51
|
Specht CG, Izeddin I, Rodriguez PC, El Beheiry M, Rostaing P, Darzacq X, Dahan M, Triller A. Quantitative nanoscopy of inhibitory synapses: counting gephyrin molecules and receptor binding sites. Neuron 2013; 79:308-21. [PMID: 23889935 DOI: 10.1016/j.neuron.2013.05.013] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2013] [Indexed: 12/01/2022]
Abstract
The strength of synaptic transmission is controlled by the number and activity of neurotransmitter receptors. However, little is known about absolute numbers and densities of receptor and scaffold proteins and the stoichiometry of molecular interactions at synapses. Here, we conducted three-dimensional and quantitative nanoscopic imaging based on single-molecule detections to characterize the ultrastructure of inhibitory synapses and to count scaffold proteins and receptor binding sites. We observed a close correspondence between the spatial organization of gephyrin scaffolds and glycine receptors at spinal cord synapses. Endogenous gephyrin was clustered at densities of 5,000-10,000 molecules/μm(2). The stoichiometry between gephyrin molecules and receptor binding sites was approximately 1:1, consistent with a two-dimensional scaffold in which all gephyrin molecules can contribute to receptor binding. The competition of glycine and GABAA receptor complexes for synaptic binding sites highlights the potential of single-molecule imaging to quantify synaptic plasticity on the nanoscopic scale.
Collapse
Affiliation(s)
- Christian G Specht
- Biologie Cellulaire de la Synapse, Inserm U1024, Institute of Biology, École Normale Supérieure ENS, 46 rue d'Ulm, Paris 75005, France
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Expression of the γ2-subunit distinguishes synaptic and extrasynaptic GABA(A) receptors in NG2 cells of the hippocampus. J Neurosci 2013; 33:12030-40. [PMID: 23864689 DOI: 10.1523/jneurosci.5562-12.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NG2 cells are equipped with transmitter receptors and receive direct synaptic input from glutamatergic and GABAergic neurons. The functional impact of these neuron-glia synapses is still unclear. Here, we combined functional and molecular techniques to analyze properties of GABA(A) receptors in NG2 cells of the juvenile mouse hippocampus. GABA activated slowly desensitizing responses in NG2 cells, which were mimicked by muscimol and inhibited by bicuculline. To elucidate the subunit composition of the receptors we tested its pharmacological properties. Coapplication of pentobarbital, benzodiazepines, and zolpidem all significantly increased the GABA-evoked responses. The presence of small tonic currents indicated the presence of extrasynaptic GABA(A) receptors. To further analyze the subunit expression, single cell transcript analysis was performed subsequent to functional characterization of NG2 cells. The subunits α1, α2, β3, γ1, and γ2 were most abundantly expressed, matching properties resulting from pharmacological characterization. Importantly, lack of the γ2-subunit conferred a high Zn²⁺ sensitivity to the GABA(A) receptors of NG2 cells. Judging from the zolpidem sensitivity, postsynaptic GABA(A) receptors in NG2 cells contain the γ2-subunit, in contrast to extrasynaptic receptors, which were not modulated by zolpidem. To determine the effect of GABA(A) receptor activation on membrane potential, perforated patch recordings were obtained from NG2 cells. In the current-clamp mode, GABA depolarized the cells to approximately -30 mV, indicating a higher intracellular Cl⁻ concentration (∼50 mM) than previously reported. GABA-induced depolarization in NG2 cells might trigger Ca²⁺ influx through voltage-activated Ca²⁺ channels.
Collapse
|
53
|
Liu Q, Wong-Riley MTT. Postnatal development of glycine receptor subunits α1, α2, α3, and β immunoreactivity in multiple brain stem respiratory-related nuclear groups of the rat. Brain Res 2013; 1538:1-16. [PMID: 24080401 DOI: 10.1016/j.brainres.2013.09.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/16/2013] [Accepted: 09/20/2013] [Indexed: 01/01/2023]
Abstract
The respiratory system is immature at birth and significant development occurs postnatally. A critical period of respiratory development occurs in rats around postnatal days 12-13, when enhanced inhibition dominates over suppressed excitation. The mechanisms underlying the heightened inhibition are not fully understood. The present study tested our hypothesis that the inhibition is marked by a switch in glycine receptor subunits from neonatal to adult form around the critical period. An in-depth immunohistochemical and single neuron optical densitometric study was undertaken on four respiratory-related nuclear groups (the pre-Bötzinger complex, nucleus ambiguus, hypoglossal nucleus, and ventrolateral subnucleus of solitary tract nucleus), and a non-respiratory cuneate nucleus in P2-21 rats. Our data revealed that in the respiratory-related nuclear groups: (1) the expressions of GlyRα2 and GlyRα3 were relatively high at P2, but declined after 1-1½ weeks to their lowest levels at P21; (2) the expression of GlyRα1 increased with age and reached significance at P12; and (3) the expression of GlyRβ rose from P2 to P12 followed by a slight decline until P21. No distinct increase in GlyRα1 at P12 was noted in the cuneate nucleus. Thus, there is a switch in dominance of expression from neonatal GlyRα2/α3 to the adult GlyRα1 and a heightened expression of GlyRα1 around the critical period in all respiratory-related nuclear groups, thereby supporting enhanced inhibition at that time. The rise in the expression of GlyRβ around P12 indicates that it plays an important role in forming the mature heteropentameric glycine receptors in these brain stem nuclear groups.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | |
Collapse
|
54
|
Sander B, Tria G, Shkumatov AV, Kim EY, Grossmann JG, Tessmer I, Svergun DI, Schindelin H. Structural characterization of gephyrin by AFM and SAXS reveals a mixture of compact and extended states. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2050-60. [DOI: 10.1107/s0907444913018714] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 07/05/2013] [Indexed: 11/10/2022]
Abstract
Gephyrin is a trimeric protein involved in the final steps of molybdenum-cofactor (Moco) biosynthesis and in the clustering of inhibitory glycine and GABAAreceptors at postsynaptic specializations. Each protomer consists of stably folded domains (referred to as the G and E domains) located at either terminus and connected by a proteolytically sensitive linker of ∼150 residues. Both terminal domains can oligomerize in their isolated forms; however, in the context of the full-length protein only the G-domain trimer is permanently present, whereas E-domain dimerization is prevented. Atomic force microscopy (AFM) and small-angle X-ray scattering (SAXS) reveal a high degree of flexibility in the structure of gephyrin. The results imply an equilibrium between compact and extended conformational states in solution, with a preference for compact states. CD spectroscopy suggests that a partial compaction is achieved by interactions of the linker with the G and E domains. Taken together, the data provide a rationale for the role of the linker in the overall structure and the conformational dynamics of gephyrin.
Collapse
|
55
|
Kilb W, Kirischuk S, Luhmann HJ. Role of tonic GABAergic currents during pre- and early postnatal rodent development. Front Neural Circuits 2013; 7:139. [PMID: 24027498 PMCID: PMC3760143 DOI: 10.3389/fncir.2013.00139] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/16/2013] [Indexed: 11/13/2022] Open
Abstract
In the last three decades it became evident that the GABAergic system plays an essential role for the development of the central nervous system, by influencing the proliferation of neuronal precursors, neuronal migration and differentiation, as well as by controlling early activity patterns and thus formation of neuronal networks. GABA controls neuronal development via depolarizing membrane responses upon activation of ionotropic GABA receptors. However, many of these effects occur before the onset of synaptic GABAergic activity and thus require the presence of extrasynaptic tonic currents in neuronal precursors and immature neurons. This review summarizes our current knowledge about the role of tonic GABAergic currents during early brain development. In this review we compare the temporal sequence of the expression and functional relevance of different GABA receptor subunits, GABA synthesizing enzymes and GABA transporters. We also refer to other possible endogenous agonists of GABAA receptors. In addition, we describe functional consequences mediated by the GABAergic system during early developmental periods and discuss current models about the origin of extrasynaptic GABA and/or other endogenous GABAergic agonists during early developmental states. Finally, we present evidence that tonic GABAergic activity is also critically involved in the generation of physiological as well as pathophysiological activity patterns before and after the establishment of functional GABAergic synaptic connections.
Collapse
Affiliation(s)
- Werner Kilb
- Institute of Physiology and Pathophysiology, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | | | | |
Collapse
|
56
|
Weltzien F, Puller C, O'Sullivan GA, Paarmann I, Betz H. Distribution of the glycine receptor β-subunit in the mouse CNS as revealed by a novel monoclonal antibody. J Comp Neurol 2013; 520:3962-81. [PMID: 22592841 DOI: 10.1002/cne.23139] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Inhibitory glycine receptors (GlyRs) are composed of homologous α- (α1-4) and β-subunits. The β-subunits (GlyRβ) interact via their large cytosolic loops with the postsynaptic scaffolding protein gephyrin and are therefore considered essential for synaptic localization. In situ hybridization studies indicate a widespread distribution of GlyRβ transcripts throughout the mammalian central nervous system (CNS), whereas GlyRα mRNAs and proteins display more restricted expression patterns. Here we report the generation of a monoclonal antibody that specifically recognizes rodent GlyRβ (mAb-GlyRβ) and does not exhibit crossreactivity with any of the GlyRα1-4 subunits. Immunostaining with this antibody revealed high densities of punctate GlyRβ immunoreactivity at inhibitory synapses in mouse spinal cord, brainstem, midbrain, and olfactory bulb but not in the neocortex, cerebellum, or hippocampus. This contrasts the abundance of GlyRβ transcripts in all major regions of the rodent brain and suggests that GlyRβ protein levels are regulated posttranscriptionally. When mAb-GlyRβ was used in double-labeling experiments with GlyRα1-, α2-, α3-, or α4-specific antibodies to examine the colocalization of GlyRβ with these GlyR subunits in the mouse retina, >90% of the GlyRα1-3 clusters detected were found to be GlyRβ-immunoreactive. A subset (about 50%) of the GlyRα4 puncta in the inner plexiform layer, however, was found to lack GlyRβ and gephyrin immunostaining. These GlyRα4-only clusters were apposed to bassoon immunoreactivity and hence synaptically localized. Their existence points to a gephyrin-independent synaptic localization mechanism for a minor subset of GlyRs.
Collapse
Affiliation(s)
- Felix Weltzien
- Department of Neurochemistry, Max-Planck Institute for Brain Research, 60528 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
57
|
Differential distribution of glycine receptor subtypes at the rat calyx of Held synapse. J Neurosci 2013; 32:17012-24. [PMID: 23175852 DOI: 10.1523/jneurosci.1547-12.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The properties of glycine receptors (GlyRs) depend upon their subunit composition. While the prevalent adult forms of GlyRs are heteromers, previous reports suggested functional α homomeric receptors in mature nervous tissues. Here we show two functionally different GlyRs populations in the rat medial nucleus of trapezoid body (MNTB). Postsynaptic receptors formed α1/β-containing clusters on somatodendritic domains of MNTB principal neurons, colocalizing with glycinergic nerve endings to mediate fast, phasic IPSCs. In contrast, presynaptic receptors on glutamatergic calyx of Held terminals were composed of dispersed, homomeric α1 receptors. Interestingly, the parent cell bodies of the calyces of Held, the globular bushy cells of the cochlear nucleus, expressed somatodendritic receptors (α1/β heteromers) and showed similar clustering and pharmacological profile as GlyRs on MNTB principal cells. These results suggest that specific targeting of GlyR β-subunit produces segregation of GlyR subtypes involved in two different mechanisms of modulation of synaptic strength.
Collapse
|
58
|
Abstract
Strychnine-sensitive glycine receptors (GlyRs) mediate synaptic inhibition in the spinal cord, brainstem, and other regions of the mammalian central nervous system. In this minireview, we summarize our current view of the structure, ligand-binding sites, and chloride channel of these receptors and discuss recently emerging functions of distinct GlyR isoforms. GlyRs not only regulate the excitability of motor and afferent sensory neurons, including pain fibers, but also are involved in the processing of visual and auditory signals. Hence, GlyRs constitute promising targets for the development of therapeutically useful compounds.
Collapse
Affiliation(s)
- Sébastien Dutertre
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cord-Michael Becker
- the Institute of Biochemistry, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Heinrich Betz
- the Max-Planck-Institute for Medical Research, 69120 Heidelberg, Germany, and
- the Department of Molecular Neurobiology, Max-Planck-Institute for Experimental Medicine, 37075 Göttingen, Germany
| |
Collapse
|
59
|
Vlachos A, Reddy-Alla S, Papadopoulos T, Deller T, Betz H. Homeostatic regulation of gephyrin scaffolds and synaptic strength at mature hippocampal GABAergic postsynapses. ACTA ACUST UNITED AC 2012; 23:2700-11. [PMID: 22918984 DOI: 10.1093/cercor/bhs260] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gephyrin is a scaffolding protein important for the postsynaptic clustering of inhibitory neurotransmitter receptors. Here, we investigated the properties of gephyrin scaffolds at γ-aminobutyric acid- (GABA-)ergic synapses in organotypic entorhino-hippocampal cultures prepared from a transgenic mouse line, which expresses green fluorescent protein-tagged gephyrin under the control of the Thy1.2 promoter. Fluorescence recovery after photobleaching revealed a developmental stabilization of postsynaptic gephyrin clusters concomitant with an increase in cluster size and synaptic strength between 1 and 4 weeks in vitro. Prolonged treatment of the slice cultures with diazepam or a GABAA receptor antagonist disclosed a homeostatic regulation of both inhibitory synaptic strength and gephyrin cluster size and stability in 4-weeks-old cultures, whereas at 1 week in vitro, the same drug treatments modulated GABAergic postsynapse and gephyrin cluster properties following a Hebbian mode of synaptic plasticity. Our data are consistent with a model in which the postnatal maturation of the hippocampal network endows CA1 pyramidal neurons with the ability to homeostatically adjust the strength of their inhibitory postsynapses to afferent GABAergic drive by regulating gephyrin scaffold properties.
Collapse
Affiliation(s)
- Andreas Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University, 60590 Frankfurt am Main, Germany and
| | | | | | | | | |
Collapse
|
60
|
Puskarjov M, Ahmad F, Kaila K, Blaesse P. Activity-dependent cleavage of the K-Cl cotransporter KCC2 mediated by calcium-activated protease calpain. J Neurosci 2012; 32:11356-64. [PMID: 22895718 PMCID: PMC6621186 DOI: 10.1523/jneurosci.6265-11.2012] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 06/29/2012] [Accepted: 07/03/2012] [Indexed: 11/21/2022] Open
Abstract
The K-Cl cotransporter KCC2 plays a crucial role in neuronal chloride regulation. In mature central neurons, KCC2 is responsible for the low intracellular Cl(-) concentration ([Cl(-)](i)) that forms the basis for hyperpolarizing GABA(A) receptor-mediated responses. Fast changes in KCC2 function and expression have been observed under various physiological and pathophysiological conditions. Here, we show that the application of protein synthesis inhibitors cycloheximide and emetine to acute rat hippocampal slices have no effect on total KCC2 protein level and K-Cl cotransporter function. Furthermore, blocking constitutive lysosomal degradation with leupeptin did not induce significant changes in KCC2 protein levels. These findings indicate a low basal turnover rate of the total KCC2 protein pool. In the presence of the glutamate receptor agonist NMDA, the total KCC2 protein level decreased to about 30% within 4 h, and this effect was blocked by calpeptin and MDL-28170, inhibitors of the calcium-activated protease calpain. Interictal-like activity induced by incubation of hippocampal slices in an Mg(2+)-free solution led to a fast reduction in KCC2-mediated Cl(-) transport efficacy in CA1 pyramidal neurons, which was paralleled by a decrease in both total and plasmalemmal KCC2 protein. These effects were blocked by the calpain inhibitor MDL-28170. Taken together, these findings show that calpain activation leads to cleavage of KCC2, thereby modulating GABAergic signaling.
Collapse
Affiliation(s)
- Martin Puskarjov
- Department of Biosciences and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland and
| | - Faraz Ahmad
- Department of Biosciences and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland and
| | - Kai Kaila
- Department of Biosciences and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland and
| | - Peter Blaesse
- Department of Biosciences and Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland and
- Institute of Physiology I, Westfälische Wilhelms-University Münster, D-48149 Münster, Germany
| |
Collapse
|
61
|
Tretter V, Mukherjee J, Maric HM, Schindelin H, Sieghart W, Moss SJ. Gephyrin, the enigmatic organizer at GABAergic synapses. Front Cell Neurosci 2012; 6:23. [PMID: 22615685 PMCID: PMC3351755 DOI: 10.3389/fncel.2012.00023] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 04/23/2012] [Indexed: 11/17/2022] Open
Abstract
GABAA receptors are clustered at synaptic sites to achieve a high density of postsynaptic receptors opposite the input axonal terminals. This allows for an efficient propagation of GABA mediated signals, which mostly result in neuronal inhibition. A key organizer for inhibitory synaptic receptors is the 93 kDa protein gephyrin that forms oligomeric superstructures beneath the synaptic area. Gephyrin has long been known to be directly associated with glycine receptor β subunits that mediate synaptic inhibition in the spinal cord. Recently, synaptic GABAA receptors have also been shown to directly interact with gephyrin and interaction sites have been identified and mapped within the intracellular loops of the GABAA receptor α1, α2, and α3 subunits. Gephyrin-binding to GABAA receptors seems to be at least one order of magnitude weaker than to glycine receptors (GlyRs) and most probably is regulated by phosphorylation. Gephyrin not only has a structural function at synaptic sites, but also plays a crucial role in synaptic dynamics and is a platform for multiple protein-protein interactions, bringing receptors, cytoskeletal proteins and downstream signaling proteins into close spatial proximity.
Collapse
Affiliation(s)
- Verena Tretter
- Department of Biochemistry and Molecular Biology, Center for Brain Research, Medical University Vienna Vienna, Austria
| | | | | | | | | | | |
Collapse
|
62
|
Tatetsu M, Kim J, Kina S, Sunakawa H, Takayama C. GABA/glycine signaling during degeneration and regeneration of mouse hypoglossal nerves. Brain Res 2012; 1446:22-33. [PMID: 22325090 DOI: 10.1016/j.brainres.2012.01.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/17/2012] [Accepted: 01/20/2012] [Indexed: 10/14/2022]
Abstract
In the adult central nervous system (CNS), GABA and glycine (Gly) are predominant inhibitory neurotransmitters, negatively regulating glutamatergic transmission. In the immature CNS, on the other hand, they act as trophic factors, mediating morphogenesis. In the present study, to investigate their involvement in axonal regeneration, we morphologically examined changes in their signaling in mouse hypoglossal nuclei during degeneration and regeneration of hypoglossal nerves. We found that (1) expression and localization of presynaptic elements were not changed, (2) localization of gephyrin, which anchors GABA and Gly receptors, was spread on the surface of motor neuron cell bodies and dendrites, (3) KCC2-expression markedly decreased, (4) choline acetyltransferase, which mediates acetylcholine-synthesis, immediately disappeared from the motor neurons, and (5) the synaptic cleft of both excitatory and inhibitory synapses became irregularly wider, in the hypoglossal nuclei of the sutured side after the operation. These changes gradually normalized during regeneration. These results suggested that synthesis of acetylcholine may be stopped in the motor neuron after axotomy. GABA/Gly may be normally released from presynaptic terminals, be spilled over the original synaptic cleft, be diffused into the neighboring space, bind to extrasynaptically localized receptors, and mediate depolarization of the membrane potential of motor neurons during degeneration and regeneration. Furthermore, it was suggested that GABA/Gly signaling in postsynaptic motor neurons went back to being immature after axotomy, and may play an important role in axonal regeneration.
Collapse
Affiliation(s)
- Masaharu Tatetsu
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan
| | | | | | | | | |
Collapse
|
63
|
GABA metabolism and transport: effects on synaptic efficacy. Neural Plast 2012; 2012:805830. [PMID: 22530158 PMCID: PMC3316990 DOI: 10.1155/2012/805830] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 12/19/2011] [Indexed: 11/17/2022] Open
Abstract
GABAergic inhibition is an important regulator of excitability in neuronal networks. In addition, inhibitory synaptic signals contribute crucially to the organization of spatiotemporal patterns of network activity, especially during coherent oscillations. In order to maintain stable network states, the release of GABA by interneurons must be plastic in timing and amount. This homeostatic regulation is achieved by several pre- and postsynaptic mechanisms and is triggered by various activity-dependent local signals such as excitatory input or ambient levels of neurotransmitters. Here, we review findings on the availability of GABA for release at presynaptic terminals of interneurons. Presynaptic GABA content seems to be an important determinant of inhibitory efficacy and can be differentially regulated by changing synthesis, transport, and degradation of GABA or related molecules. We will discuss the functional impact of such regulations on neuronal network patterns and, finally, point towards pharmacological approaches targeting these processes.
Collapse
|
64
|
Herweg J, Schwarz G. Splice-specific glycine receptor binding, folding, and phosphorylation of the scaffolding protein gephyrin. J Biol Chem 2012; 287:12645-56. [PMID: 22351777 DOI: 10.1074/jbc.m112.341826] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The multimeric scaffolding protein gephyrin forms post-synaptic clusters at inhibitory sites, thereby anchoring inhibitory glycine (GlyR) and subsets of γ-aminobutyric acid type A (GABAA) receptors. Gephyrin is composed of three domains, the conserved N-terminal G- and C-terminal E-domain, connected by the central (C-) domain. In this study we investigated the oligomerization, folding and stability, GlyR β-loop binding, and phosphorylation of three gephyrin splice variants (Geph, Geph-C3, Geph-C4) after expression and purification from insect cells (Sf9). In contrast to Escherichia coli-derived trimeric gephyrin, we found that Sf9 gephyrins form hexamers as basic oligomeric form. In the case of Geph and Geph-C4, also high-oligomeric forms (∼900 kDa) were isolated. Partial proteolysis revealed a compact folding of the Gephyrin G and C domain in one complex, whereas a much lower stability for the E domain was found. After GlyR β-loop binding, the stability of the E domain increased in Geph and Geph-C4 significantly. In contrast, the E domain in Geph-C3 is less stable and binds the GlyR β-loop with one order of magnitude lower affinity. Finally, we identified 18 novel phosphorylation sites in gephyrin, of which all except one are located within the C domain. We propose two models for the domain arrangement in hexameric gephyrin based on the oligomerization of either the E or C domains, with the latter being crucial for the regulation of gephyrin clustering.
Collapse
Affiliation(s)
- Jens Herweg
- Institute of Biochemistry, Department of Chemistry and Center for Molecular Medicine, University of Cologne, 50674 Cologne, Germany
| | | |
Collapse
|
65
|
Pei YF, Zhang L, Yang TL, Han Y, Hai R, Ran S, Tian Q, Shen H, Li J, Zhu XZ, Luo X, Deng HW. Genome-wide association study of copy number variants suggests LTBP1 and FGD4 are important for alcohol drinking. PLoS One 2012; 7:e30860. [PMID: 22295116 PMCID: PMC3266269 DOI: 10.1371/journal.pone.0030860] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/22/2011] [Indexed: 11/19/2022] Open
Abstract
Alcohol dependence (AD) is a complex disorder characterized by psychiatric and physiological dependence on alcohol. AD is reflected by regular alcohol drinking, which is highly inheritable. In this study, to identify susceptibility genes associated with alcohol drinking, we performed a genome-wide association study of copy number variants (CNVs) in 2,286 Caucasian subjects with Affymetrix SNP6.0 genotyping array. We replicated our findings in 1,627 Chinese subjects with the same genotyping array. We identified two CNVs, CNV207 (combined p-value 1.91E-03) and CNV1836 (combined p-value 3.05E-03) that were associated with alcohol drinking. CNV207 and CNV1836 are located at the downstream of genes LTBP1 (870 kb) and FGD4 (400 kb), respectively. LTBP1, by interacting TGFB1, may down-regulate enzymes directly participating in alcohol metabolism. FGD4 plays a role in clustering and trafficking GABA(A) receptor and subsequently influence alcohol drinking through activating CDC42. Our results provide suggestive evidence that the newly identified CNV regions and relevant genes may contribute to the genetic mechanism of alcohol dependence.
Collapse
Affiliation(s)
- Yu-Fang Pei
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Lei Zhang
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Tie-Lin Yang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yingying Han
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Rong Hai
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
- The Affiliated Hospital of Inner Mongolia Medical College Huhhot, Inner Mongolia, People's Republic of China
| | - Shu Ran
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Qing Tian
- Department of Biostatistics, Tulane University, New Orleans, Louisiana, United States of America
| | - Hui Shen
- Department of Biostatistics, Tulane University, New Orleans, Louisiana, United States of America
| | - Jian Li
- Department of Biostatistics, Tulane University, New Orleans, Louisiana, United States of America
| | - Xue-Zhen Zhu
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hong-Wen Deng
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
- Department of Biostatistics, Tulane University, New Orleans, Louisiana, United States of America
- Laboratory of Molecular and Statistical Genetics and Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| |
Collapse
|
66
|
Expression and subcellular distribution of gephyrin in non-neuronal tissues and cells. Histochem Cell Biol 2012; 137:471-82. [PMID: 22270318 DOI: 10.1007/s00418-012-0914-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2012] [Indexed: 10/14/2022]
Abstract
Gephyrin is a scaffolding protein required for the accumulation of inhibitory neurotransmitter receptors at neuronal postsynaptic membranes. In non-neuronal tissues, gephyrin is indispensible for the biosynthesis of molybdenum cofactor, the prosthetic group of oxidoreductases including sulfite oxidase and xanthine oxidase. However, the molecular and cellular basis of gephyrin's non-neuronal function is poorly understood; in particular, the roles of its splice variants remain enigmatic. Here, we used cDNA screening as well as Northern and immunoblot analyses to show that mammalian liver contains only a limited number of gephyrin splice variants, with the C3-containing variant being the predominant isoform. Using new and established anti-gephyrin antibodies in immunofluorescence and subcellular fractionation studies, we report that gephyrin localizes to the cytoplasm of both tissue hepatocytes and cultured immortalized cells. These findings were corroborated by RNA interference studies in which the cytosolic distribution was found to be abolished. Finally, by blue-native PAGE we show that cytoplasmic gephyrin is part of a ~600 kDa protein complex of yet unknown composition. Our data suggest that the expression pattern of non-neuronal gephyrin is simpler than indicated by previous evidence. In addition, gephyrin's presence in a cytosolic 600 kDa protein complex suggests that its metabolic and/or other non-neuronal functions are exerted in the cytoplasm and are not confined to a particular subcellular compartment.
Collapse
|
67
|
The residence time of GABA(A)Rs at inhibitory synapses is determined by direct binding of the receptor α1 subunit to gephyrin. J Neurosci 2011; 31:14677-87. [PMID: 21994384 DOI: 10.1523/jneurosci.2001-11.2011] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The majority of fast synaptic inhibition in the brain is mediated by benzodiazepine-sensitive α1-subunit-containing GABA type A receptors (GABA(A)Rs); however, our knowledge of the mechanisms neurons use to regulate their synaptic accumulation is rudimentary. Using immunoprecipitation, we demonstrate that GABA(A)Rs and gephyrin are intimately associated at inhibitory synapses in cultured rat neurons. In vitro we reveal that the E-domain of gephyrin directly binds to the α1 subunit with an affinity of ∼20 μm, mediated by residues 360-375 within the intracellular domain of this receptor subunit. Mutating residues 360-375 decreases both the accumulation of α1-containing GABA(A)Rs at gephyrin-positive inhibitory synapses in hippocampal neurons and the amplitude of mIPSCs. We also demonstrate that the affinity of gephyrin for the α1 subunit is modulated by Thr375, a putative phosphorylation site. Mutation of Thr375 to a phosphomimetic, negatively charged amino acid decreases both the affinity of the α1 subunit for gephyrin, and therefore receptor accumulation at synapses, and the amplitude of mIPSCs. Finally, single-particle tracking reveals that gephyrin reduces the diffusion of α1-subunit-containing GABA(A)Rs specifically at inhibitory synapses, thereby increasing their confinement at these structures. Our results suggest that the direct binding of gephyrin to residues 360-375 of the α1 subunit and its modulation are likely to be important determinants for the stabilization of GABA(A)Rs at synaptic sites, thereby modulating the strength of synaptic inhibition.
Collapse
|
68
|
Acidosis, acid-sensing ion channels, and neuronal cell death. Mol Neurobiol 2011; 44:350-8. [PMID: 21932071 DOI: 10.1007/s12035-011-8204-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/01/2011] [Indexed: 10/17/2022]
Abstract
Acidosis is a common feature of many neuronal diseases and often accompanied with adverse consequences such as pain and neuronal injury. Before the discovery of acid-sensing ion channels (ASICs), protons were usually considered as a modulator of other ion channels, such as voltage-gated calcium channels, N-methyl-D-aspartate, and γ-amino butyric acid(A) receptor channels. Accordingly, the functional effects of acidosis were considered as consequences of modulations of these channels. Since the first cloning of ASICs in 1997, the conventional view on acidosis-mediated pain and cell injury has been dramatically changed. To date, ASICs, which are directly activated by extracellular protons, are shown to mediate most of the acidosis-associated physiological and pathological functions. For example, ASIC1a channels are reported to mediate acidosis-induced ischemic neuronal death. In this article, we will review the possible mechanisms that underlie ASIC1a channel-mediated neuronal death and discuss ASIC1a channel modulators involved in this process.
Collapse
|
69
|
del Pino I, Paarmann I, Karas M, Kilimann MW, Betz H. The trafficking proteins Vacuolar Protein Sorting 35 and Neurobeachin interact with the glycine receptor β-subunit. Biochem Biophys Res Commun 2011; 412:435-40. [PMID: 21821005 DOI: 10.1016/j.bbrc.2011.07.110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
Abstract
Inhibitory glycine receptors (GlyRs) are densely packed in the postsynaptic membrane due to a high-affinity interaction of their β-subunits with the scaffolding protein gephyrin. Here, we used an affinity-based proteomic approach to identify the trafficking proteins Vacuolar Protein Sorting 35 (Vps35) and Neurobeachin (Nbea) as novel GlyR β-subunit (GlyRβ) interacting proteins in rat brain. Recombinant Vps35 and a central fragment of Nbea bound to the large intracellular loop of GlyRβ in glutathione-S-transferase pull-downs; in addition, Vps35 displayed binding to gephyrin. Immunocytochemical staining of spinal cord sections revealed Nbea immunoreactivity apposed to and colocalizing with marker proteins of inhibitory synapses. Our data are consistent with roles of Vps35 and Nbea in the retrieval and post-Golgi trafficking of synaptic GlyRs and possibly other neurotransmitter receptors.
Collapse
Affiliation(s)
- Isabel del Pino
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, D-60528 Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
70
|
Papadopoulos T, Soykan T. The role of collybistin in gephyrin clustering at inhibitory synapses: facts and open questions. Front Cell Neurosci 2011; 5:11. [PMID: 21738498 PMCID: PMC3125517 DOI: 10.3389/fncel.2011.00011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/13/2011] [Indexed: 11/13/2022] Open
Abstract
Collybistin (Cb) is a brain-specific GDP/GTP-exchange factor, which interacts with the inhibitory receptor anchoring protein gephyrin. Data from mice carrying an inactivated Cb gene indicate that Cb is required for the formation and maintenance of gephyrin and gephyrin-dependent GABA(A) receptor (GABA(A)R) clusters at inhibitory postsynapses in selected regions of the mammalian forebrain. However, important aspects of how Cb's GDP/GTP-exchange activity, structure, and regulation contribute to gephyrin and GABA(A)R clustering, as well as its role in synaptic plasticity, remain poorly understood. Here we review the current state of knowledge about Cb's function and address open questions concerning its contribution to synapse formation, maintenance, plasticity, and adaptive changes in response to altered network activity.
Collapse
Affiliation(s)
- Theofilos Papadopoulos
- Department of Molecular Neurobiology, Max-Planck Institute of Experimental Medicine , Göttingen, Germany
| | | |
Collapse
|
71
|
The biological role of the glycinergic synapse in early zebrafish motility. Neurosci Res 2011; 71:1-11. [PMID: 21712054 DOI: 10.1016/j.neures.2011.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/08/2011] [Accepted: 04/15/2011] [Indexed: 01/09/2023]
Abstract
Glycine mediates fast inhibitory neurotransmission in the spinal cord, brainstem and retina. Loss of synaptic glycinergic transmission in vertebrates leads to a severe locomotion defect characterized by an exaggerated startle response accompanied by transient muscle rigidity in response to sudden acoustic or tactile stimuli. Several molecular components of the glycinergic synapse have been characterized as an outcome of genetic and physiological analyses of synaptogenesis in mammals. Recently, the glycinergic synapse has been studied using a forward genetic approach in zebrafish. This review aims to discuss molecular components of the glycinergic synapse, such as glycine receptor subunits, gephyrin, gephyrin-binding proteins and glycine transporters, as well as recent studies relevant to the genetic analysis of the glycinergic synapse in zebrafish.
Collapse
|
72
|
Reddy-Alla S, Schmitt B, Birkenfeld J, Eulenburg V, Dutertre S, Böhringer C, Götz M, Betz H, Papadopoulos T. PH-domain-driven targeting of collybistin but not Cdc42 activation is required for synaptic gephyrin clustering. Eur J Neurosci 2010; 31:1173-84. [PMID: 20345913 DOI: 10.1111/j.1460-9568.2010.07149.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Collybistin (Cb) is a brain-specific guanine nucleotide exchange factor (GEF) that is essential for the synaptic clustering of gephyrin and GABAA receptors in selected regions of the mammalian central nervous system. It has been previously proposed that Cb regulates gephyrin clustering by activating Cdc42, and thus acts as a signal transducer in a membrane activation process which labels postsynaptic membrane domains for inhibitory synapse formation. Here, we dissected the functional roles of the Dbl-homology (DH) and pleckstrin homology (PH) domains of the constitutively active splice variant Cb II by substituting conserved amino acid residues that are required for GEF activity towards Cdc42 and phosphoinositide binding, respectively. A Cb II mutant lacking any detectable GEF activity towards Cdc42 was still fully active in inducing gephyrin scaffold formation, both in transfected NIH-3T3 cells and in cultured hippocampal neurons. Furthermore, mice with a forebrain-specific inactivation of the Cdc42 gene displayed normal densities of gephyrin and GABA(A) receptor clusters in the hippocampus. In contrast, substitution of Cb II PH-domain residues essential for phosphoinositide binding abolished gephyrin recruitment to synaptic sites. Our results provide evidence that the formation of gephyrin scaffolds at inhibitory synapses requires an intact Cb II PH-domain but is Cdc42-independent.
Collapse
Affiliation(s)
- Suneel Reddy-Alla
- Department of Neurochemistry, Max-Planck Institute for Brain Research, 60528 Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Regulation of postsynaptic gephyrin cluster size by protein phosphatase 1. Mol Cell Neurosci 2010; 44:201-9. [PMID: 20206270 DOI: 10.1016/j.mcn.2010.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 01/21/2023] Open
Abstract
The scaffolding protein gephyrin is essential for the clustering of glycine and GABA(A) receptors (GABA(A)Rs) at inhibitory synapses. Here, we provide evidence that the size of the postsynaptic gephyrin scaffold is controlled by dephosphorylation reactions. Treatment of cultured hippocampal neurons with the protein phosphatase inhibitors calyculin A and okadaic acid reduced the size of postsynaptic gephyrin clusters and increased cytoplasmic gephyrin staining. Protein phosphatase 1 (PP1) was found to colocalize with gephyrin at selected postsynaptic sites and to interact with gephyrin in transfected cells and brain extracts. Alanine or glutamate substitution of the two established serine/threonine phosphorylation sites in gephyrin failed to affect its clustering at inhibitory synapses and its ability to recruit gamma2 subunit containing GABA(A)Rs. Our data are consistent with the postsynaptic gephyrin scaffold acting as a platform for PP1, which regulates gephyrin cluster size by dephosphorylation of gephyrin- or cytoskeleton-associated proteins.
Collapse
|
74
|
Ganser LR, Dallman JE. Glycinergic synapse development, plasticity, and homeostasis in zebrafish. Front Mol Neurosci 2009; 2:30. [PMID: 20126315 PMCID: PMC2815536 DOI: 10.3389/neuro.02.030.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 11/26/2009] [Indexed: 11/13/2022] Open
Abstract
The zebrafish glial glycine transporter 1 (GlyT1) mutant provides an animal model in which homeostatic plasticity at glycinergic synapses restores rhythmic motor behaviors. GlyT1 mutants, initially paralyzed by the build-up of the inhibitory neurotransmitter glycine, stage a gradual recovery that is associated with reductions in the strength of evoked glycinergic responses. Gradual motor recovery suggests sequential compensatory mechanisms that culminate in the down-regulation of the neuronal glycine receptor. However, how motor recovery is initiated and how other forms of plasticity contribute to behavioral recovery are still outstanding questions that we discuss in the context of (1) glycinergic synapses as they function in spinal circuits that produce rhythmic motor behaviors, (2) the proteins involved in regulating glycinergic synaptic strength, (3) current models of glycinergic synaptogenesis, and (4) plasticity mechanisms that modulate the strength of glycinergic synapses. Concluding remarks (5) explore the potential for distinct plasticity mechanisms to act in concert at different spatial and temporal scales to achieve a dynamic stability that results in balanced motor behaviors.
Collapse
Affiliation(s)
- Lisa R Ganser
- Department of Biology, University of Miami Coral Gables, FL, USA
| | | |
Collapse
|
75
|
Kneussel M. Extracellular neurotransmitter receptor clustering: think outside the box. J Mol Cell Biol 2009; 2:107-9. [PMID: 20008862 DOI: 10.1093/jmcb/mjp049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Postsynaptic submembrane scaffolds cluster neurotransmitter receptors through intracellular protein-protein interactions. Growing evidence supports the view that extracellular factors can be almost as important to trigger synaptic receptor aggregation.
Collapse
Affiliation(s)
- Matthias Kneussel
- Center for Molecular Neurobiology, ZMNH, University of Hamburg Medical School, Falkenried 94, 20251 Hamburg, Germany.
| |
Collapse
|
76
|
Melzer N, Villmann C, Becker K, Harvey K, Harvey RJ, Vogel N, Kluck CJ, Kneussel M, Becker CM. Multifunctional basic motif in the glycine receptor intracellular domain induces subunit-specific sorting. J Biol Chem 2009; 285:3730-3739. [PMID: 19959465 DOI: 10.1074/jbc.m109.030460] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The strychnine-sensitive glycine receptor (GlyR) is a ligand-gated ion channel that mediates fast synaptic inhibition in the vertebrate central nervous system. As a member of the family of Cys-loop receptors, it assembles from five homologous subunits (GlyRalpha1-4 and -beta). Each subunit contains an extracellular ligand binding domain, four transmembrane domains (TM), and an intracellular domain, formed by the loop connecting TM3 and TM4 (TM3-4 loop). The TM3-4 loops of the subunits GlyRalpha1 and -alpha3 harbor a conserved basic motif, which is part of a potential nuclear localization signal. When tested for functionality by live cell imaging of green fluorescent protein and beta-galactosidase-tagged domain constructs, the TM3-4 loops of GlyRalpha1 and -alpha3, but not of GlyRalpha2 and -beta, exhibited nuclear sorting activity. Subunit specificity may be attributed to slight amino acid alterations in the basic motif. In yeast two-hybrid screening and GST pulldown assays, karyopherin alpha3 and alpha4 were found to interact with the TM3-4 loop, providing a molecular mechanism for the observed intracellular trafficking. These results indicate that the multifunctional basic motif of the TM3-4 loop is capable of mediating a karyopherin-dependent intracellular sorting of full-length GlyRs.
Collapse
Affiliation(s)
- Nima Melzer
- From the Institut für Biochemie (Emil-Fischer-Zentrum), Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Carmen Villmann
- From the Institut für Biochemie (Emil-Fischer-Zentrum), Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Kristina Becker
- From the Institut für Biochemie (Emil-Fischer-Zentrum), Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Kirsten Harvey
- the Department of Pharmacology, The School of Pharmacy, London WC1N 1AX, United Kingdom, and
| | - Robert J Harvey
- the Department of Pharmacology, The School of Pharmacy, London WC1N 1AX, United Kingdom, and
| | - Nico Vogel
- From the Institut für Biochemie (Emil-Fischer-Zentrum), Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Christoph J Kluck
- From the Institut für Biochemie (Emil-Fischer-Zentrum), Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Matthias Kneussel
- the Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, Universität Hamburg, Hamburg 20251, Germany
| | - Cord-Michael Becker
- From the Institut für Biochemie (Emil-Fischer-Zentrum), Universität Erlangen-Nürnberg, Erlangen 91054, Germany.
| |
Collapse
|
77
|
Tabakoff B, Saba L, Printz M, Flodman P, Hodgkinson C, Goldman D, Koob G, Richardson HN, Kechris K, Bell RL, Hübner N, Heinig M, Pravenec M, Mangion J, Legault L, Dongier M, Conigrave KM, Whitfield JB, Saunders J, Grant B, Hoffman PL. Genetical genomic determinants of alcohol consumption in rats and humans. BMC Biol 2009; 7:70. [PMID: 19874574 PMCID: PMC2777866 DOI: 10.1186/1741-7007-7-70] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 10/27/2009] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND We have used a genetical genomic approach, in conjunction with phenotypic analysis of alcohol consumption, to identify candidate genes that predispose to varying levels of alcohol intake by HXB/BXH recombinant inbred rat strains. In addition, in two populations of humans, we assessed genetic polymorphisms associated with alcohol consumption using a custom genotyping array for 1,350 single nucleotide polymorphisms (SNPs). Our goal was to ascertain whether our approach, which relies on statistical and informatics techniques, and non-human animal models of alcohol drinking behavior, could inform interpretation of genetic association studies with human populations. RESULTS In the HXB/BXH recombinant inbred (RI) rats, correlation analysis of brain gene expression levels with alcohol consumption in a two-bottle choice paradigm, and filtering based on behavioral and gene expression quantitative trait locus (QTL) analyses, generated a list of candidate genes. A literature-based, functional analysis of the interactions of the products of these candidate genes defined pathways linked to presynaptic GABA release, activation of dopamine neurons, and postsynaptic GABA receptor trafficking, in brain regions including the hypothalamus, ventral tegmentum and amygdala. The analysis also implicated energy metabolism and caloric intake control as potential influences on alcohol consumption by the recombinant inbred rats. In the human populations, polymorphisms in genes associated with GABA synthesis and GABA receptors, as well as genes related to dopaminergic transmission, were associated with alcohol consumption. CONCLUSION Our results emphasize the importance of the signaling pathways identified using the non-human animal models, rather than single gene products, in identifying factors responsible for complex traits such as alcohol consumption. The results suggest cross-species similarities in pathways that influence predisposition to consume alcohol by rats and humans. The importance of a well-defined phenotype is also illustrated. Our results also suggest that different genetic factors predispose alcohol dependence versus the phenotype of alcohol consumption.
Collapse
Affiliation(s)
- Boris Tabakoff
- Department of Pharmacology, University of Colorado, Denver, Aurora, CO, USA
| | - Laura Saba
- Department of Pharmacology, University of Colorado, Denver, Aurora, CO, USA
| | - Morton Printz
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Pam Flodman
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Colin Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - George Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Heather N Richardson
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
- Department Psychology-Neuroscience, University of Massachusetts Amherst, Amherst, MA, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - Richard L Bell
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jonathan Mangion
- MRC Clinical Sciences Centre, London, UK
- Applied Biosystems, Lingley House, 120 Birchwood Blvd., Warrington, Cheshire, WA3 7QH, UK
| | - Lucie Legault
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Maurice Dongier
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Katherine M Conigrave
- Drug Health Services, Royal Prince Alfred Hospital, Sydney Medical School, University of Sydney, New South Wales, Australia
| | | | - John Saunders
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Bridget Grant
- Division of Epidemiology, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA
| | - Paula L Hoffman
- Department of Pharmacology, University of Colorado, Denver, Aurora, CO, USA
| | | |
Collapse
|
78
|
Wang H, Brozoski TJ, Turner JG, Ling L, Parrish JL, Hughes LF, Caspary DM. Plasticity at glycinergic synapses in dorsal cochlear nucleus of rats with behavioral evidence of tinnitus. Neuroscience 2009; 164:747-59. [PMID: 19699270 DOI: 10.1016/j.neuroscience.2009.08.026] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/21/2009] [Accepted: 08/12/2009] [Indexed: 02/01/2023]
Abstract
Fifteen percent to 35% of the United States population experiences tinnitus, a subjective "ringing in the ears". Up to 10% of those afflicted report severe and disabling symptoms. Tinnitus was induced in rats using unilateral, 1 h, 17 kHz-centered octave-band noise (116 dB SPL) and assessed using a gap-startle method. The dorsal cochlear nucleus (DCN) is thought to undergo plastic changes suggestive of altered inhibitory function during tinnitus development. Exposed rats showed near pre-exposure auditory brainstem response (ABR) thresholds for clicks and all tested frequencies 16 weeks post-exposure. Sound-exposed rats showed significantly worse gap detection at 24 and 32 kHz 16 weeks following sound exposure, suggesting the development of chronic, high frequency tinnitus. Message and protein levels of alpha(1-3,) and beta glycine receptor subunits (GlyRs), and the anchoring protein, gephyrin, were measured in DCN fusiform cells 4 months following sound exposure. Rats with evidence of tinnitus showed significant GlyR alpha(1) protein decreases in the middle and high frequency regions of the DCN while alpha(1) message levels were paradoxically increased. Gephyrin levels showed significant tinnitus-related increases in sound-exposed rats suggesting intracellular receptor trafficking changes following sound exposure. Consistent with decreased alpha(1) subunit protein levels, strychnine binding studies showed significant tinnitus-related decreases in the number of GlyR binding sites, supporting tinnitus-related changes in the number and/or composition of GlyRs. Collectively, these findings suggest the development of tinnitus is likely associated with functional GlyR changes in DCN fusiform cells consistent with previously described behavioral and neurophysiologic changes. Tinnitus related GlyR changes could provide a unique receptor target for tinnitus pharmacotherapy or blockade of tinnitus initiation.
Collapse
Affiliation(s)
- H Wang
- Department of Pharmacology, Southern Illinois University School of Medicine, PO Box 19629, Springfield, IL 62794-9629, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
High local concentrations of glycine receptors (GlyRs) at inhibitory postsynaptic sites are achieved through their binding to the scaffold protein gephyrin. The N- and C-terminal domains of gephyrin are believed to trimerize and dimerize, respectively, thus contributing to the formation of submembranous gephyrin clusters at synapses. GlyRs are associated with gephyrin also at extrasynaptic locations. We have investigated how gephyrin oligomerization influences GlyR dynamics and clustering in COS-7 cells and in cultured spinal cord neurons. To this aim, we have expressed isolated N- and C-terminal domains of gephyrin that interfere with the oligomerization of the full-length protein. We also studied the effect of an endogenous splice variant, ge(2,4,5), with a decreased propensity to trimerize. A reduction of the size and number of gephyrin-GlyR clusters was found in cells expressing the various interfering gephyrin constructs. Using fluorescence recovery after photobleaching, we studied the exchange kinetics of synaptic gephyrin clusters. Real-time single-particle tracking was used to analyze the mobility of GlyRs. We found that all the tested constructs displayed faster rates of recovery than wild-type gephyrin and increased the mobility of extrasynaptic receptors, showing that gephyrin-gephyrin interactions modulate the lateral diffusion of GlyRs. Furthermore, we observed an inverse correlation between GlyR diffusion properties and gephyrin cluster size that depended on the number of binding sites blocked by the different constructs. Since alterations in the oligomerization properties of gephyrin are related to the dynamics of GlyRs, the gephyrin splice variant ge(2,4,5) may be implicated in the modulation of synaptic strength.
Collapse
|
80
|
Abstract
We found that caffeine is a structural analogue of strychnine and a competitive antagonist at ionotropic glycine receptors (GlyRs). Docking simulations indicate that caffeine and strychnine may bind to similar sites at the GlyR. The R131A GlyR mutation, which reduces strychnine antagonism without suppressing activation by glycine, also reduces caffeine antagonism. GlyR subtypes have differing caffeine sensitivity. Tested against the EC(50) of each GlyR subtype, the order of caffeine potency (IC(50)) is: alpha2beta (248 +/- 32 microm) alpha3beta (255 +/- 16 microm) > alpha4beta (517 +/- 50 microm) > alpha1beta(837 +/- 132 microm). However, because the alpha3beta GlyR is more than 3-fold less sensitive to glycine than any of the other GlyR subtypes, this receptor is most effectively blocked by caffeine. The glycine dose-response curves and the effects of caffeine indicate that amphibian retinal ganglion cells do not express a plethora of GlyR subtypes and are dominated by the alpha1beta GlyR. Comparing the effects of caffeine on glycinergic spontaneous and evoked IPSCs indicates that evoked release elevates the glycine concentration at some synapses whereas summation elicits evoked IPSCs at other synapses. Caffeine serves to identify the pharmacophore of strychnine and produces near-complete inhibition of glycine receptors at concentrations commonly employed to stimulate ryanodine receptors.
Collapse
Affiliation(s)
- Lei Duan
- Center for Neuroscience, 124 Sherman Hall, University at Buffalo, Buffalo, NY 14214, USA.
| | | | | |
Collapse
|
81
|
Synaptic activation modifies microtubules underlying transport of postsynaptic cargo. Proc Natl Acad Sci U S A 2009; 106:8731-6. [PMID: 19439658 DOI: 10.1073/pnas.0812391106] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptic plasticity, the ability of synapses to change in strength, requires alterations in synaptic molecule compositions over time, and synapses undergo selective modifications on stimulation. Molecular motors operate in sorting/transport of neuronal proteins; however, the targeting mechanisms that guide and direct cargo delivery remain elusive. We addressed the impact of synaptic transmission on the regulation of intracellular microtubule (MT)-based transport. We show that increased neuronal activity, as induced through GlyR activity blockade, facilitates tubulin polyglutamylation, a posttranslational modification thought to represent a molecular traffic sign for transport. Also, GlyR activity blockade alters the binding of the MT-associated protein MAP2 to MTs. By using the kinesin (KIF5) and the postsynaptic protein gephyrin as models, we show that such changes of MT tracks are accompanied by reduced motor protein mobility and cargo delivery into neurites. Notably, the observed neurite targeting deficits are prevented on functional depletion or gene expression knockdown of neuronal polyglutamylase. Our data suggest a previously undescribed concept of synaptic transmission regulating MT-dependent cargo delivery.
Collapse
|
82
|
O'Sullivan GA, Hofer W, Betz H. Inhibitory postsynaptic membrane specializations are formed in gephyrin-deficient mice. Neurosci Lett 2009; 458:106-10. [PMID: 19383528 DOI: 10.1016/j.neulet.2009.04.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/24/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
Abstract
Gephyrin is a major postsynaptic scaffolding protein at GABAergic and glycinergic inhibitory synapses. Gephyrin-deficient (geph(-/-)) mice die after birth due to disinhibition of motor and sensory pathways resulting from a lack of postsynaptic glycine receptor and GABA(A) receptor clusters. Here, immunoelectron and confocal microscopy revealed that postsynaptic membrane specializations are formed in the absence of gephyrin. First, in brainstem sections obtained from newborn geph(-/-) mice inhibitory nerve terminals identified by immunogold labeling of either the vesicular inhibitory amino acid transporter (VIAAT) or GABA were found to be apposed to postsynaptic membrane areas decorated by electron-dense material. Second, neuroligin-2, a membrane protein of inhibitory postsynapses, was clustered beneath glutamate decarboxylase 65 (GAD-65) positive nerve terminals in geph(-/-) hippocampal cultures. These results indicate that proteins other than gephyrin define the ultrastructure of inhibitory postsynaptic membrane specializations.
Collapse
Affiliation(s)
- Gregory Adrianus O'Sullivan
- Department of Neurochemistry, Max-Planck Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt, Germany
| | | | | |
Collapse
|
83
|
Kalscheuer VM, Musante L, Fang C, Hoffmann K, Fuchs C, Carta E, Deas E, Venkateswarlu K, Menzel C, Ullmann R, Tommerup N, Dalprà L, Tzschach A, Selicorni A, Lüscher B, Ropers HH, Harvey K, Harvey RJ. A balanced chromosomal translocation disrupting ARHGEF9 is associated with epilepsy, anxiety, aggression, and mental retardation. Hum Mutat 2009; 30:61-8. [PMID: 18615734 DOI: 10.1002/humu.20814] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Clustering of inhibitory gamma-aminobutyric acid(A) (GABA(A)) and glycine receptors at synapses is thought to involve key interactions between the receptors, a "scaffolding" protein known as gephyrin and the RhoGEF collybistin. We report the identification of a balanced chromosomal translocation in a female patient presenting with a disturbed sleep-wake cycle, late-onset epileptic seizures, increased anxiety, aggressive behavior, and mental retardation, but not hyperekplexia. Fine mapping of the breakpoint indicates disruption of the collybistin gene (ARHGEF9) on chromosome Xq11, while the other breakpoint lies in a region of 18q11 that lacks any known or predicted genes. We show that defective collybistin transcripts are synthesized and exons 7-10 are replaced by cryptic exons from chromosomes X and 18. These mRNAs no longer encode the pleckstrin homology (PH) domain of collybistin, which we now show binds phosphatidylinositol-3-phosphate (PI3P/PtdIns-3-P), a phosphoinositide with an emerging role in membrane trafficking and signal transduction, rather than phosphatidylinositol 3,4,5-trisphosphate (PIP3/PtdIns-3,4,5-P) as previously suggested in the "membrane activation model" of gephyrin clustering. Consistent with this finding, expression of truncated collybistin proteins in cultured neurons interferes with synaptic localization of endogenous gephyrin and GABA(A) receptors. These results suggest that collybistin has a key role in membrane trafficking of gephyrin and selected GABA(A) receptor subtypes involved in epilepsy, anxiety, aggression, insomnia, and learning and memory.
Collapse
Affiliation(s)
- Vera M Kalscheuer
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Bjurstöm H, Wang J, Wang J, Ericsson I, Bengtsson M, Liu Y, Kumar-Mendu S, Issazadeh-Navikas S, Birnir B. GABA, a natural immunomodulator of T lymphocytes. J Neuroimmunol 2008; 205:44-50. [PMID: 18954912 DOI: 10.1016/j.jneuroim.2008.08.017] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/27/2008] [Accepted: 08/27/2008] [Indexed: 11/16/2022]
Abstract
gamma-aminobutyric acid (GABA) is the main neuroinhibitory transmitter in the brain. Here we show that GABA in the extracellular space may affect the fate of pathogenic T lymphocytes entering the brain. We examined in encephalitogenic T cells if they expressed functional GABA channels that could be activated by the low (nM-1 microM), physiological concentrations of GABA present around neurons in the brain. The cells expressed the alpha1, alpha4, beta2, beta3, gamma1 and delta GABAA channel subunits and formed functional, extrasynaptic-like GABA channels that were activated by 1 microM GABA. 100 nM and higher GABA concentrations decreased T cell proliferation. The results are consistent with GABA being immunomodulatory.
Collapse
Affiliation(s)
- Helen Bjurstöm
- Lund University, Diabetic Centre, CRC, Department of Clinical Sciences, Malmö, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Papadopoulos T, Eulenburg V, Reddy-Alla S, Mansuy IM, Li Y, Betz H. Collybistin is required for both the formation and maintenance of GABAergic postsynapses in the hippocampus. Mol Cell Neurosci 2008; 39:161-9. [DOI: 10.1016/j.mcn.2008.06.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 05/28/2008] [Accepted: 06/10/2008] [Indexed: 11/16/2022] Open
|
86
|
Dresbach T, Nawrotzki R, Kremer T, Schumacher S, Quinones D, Kluska M, Kuhse J, Kirsch J. Molecular architecture of glycinergic synapses. Histochem Cell Biol 2008; 130:617-33. [DOI: 10.1007/s00418-008-0491-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
|
87
|
Meera P, Olsen RW, Otis TS, Wallner M. Etomidate, propofol and the neurosteroid THDOC increase the GABA efficacy of recombinant alpha4beta3delta and alpha4beta3 GABA A receptors expressed in HEK cells. Neuropharmacology 2008; 56:155-60. [PMID: 18778723 DOI: 10.1016/j.neuropharm.2008.08.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 08/04/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
Abstract
General anesthetics, once thought to exert their effects through non-specific membrane effects, have highly specific ion channel targets that can silence neuronal populations in the nervous system, thereby causing unconsciousness and immobility, characteristic of general anesthesia. Inhibitory GABA(A) receptors (GABA(A)Rs), particularly highly GABA-sensitive extrasynaptic receptor subtypes that give rise to sustained inhibitory currents, are uniquely sensitive to GABA(A)R-active anesthetics. A prominent population of extrasynaptic GABA(A)Rs is made up of alpha4, beta2 or beta3, and delta subunits. Considering the demonstrated importance of GABA receptor beta3 subunits for in vivo anesthetic effects of etomidate and propofol, we decided to investigate the effects of GABA anesthetics on "extrasynaptic" alpha4beta3delta and also binary alpha4beta3 receptors expressed in human embryonic kidney (HEK) cells. Consistent with previous work on similar receptor subtypes we show that maximal GABA currents through "extrasynaptic" alpha4beta3delta receptors, receptors defined by sensitivity to EtOH (30mM) and the beta-carboline beta-CCE (1microM), are enhanced by the GABA(A)R-active anesthetics etomidate, propofol, and the neurosteroid anesthetic THDOC. Furthermore, we show that receptors formed by alpha4beta3 subunits alone also show high GABA sensitivity and that saturating GABA responses of alpha4beta3 receptors are increased to the same extent by etomidate, propofol, and THDOC as are alpha4beta3delta receptors. Therefore, both alpha4beta3 and alpha4beta3delta receptors show low GABA efficacy, and GABA is also a partial agonist on certain binary alphabeta receptor subtypes. Increasing GABA efficacy on alpha4/6beta3delta and alpha4beta3 receptors is likely to make an important contribution to the anesthetic effects of etomidate, propofol and the neurosteroid THDOC.
Collapse
Affiliation(s)
- Pratap Meera
- Department of Neurobiology, Geffen School of Medicine, University of California, Los Angeles, USA
| | | | | | | |
Collapse
|
88
|
Lappe-Siefke C, Maas C, Kneussel M. Microinjection into cultured hippocampal neurons: a straightforward approach for controlled cellular delivery of nucleic acids, peptides and antibodies. J Neurosci Methods 2008; 175:88-95. [PMID: 18761372 DOI: 10.1016/j.jneumeth.2008.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 07/08/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
Abstract
Functional studies in neurons often require controllable simultaneous delivery of different molecules to individual cells within networks. Microinjection represents a suitable and alternative method to deliver cDNAs, oligonucleotides, siRNAs, peptides or antibodies for expression, expression knockdown or loss-of-function studies, respectively. Moreover, molecules can be systematically applied to individual neurons in a controlled manner without affecting neighbouring cells. Establishment of microinjection is often complicated and time consuming. Here we describe a simple and reliable protocol for molecular cell biologists to establish injection of various molecules (ng to microg range) to living neurons in a reasonable period of time.
Collapse
Affiliation(s)
- Corinna Lappe-Siefke
- Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, Universität Hamburg, Hamburg, Germany
| | | | | |
Collapse
|
89
|
Tretter V, Moss SJ. GABA(A) Receptor Dynamics and Constructing GABAergic Synapses. Front Mol Neurosci 2008; 1:7. [PMID: 18946540 PMCID: PMC2526003 DOI: 10.3389/neuro.02.007.2008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Accepted: 05/16/2008] [Indexed: 12/04/2022] Open
Abstract
GABAA receptors are located on the majority of neurons in the central and peripheral nervous system, where they mediate important actions of the neurotransmitter gamma-aminobutyric acid. Early in development the trophic properties of GABA allow a healthy development of the nervous system. Most neurons have a high intracellular Cl-concentration early in life due to the late functional expression of the Cl-pump KCC2, therefore GABA has excitatory effects at this stage. Upon higher expression and activation of KCC2 GABA takes on its inhibitory effects while glutamate functions as the major excitatory neurotransmitter. Like all multisubunit membrane proteins the GABAA receptor is assembled in the ER and travels through the Golgi and remaining secretory pathway to the cell surface, where it mediates GABA actions either directly at the synapses or at extrasynaptic sites responding to ambient GABA to provide a basal tonic inhibitory state. In order to adapt to changing needs and information states, the GABAergic system is highly dynamic. That includes subtype specific trafficking to different locations in the cell, regulation of mobility by interaction with scaffold molecules, posttranslational modifications, that either directly affect channel function or the interaction with other proteins and finally the dynamic exchange between surface and intracellular receptor pools, that either prepare receptors for recycling to the surface or degradation. Here we give an overview of the current understanding of GABAA receptor functional and molecular dynamics that play a major part in maintaining the balance between excitation and inhibition and in changes in network activity.
Collapse
Affiliation(s)
- Verena Tretter
- Department of Neuroscience, University of Pennsylvania Philadelphia, PA, USA
| | | |
Collapse
|
90
|
Shimizu TS, Le Novère N. Looking inside the box: bacterial transistor arrays. Mol Microbiol 2008; 69:5-9. [PMID: 18484950 DOI: 10.1111/j.1365-2958.2008.06240.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One often compares cells to computers, and signalling proteins to transistors. Location and wiring of those molecular transistors is paramount in defining the function of the subcellular chips. The bacterial chemotactic sensing apparatus is a large, stable assembly consisting of thousands of receptors, signal transducing kinases and linking proteins, and is responsible for the motile response of the bacterium to environmental signals, whether chemical, mechanical, or thermal. Because of its rich functional repertoire despite its relative simplicity, this chemosome has attracted much attention from both experimentalists and theoreticians, and the bacterial chemotaxis response becoming a benchmark in Systems Biology. Structural and functional models of the chemotactic device have been developed, often based on particular assumptions regarding the topology of the receptor lattice. In this issue of Molecular Microbiology, Briegel et al. provide a detailed view of the receptor arrangement, unravelling the wiring of the molecular signal processors.
Collapse
Affiliation(s)
- Thomas S Shimizu
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA
| | | |
Collapse
|
91
|
Gephyrin: where do we stand, where do we go? Trends Neurosci 2008; 31:257-64. [DOI: 10.1016/j.tins.2008.02.006] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 02/17/2008] [Accepted: 02/19/2008] [Indexed: 11/24/2022]
|
92
|
Abstract
Lateral diffusion of glutamate receptors was proposed as a mechanism for regulating receptor numbers at synapses and affecting synaptic functions, especially the efficiency of synaptic transmission. However, a direct link between receptor lateral diffusion and change in synaptic function has not yet been established. In the present study, we demonstrated NMDA receptor (NMDAR) lateral diffusion in CA1 neurons in hippocampal slices by detecting considerable recovery of spontaneous or evoked EPSCs from the block of (+)-MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate], an irreversible NMDAR open-channel blocker. We observed changes on both the number and the composition of synaptic NMDAR on recovery. More importantly, after the recovery, long-term potentiation (LTP)-producing protocol induced only LTD (long-term depression) instead of LTP. In contrast, a complete recovery from competitive NMDAR blocker D,L-AP-5 was observed without subsequent changes on synaptic plasticity. Our data suggest a revised model of NMDAR trafficking wherein extrasynaptic NMDARs, mostly NR1/NR2B receptors, move laterally into synaptic sites, resulting in altered rule of synaptic modification. Thus, CA1 synapses exhibit a novel form of metaplasticity in which the direction of synaptic modification can be reverted through subtype-specific lateral diffusion of NMDA receptors.
Collapse
|
93
|
Smolinsky B, Eichler SA, Buchmeier S, Meier JC, Schwarz G. Splice-specific functions of gephyrin in molybdenum cofactor biosynthesis. J Biol Chem 2008; 283:17370-9. [PMID: 18411266 DOI: 10.1074/jbc.m800985200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gephyrin is a multifunctional protein involved in the clustering of inhibitory neuroreceptors. In addition, gephyrin catalyzes the last step in molybdenum cofactor (Moco) biosynthesis essential for the activities of Mo-dependent enzymes such as sulfite oxidase and xanthine oxidoreductase. Functional complexity and diversity of gephyrin is believed to be regulated by alternative splicing in a tissue-specific manner. Here, we investigated eight gephyrin variants with combinations of seven alternatively spliced exons located in the N-terminal G domain, the central domain, and the C-terminal E domain. Their activity in Moco synthesis was analyzed in vivo by reconstitution of gephyrin-deficient L929 cells, which were found to be defective in the G domain of gephyrin. Individual domain functions were assayed in addition and confirmed that variants containing either an additional C5 cassette or missing the C6 cassette are inactive in Moco synthesis. In contrast, different alterations within the central domain retained the Moco synthetic activity of gephyrin. The recombinant gephyrin G domain containing the C5 cassette forms dimers in solution, binds molybdopterin, but is unable to catalyze molybdopterin (MPT) adenylylation. Determination of Moco and MPT content in different tissues showed that besides liver and kidney, brain was capable of synthesizing Moco most efficiently. Subsequent analysis of cultured neurons and glia cells demonstrated glial Moco synthesis due to the expression of gephyrins containing the cassettes C2 and C6 with and without C3.1.
Collapse
Affiliation(s)
- Birthe Smolinsky
- Institute of Biochemistry and Center for Molecular Medicine, University of Cologne, 50674 Cologne, Germany
| | | | | | | | | |
Collapse
|
94
|
Muller E, Le-Corronc H, Legendre P. Extrasynaptic and postsynaptic receptors in glycinergic and GABAergic neurotransmission: a division of labor? Front Mol Neurosci 2008; 1:3. [PMID: 18946536 PMCID: PMC2526000 DOI: 10.3389/neuro.02.003.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 01/30/2008] [Indexed: 01/07/2023] Open
Abstract
Glycine and GABA mediate inhibitory neurotransmission in the spinal cord and central nervous system. The general concept of neurotransmission is now challenged by the contribution of both phasic activation of postsynaptic glycine and GABA(A) receptors (GlyRs and GABA(A)Rs, respectively) and tonic activity of these receptors located at extrasynaptic sites. GlyR and GABA(A)R kinetics depend on several parameters, including subunit composition, subsynaptic localization and activation mode. Postsynaptic and extrasynaptic receptors display different subunit compositions and are activated by fast presynaptic and slow paracrine release of neurotransmitters, respectively. GlyR and GABA(A)R functional properties also rely on their aggregation level, which is higher at postsynaptic densities than at extrasynaptic loci. Finally, these receptors can co-aggregate at mixed inhibitory postsynaptic densities where they cross-modulate their activity, providing another parameter of functional complexity. GlyR and GABA(A)R density at postsynaptic sites results from the balance between their internalization and insertion in the plasma membrane, but also on their lateral diffusion from and to the postsynaptic loci. The dynamic exchange of receptors between synaptic and extrasynaptic sites and their functional adaptation in terms of kinetics point out a new adaptive process of inhibitory neurotransmission.
Collapse
Affiliation(s)
- Emilie Muller
- UMR 7102 - Neurobiologie des Processus Adaptatifs, Université Pierre et Marie Curie Paris, France
| | | | | |
Collapse
|
95
|
Abstract
Our knowledge of glycine receptor (GlyR) regulation of excitation has advanced significantly in recent years. GlyRs are widespread in the CNS, are heterogeneous, and undergo developmental changes. Activation of GlyRs of immature neurons induces outflow of Cl( - ), membrane depolarization, neuronal excitation, calcium influx, and transmitter release, in contrast to the inhibitory effects these receptors have in mature neurons. Thus, GlyRs are important for neuronal excitability in both the developing and the mature CNS. This chapter is an overview of selective studies on the newly discovered roles of GlyRs in regulating neuronal excitation, and inhibition, particularly in the upper brain areas.
Collapse
Affiliation(s)
- Jiang-Hong Ye
- Department of Anesthesiology, UMDNJ, New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
96
|
Weiss J, O'Sullivan G, Heinze L, Chen HX, Betz H, Wässle H. Glycinergic input of small-field amacrine cells in the retinas of wildtype and glycine receptor deficient mice. Mol Cell Neurosci 2008; 37:40-55. [DOI: 10.1016/j.mcn.2007.08.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/14/2007] [Accepted: 08/16/2007] [Indexed: 11/29/2022] Open
|
97
|
Morita K, Motoyama N, Kitayama T, Morioka N, Dohi T. Antinociceptive effects of glycine transporter inhibitors in neuropathic pain models in mice. Nihon Yakurigaku Zasshi 2007; 130:458-63. [PMID: 18079595 DOI: 10.1254/fpj.130.458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
98
|
Armsen W, Himmel B, Betz H, Eulenburg V. The C-terminal PDZ-ligand motif of the neuronal glycine transporter GlyT2 is required for efficient synaptic localization. Mol Cell Neurosci 2007; 36:369-80. [PMID: 17851090 DOI: 10.1016/j.mcn.2007.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 07/13/2007] [Accepted: 07/24/2007] [Indexed: 11/28/2022] Open
Abstract
The neuronal glycine transporter 2 (GlyT2) belongs to the large SLC6 family of Na+/Cl--dependent neurotransmitter transporters. At its extreme C-terminus, GlyT2 carries a type III PDZ domain binding motif (PDZ-ligand motif), which interacts with the PDZ domain protein syntenin-1. Here, we investigated the physiological role of the GlyT2 PDZ-ligand motif by a loss-of-function approach. Inactivation of the PDZ-ligand motif did not impair the localization, glycosylation and transport function of recombinant GlyT2 expressed in HEK293T cells. However, in transfected hippocampal neurons, the synaptic localization of GlyT2 was significantly reduced upon PDZ-ligand motif inactivation. Co-localization of GlyT2 with marker proteins of excitatory and inhibitory synapses was decreased by down to 50% upon PDZ-ligand motif deletion as compared to the wild-type protein. These data indicate that the C-terminal PDZ-ligand motif of GlyT2 plays an important role in transporter trafficking to and/or stabilization at synaptic sites.
Collapse
Affiliation(s)
- Wencke Armsen
- Department of Neurochemistry, Max-Planck Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
99
|
Oscarsson A, Juhas M, Sjölander A, Eintrei C. The effect of propofol on actin, ERK-1/2 and GABAA receptor content in neurones. Acta Anaesthesiol Scand 2007; 51:1184-9. [PMID: 17850559 DOI: 10.1111/j.1399-6576.2007.01388.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Interaction with the gamma-aminobutyric acid receptor (GABA(A)R) complex is recognized as an important component of the mechanism of many anaesthetic agents, including propofol. The aims of this study were to investigate the effect of propofol on GABA(A)R, to determine whether exposure of neurones to propofol influences the localization of GABA(A)R within the cell and to look for cytoskeletal changes that may be connected with activation, such as the mitogen-activated protein kinase (MAPK) pathway. METHODS Primary cortical cell cultures from rat, with and without pre-incubation with the GABA(A)R antagonist bicuculline, were exposed to propofol. The cells were lysed and separated into membrane and cytosolic fractions. Immunoblot analyses of filamentous actin (F-actin), the GABA(A)beta(2)-subunit receptor and extracellular signal-regulated kinase-1/2 (ERK-1/2) were performed. RESULTS Propofol triggers an increase in GABA(A)R, actin content and ERK-1/2 phosphorylation in the cytosolic fraction. In the membrane fraction, there is a decrease in GABA(A)beta(2)-subunit content and an increase in both actin content and ERK-1/2 phosphorylation. The GABA(A)R antagonist bicuculline blocks the propofol-induced changes in F-actin, ERK and GABA(A)beta(2)-subunit content, and ERK-1/2 phosphorylation. CONCLUSION We believe that propofol triggers a dose-dependent internalization of the GABA(A)beta(2)-subunit. The increase in internal GABA(A)beta(2)-subunit content exhibits a close relationship to actin polymerization and to an increase in ERK-1/2 activation. Actin contributes to the internalization sequestering of the GABA(A)beta(2)-subunit.
Collapse
Affiliation(s)
- A Oscarsson
- Department of Anaesthesia/Intensive Care, Linköping University Hospital, Linköping, Sweden
| | | | | | | |
Collapse
|
100
|
Ryzhikov S, Bahr BA. Gephyrin alterations due to protein accumulation stress are reduced by the lysosomal modulator Z-Phe-Ala-diazomethylketone. J Mol Neurosci 2007; 34:131-9. [PMID: 18204977 DOI: 10.1007/s12031-007-9009-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Accepted: 08/22/2007] [Indexed: 11/25/2022]
Abstract
Inhibitory neurotransmission is important for brain function and requires specific transmitter receptors that are organized in synaptic domains. Gephyrin is a cytoskeletal organization protein that binds tubulin and plays an important role in clustering and organizing select inhibitory neurotransmitter receptors. Here, we tested if gephyrin is altered by protein accumulation stress that is common in age-related neurodegenerative disorders. For this, we used the hippocampal slice model that has been shown to exhibit chloroquine (CQN)-induced protein accumulation, microtubule destabilization, transport failure, and declines in excitatory neurotransmitter receptors and their responses. In addition to the decreases in excitatory receptor subunits and other glutamatergic markers, we found that gephyrin isoforms were reduced across the CQN treatment period. Associated with this decline in gephyrin levels was the production of three gephyrin breakdown products (GBDPs) of 30, 38, and 48 kDa. The induced effects on gephyrin were tested for evidence of recovery through enhancement of lysosomal function that is known to promote protein clearance and microtubule integrity. Using the lysosomal modulator Z-Phe-Ala-diazomethylketone (PADK), gephyrin levels were completely restored in correspondence with the recovery of excitatory glutamatergic components. In addition, GBDPs were significantly reduced after the 2-day PADK treatment, to levels that were at or below those measured in control cultures. These findings suggest that receptor-clustering mechanisms for inhibitory synapses are compromised during protein accumulation events. They also indicate that a lysosomal enhancement strategy can protect gephyrin integrity, which may be vital for the balance between inhibitory and excitatory signaling during age-related diseases.
Collapse
Affiliation(s)
- Sophia Ryzhikov
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|