic cocaine administration (9 days, one daily injection with 10 mg/kg) and EEG and behaviour were monitored. Cocaine strongly suppressed the occurrence of spike-wave discharges before and after chronic administration in all four groups, although the decrease was less in the intact males. Sensitization or tolerance induced by cocaine on EEG could not be established. Acute cocaine administration eliminated explorative, automatic, and passive behaviour, whereas various stereotypical activities such as uncoordinated head and body movements and head swaying emerged. Differences between groups were observed as intact males were less likely than subjects in the three other groups to engage in intense stereotyped behaviour. These data suggest that testosterone inhibits EEG and behavioural effects of acute cocaine administration. All four groups displayed less head swaying and more uncoordinated head and body movements after chronic cocaine administration, suggesting that behavioural sensitization had occurred. Differences between the four groups had faded away. Although pharmacokinetic differences in levels of cocaine and benzoylecgonine between the four groups were found, they could not easily be related to the behavioural differences between groups.
Collapse
|
97
|
Shors TJ, Wood GE. Contribution of stress and gender to exploratory preferences for familiar versus unfamiliar conspecifics. Physiol Behav 1995; 58:995-1002. [PMID: 8577899 DOI: 10.1016/0031-9384(95)00153-a] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An apparatus for measuring the exploratory preferences of rats for familiar and unfamiliar conspecifics in a novel environment was designed. The exploratory behavior of males and females was compared and contrasted to that elicited in response to an acute aversive event. Sprague-Dawley male and female rats were exposed to restraint and 60, 1 s, 1 mA tailshocks and returned to their home cage. Either 2 or 24 h later, they were placed in a novel environment with a familiar cage-mate and an unfamiliar conspecific of the same sex. Relative to unstressed controls and females, males stressed 2 h previously decreased the exploration of the unfamiliar conspecific, exhibiting a rapid decrease over the course of the trial. In response to the stressor, however both sexes, however, decreased the exploration of the familiar conspecific, decreased their overall activity, and returned preferentially to their starting quadrant. None of these stress-induced effects were evident 24 h later upon the first or second exposure to the apparatus. Thus, exposure to the stressor transiently increased perseveration and decreased activity in males and females, but only decreased the exploration of novel conspecifics in males. These results indicate that a number of behavioral responses to stressors are conserved across gender, but those relating to novelty are more pronounced in males.
Collapse
Affiliation(s)
- T J Shors
- Department of Psychology, Princeton University, NJ 08544-1010, USA
| | | |
Collapse
|
98
|
Arenas MC, Parra A, Simón VM. Gender differences in the effects of haloperidol on avoidance conditioning in mice. Pharmacol Biochem Behav 1995; 51:601-9. [PMID: 7675831 DOI: 10.1016/0091-3057(94)00382-s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gender differences in the effects of haloperidol (0.075 mg/kg per day for 5 days) on avoidance conditioning were evaluated. We also studied performance of the subjects free of the drug and the acute effects of haloperidol in animals trained without drug 48 h after the last haloperidol administration. Latencies of escape and avoidance responses, number of nonresponses, escapes, avoidances, crossings during the adaptation period, crossings during intertrial intervals, and total crossings per minute were analyzed. This dosage impaired conditioning of the male animals but did not attain the same effects on females. Haloperidol did not deteriorate performance of the task when it had been learned previously without drug. The results confirm the existence of gender differences in haloperidol effects on avoidance conditioning in mice and suggest that these differences are related to the learning process and not only to the impairment of motor behavior characteristic of neuroleptic drugs.
Collapse
Affiliation(s)
- M C Arenas
- Facultad de Psicología, Universitat de València, Spain
| | | | | |
Collapse
|
99
|
O'Keefe JA, Li Y, Burgess LH, Handa RJ. Estrogen receptor mRNA alterations in the developing rat hippocampus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 30:115-24. [PMID: 7609632 DOI: 10.1016/0169-328x(94)00284-l] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We previously reported transiently elevated ER protein levels in the postnatal rat hippocampus suggesting that this brain region may be sensitive to estrogenic trophic and organizational influences during a 'critical period' of sexual differentiation. In order to examine whether alterations in ER gene expression underlie the ontogenetic pattern of the hippocampal ER, we examined ER mRNA levels over the early postnatal period and in adult rats. This was accomplished by both a highly quantitative RNase protection assay and in situ hybridization histochemistry. Hippocampal ER mRNA levels increased significantly (P < 0.005) between birth and postnatal day (PDN) 4 when peak concentrations were found and then declined by PND-10. Adult male hippocampal ER mRNA values were similar to those found in newborn and PND-10 animals but were significantly less (P < 0.05) than those observed on PND-4. Results from the in situ hybridization experiments correlated well with those from the RNase protection analysis. High levels of ER mRNA were present in the CA3 pyramidal layer with somewhat lower labeling intensities present in CA1 and the dentate gyrus of the PND-4 animal. In contrast, adult male animals demonstrated little hybridization throughout the hippocampus. Thus, the temporal pattern in ER mRNA levels in the hippocampus found in the present study correlates well with our previous developmental profile of the ER protein. These findings suggest that the ontogeny of ER in the hippocampus is regulated by alterations in ER gene expression in specific neuronal populations.
Collapse
Affiliation(s)
- J A O'Keefe
- Department of Cell Biology, Neurobiology, and Anatomy, Loyola University Stritch School of Medicine, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
100
|
Gibbs RB. Estrogen and nerve growth factor-related systems in brain. Effects on basal forebrain cholinergic neurons and implications for learning and memory processes and aging. Ann N Y Acad Sci 1994; 743:165-96; discussion 197-9. [PMID: 7802412 DOI: 10.1111/j.1749-6632.1994.tb55792.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Estrogen replacement can significantly affect the expression of ChAT and NGF receptors in specific basal forebrain cholinergic neurons. The time-course of the effects is consistent with a direct up-regulation of ChAT followed by either direct or indirect down-regulation of p75NGFR and trkA NGF receptors, possibly due to increased cholinergic activity in the hippocampal formation and cortex and a decrease in hippocampal levels of NGF. Current evidence suggests ChAT, p75NGFR, trkA, and NGF all play a role in regulating cholinergic function in the hippocampal formation and cortex. In addition, all have been implicated in the maintenance of normal learning and memory processes as well as in changes in cognitive function associated with aging and with neurodegenerative disease. It is possible that estrogen may affect cognitive function via effects on NGF-related systems and basal forebrain cholinergic neurons. Effects of estrogen on cognitive function have been reported, as has some preliminary evidence for beneficial effects of estrogen in decreasing the prevalence of and reducing some cognitive deficits associated with Alzheimer's disease. Whether these effects are related to effects on NGF-related systems or basal forebrain cholinergic neurons is currently unknown. Indirect evidence suggests that estrogen interacts with NGF-related systems and that changes in circulating levels of estrogen can contribute to age-related changes in hippocampal levels of NGF. These findings have important implications for consideration of estrogen replacement therapy in pre- and post-menopausal women. Further studies examining effects of different regimens of estrogen replacement as well as estrogen combined with progesterone on NGF and basal forebrain cholinergic neurons in young and aged animals are required. Prospective studies correlating aging and estrogen replacement with numbers of basal forebrain cholinergic neurons and hippocampal and cortical levels of NGF also need to be performed to better assess the potential benefits of estrogen replacement in reducing age- and disease-related cognitive decline.
Collapse
Affiliation(s)
- R B Gibbs
- Department of Pharmacy, University of Pittsburgh School of Pharmacy, Pennsylvania 15261
| |
Collapse
|