51
|
Suk K. Lipocalin-2 as a therapeutic target for brain injury: An astrocentric perspective. Prog Neurobiol 2016; 144:158-72. [DOI: 10.1016/j.pneurobio.2016.08.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 06/18/2016] [Accepted: 08/03/2016] [Indexed: 12/31/2022]
|
52
|
Hüttenrauch M, Salinas G, Wirths O. Effects of Long-Term Environmental Enrichment on Anxiety, Memory, Hippocampal Plasticity and Overall Brain Gene Expression in C57BL6 Mice. Front Mol Neurosci 2016; 9:62. [PMID: 27536216 PMCID: PMC4971077 DOI: 10.3389/fnmol.2016.00062] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/15/2016] [Indexed: 01/09/2023] Open
Abstract
There is ample evidence that physical activity exerts positive effects on a variety of brain functions by facilitating neuroprotective processes and influencing neuroplasticity. Accordingly, numerous studies have shown that continuous exercise can successfully diminish or prevent the pathology of neurodegenerative diseases such as Alzheimer’s disease in transgenic mouse models. However, the long-term effect of physical activity on brain health of aging wild-type (WT) mice has not yet been studied in detail. Here, we show that prolonged physical and cognitive stimulation, mediated by an enriched environment (EE) paradigm for a duration of 11 months, leads to reduced anxiety and improved spatial reference memory in C57BL6 WT mice. While the number of CA1 pyramidal neurons remained unchanged between standard housed (SH) and EE mice, the number of dentate gyrus (DG) neurons, as well as the CA1 and DG volume were significantly increased in EE mice. A whole-brain deep sequencing transcriptome analysis, carried out to better understand the molecular mechanisms underlying the observed effects, revealed an up-regulation of a variety of genes upon EE, mainly associated with synaptic plasticity and transcription regulation. The present findings corroborate the impact of continuous physical activity as a potential prospective route in the prevention of age-related cognitive decline and neurodegenerative disorders.
Collapse
Affiliation(s)
- Melanie Hüttenrauch
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Göttingen, Germany
| | - Gabriela Salinas
- Department of Developmental Biochemistry, DNA Microarray and Deep-Sequencing Facility, University Medical Center Göttingen, Germany
| | - Oliver Wirths
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Göttingen, Germany
| |
Collapse
|
53
|
Hallin EI, Guo K, Åkerlund HE. Functional and structural characterization of domain truncated violaxanthin de-epoxidase. PHYSIOLOGIA PLANTARUM 2016; 157:414-421. [PMID: 26864799 DOI: 10.1111/ppl.12428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
Photosynthetic organisms need protection against excessive light. By using non-photochemical quenching, where the excess light is converted into heat, the organism can survive at higher light intensities. This process is partly initiated by the formation of zeaxanthin, which is achieved by the de-epoxidation of violaxanthin and antheraxanthin to zeaxanthin. This reaction is catalyzed by violaxanthin de-epoxidase (VDE). VDE consists of three domains of which the central lipocalin-like domain has been the most characterized. By truncating the domains surrounding the lipocalin-like domain, we show that VDE activity is possible without the C-terminal domain but not without the N-terminal domain. The N-terminal domain shows no VDE activity by itself but when separately expressed domains are mixed, VDE activity is possible. This shows that these domains can be folded separately and could therefore be studied separately. An increase of the hydrodynamic radius of wild-type VDE was observed when pH was lowered toward the pH required for activity, consistent with a pH-dependent oligomerization. The C-terminally truncated VDE did not show such an oligomerization, was relatively more active at higher pH but did not alter the KM for ascorbate. Circular dichroism measurements revealed the presence of α-helical structure in both the N- and C-terminal domains. By measuring the initial formation of the product, VDE was found to convert a large number of violaxanthin molecules to antheraxanthin before producing any zeaxanthin, favoring a model where violaxanthin is bound non-symmetrically in VDE.
Collapse
Affiliation(s)
- Erik Ingmar Hallin
- Department of Biochemistry and Structural Biology, Lund University, POB 124, SE-221 00, Lund, Sweden
| | - Kuo Guo
- Department of Biochemistry and Structural Biology, Lund University, POB 124, SE-221 00, Lund, Sweden
| | - Hans-Erik Åkerlund
- Department of Biochemistry and Structural Biology, Lund University, POB 124, SE-221 00, Lund, Sweden
| |
Collapse
|
54
|
Bradley-Whitman MA, Abner E, Lynn BC, Lovell MA. A Novel Plasma Based Biomarker of Alzheimer's Disease. J Alzheimers Dis 2016; 47:761-71. [PMID: 26401710 DOI: 10.3233/jad-150183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Specific biomarkers in a readily accessible biological fluid, such as blood, could aid in the identification, characterization, validation, and routine monitoring of Alzheimer's disease (AD) progression. In the current study, levels of the previously described novel cerebrospinal fluid aberrant protein complex composed of prostaglandin-D-synthase (PDS) and transthyretin (TTR) were quantified in plasma by a custom two-probe sandwich ELISA and compared to amyloid-β (Aβ)(1-42) as a standard plasma biomarker of AD. Plasma was analyzed from 140 probable AD subjects, 135 subjects with mild cognitive impairment (MCI), 74 normal control subjects (NC) prior to MCI transition, 23 diseased control (DC) subjects with either frontotemporal dementia or dementia with Lewy bodies, and 182 normal control (NC) subjects who did not progress to MCI or dementia. Levels of Aβ(1-42) were significantly elevated in NC subjects prior to MCI conversion but significantly reduced in probable AD subjects compared to NC subjects. Similarly, levels of the PDS-TTR complex were significantly reduced in both MCI and probable AD subjects compared to NC subjects. Furthermore, levels of Aβ(1-42) and the PDS-TTR complex were not significantly different in DC subjects compared to NC subjects. MMSE scores were weakly but significantly correlated with plasma levels of the PDS-TTR complex and Aβ(1-42). Trail B scores were weakly but significantly correlated with plasma levels of Aβ(1-42). Comparison of receiver operating curves shows the PDS-TTR complex is comparable to Aβ(1-42) in both MCI and probable AD subjects.
Collapse
Affiliation(s)
| | - Erin Abner
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,Department of Epidemiology, University of Kentucky, Lexington, KY, USA
| | - Bert C Lynn
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,University of Kentucky Mass Spectrometry Facility, University of Kentucky, Lexington, KY, USA.,Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Mark A Lovell
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,Department of Chemistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
55
|
Smith EMD, Beresford MW. Urinary biomarkers in childhood lupus nephritis. Clin Immunol 2016; 185:21-31. [PMID: 27373868 DOI: 10.1016/j.clim.2016.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 12/12/2022]
Abstract
Juvenile-onset systemic lupus erythematosus (JSLE) is a rare, severe multisystem autoimmune disease affecting the kidney (Lupus Nephritis, LN) in up to 80% of children. LN is more severe in children than adults, with potential for irreversible kidney damage requiring dialysis or transplant. Renal biopsy is currently the gold standard for diagnosing and monitoring LN, however, it is invasive and associated with complications. Urine biomarkers have been shown to be better than serum biomarkers in differentiating renal disease from other organ manifestations. Over the past decade, there have been an increasing number of studies investigating specific candidate biomarkers implicated in the pathogenesis of LN or screening for urinary biomarkers using hypothesis free methods. In this review, developments in urine biomarkers for LN will be reviewed, highlighting those that are of relevance to children and have gone through validation in independent international patient cohorts, bringing them close to clinical translation.
Collapse
Affiliation(s)
- Eve M D Smith
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Institute in the Park, Alder Hey Children's NHS Foundation Trust Hospital, East Prescott Road, Liverpool L14 5AB, UK.
| | - Michael W Beresford
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Institute in the Park, Alder Hey Children's NHS Foundation Trust Hospital, East Prescott Road, Liverpool L14 5AB, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust in the Park, East Prescott Road, Liverpool, L14 5AB, Liverpool, UK.
| |
Collapse
|
56
|
Asirvatham-Jeyaraj N, Fink GD. Possible role for brain prostanoid pathways in the development of angiotensin II-salt hypertension in rats. Am J Physiol Regul Integr Comp Physiol 2016; 311:R232-42. [PMID: 27225954 DOI: 10.1152/ajpregu.00535.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/19/2016] [Indexed: 11/22/2022]
Abstract
Prostanoids generated by the cyclooxygenase (COX) pathway appear to contribute to the neurogenic hypertension (HTN) in rats. The first goal of this study was to establish the time frame during which prostanoids participate in ANG II-salt HTN. We induced HTN using ANG II (150 ng·kg(-1)·min(-1) sc) infusion for 14 days in rats on a high-salt (2% NaCl) diet. When ketoprofen pretreatment was combined with treatment during the first 7 days of ANG II infusion, development of HTN and increased neurogenic pressor activity (indexed by the depressor response to ganglion blockade) were significantly attenuated for the entire ANG II infusion period. This suggests that prostanoid generation caused by administration of ANG II and salt leads to an increase in neurogenic pressor activity and blood pressure (BP) via a mechanism that persists without the need for continuing prostanoid input. The second goal of this study was to determine whether prostanoid products specifically in the brain contribute to HTN development. Expression of prostanoid pathway genes was measured in brain regions known to affect neurogenic BP regulation. ANG II-treated rats exhibited changes in gene expression of phospholipase A2 (upregulated in organum vasculosum of the lamina terminalis, paraventricular nucleus, nucleus of the solitary tract, and middle cerebral artery) and lipocalin-type prostaglandin D synthase (upregulated in the organum vasculosum of the lamina terminalis). On the basis of our results, we propose that activation of the brain prostanoid synthesis pathway both upstream and downstream from COX at early stages plays an important role in the development of the neurogenic component of ANG II-salt HTN.
Collapse
Affiliation(s)
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
57
|
di Masi A, Trezza V, Leboffe L, Ascenzi P. Human plasma lipocalins and serum albumin: Plasma alternative carriers? J Control Release 2016; 228:191-205. [PMID: 26951925 DOI: 10.1016/j.jconrel.2016.02.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 01/14/2023]
Abstract
Lipocalins are an evolutionarily conserved family of proteins that bind and transport a variety of exogenous and endogenous ligands. Lipocalins share a conserved eight anti-parallel β-sheet structure. Among the different lipocalins identified in humans, α-1-acid glycoprotein (AGP), apolipoprotein D (apoD), apolipoprotein M (apoM), α1-microglobulin (α1-m) and retinol-binding protein (RBP) are plasma proteins. In particular, AGP is the most important transporter for basic and neutral drugs, apoD, apoM, and RBP mainly bind endogenous molecules such as progesterone, pregnenolone, bilirubin, sphingosine-1-phosphate, and retinol, while α1-m binds the heme. Human serum albumin (HSA) is a monomeric all-α protein that binds endogenous and exogenous molecules like fatty acids, heme, and acidic drugs. Changes in the plasmatic levels of lipocalins and HSA are responsible for the onset of pathological conditions associated with an altered drug transport and delivery. This, however, does not necessary result in potential adverse effects in patients because many drugs can bind both HSA and lipocalins, and therefore mutual compensatory binding mechanisms can be hypothesized. Here, molecular and clinical aspects of ligand transport by plasma lipocalins and HSA are reviewed, with special attention to their role as alterative carriers in health and disease.
Collapse
Affiliation(s)
- Alessandra di Masi
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, I-00146 Roma, Italy; Istituto Nazionale di Biostrutture e Biosistemi, Via delle Medaglie d'Oro 305, I-00136 Roma, Italy.
| | - Viviana Trezza
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, I-00146 Roma, Italy
| | - Loris Leboffe
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, I-00146 Roma, Italy; Istituto Nazionale di Biostrutture e Biosistemi, Via delle Medaglie d'Oro 305, I-00136 Roma, Italy
| | - Paolo Ascenzi
- Istituto Nazionale di Biostrutture e Biosistemi, Via delle Medaglie d'Oro 305, I-00136 Roma, Italy; Laboratorio Interdipartimentale di Microscopia Elettronica, Università Roma Tre, Via della Vasca Navale 79, I-00146 Roma, Italy
| |
Collapse
|
58
|
Di Muzio E, Polticelli F, di Masi A, Fanali G, Fasano M, Ascenzi P. All- trans -retinoic acid and retinol binding to the FA1 site of human serum albumin competitively inhibits heme-Fe(III) association. Arch Biochem Biophys 2016; 590:56-63. [DOI: 10.1016/j.abb.2015.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 12/17/2022]
|
59
|
Nakatsuji M, Inoue H, Kohno M, Saito M, Tsuge S, Shimizu S, Ishida A, Ishibashi O, Inui T. Human Lipocalin-Type Prostaglandin D Synthase-Based Drug Delivery System for Poorly Water-Soluble Anti-Cancer Drug SN-38. PLoS One 2015; 10:e0142206. [PMID: 26529243 PMCID: PMC4631600 DOI: 10.1371/journal.pone.0142206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/19/2015] [Indexed: 01/18/2023] Open
Abstract
Lipocalin-type prostaglandin D synthase (L-PGDS) is a member of the lipocalin superfamily, which is composed of secretory transporter proteins, and binds a wide variety of small hydrophobic molecules. Using this function, we have reported the feasibility of using L-PGDS as a novel drug delivery vehicle for poorly water-soluble drugs. In this study, we show the development of a drug delivery system using L-PGDS, one that enables the direct clinical use of 7-ethyl-10-hydroxy-camptothecin (SN-38), a poorly water-soluble anti-cancer drug. In the presence of 2 mM L-PGDS, the concentration of SN-38 in PBS increased 1,130-fold as compared with that in PBS. Calorimetric experiments revealed that L-PGDS bound SN-38 at a molecular ratio of 1:3 with a dissociation constant value of 60 μM. The results of an in vitro growth inhibition assay revealed that the SN-38/L-PGDS complexes showed high anti-tumor activity against 3 human cancer cell lines, i.e., Colo201, MDA-MB-231, and PC-3 with a potency similar to that of SN-38 used alone. The intravenous administration of SN-38/L-PGDS complexes to mice bearing Colo201 tumors showed a pronounced anti-tumor effect. Intestinal mucositis, which is one of the side effects of this drug, was not observed in mice administered SN-38/L-PGDS complexes. Taken together, L-PGDS enables the direct usage of SN-38 with reduced side effects.
Collapse
Affiliation(s)
- Masatoshi Nakatsuji
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Haruka Inoue
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Masaki Kohno
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Mayu Saito
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Syogo Tsuge
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shota Shimizu
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Atsuko Ishida
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Osamu Ishibashi
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Takashi Inui
- Department of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- * E-mail:
| |
Collapse
|
60
|
Bellei E, Monari E, Bergamini S, Cuoghi A, Tomasi A, Guerzoni S, Ciccarese M, Pini LA. Validation of potential candidate biomarkers of drug-induced nephrotoxicity and allodynia in medication-overuse headache. J Headache Pain 2015; 16:559. [PMID: 26272683 PMCID: PMC4536253 DOI: 10.1186/s10194-015-0559-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/21/2015] [Indexed: 12/15/2022] Open
Abstract
Background Medication-overuse headache (MOH) is a chronic disorder that results from the overuse of analgesics drugs, triptans or other acute headache compounds. Although the exact mechanisms underlying MOH remain still unknown, several studies suggest that it may be associated with development of “central sensitization”, which may cause cutaneous allodynia (CA). Furthermore, the epidemiology of drug-induced disorders suggests that medication overuse could lead to nephrotoxicity. The aim of this work was to confirm and validate the results obtained from previous proteomics studies, in which we analyzed the urinary proteome of MOH patients in comparison with healthy non-abusers individuals. Methods MOH patients were divided into groups on the basis of the drug abused: triptans, non-steroidal anti-inflammatory drugs (NSAIDs) and mixtures, (mainly containing indomethacin, paracetamol and, in some cases, caffeine). Healthy subjects, with a history of normal renal function, were used as controls. In this study, four proteins that were found differentially expressed in urine, and, on the basis of the literature review, resulted related to kidney diseases, were verified by Western Blot and Enzyme-linked Immunosorbent Assay (ELISA); Prostaglandin-H2 D-synthase (PTGDS), uromodulin (UROM), alpha-1-microglobulin (AMBP) and cystatin-C (CYSC). Results Western blot analysis allowed to validate our previous proteomics data, confirming that all MOH patients groups show a significant over-excretion of urinary PTGDS, UROM, AMBP and CYSC (excluding triptans group for this latter), in comparison with controls. Moreover, the expression of PTGDS was further evaluated by ELISA. Also by this assay, a significant increase of PTGDS was observed in all MOH abusers, according to 2-DE and Western blot results. Conclusions In this study, we confirmed previous findings concerning urinary proteins alterations in MOH patients, identified and demonstrated the over-expression of PTGDS, UROM, AMBP, and CYSC, particularly in NSAIDs and mixtures abusers. Over-expression of these proteins have been related to renal dysfunction and probably, PTGDS, to the development of CA. The detection and confirmation of this proteins pattern represent a promising tool for a better understanding of potential nephrotoxicity induced by drugs overuse and may enhance awareness related to the MOH-associated risks, even in absence of clinical symptoms.
Collapse
Affiliation(s)
- Elisa Bellei
- Department of Diagnostic Medicine, Clinic and Public Health, Proteomic Lab, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Jaurena MB, Juraver-Geslin H, Devotta A, Saint-Jeannet JP. Zic1 controls placode progenitor formation non-cell autonomously by regulating retinoic acid production and transport. Nat Commun 2015; 6:7476. [PMID: 26101153 PMCID: PMC4479597 DOI: 10.1038/ncomms8476] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 05/12/2015] [Indexed: 02/02/2023] Open
Abstract
All cranial placode progenitors arise from a common precursor field anterior to the neural plate, the pre-placodal region (PPR). We showed that transcription factor Zic1, expressed at the anterior neural plate, is necessary and sufficient to promote placode fate. Here we reveal the non-cell autonomous activity of Zic1 and implicate retinoic acid (RA) signalling as a key player in cranial placode progenitor specification. In a screen for genes activated by Zic1, we identify several factors involved in RA metabolism and function. Among them we show that retinaldehyde dehydrogenase 2 (RALDH2) and lipocalin-type prostaglandin D2 synthase (LPGDS), which, respectively, regulate the synthesis and transport of RA, directly participate in the establishment of the PPR. We propose that RALDH2 and LPGDS induction by Zic1 at the anterior neural plate allows for the localized production and transport of RA, which in turn activates a cranial placode developmental programme in neighbouring cells.
Collapse
Affiliation(s)
- Maria Belen Jaurena
- Department of Basic Science and Craniofacial Biology, New York University, College of Dentistry, 345 East 24th street, New York, New York 10010, USA
| | - Hugo Juraver-Geslin
- Department of Basic Science and Craniofacial Biology, New York University, College of Dentistry, 345 East 24th street, New York, New York 10010, USA
| | - Arun Devotta
- Department of Basic Science and Craniofacial Biology, New York University, College of Dentistry, 345 East 24th street, New York, New York 10010, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Basic Science and Craniofacial Biology, New York University, College of Dentistry, 345 East 24th street, New York, New York 10010, USA
| |
Collapse
|
62
|
Schiefner A, Skerra A. The menagerie of human lipocalins: a natural protein scaffold for molecular recognition of physiological compounds. Acc Chem Res 2015; 48:976-85. [PMID: 25756749 DOI: 10.1021/ar5003973] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
While immunoglobulins are well-known for their characteristic ability to bind macromolecular antigens (i.e., as antibodies during an immune response), the lipocalins constitute a family of proteins whose role is the complexation of small molecules for various physiological processes. In fact, a number of low-molecular-weight substances in multicellular organisms show poor solubility, are prone to chemical decomposition, or play a pathophysiological role and thus require specific binding proteins for transport through body fluids, storage, or sequestration. In many cases, lipocalins are involved in such tasks. Lipocalins are small, usually monomeric proteins with 150-180 residues and diameters of approximately 40 Å, adopting a compact fold that is dominated by a central eight-stranded up-and-down β-barrel. At the amino-terminal end, this core is flanked by a coiled polypeptide segment, while its carboxy-terminal end is followed by an α-helix that leans against the β-barrel as well as an amino acid stretch in a more-or-less extended conformation, which finally is fixed by a disulfide bond. Within the β-barrel, the antiparallel strands (designated A to H) are arranged in a (+1)7 topology and wind around a central axis in a right-handed manner such that part of strand A is hydrogen-bonded to strand H again. Whereas the lower region of the β-barrel is closed by short loops and densely packed hydrophobic side chains, including many aromatic residues, the upper end is usually open to solvent. There, four long loops, each connecting one pair of β-strands, together form the entrance to a cup-shaped cavity. Depending on the individual structure of a lipocalin, and especially on the lengths and amino acid sequences of its four loops, this pocket can accommodate chemical ligands of various sizes and shapes, including lipids, steroids, and other chemical hormones as well as secondary metabolites such as vitamins, cofactors, or odorants. While lipocalins are ubiquitous in all higher organisms, physiologically important members of this family have long been known in the human body, for example with the plasma retinol-binding protein that serves for the transport of vitamin A. This prototypic human lipocalin was the first for which a crystal structure was solved. Notably, several other lipocalins were discovered and assigned to this protein class before the term itself became familiar, which explains their diverse names in the scientific literature. To date, up to 15 distinct members of the lipocalin family have been characterized in humans, and during the last two decades the three-dimensional structures of a dozen major subtypes have been elucidated. This Account presents a comprehensive overview of the human lipocalins, revealing common structural principles but also deviations that explain individual functional features. Taking advantage of modern methods for combinatorial protein design, lipocalins have also been employed as scaffolds for the construction of artifical binding proteins with novel ligand specificities, so-called Anticalins, hence opening perspectives as a new class of biopharmaceuticals for medical therapy.
Collapse
Affiliation(s)
- André Schiefner
- Munich Center for Integrated
Protein Science (CIPS-M) and Lehrstuhl für Biologische Chemie, Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | - Arne Skerra
- Munich Center for Integrated
Protein Science (CIPS-M) and Lehrstuhl für Biologische Chemie, Technische Universität München, 85350 Freising-Weihenstephan, Germany
| |
Collapse
|
63
|
Mazari AMA, Hegazy UM, Mannervik B. Identification of new inhibitors for human hematopoietic prostaglandin D2 synthase among FDA-approved drugs and other compounds. Chem Biol Interact 2015; 229:91-9. [PMID: 25603235 DOI: 10.1016/j.cbi.2015.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/22/2014] [Accepted: 01/08/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Hematopoietic prostaglandin D2 synthase (HPGDS) is a member of the Sigma class glutathione transferases (GSTs) catalyzing the isomerization of prostaglandin H2 to prostaglandin D2, a mediator of allergy and inflammation responses. Selective inhibitors of human HPGDS are expected to be of therapeutic importance in relieving symptoms related to allergy and asthma. Hence, a collection of diverse FDA-approved compounds was screened for potential novel applications as inhibitors of HPGDS. METHODS The catalytic activity of purified HPGDS was used for inhibition studies in vitro. RESULTS Our inhibition studies revealed 23 compounds as effective inhibitors of HPGDS with IC50 values in the low micromolar range. Erythrosine sodium, suramin, tannic acid and sanguinarine sulfate were characterized with IC50 values of 0.2, 0.3, 0.4, and 0.6 μM, respectively. Kinetic inhibition analysis showed that erythrosine sodium is a nonlinear competitive inhibitor of HPGDS, while suramin, tannic acid and sanguinarine sulfate are linear competitive inhibitors. CONCLUSION The results show that certain FDA-approved compounds may have pharmacological effects not previously realized that warrant further consideration in their clinical use.
Collapse
Affiliation(s)
- Aslam M A Mazari
- Department of Neurochemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Usama M Hegazy
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, 12311 Cairo, Egypt
| | - Bengt Mannervik
- Department of Neurochemistry, Stockholm University, SE-10691 Stockholm, Sweden.
| |
Collapse
|
64
|
Rossitto M, Ujjan S, Poulat F, Boizet-Bonhoure B. Multiple roles of the prostaglandin D2 signaling pathway in reproduction. Reproduction 2015; 149:R49-58. [DOI: 10.1530/rep-14-0381] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prostaglandins signaling molecules are involved in numerous physiological processes. They are produced by several enzyme-limited reactions upon fatty acids, which are catalyzed by two cyclooxygenases and prostaglandin synthases. In particular, the prostaglandins E2(PGE2), D2(PGD2), and F2(PGF2α) have been shown to be involved in female reproductive mechanisms. Furthermore, widespread expression of lipocalin- and hematopoietic-PGD2synthases in the male reproductive tract supports the purported roles of PGD2in the development of both embryonic and adult testes, sperm maturation, and spermatogenesis. In this review, we summarize the putative roles of PGD2signaling and the roles of both PGD2synthases in testicular formation and function. We review the data reporting the involvement of PGD2signaling in the differentiation of Sertoli and germ cells of the embryonic testis. Furthermore, we discuss the roles of lipocalin-PGD2synthase in steroidogenesis and spermatogenesis, in terms of lipid molecule transport and PGD2production. Finally, we discuss the hypothesis that PGD2signaling may be affected in certain reproductive diseases, such as infertility, cryptorchidism, and testicular cancer.
Collapse
|
65
|
White CA, Ghazan-Shahi S, Adams MA. β-Trace protein: a marker of GFR and other biological pathways. Am J Kidney Dis 2014; 65:131-46. [PMID: 25446025 DOI: 10.1053/j.ajkd.2014.06.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/27/2014] [Indexed: 11/11/2022]
Abstract
β-Trace protein (BTP), also known as lipocalin prostaglandin D2 synthase (L-PGDS; encoded by the PTGDS gene), is a low-molecular-weight glycoprotein and an emerging novel marker of glomerular filtration rate. BTP is an important constituent of cerebral spinal fluid and is found in much lower concentrations in blood. Its serum origin and renal handling remain poorly understood. Unlike serum creatinine, BTP is not physiologically inert. It possesses both ligand-binding and enzymatic properties. BTP catalyzes the conversion of prostaglandin H2 (PGH2) to PGD2. PGD2 is an eicosanoid involved in a variety of important physiologic processes, including platelet aggregation, vasodilation, inflammation, adipogenesis, and bone remodeling. Several studies now have documented BTP's strong association with glomerular filtration rate, end-stage renal disease, cardiovascular disease, and death in a variety of different patient populations. This review provides an overview of the biochemistry, physiology and metabolism, biological functions, and measurement of BTP; summarizes the evidence for BTP as a marker of both kidney function and cardiovascular disease; and then considers the interplay between its biological properties, serum concentration, and patient outcomes.
Collapse
Affiliation(s)
- Christine A White
- Division of Nephrology, Department of Medicine, Queen's University, Kingston, Canada.
| | - Sassan Ghazan-Shahi
- Division of Nephrology, Department of Medicine, Queen's University, Kingston, Canada
| | - Michael A Adams
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| |
Collapse
|
66
|
Lipocalin-like prostaglandin D synthase (L-PGDS) concentration in aqueous humour in patients with open-angle glaucoma. J Glaucoma 2014; 23:164-8. [PMID: 23059482 DOI: 10.1097/ijg.0b013e31826a7dea] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To report on the concentration of lipocalin-like prostaglandin D synthase (L-PGDS) in the aqueous humour (AH) in patients with open-angle glaucoma (OAG). PATIENTS AND METHODS Prospective assessment in 20 patients (13 female, 7 male, mean age 74±10.6 y) who underwent surgery for OAG. AH was sampled and analyzed for L-PGDS concentration. AH from 26 patients (11 female, 15 male, 72.4±14.4 y) without glaucoma who underwent cataract surgery, served as control subjects. RESULTS The L-PGDS concentration in the AH sampled from the anterior chamber in the OAG group (5.9±2.4 mg/L) was significantly (P<0.001) higher than in the control group (3.3±1.3 mg/L). There were no significant differences between the concentrations of L-PGDS between the left and the right eye or between genders. CONCLUSIONS L-PGDS concentration in the AH of patients with OAG was significantly elevated compared with its concentration in the AH of nonglaucomatous eyes. As L-PGDS is a biologically pluripotent protein, its possible role in glaucoma warrants further examination.
Collapse
|
67
|
Perduca M, Bovi M, Bertinelli M, Bertini E, Destefanis L, Carrizo ME, Capaldi S, Monaco HL. High-resolution structures of mutants of residues that affect access to the ligand-binding cavity of human lipocalin-type prostaglandin D synthase. ACTA ACUST UNITED AC 2014; 70:2125-38. [PMID: 25084332 DOI: 10.1107/s1399004714012462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/28/2014] [Indexed: 11/10/2022]
Abstract
Lipocalin-type prostaglandin D synthase (L-PGDS) catalyzes the isomerization of the 9,11-endoperoxide group of PGH2 (prostaglandin H2) to produce PGD2 (prostaglandin D2) with 9-hydroxy and 11-keto groups. The product of the reaction, PGD2, is the precursor of several metabolites involved in many regulatory events. L-PGDS, the first member of the important lipocalin family to be recognized as an enzyme, is also able to bind and transport small hydrophobic molecules and was formerly known as β-trace protein, the second most abundant protein in human cerebrospinal fluid. Previous structural work on the mouse and human proteins has focused on the identification of the amino acids responsible and the proposal of a mechanism for catalysis. In this paper, the X-ray structures of the apo and holo forms (bound to PEG) of the C65A mutant of human L-PGDS at 1.40 Å resolution and of the double mutant C65A/K59A at 1.60 Å resolution are reported. The apo forms of the double mutants C65A/W54F and C65A/W112F and the triple mutant C65A/W54F/W112F have also been studied. Mutation of the lysine residue does not seem to affect the binding of PEG to the ligand-binding cavity, and mutation of a single or both tryptophans appears to have the same effect on the position of these two aromatic residues at the entrance to the cavity. A solvent molecule has also been identified in an invariant position in the cavity of virtually all of the molecules present in the nine asymmetric units of the crystals that have been examined. Taken together, these observations indicate that the residues that have been mutated indeed appear to play a role in the entrance-exit process of the substrate and/or other ligands into/out of the binding cavity of the lipocalin.
Collapse
Affiliation(s)
- Massimiliano Perduca
- Biocrystallography Laboratory, Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Michele Bovi
- Biocrystallography Laboratory, Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Mattia Bertinelli
- Biocrystallography Laboratory, Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Edoardo Bertini
- Biocrystallography Laboratory, Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Laura Destefanis
- Biocrystallography Laboratory, Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Maria E Carrizo
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, CP 5016, Córdoba, Argentina
| | - Stefano Capaldi
- Biocrystallography Laboratory, Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Hugo L Monaco
- Biocrystallography Laboratory, Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
68
|
Filler G, Kusserow C, Lopes L, Kobrzyński M. Beta-trace protein as a marker of GFR--history, indications, and future research. Clin Biochem 2014; 47:1188-94. [PMID: 24833359 DOI: 10.1016/j.clinbiochem.2014.04.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Recent findings suggest that beta-trace protein (BTP), a small molecular weight protein, is at least equal if not superior to serum creatinine as a marker of glomerular filtration rate (GFR), particularly since it is independent from height, gender, age, and muscle mass. The authors sought to summarize knowledge on BTP and its use as a marker of GFR using the most recent literature available. DESIGN AND METHODS The authors compiled key articles and all relevant recent literature on this topic. Physical and chemical features of the molecule are described, as well as factors that may affect its expression. The use of BTP in estimating GFR as a whole and in specific patient groups, including pregnant women, neonates and infants, children and adolescents, and patients who have undergone renal transplantation is discussed. The use of BTP as a marker for cardiovascular risk factors is also briefly addressed. RESULTS Although its performance in the general population is marginally inferior to cystatin C, studies have suggested that it may be superior in accurately estimating GFR in select patient groups such as pregnant women and neonates. CONCLUSIONS This novel marker shows promise, but further research is required to clarify findings from available data.
Collapse
Affiliation(s)
- Guido Filler
- Department of Paediatrics, Schulich School of Medicine & Dentistry, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N5A 5A5, Canada; Department of Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N5A 5A5, Canada.
| | - Carola Kusserow
- Department of Paediatrics, Schulich School of Medicine & Dentistry, London, ON N6A 5W9, Canada
| | - Laudelino Lopes
- Department of Obstetrics & Gynaecology, Schulich School of Medicine & Dentistry, London, ON N6A 5W9, Canada
| | - Marta Kobrzyński
- Department of Paediatrics, Schulich School of Medicine & Dentistry, London, ON N6A 5W9, Canada
| |
Collapse
|
69
|
Fernandez-Bustamante A, Klawitter J, Wilson P, Elkins ND, Agazio A, Shibata T, Uchida K, Christians U, Repine JE. Early increase in alveolar macrophage prostaglandin 15d-PGJ2 precedes neutrophil recruitment into lungs of cytokine-insufflated rats. Inflammation 2014; 36:1030-40. [PMID: 23616184 DOI: 10.1007/s10753-013-9635-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Early detection and prevention is an important goal in acute respiratory distress syndrome research. We determined the concentration of the anti-inflammatory 15-deoxy-Δ(12,14)-prostaglandin-J2 (15d-PGJ2) and other components of the cyclopentenone prostaglandin cascade in relation to lung inflammation in cytokine (IL-1/LPS)-insufflated rats. We found that 15d-PGJ2 levels increase in the bronchoalveolar lavage (BAL) fluid of rats insufflated with cytokines 2 h before. BAL 15d-PGJ2 increases preceded neutrophil recruitment, lung injury, and oxidative stress in the lungs of cytokine-insufflated rats. 15d-PGJ2 was localized in alveolar macrophages that decreased following cytokine insufflation. 15d-PGJ2 may constitute an early biomarker of lung inflammation and may reflect an endogenous attempt to regulate ongoing inflammation in macrophages and elsewhere after cytokine insufflation.
Collapse
Affiliation(s)
- Ana Fernandez-Bustamante
- Department of Anesthesiology, University of Colorado SOM, AO-1, MS 8202, 12631 E 17th Ave, Aurora, CO, 80045, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Nishida N, Nagata N, Toda H, Jingami N, Uemura K, Ozaki A, Mase M, Urade Y, Matsumoto S, Iwasaki K, Ishikawa M. Association of lipocalin-type prostaglandin D synthase with disproportionately enlarged subarachnoid-space in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 2014; 11:9. [PMID: 24731502 PMCID: PMC3991874 DOI: 10.1186/2045-8118-11-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/07/2014] [Indexed: 12/18/2022] Open
Abstract
Background Idiopathic normal pressure hydrocephalus (iNPH) is a treatable cause of dementia, gait disturbance, and urinary incontinence in elderly patients with ventriculomegaly. Its unique morphological feature, called disproportionately enlarged subarachnoid-space hydrocephalus (DESH), may also be a diagnostic feature. Lipocalin-type prostaglandin D synthase (L-PGDS) is a major cerebrospinal fluid (CSF) protein produced by arachnoid cells, and its concentration in the CSF is reportedly decreased in iNPH. L-PGDS acts as a prostaglandin D2-producing enzyme and behaves as a chaperone to prevent the neurotoxic aggregation of amyloid beta (Aβ) implicated in Alzheimer’s disease, a major comorbidity of iNPH. The aim of this study was to confirm the L-PGDS decrease in DESH-type iNPH and to clarify its relationship with clinico-radiological features or other CSF biomarkers. Methods We evaluated 22 patients (age: 76.4 ± 4.4 y; males: 10, females: 12) referred for ventriculomegaly without CSF pathway obstruction, and conducted a CSF tap test to determine the surgical indication. CSF concentrations of L-PGDS, Aβ42, Aβ40, and total tau (t-tau) protein were determined using enzyme-linked immunosorbent assays. Clinical symptoms were evaluated by the iNPH grading scale, mini-mental state examination, frontal assessment battery (FAB), and timed up and go test. The extent of DESH was approximated by the callosal angle, and the severity of parenchymal damage was evaluated by the age-related white matter change (ARWMC) score. Results L-PGDS and t-tau levels in CSF were significantly decreased in DESH patients compared to non-DESH patients (p = 0.013 and p = 0.003, respectively). L-PGDS and t-tau showed a significant positive correlation (Spearman r = 0.753, p < 0.001). Among the clinico-radiological profiles, L-PGDS levels correlated positively with age (Spearman r = 0.602, p = 0.004), callosal angle (Spearman r = 0.592, p = 0.004), and ARWMC scores (Spearman r = 0.652, p = 0.001), but were negatively correlated with FAB scores (Spearman r = 0.641, p = 0.004). Conclusions Our data support the diagnostic value of L-PGDS as a CSF biomarker for iNPH and suggest a possible interaction between L-PGDS and tau protein. In addition, L-PGDS might work as a surrogate marker for DESH features, white matter damage, and frontal lobe dysfunction.
Collapse
Affiliation(s)
- Namiko Nishida
- Department of Neurosurgery, Tazuke Kofukai Foundation, Medical Research Institute and Kitano Hospital, 2-4-20 Ohgimachi, Kita-ku, Osaka 530-8480, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Tippin BL, Kwong AM, Inadomi MJ, Lee OJ, Park JM, Materi AM, Buslon VS, Lin AM, Kudo LC, Karsten SL, French SW, Narumiya S, Urade Y, Salido E, Lin HJ. Intestinal tumor suppression in ApcMin/+ mice by prostaglandin D2 receptor PTGDR. Cancer Med 2014; 3:1041-51. [PMID: 24729479 PMCID: PMC4303173 DOI: 10.1002/cam4.251] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 12/29/2022] Open
Abstract
Our earlier work showed that knockout of hematopoietic prostaglandin D synthase (HPGDS, an enzyme that produces prostaglandin D2) caused more adenomas in ApcMin/+ mice. Conversely, highly expressed transgenic HPGDS allowed fewer tumors. Prostaglandin D2 (PGD2) binds to the prostaglandin D2 receptor known as PTGDR (or DP1). PGD2 metabolites bind to peroxisome proliferator-activated receptor γ (PPARG). We hypothesized that Ptgdr or Pparg knockouts may raise numbers of tumors, if these receptors take part in tumor suppression by PGD2. To assess, we produced ApcMin/+ mice with and without Ptgdr knockouts (147 mice). In separate experiments, we produced ApcMin/+ mice expressing transgenic lipocalin-type prostaglandin D synthase (PTGDS), with and without heterozygous Pparg knockouts (104 mice). Homozygous Ptgdr knockouts raised total numbers of tumors by 30–40% at 6 and 14 weeks. Colon tumors were not affected. Heterozygous Pparg knockouts alone did not affect tumor numbers in ApcMin/+ mice. As mentioned above, our Pparg knockout assessment also included mice with highly expressed PTGDS transgenes. ApcMin/+ mice with transgenic PTGDS had fewer large adenomas (63% of control) and lower levels of v-myc avian myelocytomatosis viral oncogene homolog (MYC) mRNA in the colon. Heterozygous Pparg knockouts appeared to blunt the tumor-suppressing effect of transgenic PTGDS. However, tumor suppression by PGD2 was more clearly mediated by receptor PTGDR in our experiments. The suppression mechanism did not appear to involve changes in microvessel density or slower proliferation of tumor cells. The data support a role for PGD2 signals acting through PTGDR in suppression of intestinal tumors.
Collapse
Affiliation(s)
- Brigette L Tippin
- Department of Pediatrics, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Binda C, Génier S, Cartier A, Larrivée JF, Stankova J, Young JC, Parent JL. A G protein-coupled receptor and the intracellular synthase of its agonist functionally cooperate. ACTA ACUST UNITED AC 2014; 204:377-93. [PMID: 24493589 PMCID: PMC3912537 DOI: 10.1083/jcb.201304015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The GPCR DP1 promotes the activity of L-PGDS, the enzyme that produces the DP1 agonist PGD2, while at the same time L-PGDS promotes the export and activity of DP1 in response to PGD2. Export of newly synthesized G protein–coupled receptors (GPCRs) remains poorly characterized. We show in this paper that lipocalin-type prostaglandin D2 (PGD2) synthase (L-PGDS) interacts intracellularly with the GPCR DP1 in an agonist-independent manner. L-PGDS promotes cell surface expression of DP1, but not of other GPCRs, in HEK293 and HeLa cells, independent of L-PGDS enzyme activity. In addition, formation of a DP1–Hsp90 complex necessary for DP1 export to the cell surface is dependent on the interaction between L-PGDS and the C-terminal MEEVD residues of Hsp90. Surprisingly, PGD2 synthesis by L-PGDS is promoted by coexpression of DP1, suggesting a possible intracrine/autocrine signaling mechanism. In this regard, L-PGDS increases the formation of a DP1–ERK1/2 complex and increases DP1-mediated ERK1/2 signaling. Our findings define a novel cooperative mechanism in which a GPCR (DP1) promotes the activity of the enzyme (L-PGDS) that produces its agonist (PGD2) and in which this enzyme in turn acts as a cofactor (of Hsp90) to promote export and agonist-dependent activity of the receptor.
Collapse
Affiliation(s)
- Chantal Binda
- Service de Rhumatologie, Département de Médecine, 2 Programme d'Immunologie, Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, and 3 Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | | | | | | | |
Collapse
|
73
|
Shimamoto S, Maruo H, Yoshida T, Ohkubo T. ¹H, ¹³C, and ¹⁵N resonance assignments of mouse lipocalin-type prostaglandin D synthase/substrate analog complex. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:129-132. [PMID: 23361378 DOI: 10.1007/s12104-013-9467-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 01/18/2013] [Indexed: 06/01/2023]
Abstract
Lipocalin-type Prostaglandin D synthase (L-PGDS) acts as the PGD2-synthesizing enzyme in the brain of various mammalian species. It belongs to the lipocalin superfamily and is the first member of this family to be recognized as an enzyme. Although the solution and crystal structure of L-PGDS has been determined to understand the molecular mechanism of catalytic reaction, the structural analysis of L-PGDS in complex with its substrate remains to be performed. Here, we present the nearly complete assignment of the backbone and side chain resonances of L-PGDS/substrate analog (U-46619) complex. This study lays the essential basis for further understanding the substrate recognition mechanism of L-PGDS.
Collapse
Affiliation(s)
- Shigeru Shimamoto
- Faculty of Science and Engineering, Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan,
| | | | | | | |
Collapse
|
74
|
Jha MK, Suk K. Glia-based biomarkers and their functional role in the CNS. Expert Rev Proteomics 2014; 10:43-63. [DOI: 10.1586/epr.12.70] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
75
|
Kim KH, Sadikot RT, Xiao L, Christman JW, Freeman ML, Chan JY, Oh YK, Blackwell TS, Joo M. Nrf2 is essential for the expression of lipocalin-prostaglandin D synthase induced by prostaglandin D2. Free Radic Biol Med 2013; 65:1134-1142. [PMID: 24029383 PMCID: PMC3972891 DOI: 10.1016/j.freeradbiomed.2013.08.192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/20/2013] [Accepted: 08/30/2013] [Indexed: 12/29/2022]
Abstract
Nrf2 is a transcription factor that protects against inflammatory diseases, but the underlying mechanism of this effect remains unclear. Here, we report that Nrf2 uses lipocalin-prostaglandin D synthase (L-PGDS) as a mechanism for suppressing inflammation. Exogenously added prostaglandin D2 (PGD2) induced L-PGDS expression in bone-marrow-derived macrophages (BMDMs), suggesting a positive feedback loop between L-PGDS expression and PGD2. Unlike lipopolysaccharide (LPS)-induced L-PGDS expression, PGD2-mediated expression was independent of MAPK, PU.1, or TLR4. Sequence analysis located a putative Nrf2 binding site in the murine L-PGDS promoter, to which Nrf2 bound when treated with PGD2. Chemical activation, or overexpression, of Nrf2 was sufficient to induce L-PGDS expression in macrophages, BMDMs, or lungs of Nrf2-knockout (KO) mice, but treatment with PGD2 failed to do so, suggesting a pivotal role for Nrf2 in the expression of L-PGDS. Consistent with this, expression of Nrf2 in the lungs of Nrf2-KO mice was sufficient to induce the expression of L-PGDS and to reduce neutrophilic lung inflammation elicited by LPS. Furthermore, expression of L-PGDS in mouse lungs decreased neutrophilic infiltration, ameliorating lung inflammation in mice. Together, our results show that Nrf2, activated by PGD2, induced L-PGDS expression, resulting in decreased inflammation. We suggest that the positive feedback induction of L-PGDS by PGD2 is part of the mechanism by which Nrf2 regulates inflammation.
Collapse
Affiliation(s)
- Kyun Ha Kim
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Korea
| | - Ruxana T Sadikot
- Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, and Malcom Randall Veterans Affairs Medical Center, Gainesville, FL 32610, USA
| | - Lei Xiao
- Section of Pulmonary, Critical Care and Sleep Medicine, University of Illinois, and Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - John W Christman
- Section of Pulmonary, Critical Care and Sleep Medicine, University of Illinois, and Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Michael L Freeman
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37027, USA
| | - Jefferson Y Chan
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN 37027, USA
| | - Myungsoo Joo
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Korea.
| |
Collapse
|
76
|
Chappell VA, Busada JT, Keiper BD, Geyer CB. Translational activation of developmental messenger RNAs during neonatal mouse testis development. Biol Reprod 2013; 89:61. [PMID: 23926285 DOI: 10.1095/biolreprod.113.109819] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The basic tenets of germ cell development are conserved among metazoans. Following lineage commitment in the embryo, germ cells proliferate, transition into meiosis, and then differentiate into gametes capable of fertilization. In lower organisms such as Drosophila and C. elegans, germline stem cells make the decision to proliferate or enter meiosis based in large part on the regulated expression of genes by translational control. This study undertakes a direct characterization of mRNAs that experience translational control and their involvement in similar decisions in the mammalian testis. We previously showed that translation of mRNA encoding the germ cell-specific gene Rhox13 was suppressed in the fetal and neonatal testis. By investigating changes in message utilization during neonatal testis development, we found that a large number of mRNAs encoding both housekeeping and germ cell-specific proteins experience enhanced translational efficiency, rather than increase in abundance, in the testis as quiescent gonocytes transition to mitotic spermatogonia. Our results indicate that translational control is a significant regulator of the germ cell proteome during neonatal testis development.
Collapse
Affiliation(s)
- Vesna A Chappell
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | | | | | | |
Collapse
|
77
|
Liu H, Li W, Rose ME, Pascoe JL, Miller TM, Ahmad M, Poloyac SM, Hickey RW, Graham SH. Prostaglandin D2 toxicity in primary neurons is mediated through its bioactive cyclopentenone metabolites. Neurotoxicology 2013; 39:35-44. [PMID: 23973622 DOI: 10.1016/j.neuro.2013.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 11/19/2022]
Abstract
Prostaglandin D2 (PGD2) is the most abundant prostaglandin in brain but its effect on neuronal cell death is complex and not completely understood. PGD2 may modulate neuronal cell death via activation of DP receptors or its metabolism to the cyclopentenone prostaglandins (CyPGs) PGJ2, Δ(12)-PGJ2 and 15-deoxy-Δ(12,14)-PGJ2, inducing cell death independently of prostaglandin receptors. This study aims to elucidate the effect of PGD2 on neuronal cell death and its underlying mechanisms. PGD2 dose-dependently induced cell death in rat primary neuron-enriched cultures in concentrations of ≥10μM, and this effect was not reversed by treatment with either DP1 or DP2 receptor antagonists. Antioxidants N-acetylcysteine (NAC) and glutathione which contain sulfhydryl groups that can bind to CyPGs, but not ascorbate or tocopherol, attenuated PGD2-induced cell death. Conversion of PGD2 to CyPGs was detected in neuronal culture medium; treatment with these CyPG metabolites alone exhibited effects similar to those of PGD2, including apoptotic neuronal cell death and accumulation of ubiquitinated proteins. Disruption of lipocalin-type prostaglandin D synthase (L-PGDS) protected neurons against hypoxia. These results support the hypothesis that PGD2 elicits its cytotoxic effects through its bioactive CyPG metabolites rather than DP receptor activation in primary neuronal culture.
Collapse
Affiliation(s)
- Hao Liu
- Geriatric Research Education and Clinical Center, V.A. Pittsburgh Healthcare System, 7180 Highland Drive, Pittsburgh, PA 15206, USA; Department of Neurology, University of Pittsburgh School of Medicine, 811 Kaufmann Medical Building, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Kim SW, Kim DW, Khalmuratova R, Kim JH, Jung MH, Chang DY, Shin EC, Lee HK, Shin HW, Rhee CS, Jeon SY, Min YG. Resveratrol prevents development of eosinophilic rhinosinusitis with nasal polyps in a mouse model. Allergy 2013; 68:862-9. [PMID: 23751068 DOI: 10.1111/all.12132] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND Since the recent establishment of a murine model of eosinophilic chronic rhinosinusitis with nasal polyps (CRSwNP), both the development of new drugs for treatment or prevention of eosinophilic CRSwNP and elucidation of their pathogenesis have been feasible. We investigated the therapeutic effects of resveratrol on CRSwNP and its mechanism of action using a murine model. METHODS After induction of eosinophilic CRSwNP, the therapeutic effects of resveratrol were tested and compared with those of triamcinolone acetonide. Histopathologic changes were evaluated using hematoxylin and eosin for overall inflammation, Sirius red for eosinophils, and Masson's trichrome stain for collagen. The expression levels of the interleukin (IL)-4, IL-5, prostaglandin D synthase, and leukotriene C4 synthase genes were assessed by quantitative real-time PCR. Cyclooxygense-2 and 5-lipoxygense levels were evaluated by immunohistochemical staining and Western blot analysis. RESULTS The degree of eosinophilic infiltration and subepithelial fibrosis was significantly decreased by administration of high-dose resveratrol, the potency of which was similar to that of triamcinolone acetonide. The expression levels of the IL-4, IL-5, prostaglandin D synthase, and leukotriene C4 synthase genes were significantly decreased by administration of low- or high-dose resveratrol. The production of 5-lipoxygenase was strongly inhibited by high-dose resveratrol. CONCLUSIONS Resveratrol may be useful for the prevention of eosinophilic CRSwNP. A key mechanism of its action is believed to be its anti-inflammatory effect, particularly on eosinophils, by inhibiting the lipoxygenase pathway.
Collapse
Affiliation(s)
| | - D. W. Kim
- Department of Otorhinolaryngology; Seoul National University College of Medicine; Seoul; South Korea
| | - R. Khalmuratova
- Department of Otorhinolaryngology; Gyeongsang National University Hospital; Jinju; South Korea
| | | | - M. H. Jung
- Clinical Research Institute; Gyeongsang National University Hospital; Jinju; South Korea
| | - D.-Y. Chang
- Laboratory of Immunology and Infectious Diseases; Graduate School of Medical Science and Engineering; KAIST; Daejeon; South Korea
| | - E.-C. Shin
- Laboratory of Immunology and Infectious Diseases; Graduate School of Medical Science and Engineering; KAIST; Daejeon; South Korea
| | - H.-K. Lee
- Department of Otorhinolaryngology; Gyeongsang National University Hospital; Jinju; South Korea
| | - H.-W. Shin
- Department of Pharmacology and Biomedical Science; Ischemic/Hypoxic Disease Institute; Seoul National University College of Medicine; Seoul; South Korea
| | - C.-S. Rhee
- Department of Otorhinolaryngology; Seoul National University College of Medicine; Seoul; South Korea
| | | | - Y.-G. Min
- Department of Otolaryngology-Head and Neck Surgery; National Medical Center; Seoul; South Korea
| |
Collapse
|
79
|
Kim SW, Kim DW, Khalmuratova R, Kim JH, Jung MH, Chang DY, Shin EC, Lee HK, Shin HW, Rhee CS, Jeon SY, Min YG. Resveratrol prevents development of eosinophilic rhinosinusitis with nasal polyps in a mouse model. Allergy 2013. [DOI: 10.10.1111/all.12132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - D. W. Kim
- Department of Otorhinolaryngology; Seoul National University College of Medicine; Seoul; South Korea
| | - R. Khalmuratova
- Department of Otorhinolaryngology; Gyeongsang National University Hospital; Jinju; South Korea
| | | | - M. H. Jung
- Clinical Research Institute; Gyeongsang National University Hospital; Jinju; South Korea
| | - D.-Y. Chang
- Laboratory of Immunology and Infectious Diseases; Graduate School of Medical Science and Engineering; KAIST; Daejeon; South Korea
| | - E.-C. Shin
- Laboratory of Immunology and Infectious Diseases; Graduate School of Medical Science and Engineering; KAIST; Daejeon; South Korea
| | - H.-K. Lee
- Department of Otorhinolaryngology; Gyeongsang National University Hospital; Jinju; South Korea
| | - H.-W. Shin
- Department of Pharmacology and Biomedical Science; Ischemic/Hypoxic Disease Institute; Seoul National University College of Medicine; Seoul; South Korea
| | - C.-S. Rhee
- Department of Otorhinolaryngology; Seoul National University College of Medicine; Seoul; South Korea
| | | | - Y.-G. Min
- Department of Otolaryngology-Head and Neck Surgery; National Medical Center; Seoul; South Korea
| |
Collapse
|
80
|
Lim SM, Chen D, Teo H, Roos A, Jansson AE, Nyman T, Trésaugues L, Pervushin K, Nordlund P. Structural and dynamic insights into substrate binding and catalysis of human lipocalin prostaglandin D synthase. J Lipid Res 2013; 54:1630-1643. [PMID: 23526831 PMCID: PMC3646464 DOI: 10.1194/jlr.m035410] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/26/2013] [Indexed: 01/20/2023] Open
Abstract
Lipocalin prostaglandin D synthase (L-PGDS) regulates synthesis of an important inflammatory and signaling mediator, prostaglandin D2 (PGD2). Here, we used structural, biophysical, and biochemical approaches to address the mechanistic aspects of substrate entry, catalysis, and product exit of this enzyme. Structure of human L-PGDS was solved in a complex with a substrate analog (SA) and in ligand-free form. Its catalytic Cys 65 thiol group was found in two different conformations, each making a distinct hydrogen bond network to neighboring residues. These help in elucidating the mechanism of the cysteine nucleophile activation. Electron density for ligand observed in the active site defined the substrate binding regions, but did not allow unambiguous fitting of the SA. To further understand ligand binding, we used NMR spectroscopy to map the binding sites and to show the dynamics of protein-substrate and protein-product interactions. A model for ligand binding at the catalytic site is proposed, showing a second binding site involved in ligand exit and entry. NMR chemical shift perturbations and NMR resonance line-width alterations (observed as changes of intensity in two-dimensional cross-peaks in [¹H,¹⁵N]-transfer relaxation optimization spectroscopy) for residues at the Ω loop (A-B loop), E-F loop, and G-H loop besides the catalytic sites indicate involvement of these residues in ligand entry/egress.
Collapse
Affiliation(s)
- Sing Mei Lim
- Division of Structural Biology and Biochemistry, Nanyang Technological University, Singapore; and; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Dan Chen
- Division of Structural Biology and Biochemistry, Nanyang Technological University, Singapore; and
| | - Hsiangling Teo
- Division of Structural Biology and Biochemistry, Nanyang Technological University, Singapore; and
| | - Annette Roos
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anna Elisabet Jansson
- Division of Structural Biology and Biochemistry, Nanyang Technological University, Singapore; and
| | - Tomas Nyman
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lionel Trésaugues
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Konstantin Pervushin
- Division of Structural Biology and Biochemistry, Nanyang Technological University, Singapore; and.
| | - Pär Nordlund
- Division of Structural Biology and Biochemistry, Nanyang Technological University, Singapore; and; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
81
|
Alvarez-Llamas G, Martín-Rojas T, de la Cuesta F, Calvo E, Gil-Dones F, Dardé VM, Lopez-Almodovar LF, Padial LR, Lopez JA, Vivanco F, Barderas MG. Modification of the secretion pattern of proteases, inflammatory mediators, and extracellular matrix proteins by human aortic valve is key in severe aortic stenosis. Mol Cell Proteomics 2013; 12:2426-39. [PMID: 23704777 DOI: 10.1074/mcp.m113.027425] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
One of the major challenges in cardiovascular medicine is to identify candidate biomarker proteins. Secretome analysis is particularly relevant in this search as it focuses on a subset of proteins released by a cell or tissue under certain conditions. The sample can be considered as a plasma subproteome and it provides a more direct approximation to the in vivo situation. Degenerative aortic stenosis is the most common worldwide cause of valve replacement. Using a proteomic analysis of the secretome from aortic stenosis valves we could identify candidate markers related to this pathology, which may facilitate early diagnosis and treatment. For this purpose, we have designed a method to validate the origin of secreted proteins, demonstrating their synthesis and release by the tissue and ruling out blood origin. The nLC-MS/MS analysis showed the labeling of 61 proteins, 82% of which incorporated the label in only one group. Western blot and selective reaction monitoring differential analysis, revealed a notable role of the extracellular matrix. Variation in particular proteins such as PEDF, cystatin and clusterin emphasizes the link between aortic stenosis and atherosclerosis. In particular, certain proteins variation in secretome levels correlates well, not only with label incorporation trend (only labeled in aortic stenosis group) but, more importantly, with alterations found in plasma from an independent cohort of samples, pointing to specific candidate markers to follow up in diagnosis, prognosis, and therapeutic intervention.
Collapse
|
82
|
Ertl NG, Elizur A, Brooks P, Kuballa AV, Anderson TA, Knibb WR. Molecular characterisation of colour formation in the prawn Fenneropenaeus merguiensis. PLoS One 2013; 8:e56920. [PMID: 23441225 PMCID: PMC3575496 DOI: 10.1371/journal.pone.0056920] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 01/16/2013] [Indexed: 01/19/2023] Open
Abstract
Introduction Body colouration in animals can have a range of functions, with predator protection an important aspect of colour in crustaceans. Colour determination is associated with the carotenoid astaxanthin, which is taken up through the diet and stabilised in the tissues by the protein crustacyanin. As a variety of genes are found to play a role in colour formation in other systems, a holistic approach was employed in this study to determine the factors involved in Fenneropenaeus merguiensis colouration. Results Full length F. merguiensis crustacyanin subunit A and C sequences were isolated. Crustacyanin subunit A and C were found in the F. merguiensis transcriptomes of the muscle/cuticle tissue, hepatopancreas, eye stalk and nervous system, using 454 next generation sequencing technology. Custom microarray analysis of albino, light and dark F. merguiensis cuticle tissue showed genes encoding actin, sarcoplasmic calcium-binding protein and arginine kinase to be 4-fold or greater differentially expressed (p<0.05) and down-regulated in albinos when compared to light and dark samples. QPCR expression analysis of crustacyanin and total astaxanthin pigment extraction revealed significantly (p<0.05) lower crustacyanin subunit A and C gene transcript copy numbers and total astaxanthin levels in albinos than in the light and dark samples. Additionally, crustacyanin subunit A and C expression levels correlated positively with each other. Conclusions This study identified gene products putatively involved in crustacean colouration, such as crustacyanin, sarcoplasmic calcium-binding protein and forms of actin, and investigated differences in gene expression and astaxanthin levels between albino, light and dark coloured prawns. These genes open a path to enhance our understanding of the biology and regulation of colour formation.
Collapse
Affiliation(s)
- Nicole G. Ertl
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Australian Seafood Cooperative Research Centre, South Australia, Australia
| | - Abigail Elizur
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- * E-mail:
| | - Peter Brooks
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Anna V. Kuballa
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | | | - Wayne R. Knibb
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
83
|
Tin A, Astor BC, Boerwinkle E, Hoogeveen RC, Coresh J, Kao WHL. Genome-wide significant locus of beta-trace protein, a novel kidney function biomarker, identified in European and African Americans. Nephrol Dial Transplant 2013; 28:1497-504. [PMID: 23328707 DOI: 10.1093/ndt/gfs591] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Beta-trace protein (BTP), measured in serum or plasma, has potential as a novel biomarker for kidney function. Little is known about the genes influencing BTP levels. METHODS We conducted a genome-wide association study of log-transformed plasma BTP levels in 6720 European Americans (EAs) and replicated the significant associations in 1734 African Americans (AAs) from the Atherosclerosis Risk in Communities (ARIC) study. RESULTS We identified a genome-wide significant locus in EA upstream of Prostaglandin D2 synthase (PTGDS), the gene encoding BTP. Each copy of the A allele at rs57024841 was associated with 5% higher BTP levels (P = 1.2 × 10(-23)). The association at PTGDS was confirmed in AAs (6% higher BTP for each A allele at rs57024841, P = 1.9 × 10(-7)). The index single nucleotide polymorphisms (SNPs) in EAs and AAs explained ∼1.1% of the log(BTP) variance within each population and explained over 30% of the difference in log(BTP) levels between EAs and AAs. The index SNPs at the PTGDS locus in the two populations were not associated with the estimated glomerular filtration rate (eGFR) or the urine albumin creatinine ratio (P > 0.05). We further tested for the associations of BTP with 16 known loci of the eGFR in EA, and BTP was associated with 3 of 16 tested. CONCLUSIONS The identification of a novel BTP-specific (non-renal related) locus and the confirmation of several genetic loci of the eGFR with BTP extend our understanding of the metabolism of BTP and inform its use as a kidney filtration biomarker.
Collapse
Affiliation(s)
- Adrienne Tin
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|
84
|
Prostaglandins as PPARγ Modulators in Adipogenesis. PPAR Res 2012; 2012:527607. [PMID: 23319937 PMCID: PMC3540890 DOI: 10.1155/2012/527607] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 11/20/2012] [Indexed: 02/01/2023] Open
Abstract
Adipocytes and fat cells play critical roles in the regulation of energy homeostasis. Adipogenesis (adipocyte differentiation) is regulated via a complex process including coordinated changes in hormone sensitivity and gene expression. PPARγ is a ligand-dependent transcription factor and important in adipogenesis, as it enhances the expression of numerous adipogenic and lipogenic genes in adipocytes. Prostaglandins (PGs), which are lipid mediators, are associated with the regulation of PPARγ function in adipocytes. Prostacyclin promotes the differentiation of adipocyte-precursor cells to adipose cells via activation of the expression of C/EBPβ and δ. These proteins are important transcription factors in the activation of the early phase of adipogenesis, and they activate the expression of PPARγ, which event precedes the maturation of adipocytes. PGE2 and PGF2α strongly suppress the early phase of adipocyte differentiation by enhancing their own production via receptor-mediated elevation of the expression of cycloxygenase-2, and they also suppress the function of PPARγ. In contrast, PGD2 and its non-enzymatic metabolite, Δ12-PGJ2, activate the middle-late phase of adipocyte differentiation through both DP2 receptors and PPARγ. This paper focuses on potential roles of PGs as PPARγ modulators in adipogenesis and regulators of obesity.
Collapse
|
85
|
Narayanankutty A, Reséndiz-Hernández JM, Falfán-Valencia R, Teran LM. Biochemical pathogenesis of aspirin exacerbated respiratory disease (AERD). Clin Biochem 2012; 46:566-78. [PMID: 23246457 DOI: 10.1016/j.clinbiochem.2012.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/14/2012] [Accepted: 12/04/2012] [Indexed: 12/30/2022]
Abstract
Aspirin exacerbated respiratory disease (AERD) is a distinct clinical entity characterized by eosinophilic rhinosinusitis, asthma and often nasal polyposis. Exposure to aspirin or other nonsteroid anti-inflammatory drugs (NSAIDs) exacerbates bronchospasms with asthma and rhinitis. Disease progression suggests a skewing towards TH2 type cellular response along with moderate to severe eosinophil and mast cell infiltration. Alterations in upper and lower airway cellular milieu with abnormalities in eicosanoid metabolism and altered eicosanoid receptor expression are the key features underlying AERD pathogenesis. Dysregulation of arachidonic acid (AA) metabolism, notably reduced prostaglandin E2 (PGE2) synthesis compared to their aspirin tolerant counterpart and relatively increased PGD2 production, a TH2/eosinophil chemoattractant are reported in AERD. Underproduced PGE2 is metabolized by overexpression of 15 prostaglandin dehydrogenase (15-PGDH) to inactive products further reducing PGE2 at real time. This relives the inhibitory effect of PGE2 on 5-lipoxygenase (5-LOX) resulting in overproduction of cysteinyl leukotrienes (CysLTs). Diminished formation of CysLT antagonists called lipoxins (LXs) also augments CysLTs responsiveness. Occasional intake of NSAIDs favors even more 5-LOX product formation, further narrowing the bronchoconstrictive bottle neck, resulting in acute asthmatic exacerbations along with increased mucus production. This review focuses on abnormalities in biochemical and molecular mechanisms in eicosanoid biosynthesis, eicosanoid receptor dysregulation and associated polymorphisms with special reference to arachidonic acid metabolism in AERD.
Collapse
Affiliation(s)
- Arun Narayanankutty
- Department of Immunoallergy and Asthma, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Calzada de Tlalpan 4502, Col. Sección XVI, Delegación Tlalpan, C.P. 14080, Mexico.
| | | | | | | |
Collapse
|
86
|
Tumor apoptosis in prostate cancer by PGD(2) and its metabolite 15d-PGJ(2) in murine model. Biomed Pharmacother 2012. [PMID: 23206752 DOI: 10.1016/j.biopha.2012.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fifteen-deoxy-Δ(12,14)-PGJ(2) (15d-PGJ(2)) is one of non-enzymatically converted metabolite from prostaglandin D(2) (PGD(2)). Anti-tumor effects of 15d-PGJ(2) in various tumors are partially known, but the detail of in vivo mechanisms of action is still unclear. In this study, we investigated the effects of 15d-PGJ(2) and PGD(2) on murine prostate cancer in vitro and in vivo. Murine prostate cancer cells RM9 were transfected with murine prostaglandin D(2) synthase (mPGDS) gene by using defective retrovirus vector, designated as RM9-mPGDS. In addition, RM9 was also transfected with only defective retrovirus vector, designated as RM9-EV and used as control in this study. The expression and production of the gene were confirmed by RT-PCR and ELISA, respectively. For in vivo study, RM9-mPGDS was injected into the back of C57BL/6 mice, then resulted tumor was used for pathological analysis 14days after the inoculation. Tumor cell apoptosis in the tissue was detected by TUNEL staining. Retrovirally transfected mPGDS in RM9 significantly induced apoptosis in vivo but not in vitro, by TUNEL staining and cell death ELISA, respectively. Our results strongly suggested that the apoptosis induced in RM9-mPGDS in vivo was probably achieved in tumor environment such as hypoxic condition. The introduction of PGDS gene into cancer cells might be a novel therapy against cancer.
Collapse
|
87
|
Systematic interaction analysis of human lipocalin-type prostaglandin D synthase with small lipophilic ligands. Biochem J 2012; 446:279-89. [DOI: 10.1042/bj20120324] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
L-PGDS [lipocalin-type PG (prostaglandin) D synthase] is a multi-functional protein, acting as a PGD2-producing enzyme and a lipid-transporter. In the present study, we focus on the function of L-PGDS as an extracellular transporter for small lipophilic molecules. We characterize the binding mechanism of human L-PGDS for the molecules, especially binding affinity stoichiometry and driving force, using tryptophan fluorescence quenching, ICD (induced circular dichroism) and ITC (isothermal titration calorimetry). The tryptophan fluorescence quenching measurements revealed that haem metabolites such as haemin, biliverdin and bilirubin bind to L-PGDS with significantly higher affinities than the other small lipophilic ligands examined, showing dissociation constant (Kd) values from 17.0 to 20.9 nM. We focused particularly on the extra-specificities of haem metabolites and L-PGDS. The ITC and ICD data revealed that two molecules of the haem metabolites bind to L-PGDS with high and low affinities, showing Kd values from 2.8 to 18.1 nM and from 0.209 to 1.63 μM respectively. The thermodynamic parameters for the interactions revealed that the contributions of enthalpy and entropy change were considerably different for each haem metabolite even when the Gibbs energy change was the same. Thus we believe that the binding energy of haem metabolites to L-PGDS is optimized by balancing enthalpy and entropy change.
Collapse
|
88
|
Qiu N, Ma M, Zhao L, Liu W, Li Y, Mine Y. Comparative proteomic analysis of egg white proteins under various storage temperatures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:7746-7753. [PMID: 22808901 DOI: 10.1021/jf302100m] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Although the effect of storage temperature was suggested to be a more important factor than that of storage time on changes in unfertilized egg white proteins, no comprehensive analysis of the thermally induced egg white protein changes was carried out. This study presents a proteomic analysis of the changes in unfertilized egg white proteins after 15 days of storage at 4, 20, and 37 °C. Using two-dimensional electrophoresis followed by MALDI-TOF MS/MS, 32 protein spots representing 8 proteins were identified with significant differences in abundance when stored at different temperatures. An accelerated degradation of ovalbumin, possibly resulting from the reduction of antiprotease, was observed after the storage at higher temperature. In addition, an increase in the formation of ovalbumin complexes and a decrease in lipocalin family proteins were detected with increasing storage temperature, which may indicate a thermally promoted change in chicken eggs. The decrease of clusterin during the high-temperature storage was suggested to be an effective biomarker for egg quality evaluation. These findings will give insight into the effects of storage temperature on changes in unfertilized egg white proteins during storage and provide a better understanding of the thermally induced biochemical changes that may affect the egg deteriorative process.
Collapse
Affiliation(s)
- Ning Qiu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | | | | | | | | | | |
Collapse
|
89
|
Lange C, Brunswig-Spickenheier B, Eissing L, Scheja L. Platelet lysate suppresses the expression of lipocalin-type prostaglandin D2 synthase that positively controls adipogenic differentiation of human mesenchymal stromal cells. Exp Cell Res 2012; 318:2284-96. [PMID: 22698646 DOI: 10.1016/j.yexcr.2012.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 05/31/2012] [Accepted: 06/04/2012] [Indexed: 12/19/2022]
Abstract
Mesenchymal stromal cells (MSCs) have been shown to display a considerable therapeutic potential in cellular therapies. However, harmful adipogenic maldifferentiation of transplanted MSCs may seriously threaten the success of this therapeutic approach. We have previously demonstrated that using platelet lysate (PL) instead of widely used fetal calf serum (FCS) diminished lipid accumulation in adipogenically stimulated human MSCs and identified, among others, lipocalin-type prostaglandin D2 synthase (L-PGDS) as a gene suppressed in PL-supplemented MSCs. Here, we investigated the role of PL and putatively pro-adipogenic L-PGDS in human MSC adipogenesis. Next to strongly reduced levels of L-PGDS we show that PL-supplemented MSCs display markedly decreased expression of adipogenic master regulators and differentiation markers, both before and after induction of adipocyte differentiation. The low adipogenic differentiation capability of PL-supplemented MSCs could be partially restored by exogenous addition of L-PGDS protein. Conversely, siRNA-mediated downregulation of L-PGDS in FCS-supplemented MSCs profoundly reduced adipocyte differentiation. In contrast, inhibiting endogenous prostaglandin synthesis by aspirin did not reduce differentiation, suggesting that a mechanism such as lipid shuttling but not the prostaglandin D2 synthase activity of L-PGDS is critical for adipogenesis. Our data demonstrate that L-PGDS is a novel pro-adipogenic factor in human MSCs which might be of relevance in adipocyte metabolism and disease. L-PGDS gene expression is a potential quality marker for human MSCs, as it might predict unwanted adipogenic differentiation after MSC transplantation.
Collapse
Affiliation(s)
- Claudia Lange
- University Medical Center Hamburg-Eppendorf, Clinic for Stem Cell Transplantation and Research Dept. Cell and Gene Therapy, Martinistr. 52, 20246 Hamburg, Germany.
| | | | | | | |
Collapse
|
90
|
Lecube A, Poca MA, Colomé N, Bech-Serra JJ, Hernández C, García-Ramírez M, Gándara D, Canals F, Simó R. Proteomic analysis of cerebrospinal fluid from obese women with idiopathic intracranial hypertension: a new approach for identifying new candidates in the pathogenesis of obesity. J Neuroendocrinol 2012; 24:944-52. [PMID: 22296024 DOI: 10.1111/j.1365-2826.2012.02288.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Body weight control is tightly regulated in the hypothalamus. The inaccessibility of human brain tissue can be partially solved by using cerebrospinal fluid (CSF) as a tool for assessing the central nervous system's production of orexigen and anorexigen factors. Using proteomic analysis, the present study investigated the differentially displayed proteins in human CSF from obese and non-obese subjects. We designed a case-control study conducted in a reference hospital where eight obese (cases) and eight non-obese (controls) women with idiopathic intracranial hypertension were included. Intracranial hypertension was normalised through the placement of a ventriculo- or lumboperitoneal shunt in the 12 months before their inclusion in the study. Isotope-coded protein label (for proteins > 10 kDa) and label-free liquid chromatography (for proteins < 10 kDa) associated with mass spectrometry analysis were used. Eighteen differentially expressed proteins were identified. Many of them fall into three main groups: inflammation (osteopontin, fibrinogen γ and β chain, α1 acid glycoprotein 2 and haptoglobin), neuroendocrine mediators (neurosecretory protein VGF, neuroendocrine protein 7B2, chromogranin-A and chromogranin B), and brain plasticity (testican-1, isoform 10 of fibronectin, galectin-3 binding protein and metalloproteinase inhibitor type 2). The differential production of osteopontin, neurosecretory protein VGF, chromogranin-A and fibrinogen γ chain was further confirmed by either enzyme-linked immunosorbent assay or western blotting. In conclusion, we have identified potential candidates that could be involved in the pathogenesis of obesity. Further studies aiming to investigating the precise role of these proteins in the pathogenesis of obesity and their potential therapeutic implications are needed.
Collapse
Affiliation(s)
- A Lecube
- Department of Endocrinology, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Diabetes and Metabolism Research Unit, Institut de Recerca i Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Zhang Y, Gao Z, Zhang Z, Luo M, Huang A, Dong Y, Wang D. Cloning, purification, crystallization and preliminary X-ray studies of human α1-microglobulin. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:692-4. [PMID: 22684072 PMCID: PMC3370912 DOI: 10.1107/s1744309112016569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/16/2012] [Indexed: 11/11/2022]
Abstract
α(1)-Microglobulin (α(1)m) is one of the phylogenetically most widespread lipocalins and is distributed in various organs and tissues, including liver, heart, eye, kidney, brain, lung, pancreas and skeletal muscle. α(1)m has been found to exert multifarious functions, including interacting with IgA, albumin and prothrombin, binding strongly to haem and exhibiting reductase activity. Nevertheless, little structural information is available regarding these functions of α(1)m. Since determination of three-dimensional structure is a powerful means of functional characterization, X-ray crystallography was used to accomplish this task. Here, the expression, purification, crystallization and preliminary crystallographic analysis of human α(1)m are reported. The crystal belonged to space group P4(3), with unit-cell parameters a = b = 36.45, c = 112.68 Å, and diffracted to a resolution of 2.0 Å. The crystals are most likely to contain one molecule in the asymmetric unit, with a V(M) value of 1.63 Å(3) Da(-1).
Collapse
Affiliation(s)
- Yangli Zhang
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Zengqiang Gao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100039, People’s Republic of China
| | - Zhenzhen Zhang
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Miao Luo
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Ailong Huang
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100039, People’s Republic of China
| | - Deqiang Wang
- Key Laboratory of Molecular Biology of Infectious Diseases, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, People’s Republic of China
| |
Collapse
|
92
|
Eberini I, Sensi C, Bovi M, Molinari H, Galliano M, Bonomi F, Iametti S, Gianazza E. Wards in the keyway: amino acids with anomalous pK(a)s in calycins. Amino Acids 2012; 43:2457-68. [PMID: 22643844 DOI: 10.1007/s00726-012-1324-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/15/2012] [Indexed: 11/24/2022]
Abstract
As a follow-up to our recent analysis of the electrostatics of bovine β-lactoglobulin (Eberini et al. in Amino Acids 42:2019-2030, 2011), we investigated whether the occurrence in the native structure of calycins-the superfamily to which β-lactoglobulin belongs-of amino acids with anomalous pK (a)s is an infrequent or, on the contrary, a common occurrence, and whether or not a general pattern may be recognized. To this aim, we randomly selected four calycins we had either purified from natural sources or prepared with recombinant DNA technologies during our previous and current structural and functional studies on this family. Their pIs vary over several pH units and their known functions are as diverse as carriers, enzymes, immunomodulators and/or extracellular chaperones. In our survey, we used both in silico prediction methods and in vitro procedures, such as isoelectric focusing, electrophoretic titration curves and spectroscopic techniques. By comparing the results under native conditions (no exposure of the proteins to chaotropic agents) to those after protein unfolding (in the presence of 8 M urea), a shift is observed in the pK (a) of at least one amino acid per protein, which results in a measurable change in pI. Three types of amino acids are involved: Cys, Glu, and His, their position varies along the calycin sequence. Although no common mechanism may thus be recognized, we hypothesize that the 'normalization' of anomalous pK (a)s may be the phenomenon that accompanies, and favors, structural rearrangements such as those involved in ligand binding by these proteins. An interesting, if anecdotal, validation to this view comes from the behavior of human retinol binding protein, for which the pI of the folded and liganded protein is intermediate between those of the folded and unliganded and of the unfolded protein forms. Likewise, both solid (from crystallography) and solution state (from CD spectroscopy) data confirm that the protein undergoes structural rearrangement upon retinol binding.
Collapse
Affiliation(s)
- Ivano Eberini
- Gruppo di Studio per la Proteomica e la Struttura delle Proteine, Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
93
|
PGH1, the precursor for the anti-inflammatory prostaglandins of the 1-series, is a potent activator of the pro-inflammatory receptor CRTH2/DP2. PLoS One 2012; 7:e33329. [PMID: 22442685 PMCID: PMC3307725 DOI: 10.1371/journal.pone.0033329] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/07/2012] [Indexed: 12/19/2022] Open
Abstract
Prostaglandin H1 (PGH1) is the cyclo-oxygenase metabolite of dihomo-γ-linolenic acid (DGLA) and the precursor for the 1-series of prostaglandins which are often viewed as “anti-inflammatory”. Herein we present evidence that PGH1 is a potent activator of the pro-inflammatory PGD2 receptor CRTH2, an attractive therapeutic target to treat allergic diseases such as asthma and atopic dermatitis. Non-invasive, real time dynamic mass redistribution analysis of living human CRTH2 transfectants and Ca2+ flux studies reveal that PGH1 activates CRTH2 as PGH2, PGD2 or PGD1 do. The PGH1 precursor DGLA and the other PGH1 metabolites did not display such effect. PGH1 specifically internalizes CRTH2 in stable CRTH2 transfectants as assessed by antibody feeding assays. Physiological relevance of CRTH2 ligation by PGH1 is demonstrated in several primary human hematopoietic lineages, which endogenously express CRTH2: PGH1 mediates migration of and Ca2+ flux in Th2 lymphocytes, shape change of eosinophils, and their adhesion to human pulmonary microvascular endothelial cells under physiological flow conditions. All these effects are abrogated in the presence of the CRTH2 specific antagonist TM30089. Together, our results identify PGH1 as an important lipid intermediate and novel CRTH2 agonist which may trigger CRTH2 activation in vivo in the absence of functional prostaglandin D synthase.
Collapse
|
94
|
Kado Y, Aritake K, Uodome N, Okano Y, Okazaki N, Matsumura H, Urade Y, Inoue T. Human hematopoietic prostaglandin D synthase inhibitor complex structures. J Biochem 2012; 151:447-55. [DOI: 10.1093/jb/mvs024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
95
|
Maicas N, Ibáñez L, Alcaraz MJ, Úbeda A, Ferrándiz ML. Prostaglandin D2 regulates joint inflammation and destruction in murine collagen-induced arthritis. ACTA ACUST UNITED AC 2012; 64:130-40. [PMID: 21898357 DOI: 10.1002/art.30656] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Prostaglandin D2 (PGD2) may exert proinflammatory or antiinflammatory effects in different biologic systems. Although this prostanoid and the enzymes responsible for its synthesis are up-regulated by interleukin-1β (IL-1β) in human chondrocytes in vitro, the role of PGD2 in arthritis remains unclear. This study was undertaken to investigate the role of PGD2 in the inflammatory response and in joint destruction during the development of collagen-induced arthritis (CIA) in mice. METHODS PGD2 and cytokine levels in mice with CIA were determined by enzyme-linked immunosorbent assay. Expression of hematopoietic PGD synthase (h-PGDS), lipocalin-type PGD synthase (l-PGDS), and DP1 and DP2 receptors was analyzed by immunohistochemical methods. PGE2 levels were determined by radioimmunoassay. RESULTS The arthritic process up-regulated the expression of h-PGDS, l-PGDS, DP1, and DP2 in articular tissue. PGD2 was produced in the joint during the early phase of arthritis, and serum PGD2 levels increased progressively throughout the arthritic process, reaching a maximum during the late stages of CIA. Treatment of arthritic mice with the DP1 antagonist MK0524 soon after the onset of disease increased the incidence and severity of CIA as well as the local levels of IL-1β, CXCL-1, and PGE2, whereas IL-10 levels were reduced. The administration of the DP2 antagonist CAY10595 did not modify the severity of arthritis. The injection of PGD2 into the paw, as well as the administration of the DP1 agonist BW245C, significantly lowered the incidence of CIA, the inflammatory response, and joint damage. CONCLUSION Our findings indicate that PGD2 is produced in articular tissue during the development of CIA and plays an antiinflammatory role, acting through the DP1 receptor.
Collapse
Affiliation(s)
- Nuria Maicas
- Department of Pharmacology and Molecular Recognition and Technologic Development ERI, University of Valencia, Valencia, Spain
| | | | | | | | | |
Collapse
|
96
|
Shimanuki M, Takeda K, Kawaguchi M, Suzuki T, Shibahara S. Lipocalin-type prostaglandin D synthase as a marker for the proliferative potential of melanocyte-lineage cells in the human skin. J Dermatol 2012; 39:699-704. [PMID: 22299829 DOI: 10.1111/j.1346-8138.2011.01485.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melanocytes in the human epidermis actively produce and secrete various substances, thereby contributing to the maintenance of the skin homeostasis. Lipocalin-type prostaglandin D synthase (L-PGDS) that catalyzes the formation of prostaglandin D(2) (PGD(2) ) may be one of such secreted molecules. Once secreted, L-PGDS functions as a transporter for lipophilic ligands, including all-trans retinoic acid (RA). L-PGDS, therefore, may possess pleiotropic functions in the skin through PGD(2) and RA. We aimed to identify the cell types that express L-PGDS in human skin and to explore the role of L-PGDS in the growth potential of melanocyte-lineage cells. Immunohistochemical analysis for L-PGDS expression was performed with the tissue sections that were prepared from five malignant melanomas, six nevus cell nevi and one Spitz nevus. Normal skin tissues adjacent to the excised melanoma tissues were also analyzed. L-PGDS is expressed in epidermal melanocytes but its expression is undetectable in keratinocytes. Moreover, L-PGDS is undetectable in most benign nevus cells, which may reflect the marginally accelerated proliferation of nevus cells. In contrast, L-PGDS is overexpressed in malignant melanomas, although the frequency of L-PGDS-positive cells was variable (15-50%), depending on the specimens. Lastly, RNA interference analysis against human L-PGDS was performed with short interfering RNA. Knockdown of L-PGDS expression with short interfering RNA in cultured cells suggests that L-PGDS may restrict cell proliferation through RA. In conclusion, L-PGDS expression may contribute to the restricted proliferation of epidermal melanocytes, but conversely its overexpression may reflect the dysregulated proliferation of melanoma cells.
Collapse
Affiliation(s)
- Miwa Shimanuki
- Department of Dermatology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | | | | | | | | |
Collapse
|
97
|
Lee S, Jang E, Kim JH, Kim JH, Lee WH, Suk K. Lipocalin-type prostaglandin D2 synthase protein regulates glial cell migration and morphology through myristoylated alanine-rich C-kinase substrate: prostaglandin D2-independent effects. J Biol Chem 2012; 287:9414-28. [PMID: 22275363 DOI: 10.1074/jbc.m111.330662] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Prostaglandin D synthase (PGDS) is responsible for the conversion of PGH(2) to PGD(2). Two distinct types of PGDS have been identified: hematopoietic-type PGDS (H-PGDS) and lipocalin-type PGDS (L-PGDS). L-PGDS acts as both a PGD(2)-synthesizing enzyme and as an extracellular transporter of various lipophilic small molecules. Although L-PGDS is one of the most abundant proteins in the cerebrospinal fluid, little is known about the function of L-PGDS in the central nervous system (CNS). To better understand the role of L-PGDS in the CNS, effects of L-PGDS on the migration and morphology of glial cells were investigated. The L-PGDS protein accelerated the migration of cultured glial cells. Expression of the L-pgds gene was detected in glial cells and neurons. L-PGDS protein also induced morphological changes in glia similar to the characteristic phenotypic changes in reactive gliosis. L-PGDS-induced cell migration was associated with augmented formation of actin filaments and focal adhesion, which was accompanied by activation of AKT, RhoA, and JNK pathways. L-PGDS protein injected into the mouse brain promoted migration and accumulation of astrocytes in vivo. Furthermore, the cell migration-promoting effect of L-PGDS on glial cells was independent of the PGD(2) products. The L-PGDS protein interacted with myristoylated alanine-rich protein kinase C substrate (MARCKS) to promote cell migration. These results demonstrate the critical role of L-PGDS as a secreted lipocalin in the regulation of glial cell migration and morphology. The results also indicate that L-PGDS may participate in reactive gliosis in an autocrine or paracrine manner, and may have pathological implications in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Shinrye Lee
- Department of Pharmacology, Brain Science & Engineering Institute, CMRI, Kyungpook National University School of Medicine, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | |
Collapse
|
98
|
Miyamoto Y, Noda Y, Iida T, Yamaguchi K, Nishimura S, Tanaka A, Segawa SI, Inui T. NMR and CD analysis of an intermediate state in the thermal unfolding process of mouse lipocalin-type prostaglandin D synthase. J Biochem 2012; 151:335-42. [PMID: 22210903 DOI: 10.1093/jb/mvr140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We previously reported that the thermal unfolding of mouse lipocalin-type prostaglandin D synthase (L-PGDS) is a completely reversible process under acidic conditions and follows a three-state pathway, including an intermediate state (I) between native state (N) and unfolded state. In the present study, we investigated the intermediate state of mouse C65A L-PGDS and clarified the local conformational changes in the upper and bottom regions by using NMR and CD spectroscopy. The (1)H-(15)N HSQC measurements revealed that the backbone conformation was disrupted in the upper region of the β-barrel at 45°C, which is around the T(m) value for the N ↔ I transition, but that the signals of the residues located at the bottom region of L-PGDS remained at 54°C, where the maximum accumulation of the intermediate state was found. (1)H-NMR and CD measurements showed that the T(m) values obtained by monitoring Trp54 at the upper region and Trp43 at the bottom region of the β-barrel were 41.4 and 47.5°C, respectively, suggesting that the conformational change in the upper region occurred at a lower temperature than that in the bottom region. These findings demonstrate that the backbone conformation of the bottom region is still maintained in the intermediate state.
Collapse
Affiliation(s)
- Yuya Miyamoto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
Lipocalins are a family of diverse low molecular weight proteins that act extracellularly. They use multiple recognition properties that include 1) ligand binding to small hydrophobic molecules, 2) macromolecular complexation with other soluble macromolecules, and 3) binding to specific cell surface receptors to deliver cargo. Tear lipocalin (TLC) is a major protein in tears and has a large ligand-binding cavity that allows the lipocalin to bind an extensive and diverse set of lipophilic molecules. TLC can also bind to macromolecules, including the tear proteins lactoferin and lysozyme. The receptor to which TLC binds is termed tear lipocalin-interacting membrane receptor (LIMR). LIMR appears to work by endocytosis. TLC has a variety of suggested functions in tears, including regulation of tear viscosity, binding and release of lipids, endonuclease inactivation of viral DNA, binding of microbial siderophores (iron chelators used to deliver essential iron to bacteria), serving as a biomarker for dry eye, and possessing anti-inflammatory activity. Additional research is warranted to determine the actual functions of TLC in tears and the presence of its receptor on the ocular surface.
Collapse
Affiliation(s)
- Darlene A Dartt
- Schepens Eye Research Institute and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
100
|
Yazaki M, Kashiwagi K, Aritake K, Urade Y, Fujimori K. Rapid degradation of cyclooxygenase-1 and hematopoietic prostaglandin D synthase through ubiquitin-proteasome system in response to intracellular calcium level. Mol Biol Cell 2011; 23:12-21. [PMID: 22049022 PMCID: PMC3248891 DOI: 10.1091/mbc.e11-07-0623] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cyclooxygenase (COX)-1 and hematopoietic prostaglandin (PG) D synthase (H-PGDS) proteins, which are both involved in the arachidonate cascade, were stable in human megakaryocytic MEG-01 cells. In contrast, once the intracellular calcium level was increased by treatment with a calcium ionophore, both protein levels rapidly decreased with a half-life of less than 30 and 120 min for COX-1 and H-PGDS, respectively. In the presence of a proteasome inhibitor, COX-1 and H-PGDS proteins accumulated within 10 and 30 min, respectively, and concurrently appeared as the high-molecular-mass ubiquitinated proteins within 30 and 60 min, respectively, after an increase in the intracellular calcium level. The ubiquitination of these proteins was also observed when ADP, instead of a calcium ionophore, was used as an inducer to elevate the intracellular calcium level. When the entry of calcium ion into the cells was inhibited by ethylene glycol tetraacetic acid (EGTA), the ubiquitination of COX-1 and H-PGDS was clearly suppressed; and the addition of CaCl(2) to the medium cleared the EGTA-mediated suppression of the ubiquitination. These results indicate that COX-1 and H-PGDS were rapidly ubiquitinated and degraded through the ubiquitin-proteasome system in response to the elevation of the intracellular calcium level.
Collapse
Affiliation(s)
- Misato Yazaki
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | | | | | | | | |
Collapse
|