51
|
Proteomic analysis reveals the molecular mechanism of Hippophae rhamnoides polysaccharide intervention in LPS-induced inflammation of IPEC-J2 cells in piglets. Int J Biol Macromol 2020; 164:3294-3304. [PMID: 32888998 DOI: 10.1016/j.ijbiomac.2020.08.235] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/17/2020] [Accepted: 08/30/2020] [Indexed: 01/15/2023]
Abstract
Early weaning can cause intestinal disorders and dysfunction in piglets, and may induce intestinal diseases. Hippophae rhamnoides polysaccharide (HRP) has anti-inflammatory and immune promotion function. However, few studies have explored the change of differentially protein expression by lipopolysaccharide (LPS)-induced porcine intestinal epithelial cell (IPEC-J2) after HRP pre-treatment. In this study, proteomic analysis was used to explore the essential proteins and immune-related pathways that can be regulated by LPS-induced IPEC-J2 cells after HRP pre-treatment. The results indicate that by searching the Sus scrofa database, a total of 18,768 proteins was identified. Among recognized proteins, there are 2052 (1720 up-regulated and 332 down-regulated), 358 (262 up-regulated and 96 down-regulated) and1532 (314 up-regulated and 1218 down-regulated) proteins expressed differently in C vs. L, C vs. H6-L and L vs. H6-L, respectively. The Cluster of Orthologous Groups (COG) analysis divided the identified proteins into 23 categories. Gene Ontology (GO) enrichment analysis revealed that cellular process, cell, cell part, organelle and binding were the most enriched pathways for differentially expressed proteins. KEGG enrichment analysis indicated that the top 20 pathways in the L-vs-H6-L group related to immunity were the Tight junction, MAPK signaling pathway, PI3K-Akt signaling pathway, rap1 signaling pathway, HIF-1 signaling pathway, Ras signaling pathway and Fc gamma R-mediated phagocytosis. Moreover, we also found 42 key proteins related to these immune pathways in this study. Additionally, western blotting analyses confirmed that LPS reduced the levels of claudin2 (CLDN2), insulin-like growth factor 2 (IGF2) and increased phosphorylated mitogen-activated protein kinase 7 (MAPK7), phosphorylated transcription factor p65 (RELA), phosphorylated nuclear factor NF-kappa-B p105 subunit (NF-κB1) and phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 (NF-κB2). Pre-treatment with HRP increased the levels of CLDN2, IGF2 and reduced the levels of the phosphorylated MAPK7, phosphorylated RELA, phosphorylated NF-κB1 and phosphorylated NF-κB2 in cells. These results also showed that HRP alleviated LPS-induced inflammation in IPEC-J2 cells by inhibiting the MAPK/NF-κB signaling pathway and its related differentially expressed proteins.
Collapse
|
52
|
Crane AB, Sharon Y, Chu DS. Use of Adrenocorticotropic Hormone in Ophthalmology. J Ocul Pharmacol Ther 2020; 36:661-667. [PMID: 32762596 DOI: 10.1089/jop.2020.0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ability of the adrenocorticotropic hormone (ACTH) to induce steroidogenesis and upregulate anti-inflammatory processes has long been known. More recently, however, extrasteroidal mechanisms, through which ACTH exerts anti-inflammatory processes, have been described. This has renewed hope that ACTH can combat inflammatory conditions even when resistant to steroids. This review article summarizes the literature on the use of ACTH in ocular disease. Unfortunately, much of the data regarding the clinical utility of ACTH are outdated, with many studies published in the 1950s and 1960s. Many of these older studies are inconsistent or incomplete with their reporting, making it difficult to ascertain the meaning of the outcomes. Despite the limitations, 2 important trends are evident. First, when used to treat an inflammatory disease, ACTH can be effective at decreasing or eliminating ocular inflammation, even in a refractory disease resistant to multiple treatment modalities. Second, adverse effects of ACTH are rare and are most likely to be reported with relatively high doses of ACTH therapy. Taken as a whole, these studies offer initial promising data that ACTH may be a safe and effective alternative in refractory ocular inflammatory disease. However, they highlight an important lack of prospective data to more rigorously understand the true safety and efficacy of this therapy.
Collapse
Affiliation(s)
- Alexander B Crane
- Rutgers New Jersey Medical School, Institute of Ophthalmology and Visual Science, Rutgers University, Newark, New Jersey, USA
| | - Yael Sharon
- Department of Ophthalmology, Rabin Medical Center, Petah Tikva, Israel
| | - David S Chu
- Rutgers New Jersey Medical School, Institute of Ophthalmology and Visual Science, Rutgers University, Newark, New Jersey, USA.,Metropolitan Eye Research and Surgery Institute, Palisades Park, New Jersey, USA
| |
Collapse
|
53
|
Tukaj S. Heat Shock Protein 70 as a Double Agent Acting Inside and Outside the Cell: Insights into Autoimmunity. Int J Mol Sci 2020; 21:ijms21155298. [PMID: 32722570 PMCID: PMC7432326 DOI: 10.3390/ijms21155298] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (Hsp) are a diverse group of constitutive and/or stress-induced molecules that are categorized into several classes on the basis of their molecular weight. Mammalian Hsp have been mostly regarded as intracellular chaperones that mediate a range of essential cellular functions, including proper folding of newly synthesized polypeptides, refolding of denatured proteins, protein transport, and stabilization of native proteins' structures. The well-characterized and highly evolutionarily conserved, stress-inducible 70-kDa heat shock protein (Hsp70), is a key molecular chaperone that is overexpressed in the cell in response to stress of various origin. Hsp70 exhibits an immunosuppressive activity via, e.g., downregulation of the nuclear factor-kappa B (NF-κB) activation, and pharmacological induction of Hsp70 can ameliorate the autoimmune arthritis development in animal models. Moreover, Hsp70 might be passively or actively released from the necrotic or stressed cells, respectively. Highly immunogenic extracellular Hsp70 has been reported to impact both the innate and adaptive immune responses, and to be implicated in the autoimmune reaction. In addition, preclinical studies revealed that immunization with highly conserved Hsp70 peptides could be regarded as a potential treatment target for autoimmune arthritis, such as the rheumatoid arthritis, via induction of antigen-specific regulatory T helper cells (also called Treg). Here, a dual role of the intra- and extracellular Hsp70 is presented in the context of the autoimmune reaction.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
54
|
Naringin Targets NFKB1 to Alleviate Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury in PC12 Cells Via Modulating HIF-1α/AKT/mTOR-Signaling Pathway. J Mol Neurosci 2020; 71:101-111. [PMID: 32557145 DOI: 10.1007/s12031-020-01630-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022]
Abstract
This study was designed to investigate the effect of naringin in oxygen-glucose deprivation/reoxygenation (OGD/R) model and its mechanism. The target gene of naringin and the enriched pathways of the gene were searched and identified using bioinformatics analysis. Then OGD/R model was built using PC12 cells, after which the cells were treated with different concentrations of naringin. Subsequently, cell proliferation and apoptosis were evaluated by cell counting kit-8 (CCK-8) and flow cytometry assays, respectively. Meanwhile, the expression of NFKB1 in PC12 cells underwent OGD/R-induced injury was detected by qRT-PCR, while apoptosis-related and pathway-related proteins were checked by Western blot. DCF-DA kit was utilized to measure the level of ROS. Our results revealed that NFKB1, which was upregulated in MACO rats and OGD/R-treated PC12 cells, was a target gene of naringin. Naringin could alleviate OGD/R-induced injury via promoting the proliferation, and repressing the apoptosis of PC12 cells through regulating the expression of NFKB1 and apoptosis-associated proteins and ROS level. Besides, the depletion of NFKB1 was positive to cell proliferation but negative to cell apoptosis. Moreover, the depletion of NFKB1 enhanced the influences of naringin on cell proliferation and apoptosis as well as the expression of apoptosis-related proteins and ROS level. Western blotting indicated that both naringin treatment and depletion of NFKB1 could increase the expression of HIF-1α, p-AKT, and p-mTOR compared with OGD/R group. What's more, treatment by naringin and si-NFKB1 together could significantly increase these effects. Nevertheless, the expression of AKT and mTOR among each group was almost not changed. In conclusion, naringin could prevent the OGD/R-induced injury in PC12 cells in vitro by targeting NFKB1 and regulating HIF-1α/AKT/mTOR-signaling pathway, which might provide novel ideas for the therapy of cerebral ischemia-reperfusion (I/R) injury.
Collapse
|
55
|
Zhang P, Li T, Wu X, Nice EC, Huang C, Zhang Y. Oxidative stress and diabetes: antioxidative strategies. Front Med 2020; 14:583-600. [PMID: 32248333 DOI: 10.1007/s11684-019-0729-1] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus is one of the major public health problems worldwide. Considerable recent evidence suggests that the cellular reduction-oxidation (redox) imbalance leads to oxidative stress and subsequent occurrence and development of diabetes and related complications by regulating certain signaling pathways involved in β-cell dysfunction and insulin resistance. Reactive oxide species (ROS) can also directly oxidize certain proteins (defined as redox modification) involved in the diabetes process. There are a number of potential problems in the clinical application of antioxidant therapies including poor solubility, storage instability and nonselectivity of antioxidants. Novel antioxidant delivery systems may overcome pharmacokinetic and stability problem and improve the selectivity of scavenging ROS. We have therefore focused on the role of oxidative stress and antioxidative therapies in the pathogenesis of diabetes mellitus. Precise therapeutic interventions against ROS and downstream targets are now possible and provide important new insights into the treatment of diabetes.
Collapse
Affiliation(s)
- Pengju Zhang
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Tao Li
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xingyun Wu
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Canhua Huang
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Yuanyuan Zhang
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
56
|
Protein-protein interactions of ER-resident selenoproteins with their physiological partners. Biochimie 2020; 171-172:197-204. [PMID: 32188576 DOI: 10.1016/j.biochi.2020.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/13/2020] [Indexed: 12/22/2022]
Abstract
ER is a highly specialized complex of branched microtubules enclosed in a membrane and communicating with each other, its functions in the cell are important and very diverse: lipid and phospholipid synthesis, calcium storage, hormone synthesis, protein synthesis and maturation, membrane production, toxin neutralization, etc. The high concentration of calcium ions and the oxidizing properties of the contents of the ER cavities contribute to the proper synthesis and folding of proteins designed for secretion or exposure on the surface of the cell membrane. However, disturbance of redox regulation can lead to the accumulation of improperly folded proteins in the ER, disruption of calcium regulation, which can cause ER-stress. This review is devoted to the role of ER-resident selenoproteins in the processes occurring in this organelle of a cell. The main emphasis is placed on the study of protein-protein interactions of selenoproteins with their physiological partners; this will facilitate understanding of their functional purpose in this organelle. Currently, 7 selenoproteins are known that are localized in the ER, but the functions of most of them are not at all clear, for some, physiological partners have been identified. It is known that selenoproteins are oxidoreductases with antioxidant properties, this is extremely important for the normal functioning of ER. Therefore, this review can be very useful for understanding the full picture of the functions of ER-resident selenoproteins obtained on the basis of recent data.
Collapse
|
57
|
Yang L, Han X, Yuan J, Xing F, Hu Z, Huang F, Wu H, Shi H, Zhang T, Wu X. Early astragaloside IV administration attenuates experimental autoimmune encephalomyelitis in mice by suppressing the maturation and function of dendritic cells. Life Sci 2020; 249:117448. [PMID: 32087232 DOI: 10.1016/j.lfs.2020.117448] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 02/02/2023]
Abstract
AIMS Dendritic cells (DCs) actively participate in the pathogenesis of multiple sclerosis (MS), an autoimmune disease. Astragaloside IV (ASI), an active monomer isolated from the Chinese medicine Astragalus membranaceus, has a wide range of pharmacological effects. We aimed to elucidate the effects of ASI on the development of DCs in the early stage of MS/EAE. MAIN METHODS The mice were administered with ASI (20 mg/kg) daily 3 days in advance of EAE induction and continuously until day 7 post-immunization. The effect of ASI on CD11c+ DC cells from bone marrow (BMDCs) or the spleen of EAE mice at day 7 post-immunization were investigated respectively by flow cytometry, ELISA, western blot, real-time PCR and immunofluorescence. KEY FINDINGS ASI administration in the early stage of EAE was demonstrated to delay the onset and alleviate the severity of the disease. ASI inhibited the maturation and the antigen presentation of DCs in spleen of EAE mice and LPS-stimulated BMDCs, as evidenced by decreased expressions of CD11c, CD86, CD40 and MHC II. Accordingly, DCs treated by ASI secreted less IL-6 and IL-12, and prevented the differentiation of CD4+ T cells into Th1 and Th17 cells, which was probably through inhibiting the activation of NFκB and MAPKs signaling pathways. SIGNIFICANCE Our results implicated the alleviative effect of early ASI administration on EAE might be mediated by suppressing the maturation and function of DCs. The novel findings may add to our knowledge of ASI in the potentially clinical treatment of MS.
Collapse
Affiliation(s)
- Liu Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinyan Han
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinfeng Yuan
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Faping Xing
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhixing Hu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ting Zhang
- Classical Prescription Experimental Platform, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
58
|
Expression of genes involved in the NF-κB-dependent pathway of the fibrosis in the mare endometrium. Theriogenology 2020; 147:18-24. [PMID: 32074495 DOI: 10.1016/j.theriogenology.2020.01.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/29/2019] [Accepted: 01/28/2020] [Indexed: 12/23/2022]
Abstract
Equine endometrosis is a multifactorial chronic degenerative condition, considered to be one of a major causes of equine infertility. The formation of periglandular fibrosis seems to be linked to chronic inflammation of the mare endometrium in a paracrine way and in a response to numerous forms of inflammatory stimuli elicit the net deposition of extracellular matrix (ECM) around the endometrial glands and stroma. We hypothesized some of these stimuli, such as monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), and hyaluronan synthases (HASs), may share the nuclear factor-κB (NF-κB) dependent activation pathway. This study aimed to determine whether mRNA expression of MCP-1, IL-6, HASs, and proteins of canonical (RelA/NK-κβ1) and noncanonical (NK-κβ2) signaling pathways for NF-kB would change in subsequent categories of endometrosis during the estrous cycle. The expression of selected genes was established in mare endometrium (n = 80; Kenney and Doig categories I, IIA, IIB, III), obtained in the follicular phase (FLP) and mid-luteal phase (MLP). The high expression of RelA mRNA was observed in III, whereas of NK-κβ1 and NK-κβ2 also in IIA, and IIA and IIB, respectively. The expression of MCP-1 mRNA occurred constantly, regardless of the category, whereas IL-6 mRNA was low in IIA, IIB, and III. The expression of HAS 1 was high in IIA and HAS 3 in IIA, IIB, and III. All those changes were observed in FLP, but not MLP. Our results suggest that NF-κB may be involved in progression of the chronic degenerative condition of the mare endometrium, on both canonical and noncanonical pathways. The most important changes in target genes expression were observed only in FLP, which may suggest the hormone-dependent activation of the NF-κB-dependent fibrosis pathway.
Collapse
|
59
|
Özdemir S, Altun S. Genome-wide analysis of mRNAs and lncRNAs in Mycoplasma bovis infected and non-infected bovine mammary gland tissues. Mol Cell Probes 2020; 50:101512. [PMID: 31972225 DOI: 10.1016/j.mcp.2020.101512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/30/2019] [Accepted: 01/15/2020] [Indexed: 02/02/2023]
Abstract
Mycoplasma bovis (M. bovis) causes diseases such as arthritis, pneumonia, abortion, and mastitis, leading to great losses in the bovine dairy industries. RNA types such as messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) play significant roles in regulating the immune responses triggered by bacteria. The expression profiles of mRNA and lncRNA as they occur in bovine mammary gland tissues infected with M. bovis are still not well understood. To illuminate this issue, transcription analysis of mRNA and LncRNAs were conducted on the mammary gland tissues belonging to Holstein cattle infected and not infected with M. bovis. The analysis revealed 1310 differentially expressed mRNAs and 57 differentially expressed lncRNAs in the bovine mammary gland tissues infected and not infected with M. bovis. In addition, 392 novel lncRNAs were detected, 19 of which were differentially expressed. Gene ontology analysis reveals that differentially expressed mRNAs and lncRNAs play significant roles in such vital biological pathways as metabolic pathways, T-cell receptor signaling, TGF-beta signaling, pathways in cancer, PI3K-Akt signaling, NF-kappa B signaling, mTOR signaling, and apoptosis, including in the immune response to cancer. Based on our literature review, this study is the first genome-wide lncRNA research conducted on bovine mammary gland tissues infected with M. bovis. Our results provide bovine mammary gland lncRNA and mRNA resources to understand their roles in the regulation of the immune response against the agent M. bovis in bovine mammary gland tissues.
Collapse
Affiliation(s)
- Selçuk Özdemir
- Atatürk Üniversity Faculty of Veterinary Medicine, Depertmant of Genetics, Erzurum, 25430, Turkey.
| | - Serdar Altun
- Atatürk Üniversity Faculty of Veterinary Medicine, Depertmant of Pathology, Erzurum, 25430, Turkey
| |
Collapse
|
60
|
Pan SP, Pirker T, Kunert O, Kretschmer N, Hummelbrunner S, Latkolik SL, Rappai J, Dirsch VM, Bochkov V, Bauer R. C13 Megastigmane Derivatives From Epipremnum pinnatum: β-Damascenone Inhibits the Expression of Pro-Inflammatory Cytokines and Leukocyte Adhesion Molecules as Well as NF-κB Signaling. Front Pharmacol 2019; 10:1351. [PMID: 31849641 PMCID: PMC6892967 DOI: 10.3389/fphar.2019.01351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/25/2019] [Indexed: 12/05/2022] Open
Abstract
In order to identify active constituents and to gain some information regarding their mode of action, extracts from leaves of Epipremnum pinnatum were tested for their ability to inhibit inflammatory gene expression in endothelial- and monocyte-like cells (HUVECtert and THP-1, respectively). Bioactivity-guided fractionation using expression of PTGS2 (COX-2) mRNA as a readout resulted in the isolation of two C13 megastigmane glycosides, gusanlungionoside C (1) and citroside A (3), and the phenylalcohol glycoside phenylmethyl-2-O-(6-O-rhamnosyl)-ß-D-galactopyranoside (2). Further analysis identified six additional megastigmane glycosides and the aglycones β-damascenone (10), megastigmatrienone (11), 3-hydroxy-β-damascenone (12), and 3-oxo-7,8-dihydro-α-ionol (13). Pharmacological analysis demonstrated that 10 inhibits LPS-stimulated induction of mRNAs encoding for proinflammatory cytokines and leukocyte adhesion molecules, such as TNF-α, IL-1β, IL-8, COX-2, E-selectin, ICAM-1, and VCAM-1 in HUVECtert and THP-1 cells. 10 inhibited induction of inflammatory genes in HUVECtert and THP-1 cells treated with different agonists, such as TNF-α, IL-1β, and LPS. In addition to mRNA, also the upregulation of inflammatory proteins was inhibited by 10 as demonstrated by immune assays for cell surface E-selectin and secreted TNF-α. Finally, using a luciferase reporter construct, it was shown, that 10 inhibits NF-κB-dependent transcription. Therefore, we hypothesize that inhibition of NF-κB by β-damascenone (10) may represent one of the mechanisms underlying the in vitro anti-inflammatory activity of Epipremnum pinnatum extracts.
Collapse
Affiliation(s)
- San-Po Pan
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Teresa Pirker
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Olaf Kunert
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Nadine Kretschmer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Scarlet Hummelbrunner
- Department of Pharmacognosy, Molecular Targets, University of Vienna, Vienna, Austria
| | - Simone L Latkolik
- Department of Pharmacognosy, Molecular Targets, University of Vienna, Vienna, Austria
| | - Julia Rappai
- Department of Pharmacognosy, Molecular Targets, University of Vienna, Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, Molecular Targets, University of Vienna, Vienna, Austria
| | - Valery Bochkov
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Rudolf Bauer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| |
Collapse
|
61
|
Kim DG, Choi JW, Jo IJ, Kim MJ, Lee HS, Hong SH, Song HJ, Bae GS, Park SJ. Berberine ameliorates lipopolysaccharide‑induced inflammatory responses in mouse inner medullary collecting duct‑3 cells by downregulation of NF‑κB pathway. Mol Med Rep 2019; 21:258-266. [PMID: 31746359 PMCID: PMC6896374 DOI: 10.3892/mmr.2019.10823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
The major role of inner medullary collecting duct (IMCD) cells is to maintain water and sodium homeostasis. In addition to the major role, it also participates in the protection of renal and systemic inflammation. Although IMCD cells could take part in renal and systemic inflammation, investigations on renal inflammation in IMCD cells have rarely been reported. Although berberine (BBR) has been reported to show diverse pharmacological effects, its anti-inflammatory and protective effects on IMCD cells have not been studied. Therefore, in the present study, we examined the anti-inflammatory and protective effects of BBR in mouse IMCD-3 (mIMCD-3) cells against lipopolysaccharide (LPS). An MTT assay was carried out to investigate the toxicity of BBR on mIMCD-3 cells. Reverse transcription quantitative-PCR and western blotting were performed to analysis pro-inflammatory molecules and cytokines. Mechanisms of BBR were examined by western blotting and immunocytochemistry. According to previous studies, pro-inflammatory molecules, such as inducible nitric oxide synthase and cyclooxygenase-2, and pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6 and tumor necrosis factor-α are increased in LPS-exposed mIMCD-3 cells. However, the production of these pro-inflammatory molecules is significantly inhibited by treatment with BBR. In addition, BBR inhibited translocation of nuclear factor (NF)-κB p65 from the cytosol to the nucleus, and degradation of inhibitory κ-Bα in LPS-exposed mIMCD-3 cells. In conclusion, BBR could inhibit renal inflammatory responses via inhibition of NF-κB signaling and ultimately contribute to amelioration of renal injury during systemic inflammation.
Collapse
Affiliation(s)
- Dong-Gu Kim
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ji-Won Choi
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Il-Joo Jo
- Division of Beauty Sciences, School of Natural Sciences, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Myoung-Jin Kim
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ho-Sub Lee
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Seung-Heon Hong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ho-Joon Song
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Gi-Sang Bae
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sung-Joo Park
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
62
|
Schröder C, Sogkas G, Fliegauf M, Dörk T, Liu D, Hanitsch LG, Steiner S, Scheibenbogen C, Jacobs R, Grimbacher B, Schmidt RE, Atschekzei F. Late-Onset Antibody Deficiency Due to Monoallelic Alterations in NFKB1. Front Immunol 2019; 10:2618. [PMID: 31803180 PMCID: PMC6871540 DOI: 10.3389/fimmu.2019.02618] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Adult-onset primary immunodeficiency is characterized by recurrent infections, hypogammaglobulinemia, and poor antibody response to vaccines. In this study, we have analyzed targeted gene panel sequencing results of 270 patients diagnosed with antibody deficiency and identified five disease-associated variants in NFKB1 in five unrelated families. We detected two single base pair deletions and two single base pair insertions, causing severe protein truncations, and one missense mutation. Immunoblotting, lymphocyte stimulation, immunophenotyping, and ectopic expression assays demonstrated the functional relevance of NFKB1 mutations. Besides antibody deficiency, clinical manifestations included infections, autoimmune features, lymphoproliferation, lymphoma, Addison's disease, type 2 diabetes and asthma. Although partial clinical penetrance was observed in almost all pedigrees, all carriers presented a deficiency in certain serum immunoglobulins and the majority showed a lack of memory B cells (CD19+CD27+). Among all tested genes, NFKB1 alterations were the most common monoallelic cause of antibody deficiency in our cohort.
Collapse
Affiliation(s)
- Claudia Schröder
- Department for Clinical Immunology and Rheumatology, Hannover Medical School, Hanover, Germany.,Hannover Biomedical Research School (HBRS), Hannover Medical School, Hanover, Germany
| | - Georgios Sogkas
- Department for Clinical Immunology and Rheumatology, Hannover Medical School, Hanover, Germany
| | - Manfred Fliegauf
- Center for Chronic Immunodeficiency, Center for Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg im Breisgau, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hanover, Germany
| | - Di Liu
- Gynaecology Research Unit, Hannover Medical School, Hanover, Germany
| | - Leif G Hanitsch
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - Sophie Steiner
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - Roland Jacobs
- Department for Clinical Immunology and Rheumatology, Hannover Medical School, Hanover, Germany
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, Center for Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg im Breisgau, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany.,DZIF - German Center for Infection Research, Hannover Medical School, Hanover, Germany.,RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Hanover, Germany
| | - Reinhold E Schmidt
- Department for Clinical Immunology and Rheumatology, Hannover Medical School, Hanover, Germany.,Hannover Biomedical Research School (HBRS), Hannover Medical School, Hanover, Germany.,DZIF - German Center for Infection Research, Hannover Medical School, Hanover, Germany.,RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Hanover, Germany
| | - Faranaz Atschekzei
- Department for Clinical Immunology and Rheumatology, Hannover Medical School, Hanover, Germany.,RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Hanover, Germany
| |
Collapse
|
63
|
Chok KC, Ng CH, Koh RY, Ng KY, Chye SM. The potential therapeutic actions of melatonin in colorectal cancer. Horm Mol Biol Clin Investig 2019; 39:hmbci-2019-0001. [DOI: 10.1515/hmbci-2019-0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/01/2019] [Indexed: 12/24/2022]
Abstract
Abstract
Colorectal cancer (CRC) is the third most common cancer and lethal disease worldwide. Melatonin, an indoleamine produced in pineal gland, shows anticancer effects on a variety of cancers, especially CRC. After clarifying the pathophysiology of CRC, the association of circadian rhythm with CRC, and the relationship between shift work and the incidence of CRC is reviewed. Next, we review the role of melatonin receptors in CRC and the relationship between inflammation and CRC. Also included is a discussion of the mechanism of gene regulation, control of cell proliferation, apoptosis, autophagy, antiangiogenesis and immunomodulation in CRC by melatonin. A review of the drug synergy of melatonin with other anticancer drugs suggests its usefulness in combination therapy. In summary, the information compiled may serve as comprehensive reference for the various mechanisms of action of melatonin against CRC, and as a guide for the design of future experimental research and for advancing melatonin as a therapeutic agent for CRC.
Collapse
Affiliation(s)
- Kian Chung Chok
- School of Health Sciences, International Medical University , Kuala Lumpur , Malaysia
| | - Chew Hee Ng
- School of Pharmacy, International Medical University , Kuala Lumpur , Malaysia
| | - Rhun Yian Koh
- School of Health Sciences, International Medical University , Kuala Lumpur , Malaysia
| | - Khuen Yen Ng
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia , Selangor , Malaysia
| | - Soi Moi Chye
- School of Health Sciences, International Medical University , Kuala Lumpur , Malaysia , Phone: +6032731 7220; Fax: +60386567229
| |
Collapse
|
64
|
Salmonella Fimbrial Protein FimH Is Involved in Expression of Proinflammatory Cytokines in a Toll-Like Receptor 4-Dependent Manner. Infect Immun 2019; 87:IAI.00881-18. [PMID: 30602501 DOI: 10.1128/iai.00881-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 11/20/2022] Open
Abstract
Type 1 fimbriae are proteinaceous filamentous structures present on bacterial surfaces and are mainly composed of the major fimbrial protein subunit FimA and the adhesive protein FimH, which is located at the tip of the fimbrial shaft. Here, we investigated the involvement of type 1 fimbriae in the expression of proinflammatory cytokines in macrophages infected with Salmonella enterica serovar Typhimurium. The level of interleukin-1β (IL-1β) mRNA was lower in macrophages infected with fimA or fimH mutant strains than in those infected with wild-type Salmonella Treatment of macrophages with purified recombinant FimH protein, but not FimA, resulted in the activation of the mitogen-activated protein kinase and nuclear factor κB signaling pathways, leading to the expression of not only IL-1β but also other proinflammatory cytokines, such as IL-6 and tumor necrosis factor alpha. However, FimH carrying an N-terminal region deletion or heat-treated FimH did not show such effects. The expression of FimH-induced IL-1β was inhibited by treatment with the Toll-like receptor 4 (TLR4) inhibitor TAK-242 but not by treatment with polymyxin B, a lipopolysaccharide antagonist. Furthermore, FimH treatment stimulated HEK293 cells expressing TLR4 and MD-2/CD14 but did not stimulate HEK293 cells expressing only TLR4. Collectively, FimH is a pathogen-associated molecular pattern of S. enterica serovar Typhimurium that is recognized by TLR4 in the presence of MD-2 and CD14 and plays a significant role in the expression of proinflammatory cytokines in Salmonella-infected macrophages.
Collapse
|
65
|
Sadeghi Y, Tabatabaei Irani P, Rafiee L, Tajadini M, Haghjooy Javanmard S. Evaluation of rs1957106 Polymorphism of NF-κBI in Glioblastoma Multiforme in Isfahan, Iran. Adv Biomed Res 2019; 8:9. [PMID: 30820430 PMCID: PMC6385670 DOI: 10.4103/abr.abr_227_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The kB family of nuclear factor (NF-κB) is a series of transcription factors that plays a key role in regulation of immunity, cell growth, and apoptosis and is considered as the main downstream component of epidermal growth factor receptor for which there are evidence of excessive activity in most cases of glioblastoma multiform (GBM). Thus, the current information has gained evidence on NF-κBIA tumor suppressor role in GMB. SNP rs1957106 was diagnosed as a new polymorphism which affected the expression of NF-κBI and causes activation of NF-κB in GBM patients. MATERIALS AND METHODS This study was conducted on 100 cases of GBM including 47 paraffin-embedded brain tissue samples and 53 blood samples from another 53 GBM patients and 150 controls. The NF-κBI rs1957106 SNP was identified by the NCBI, and genotyping was performed by high-resolution melt (HRM) assay. Melt curves from HRM which suspected to single-nucleotide polymorphism (SNP) were selected and subjected to direct sequencing. RESULTS The distribution of allele A of NF-κβ gene in patients with GBM with 31% was not significantly different from healthy participants (27.3%) (P = 0.375). Furthermore, the distribution of AG and GG genotypes in comparison with AA genotypes did not show a significant correlation with GBM incidence (P > 0.05). CONCLUSION Findings of the present study provide evidence that the rs1957106 SNP in NF-κBIA is found more in GBM patients, but it was not statistically significant. As there are conflicting studies showing significant higher rate of this SNP in GBM, further study is suggested.
Collapse
Affiliation(s)
- Yasaman Sadeghi
- From the Department of General Medicine, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pouya Tabatabaei Irani
- From the Department of General Medicine, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Rafiee
- Department of Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohamadhasan Tajadini
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Department of Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
66
|
Silva GÁF, Nunes RAL, Morale MG, Boccardo E, Aguayo F, Termini L. Oxidative stress: therapeutic approaches for cervical cancer treatment. Clinics (Sao Paulo) 2018; 73:e548s. [PMID: 30540121 PMCID: PMC6257060 DOI: 10.6061/clinics/2018/e548s] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress results from an imbalance between the generation and elimination of oxidant species. This condition may result in DNA, RNA and protein damage, leading to the accumulation of genetic alterations that can favor malignant transformation. Persistent infection with high-risk human papillomavirus types is associated with inflammatory responses and reactive oxygen species production. In this context, oxidative stress, chronic inflammation and high-risk human papillomavirus can act in a synergistic manner. To counteract the harmful effects of oxidant species, protective molecules, known as antioxidant defenses, are produced by cells to maintain redox homeostasis. In recent years, the use of natural antioxidants as therapeutic strategies for cancer treatment has attracted the attention of the scientific community. This review discusses specific molecules and mechanisms that can act against or together with oxidative stress, presenting alternatives for cervical cancer prevention and treatment.
Collapse
Affiliation(s)
- Gabriela Ávila Fernandes Silva
- Instituto do Cancer do Estado de Sao Paulo ICESP, Centro de Investigacao Translacional em Oncologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Rafaella Almeida Lima Nunes
- Instituto do Cancer do Estado de Sao Paulo ICESP, Centro de Investigacao Translacional em Oncologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Mirian Galliote Morale
- Instituto do Cancer do Estado de Sao Paulo ICESP, Centro de Investigacao Translacional em Oncologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Enrique Boccardo
- Laboratorio de Oncovirologia, Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Francisco Aguayo
- Centro Avanzado de Enfermedades Cronicas (ACCDiS), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Oncologia Basico Clinica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lara Termini
- Instituto do Cancer do Estado de Sao Paulo ICESP, Centro de Investigacao Translacional em Oncologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
67
|
Rodgers ML, Takeshita R, Griffitt RJ. Deepwater Horizon oil alone and in conjunction with Vibrio anguillarum exposure modulates immune response and growth in red snapper (Lutjanus campechanus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 204:91-99. [PMID: 30223188 DOI: 10.1016/j.aquatox.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/16/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
This study examined the impacts of Macondo oil from the Deepwater Horizon oil spill, both alone and in conjunction with exposure to the known fish pathogen Vibrio anguillarum, on the expression of five immune-related gene transcripts of red snapper (il8, il10, tnfa, il1b, and igm). In order to elucidate this impact, six different test conditions were used: one Control group (No oil/No pathogen), one Low oil/No pathogen group (tPAH50 = 0.563 μg/L), one High oil/No pathogen group (tPAH50 = 17.084 μg/L, one No oil/Pathogen group, one Low oil/Pathogen group (tPAH50 = 0.736 μg/L), and one High oil/Pathogen group (tPAH50 = 15.799 μg/L). Fish were exposed to their respective oil concentrations for one week. On day 7 of the experiment, all fish were placed into new tanks (with or without V. anguillarum) for one hour. At three time points (day 8, day 10, and day 17), fish organs were harvested and placed into RNAlater, and qPCR was run for examination of the above specific immune genes as well as cyp1a1. Our results suggest that cyp1a1 transcripts were upregulated in oil-exposed groups throughout the experiment, confirming oil exposure, and that all five immune gene transcripts were upregulated on day 8, but were generally downregulated or showed no differences from controls on days 10 and 17. Finally, both oil and pathogen exposure had impacts on growth.
Collapse
Affiliation(s)
- Maria L Rodgers
- Division of Coastal Sciences, School of Ocean Science and Technology, University of Southern Mississippi, Ocean Springs, MS, 39564, USA
| | - Ryan Takeshita
- Abt Associates, 1881 Ninth Street, Suite 201, Boulder, CO, USA
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Technology, University of Southern Mississippi, Ocean Springs, MS, 39564, USA.
| |
Collapse
|
68
|
Avrahami EM, Levi S, Zajfman E, Regev C, Ben-David O, Arbely E. Reconstitution of Mammalian Enzymatic Deacylation Reactions in Live Bacteria Using Native Acylated Substrates. ACS Synth Biol 2018; 7:2348-2354. [PMID: 30207693 PMCID: PMC6198279 DOI: 10.1021/acssynbio.8b00314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Lysine deacetylases
(KDACs) are enzymes that catalyze the hydrolysis
of acyl groups from acyl-lysine residues. The recent identification
of thousands of putative acylation sites, including specific acetylation
sites, created an urgent need for biochemical methodologies aimed
at better characterizing KDAC-substrate specificity and evaluating
KDACs activity. To address this need, we utilized genetic code expansion
technology to coexpress site-specifically acylated substrates with
mammalian KDACs, and study substrate recognition and deacylase activity
in live Escherichia coli. In this system the bacterial
cell serves as a “biological test tube” in which the
incubation of a single mammalian KDAC and a potential peptide or full-length
acylated substrate transpires. We report novel deacetylation activities
of Zn2+-dependent deacetylases and sirtuins in bacteria.
We also measure the deacylation of propionyl-, butyryl-, and crotonyl-lysine,
as well as novel deacetylation of Lys310-acetylated RelA by SIRT3,
SIRT5, SIRT6, and HDAC8. This study highlights the importance of native
interactions to KDAC-substrate recognition and deacylase activity.
Collapse
Affiliation(s)
- Emanuel M. Avrahami
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Shahar Levi
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Eyal Zajfman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Clil Regev
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Oshrit Ben-David
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Eyal Arbely
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
69
|
Exploring major signaling cascades in melanomagenesis: a rationale route for targetted skin cancer therapy. Biosci Rep 2018; 38:BSR20180511. [PMID: 30166456 PMCID: PMC6167501 DOI: 10.1042/bsr20180511] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/14/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
Although most melanoma cases may be treated by surgical intervention upon early diagnosis, a significant portion of patients can still be refractory, presenting low survival rates within 5 years after the discovery of the illness. As a hallmark, melanomas are highly prone to evolve into metastatic sites. Moreover, melanoma tumors are highly resistant to most available drug therapies and their incidence have increased over the years, therefore leading to public health concerns about the development of novel therapies. Therefore, researches are getting deeper in unveiling the mechanisms by which melanoma initiation can be triggered and sustained. In this context, important progress has been achieved regarding the roles and the impact of cellular signaling pathways in melanoma. This knowledge has provided tools for the development of therapies based on the intervention of signal(s) promoted by these cascades. In this review, we summarize the importance of major signaling pathways (mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)-Akt, Wnt, nuclear factor κ-light-chain-enhancer of activated B cell (NF-κB), Janus kinase (JAK)-signal transducer and activator of transcription (STAT), transforming growth factor β (TGF-β) and Notch) in skin homeostasis and melanoma progression. Available and developing melanoma therapies interfering with these signaling cascades are further discussed.
Collapse
|
70
|
Ma X, Wen JX, Gao SJ, He X, Li PY, Yang YX, Wei SZ, Zhao YL, Xiao XH. Paeonia lactiflora Pall. regulates the NF-κB-NLRP3 inflammasome pathway to alleviate cholestasis in rats. J Pharm Pharmacol 2018; 70:1675-1687. [PMID: 30277564 DOI: 10.1111/jphp.13008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Cholestasis is a critical risk factor for severe hepatic disease or cirrhosis. The anti-inflammatory effect of Paeonia lactiflora Pall. (PLP), named Chishao in traditional Chinese medicine (TCM), on alpha-naphthylisothiocyanate (ANIT)-induced cholestasis model was tried to be elucidated in this research. METHODS Therapeutic effect indices on hepatic function, including ALT, AST, TBIL, DBIL, ALP, TBA and γ-GT, were measured. To further investigate the protective mechanism of PLP, the mRNA and protein expression levels of NF-κB-NLRP3 inflammasome pathway were detected. RESULTS Our results showed that compared with the model group, PLP could significantly reduce the increased serum indices such as ALT, AST, TBIL, DBIL, ALP, TBA and γ-GT induced by ANIT in a dose-dependent way. Moreover, we found that PLP downregulated the mRNA expression levels including IKK, p65, NLRP3, caspase-1 and IL-1β, especially at the large dose. Furthermore, PLP also significantly inhibited NF-κB-NLRP3 inflammasome pathway by decreasing the protein levels of p65, p-p65, p-IKK, NLRP3, caspase-1 and IL-1β. CONCLUSIONS The results indicated that PLP could ameliorate ANIT-induced cholestasis in rats and the anti-inflammatory effect of PLP might be related to regulating NF-κB-NLRP3 inflammasome pathway. This study will provide scientific evidence for PLP as a potential drug candidate for cholestasis.
Collapse
Affiliation(s)
- Xiao Ma
- School of Pharmacy, Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian-Xia Wen
- School of Pharmacy, Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, China
| | - Si-Jia Gao
- School of Pharmacy, Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, China
| | - Xuan He
- Department of Pharmacy, Xindu District Shibantan Public Hospital, Chengdu, China
| | - Peng-Yan Li
- China Military Institute of Chinese Medicine, 302 Hospital of People's Liberation Army, Beijing, China
| | - Yu-Xue Yang
- School of Pharmacy, Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, China
| | - Shi-Zhang Wei
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, China
| | - Yan-Ling Zhao
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, 302 Hospital of People's Liberation Army, Beijing, China
| |
Collapse
|
71
|
Regulatory role of IKKɑ in myocardial ischemia/reperfusion injury by the determination of M1 versus M2 polarization of macrophages. J Mol Cell Cardiol 2018; 123:1-12. [PMID: 30153439 DOI: 10.1016/j.yjmcc.2018.08.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/24/2022]
Abstract
The IκB kinase (IKK) complex plays a well-documented role in cancer and immune system. This function has been widely attributed to its role as the master regulator of the NF-κB family. Particularly, IKKɑ, a member of IKK complex, is reported to have various regulating effects in inflammatory and malignant diseases. However, its role as well as its mechanism of function in macrophages following myocardial ischemia and reperfusion (I/R) injury remains unexplored. In vivo, sham or I/R operations were performed on macrophage-specific IKKɑ knockout (mIKKɑ-/-) mice and their IKKɑflox/flox littermates. We ligated the left anterior descending (LAD) coronary artery of I/R groups simulating ischemia for 30 min, followed by a reperfusion period of 3 days and 7 days, respectively. The hearts of mIKKɑ-/- mice exhibited significantly increased inflammation and macrophage aggregation as compared to their IKKɑflox/flox littermates. Moreover, in the mIKKɑ-/- group subjected to I/R macrophages had a tendency to polarize to M1 phenotype. In vitro, we stimulated RAW264.7 cells with Lipopolysaccharides (LPS) after infection by the lentivirus, either knocking-down or overexpressing IKKɑ. We discovered that a deficiency of IKKɑ in RAW264.7 caused increased expression of pro-inflammatory markers compared to normal RAW264.7 after LPS stimulation. Inversely, pro-inflammatory factors were inhibited with IKKɑ overexpression. Mechanistically, IKKɑ directly combined with RelB to regulate macrophage polarization. Furthermore, IKKɑ regulated MEK1/2-ERK1/2 and downstream p65 signaling cascades after LPS stimulation. Overall, our data reveals that IKKɑ is a novel mediator protecting against the development of myocardial I/R injury via negative regulation of macrophage polarization to M1 phenotype. Thus, IKKɑ may serve as a valuable therapeutic target for the treatment of myocardial I/R injury.
Collapse
|
72
|
The Role of the Nuclear Factor κB Pathway in the Cellular Response to Low and High Linear Energy Transfer Radiation. Int J Mol Sci 2018; 19:ijms19082220. [PMID: 30061500 PMCID: PMC6121395 DOI: 10.3390/ijms19082220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022] Open
Abstract
Astronauts are exposed to considerable doses of space radiation during long-term space missions. As complete shielding of the highly energetic particles is impracticable, the cellular response to space-relevant radiation qualities has to be understood in order to develop countermeasures and to reduce radiation risk uncertainties. The transcription factor Nuclear Factor κB (NF-κB) plays a fundamental role in the immune response and in the pathogenesis of many diseases. We have previously shown that heavy ions with a linear energy transfer (LET) of 100–300 keV/µm have a nine times higher potential to activate NF-κB compared to low-LET X-rays. Here, chemical inhibitor studies using human embryonic kidney cells (HEK) showed that the DNA damage sensor Ataxia telangiectasia mutated (ATM) and the proteasome were essential for NF-κB activation in response to X-rays and heavy ions. NF-κB’s role in cellular radiation response was determined by stable knock-down of the NF-κB subunit RelA. Transfection of a RelA short-hairpin RNA plasmid resulted in higher sensitivity towards X-rays, but not towards heavy ions. Reverse Transcriptase real-time quantitative PCR (RT-qPCR) showed that after exposure to X-rays and heavy ions, NF-κB predominantly upregulates genes involved in intercellular communication processes. This process is strictly NF-κB dependent as the response is completely absent in RelA knock-down cells. NF-κB’s role in the cellular radiation response depends on the radiation quality.
Collapse
|
73
|
Apoptotic and Anti-Inflammatory Effects of Eupatorium japonicum Thunb. in Rheumatoid Arthritis Fibroblast-Like Synoviocytes. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1383697. [PMID: 30112359 PMCID: PMC6077679 DOI: 10.1155/2018/1383697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/03/2018] [Accepted: 05/16/2018] [Indexed: 01/12/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by synovitis, hyperplasia, and the destruction of bone and cartilage. A variety of immunosuppressive biological agents have been developed because the pathogenesis of RA is related predominantly to the inflammatory response. However, rheumatoid arthritis fibroblast-like synovial cells (RAFLS), which are known to play an important role in RA progression, exhibit resistance to immunosuppressants through cancer-like properties. In this study, we identified a novel therapeutic compound for RA, which reduced inflammation and the abnormal proliferation of RAFLS in natural product library made from Korean native plants. Eupatorium japonicum Thunb. (EJT) extract, a component of the natural product library, most effectively reduced viability through the induction of ROS-mediated apoptosis in a dose-dependent manner. In addition, the increased ROS induced the expression of ATF4 and CHOP, key players in ER stress-mediated apoptosis. Interestingly, EJT extract treatment dose-dependently reduced the expression of IL-1β and the transcription of MMP-9, which were induced by TNF-α treatment, through the inhibition of NF-κB and p38 activation. Collectively, we found that EJT extract exerted apoptotic effects through increases in ROS production and CHOP expression and exerted anti-inflammatory effects through the suppression of NF-κB activation, IL-1β expression, and MMP-9 transcription.
Collapse
|
74
|
Liu L, Dai W, Xiang C, Chi J, Zhang M. 1,10-Secoguaianolides from Artemisia austro-yunnanensis and Their Anti-Inflammatory Effects. Molecules 2018; 23:E1639. [PMID: 29976846 PMCID: PMC6099792 DOI: 10.3390/molecules23071639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 11/16/2022] Open
Abstract
Seven 1,10-secoguaianolides 1⁻7, including a new one (compound 1), were isolated from Artemisia austro-yunnanensis and identified by HRESIMS and other spectroscopic methods. Their anti-inflammatory effects were evaluated by the model of LPS-induced RAW264.7 cells in vitro. Bioassay results showed that six of them (1⁻4, 6 and 7), with the exception of 5, produce some cytotoxicity on RAW264.7 cells at its high dosage, can significantly decrease the release of NO, TNF-α, IL-1β, IL-6 and PGE2 in a dose dependent manner, and down-regulate the expression of proteins iNOS and COX-2. The mechanism study indicated they regulated the NF-κB dependent transcriptional activity through decreasing the phosphorylation of NF-κB. Further, the relationship between their structures and cytokines to anti-inflammatory were studied by PCA and discussed.
Collapse
Affiliation(s)
- Lan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Weifeng Dai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Cheng Xiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Jun Chi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Mi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
75
|
Herrera MG, Pizzuto M, Lonez C, Rott K, Hütten A, Sewald N, Ruysschaert JM, Dodero VI. Large supramolecular structures of 33-mer gliadin peptide activate toll-like receptors in macrophages. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1417-1427. [DOI: 10.1016/j.nano.2018.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/23/2018] [Accepted: 04/16/2018] [Indexed: 02/08/2023]
|
76
|
Abstract
Ulcerative colitis (UC) is a kind of inflammatory bowel disease that damages health seriously, and it is reported that butyrate could be used to treat UC. The underlying mechanism is that butyrate can activate G protein-coupled receptors to influence the downstream signaling pathways, thereby inhibiting the expression of cytokines and the differentiation and migration of immune cells. Besides, butyrate can activate peroxisome proliferator-activated receptor gamma, thus decreasing cell permeability and protecting the integrity of the intestinal mucosa. Butyrate can also inhibit the nuclear factor-kappa B signaling pathway, inhibiting the expression of cytokines, accelerating the apoptosis of T cells, and promoting the secretion of human defense peptides. Based on the recent research, we review the underlying mechanisms by which butyrate relieves UC to provide evidence for the clinical application of butyrate.
Collapse
Affiliation(s)
- Shu-Wen Ran
- Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210095, Jiangsu Province, China
| | - Chun-Long Mu
- Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210095, Jiangsu Province, China
| | - Wei-Yun Zhu
- Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health; Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210095, Jiangsu Province, China
| |
Collapse
|
77
|
TSPAN15 interacts with BTRC to promote oesophageal squamous cell carcinoma metastasis via activating NF-κB signaling. Nat Commun 2018; 9:1423. [PMID: 29650964 PMCID: PMC5897412 DOI: 10.1038/s41467-018-03716-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/07/2018] [Indexed: 01/01/2023] Open
Abstract
Beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) is crucial for the degradation of IκBα. Our previous transcriptome sequencing analysis revealed that tetraspanin 15 (TSPAN15) was significantly upregulated in clinical oesophageal squamous cell carcinoma (OSCC) tissues. Here, we show that high TSPAN15 expression in OSCC tissues is significantly associated with lymph node and distant metastasis, advanced clinical stage, and poor prognosis. Elevated TSPAN15 expression is, in part, caused by the reduction of miR-339-5p. Functional studies demonstrate that TSPAN15 promotes metastatic capabilities of OSCC cells. We further show that TSPAN15 specifically interacts with BTRC to promote the ubiquitination and proteasomal degradation of p-IκBα, and thereby triggers NF-κB nuclear translocation and subsequent activation of transcription of several metastasis-related genes, including ICAM1, VCAM1, uPA, MMP9, TNFα, and CCL2. Collectively, our findings indicate that TSPAN15 may serve as a new biomarker and/or provide a novel therapeutic target to OSCC patients. BTRC can activate NF-κB signaling through the ubiquitination and degradation of IκB-α. Here the authors show that TSPAN15 promotes metastasis of oesophageal squamous cell cancer by enhancing BTRC induced degradation of IκB-α and subsequent activation of NF-κB.
Collapse
|
78
|
Muñoz MD, Della Vedova MC, Bushel PR, Ganini da Silva D, Mason RP, Zhai Z, Gomez Mejiba SE, Ramirez DC. The nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide dampens lipopolysaccharide-induced transcriptomic changes in macrophages. Inflamm Res 2018; 67:515-530. [PMID: 29589052 DOI: 10.1007/s00011-018-1141-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/26/2018] [Accepted: 03/21/2018] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE M1-like inflammatory phenotype of macrophages plays a critical role in tissue damage in chronic inflammatory diseases. Previously, we found that the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) dampens lipopolysaccharide (LPS)-triggered inflammatory priming of RAW 264.7 cells. Herein, we tested whether DMPO by itself can induce changes in macrophage transcriptome, and that these effects may prevent LPS-induced activation of macrophages. MATERIALS AND METHODS To test our hypothesis, we performed a transcriptomic and bioinformatics analysis in RAW 264.7 cells incubated with or without LPS, in the presence or in the absence of DMPO. RESULTS Functional data analysis showed 79 differentially expressed genes (DEGs) when comparing DMPO vs Control. We used DAVID databases for identifying enriched gene ontology terms and Ingenuity Pathway Analysis for functional analysis. Our data showed that DMPO vs Control comparison of DEGs is related to downregulation immune-system processes among others. Functional analysis indicated that interferon-response factor 7 and toll-like receptor were related (predicted inhibitions) to the observed transcriptomic effects of DMPO. Functional data analyses of the DMPO + LPS vs LPS DEGs were consistent with DMPO-dampening LPS-induced inflammatory transcriptomic profile in RAW 264.7. These changes were confirmed using Nanostring technology. CONCLUSIONS Taking together our data, surprisingly, indicate that DMPO by itself affects gene expression related to regulation of immune system and that DMPO dampens LPS-triggered MyD88- and TRIF-dependent signaling pathways. Our research provides critical data for further studies on the possible use of DMPO as a structural platform for the design of novel mechanism-based anti-inflammatory drugs.
Collapse
Affiliation(s)
- M D Muñoz
- Laboratory of Experimental and Translational Medicine, IMIBIO-SL-School of Chemistry, Biochemistry and Pharmacy, National University of San Luis-CONICET, San Luis, 5700, San Luis, Argentina.,Laboratory of Experimental Therapeutics, School of Health Sciences-IMIBIO-SL, CONICET-National University of San Luis, San Luis, 5700, San Luis, Argentina
| | - M C Della Vedova
- Laboratory of Experimental and Translational Medicine, IMIBIO-SL-School of Chemistry, Biochemistry and Pharmacy, National University of San Luis-CONICET, San Luis, 5700, San Luis, Argentina.,Laboratory of Experimental Therapeutics, School of Health Sciences-IMIBIO-SL, CONICET-National University of San Luis, San Luis, 5700, San Luis, Argentina
| | - P R Bushel
- Biostatistics and Computational Biology Branch, NIEHS, NIH, USDHHS, RTP, Durham, 27709, NC, USA
| | - D Ganini da Silva
- Immunity, Inflammation and Disease Laboratory, NIEHS, NIH, USDHHS, RTP, Durham, 27709, NC, USA
| | - R P Mason
- Immunity, Inflammation and Disease Laboratory, NIEHS, NIH, USDHHS, RTP, Durham, 27709, NC, USA
| | - Z Zhai
- Department of Dermatology, University of Colorado Denver, Aurora, 80045, CO, USA
| | - S E Gomez Mejiba
- Laboratory of Experimental Therapeutics, School of Health Sciences-IMIBIO-SL, CONICET-National University of San Luis, San Luis, 5700, San Luis, Argentina.
| | - D C Ramirez
- Laboratory of Experimental and Translational Medicine, IMIBIO-SL-School of Chemistry, Biochemistry and Pharmacy, National University of San Luis-CONICET, San Luis, 5700, San Luis, Argentina.
| |
Collapse
|
79
|
Debnath T, Lee YM, Lim JH, Lim BO. Anti-allergic and anti-atopic dermatitis effects of Gardenia Fructus extract. FOOD AGR IMMUNOL 2018. [DOI: 10.1080/09540105.2018.1436523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Trishna Debnath
- Department of Food Science and Biotechnology, College of Life Science & Biotechnology, Dongguk University, Goyang, Korea
| | - Young Min Lee
- Department of Life Science, College of Biomedical & Health Science, Konkuk University, Chungju, Korea
| | - Ji Hong Lim
- Department of Life Science, College of Biomedical & Health Science, Konkuk University, Chungju, Korea
| | - Beong Ou Lim
- Department of Life Science, College of Biomedical & Health Science, Konkuk University, Chungju, Korea
| |
Collapse
|
80
|
Contreras-Nuñez E, Blancas-Flores G, Cruz M, Almanza-Perez JC, Gomez-Zamudio JH, Ventura-Gallegosc JL, Zentella-Dehesa A, Roman-Ramos R, Alarcon-Aguilar FJ. Participation of the IKK-α/β complex in the inhibition of the TNF-α/NF-κB pathway by glycine: Possible involvement of a membrane receptor specific to adipocytes. Biomed Pharmacother 2018; 102:120-131. [PMID: 29550635 DOI: 10.1016/j.biopha.2018.03.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022] Open
Abstract
Glycine modulates inflammatory processes mediated by macrophages and adipocytes through decreasing the secretion of TNF-α, IL-6, and leptin, while increasing adiponectin. These effects have been associated with the inactivation of NF-κB in response to TNF-α, across an increase of its inhibitor IκB-α in adipocytes. However, glycine upstream mainly influences the IκB kinase (IKK) complex, a multi-protein kinase complex considered a critical point in regulation of the NF-κB pathway; whether that is responsible for the TNF-α-induced phosphorylation of IkB has not been explored. Additionally, although previous studies have described glycine interactions with specific receptors (GlyR) in different immune system cell types, it is currently unknown whether adipocytes present GlyR. In this research, participation of the IKK-α/β complex in the inhibition of the TNF-α/NF-κB pathway by glycine was evaluated and associated with the synthesis and secretion of inflammatory cytokines in 3T3-L1 adipocytes. Furthermore, we also explored GlyR expression, its localization on the plasmatic membrane, intracellular calcium concentrations [Ca2+]i and strychnine antagonist action over the GlyR in these cells. Glycine decreased the IKK-α/β complex and the phosphorylation of NF-κB, diminishing the expression and secretion of IL-6 and TNF-α, but increasing that of adiponectin. GlyR expression and its fluorescence in the plasma membrane were increased in the presence of glycine. In addition, glycine decreased [Ca2+]i; whereas strychnine + glycine treatment inhibited the activation of NF-κB observed with glycine. In conclusion, the reduction of TNF-α and IL-6 and suppression of the TNF-α/NF-κB pathway by glycine may be explained in part by inhibition of the IKK-α/β complex, with a possible participation of GlyR in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Erika Contreras-Nuñez
- Laboratorio de Farmacologia, Departamento de Ciencias de la Salud, DCBS, Universidad Autonoma Metropolitana-Iztapalapa (UAM-I), Avenida San Rafael Atlixco 186, A.P. 55-535, C.P. 09340, Mexico City, Mexico
| | - Gerardo Blancas-Flores
- Laboratorio de Farmacologia, Departamento de Ciencias de la Salud, DCBS, Universidad Autonoma Metropolitana-Iztapalapa (UAM-I), Avenida San Rafael Atlixco 186, A.P. 55-535, C.P. 09340, Mexico City, Mexico
| | - Miguel Cruz
- Unidad de Investigacion Medica en Bioquimica (UIM), Hospital de Especialidades, Centro Medico Nacional Siglo XXI. IMSS, Av. Cuauhtemoc 330, Col. Doctores, Del. Cuauhtemoc, Mexico City, Mexico
| | - Julio Cesar Almanza-Perez
- Laboratorio de Farmacologia, Departamento de Ciencias de la Salud, DCBS, Universidad Autonoma Metropolitana-Iztapalapa (UAM-I), Avenida San Rafael Atlixco 186, A.P. 55-535, C.P. 09340, Mexico City, Mexico
| | - Jaime H Gomez-Zamudio
- Unidad de Investigacion Medica en Bioquimica (UIM), Hospital de Especialidades, Centro Medico Nacional Siglo XXI. IMSS, Av. Cuauhtemoc 330, Col. Doctores, Del. Cuauhtemoc, Mexico City, Mexico
| | - Jose Luis Ventura-Gallegosc
- Departamento de Medicina Genomica y Toxicologia Ambiental, IIB, UNAM, SZ, CDMX, Mexico; Unidad de Bioquimica Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City Mexico
| | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genomica y Toxicologia Ambiental, IIB, UNAM, SZ, CDMX, Mexico; Unidad de Bioquimica Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City Mexico
| | - Ruben Roman-Ramos
- Laboratorio de Farmacologia, Departamento de Ciencias de la Salud, DCBS, Universidad Autonoma Metropolitana-Iztapalapa (UAM-I), Avenida San Rafael Atlixco 186, A.P. 55-535, C.P. 09340, Mexico City, Mexico
| | - Francisco Javier Alarcon-Aguilar
- Laboratorio de Farmacologia, Departamento de Ciencias de la Salud, DCBS, Universidad Autonoma Metropolitana-Iztapalapa (UAM-I), Avenida San Rafael Atlixco 186, A.P. 55-535, C.P. 09340, Mexico City, Mexico.
| |
Collapse
|
81
|
Emerging roles of endoplasmic reticulum-resident selenoproteins in the regulation of cellular stress responses and the implications for metabolic disease. Biochem J 2018; 475:1037-1057. [PMID: 29559580 DOI: 10.1042/bcj20170920] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/25/2022]
Abstract
Chronic metabolic stress leads to cellular dysfunction, characterized by excessive reactive oxygen species, endoplasmic reticulum (ER) stress and inflammation, which has been implicated in the pathogenesis of obesity, type 2 diabetes and cardiovascular disease. The ER is gaining recognition as a key organelle in integrating cellular stress responses. ER homeostasis is tightly regulated by a complex antioxidant system, which includes the seven ER-resident selenoproteins - 15 kDa selenoprotein, type 2 iodothyronine deiodinase and selenoproteins S, N, K, M and T. Here, the findings from biochemical, cell-based and mouse studies investigating the function of ER-resident selenoproteins are reviewed. Human experimental and genetic studies are drawn upon to highlight the relevance of these selenoproteins to the pathogenesis of metabolic disease. ER-resident selenoproteins have discrete roles in the regulation of oxidative, ER and inflammatory stress responses, as well as intracellular calcium homeostasis. To date, only two of these ER-resident selenoproteins, selenoproteins S and N have been implicated in human disease. Nonetheless, the potential of all seven ER-resident selenoproteins to ameliorate metabolic dysfunction warrants further investigation.
Collapse
|
82
|
Vors C, Couillard C, Paradis ME, Gigleux I, Marin J, Vohl MC, Couture P, Lamarche B. Supplementation with Resveratrol and Curcumin Does Not Affect the Inflammatory Response to a High-Fat Meal in Older Adults with Abdominal Obesity: A Randomized, Placebo-Controlled Crossover Trial. J Nutr 2018; 148:379-388. [PMID: 29546309 DOI: 10.1093/jn/nxx072] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/18/2017] [Indexed: 12/27/2022] Open
Abstract
Background High-fat meals induce postprandial inflammation. Resveratrol is a polyphenol known to prevent comorbidities associated with cardiovascular disease and exerts an anti-inflammatory action. There is also an increasing body of evidence supporting the role of curcumin, a polyphenol from the curcuminoid family, as a modulator of proinflammatory processes. Objective The objectives of this study were to investigate the following: 1) the bioavailability of resveratrol consumed in combination with curcumin after consumption of a high-fat meal; and 2) the acute combined effects of this combination on the postprandial inflammatory response of subjects with abdominal obesity. Methods In a double blind, crossover, randomized, placebo-controlled study, 11 men and 11 postmenopausal women [mean ± SD age: 62 ± 5 y; mean ± SD body mass index (in kg/m2): 29 ± 3] underwent a 6-h oral fat tolerance test on 2 occasions separated by 1-2 wk: once after consumption of a dietary supplement (200 mg resveratrol and 100 mg curcumin, Res/Cur) and once after consumption of a placebo (cellulose). Plasma concentrations of total resveratrol and its major metabolites as well as inflammatory markers, adhesion molecules, and whole blood NFκB1 and PPARA gene expression were measured during both fat tolerance tests. Results Kinetics of resveratrol and identified metabolites revealed rapid absorption patterns but also relatively limited bioavailability based on free resveratrol concentrations. Supplementation with Res/Cur did not modify postprandial variations in circulating inflammatory markers (C-reactive protein, IL-6, IL-8, monocyte chemoattractant protein-1) and adhesion molecules [soluble E-selectin, soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble intercellular adhesion molecule-1] compared to placebo (PTreatment×Time > 0.05). However, Res/Cur significantly decreased the cumulative postprandial response of sVCAM-1, compared to placebo (incremental area under the curve -4643%, P = 0.01). Postprandial variations of whole-blood PPARA and NFKB1 gene expression were not different between Res/Cur and placebo treatments. Conclusions Acute supplementation with Res/Cur has no impact on the postprandial inflammation response to a high-fat meal in abdominally obese older adults. Further studies are warranted to examine how resveratrol and curcumin may alter the vascular response to a high-fat meal. This trial was registered at clinicaltrials.gov as NCT01964846.
Collapse
Affiliation(s)
- Cécile Vors
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, Canada
| | - Charles Couillard
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, Canada
| | - Marie-Eve Paradis
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, Canada
| | - Iris Gigleux
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, Canada
| | - Johanne Marin
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, Canada
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, Canada
| | - Patrick Couture
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, Canada
| | - Benoît Lamarche
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, Canada
| |
Collapse
|
83
|
Nuutinen S, Ailanen L, Savontaus E, Rinne P. Melanocortin overexpression limits diet-induced inflammation and atherosclerosis in LDLR -/- mice. J Endocrinol 2018; 236:111-123. [PMID: 29317531 DOI: 10.1530/joe-17-0636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/09/2018] [Indexed: 12/26/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arteries. The disease is initiated by endothelial dysfunction that allows the transport of leukocytes and low-density lipoprotein into the vessel wall forming atherosclerotic plaques. The melanocortin system is an endogenous peptide system that regulates, for example, energy homeostasis and cardiovascular function. Melanocortin treatment with endogenous or synthetic melanocortin peptides reduces body weight, protects the endothelium and alleviates vascular inflammation, but the long-term effects of melanocortin system activation on atheroprogression remain largely unknown. In this study, we evaluated the effects of transgenic melanocortin overexpression in a mouse model of atherosclerosis. Low-density lipoprotein receptor-deficient mice overexpressing alpha- and gamma3-MSH (MSH-OE) and their wild-type littermates were fed either a regular chow or Western-style diet for 16 weeks. During this time, their metabolic parameters were monitored. The aortae were collected for functional analysis, and the plaques in the aortic root and arch were characterised by histological and immunohistochemical stainings. The aortic expression of inflammatory mediators was determined by quantitative PCR. We found that transgenic MSH-OE improved glucose tolerance and limited atherosclerotic plaque formation particularly in Western diet-fed mice. In terms of aortic vasoreactivity, MSH-OE blunted alpha1-adrenoceptor-mediated vasoconstriction and enhanced relaxation response to acetylcholine, indicating improved endothelial function. In addition, MSH-OE markedly attenuated Western diet-induced upregulation of proinflammatory cytokines (Ccl2, Ccl5 and Il6) that contribute to the pathogenesis of atherosclerosis. These results show that the activation of the melanocortin system improves glucose homeostasis and limits diet-induced vascular inflammation and atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Salla Nuutinen
- Research Center for Integrative Physiology and Pharmacologyand Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Liisa Ailanen
- Research Center for Integrative Physiology and Pharmacologyand Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eriika Savontaus
- Research Center for Integrative Physiology and Pharmacologyand Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
- Unit of Clinical PharmacologyTurku University Hospital, Turku, Finland
| | - Petteri Rinne
- Research Center for Integrative Physiology and Pharmacologyand Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
84
|
Kee JY, Hong SH. Ginsenoside Rg3 suppresses mast cell-mediated allergic inflammation via mitogen-activated protein kinase signaling pathway. J Ginseng Res 2018; 43:282-290. [PMID: 30976166 PMCID: PMC6437450 DOI: 10.1016/j.jgr.2018.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/10/2018] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
Background Ginsenoside Rg3 (G-Rg3) is the major bioactive ingredient of Panax ginseng and has many pharmacological effects, including antiadipogenic, antiviral, and anticancer effects. However, the effect of G-Rg3 on mast cell–mediated allergic inflammation has not been investigated. Method The antiallergic effects of G-Rg3 on allergic inflammation were evaluated using the human and rat mast cell lines HMC-1 and RBL-2H3. Antiallergic effects of G-Rg3 were detected by measuring cyclic adenosine monophosphate (cAMP), detecting calcium influx, and using real-time reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, Western blotting, and in vivo experiments. Results G-Rg3 decreased histamine release from activated mast cells by enhancing cAMP levels and calcium influx. Proinflammatory cytokine production was suppressed by G-Rg3 treatment via regulation of the mitogen-activated protein kinases/nuclear factor-kappa B and receptor-interacting protein kinase 2 (RIP2)/caspase-1 signaling pathway in mast cells. Moreover, G-Rg3 protected mice against the IgE-mediated passive cutaneous anaphylaxis reaction and compound 48/80-induced anaphylactic shock. Conclusion G-Rg3 may serve as an alternative therapeutic agent for improving allergic inflammatory disorders.
Collapse
Affiliation(s)
- Ji-Ye Kee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - Seung-Heon Hong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| |
Collapse
|
85
|
Roy A, Park HJ, Jung HA, Choi JS. Estragole Exhibits Anti-inflammatory Activity with the Regulation of NF-κB and Nrf-2 Signaling Pathways in LPS-induced RAW 264.7 cells. ACTA ACUST UNITED AC 2018. [DOI: 10.20307/nps.2018.24.1.13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anupom Roy
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Hee-Juhn Park
- Department of Pharmaceutical Engineering, Sangji University, Wonju 220-702, Republic of Korea
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| |
Collapse
|
86
|
Roy A, Park HJ, Abdul QA, Jung HA, Choi JS. Pulegone Exhibits Anti-inflammatory Activities through the Regulation of NF-κB and Nrf-2 Signaling Pathways in LPS-stimulated RAW 264.7 cells. ACTA ACUST UNITED AC 2018. [DOI: 10.20307/nps.2018.24.1.28] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anupom Roy
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Hee-Juhn Park
- Department of Pharmaceutical Engineering, Sangji University, Wonju 220-702, Republic of Korea
| | - Qudeer Ahmed Abdul
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| |
Collapse
|
87
|
Rittig N, Svart M, Jessen N, Møller N, Møller HJ, Grønbæk H. Macrophage activation marker sCD163 correlates with accelerated lipolysis following LPS exposure: a human-randomised clinical trial. Endocr Connect 2018; 7:107-114. [PMID: 29295869 PMCID: PMC5754508 DOI: 10.1530/ec-17-0296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Macrophage activation determined by levels of soluble sCD163 is associated with obesity, insulin resistance, diabetes mellitus type 2 (DM2) and non-alcoholic fatty liver disease (NAFLD). This suggests that macrophage activation is involved in the pathogenesis of conditions is characterised by adaptions in the lipid metabolism. Since sCD163 is shed to serum by inflammatory signals including lipopolysaccharides (LPS, endotoxin), we investigated sCD163 and correlations with lipid metabolism following LPS exposure. METHODS Eight healthy male subjects were investigated on two separate occasions: (i) following an LPS exposure and (ii) following saline exposure. Each study day consisted of a four-hour non-insulin-stimulated period followed by a two-hour hyperinsulinemic euglycemic clamp period. A 3H-palmitate tracer was used to calculate the rate of appearance (Rapalmitate). Blood samples were consecutively obtained throughout each study day. Abdominal subcutaneous adipose tissue was obtained for western blotting. RESULTS We observed a significant two-fold increase in plasma sCD163 levels following LPS exposure (P < 0.001), and sCD163 concentrations correlated positively with the plasma concentration of free fatty acids, Rapalmitate, lipid oxidation rates and phosphorylation of the hormone-sensitive lipase at serine 660 in adipose tissue (P < 0.05, all). Furthermore, sCD163 concentrations correlated positively with plasma concentrations of cortisol, glucagon, tumour necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10 (P < 0.05, all). CONCLUSION We observed a strong correlation between sCD163 and stimulation of lipolysis and fat oxidation following LPS exposure. These findings support preexisting theory that inflammation and macrophage activation play a significant role in lipid metabolic adaptions under conditions such as obesity, DM2 and NAFLD.
Collapse
Affiliation(s)
- Nikolaj Rittig
- Department of Internal Medicine and Endocrinology (MEA) and Medical Research LaboratoryAarhus University Hospital, Aarhus C, Denmark
| | - Mads Svart
- Department of Internal Medicine and Endocrinology (MEA) and Medical Research LaboratoryAarhus University Hospital, Aarhus C, Denmark
| | - Niels Jessen
- Research Laboratory for Biochemical PathologyInstitute for Clinical Medicine, Aarhus University Hospital, Aarhus C, Denmark
| | - Niels Møller
- Department of Internal Medicine and Endocrinology (MEA) and Medical Research LaboratoryAarhus University Hospital, Aarhus C, Denmark
| | - Holger J Møller
- Department of Clinical Biochemistry Aarhus University HospitalAarhus C, Denmark
| | - Henning Grønbæk
- Department of Hepatology and GastroenterologyAarhus University Hospital, Aarhus C, Denmark
| |
Collapse
|
88
|
Bailey-Elkin BA, Knaap RCM, Kikkert M, Mark BL. Structure and Function of Viral Deubiquitinating Enzymes. J Mol Biol 2017; 429:3441-3470. [PMID: 28625850 PMCID: PMC7094624 DOI: 10.1016/j.jmb.2017.06.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 01/12/2023]
Abstract
Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including innate and adaptive immune responses. Ubiquitin-mediated control over these processes can be reversed by cellular deubiquitinating enzymes (DUBs), which remove ubiquitin from cellular targets and depolymerize polyubiquitin chains. The importance of protein ubiquitination to host immunity has been underscored by the discovery of viruses that encode proteases with deubiquitinating activity, many of which have been demonstrated to actively corrupt cellular ubiquitin-dependent processes to suppress innate antiviral responses and promote viral replication. DUBs have now been identified in diverse viral lineages, and their characterization is providing valuable insights into virus biology and the role of the ubiquitin system in host antiviral mechanisms. Here, we provide an overview of the structural biology of these fascinating viral enzymes and their role innate immune evasion and viral replication.
Collapse
Affiliation(s)
- Ben A Bailey-Elkin
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | - Robert C M Knaap
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Brian L Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada.
| |
Collapse
|
89
|
Jia R, Zhang H, Zhang W, Zhao H, Zha C, Liu Y. Protective effects of tenuigenin on lipopolysaccharide and d -galactosamine-induced acute liver injury. Microb Pathog 2017; 112:83-88. [DOI: 10.1016/j.micpath.2017.09.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/11/2017] [Accepted: 09/24/2017] [Indexed: 01/01/2023]
|
90
|
Zhang ZH, Mi C, Wang KS, Wang Z, Li MY, Zuo HX, Xu GH, Li X, Piao LX, Ma J, Jin X. Chelidonine inhibits TNF-α-induced inflammation by suppressing the NF-κB pathways in HCT116 cells. Phytother Res 2017; 32:65-75. [DOI: 10.1002/ptr.5948] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/24/2017] [Accepted: 09/17/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Zhi Hong Zhang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji 133002 Jilin Province China
| | - Chunliu Mi
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji 133002 Jilin Province China
| | - Ke Si Wang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji 133002 Jilin Province China
| | - Zhe Wang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji 133002 Jilin Province China
| | - Ming Yue Li
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji 133002 Jilin Province China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji 133002 Jilin Province China
| | - Guang Hua Xu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji 133002 Jilin Province China
| | - Xuezheng Li
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji 133002 Jilin Province China
| | - Lian Xun Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji 133002 Jilin Province China
| | - Juan Ma
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji 133002 Jilin Province China
| | - Xuejun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji 133002 Jilin Province China
| |
Collapse
|
91
|
Wei L, Tokizane K, Konishi H, Yu HR, Kiyama H. Agonists for G-protein-coupled receptor 84 (GPR84) alter cellular morphology and motility but do not induce pro-inflammatory responses in microglia. J Neuroinflammation 2017; 14:198. [PMID: 28974234 PMCID: PMC5627487 DOI: 10.1186/s12974-017-0970-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
Background Several G-protein-coupled receptors (GPCRs) have been shown to be important signaling mediators between neurons and glia. In our previous screening for identification of nerve injury-associated GPCRs, G-protein-coupled receptor 84 (GPR84) mRNA showed the highest up-regulation by microglia after nerve injury. GPR84 is a pro-inflammatory receptor of macrophages in a neuropathic pain mouse model, yet its function in resident microglia in the central nervous system is poorly understood. Methods We used endogenous, natural, and surrogate agonists for GPR84 (capric acid, embelin, and 6-OAU, respectively) and examined their effect on mouse primary cultured microglia in vitro. Results 6-n-Octylaminouracil (6-OAU), embelin, and capric acid rapidly induced membrane ruffling and motility in cultured microglia obtained from C57BL/6 mice, although these agonists failed to promote microglial pro-inflammatory cytokine expression. Concomitantly, 6-OAU suppressed forskolin-induced increase of cAMP in cultured microglia. Pertussis toxin, an inhibitor of Gi-coupled signaling, completely suppressed 6-OAU-induced microglial membrane ruffling and motility. In contrast, no 6-OAU-induced microglial membrane ruffling and motility was observed in microglia from DBA/2 mice, a mouse strain that does not express functional GPR84 protein due to endogenous nonsense mutation of the GPR84 gene. Conclusions GPR84 mediated signaling causes microglial motility and membrane ruffling but does not promote pro-inflammatory responses. As GPR84 is a known receptor for medium-chain fatty acids, those released from damaged brain cells may be involved in the enhancement of microglial motility through GPR84 after neuronal injury.
Collapse
Affiliation(s)
- Li Wei
- Department of Functional Anatomy and Neuroscience, Nagoya University, Graduate School of Medicine, Nagoya, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.,National Key Laboratory of Birth Defects and Reproductive Health, Chongqing Institute of Population and Family Planning, Chongqing, 400020, China.,College of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Kyohei Tokizane
- Department of Functional Anatomy and Neuroscience, Nagoya University, Graduate School of Medicine, Nagoya, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Nagoya University, Graduate School of Medicine, Nagoya, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hua-Rong Yu
- College of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, China
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University, Graduate School of Medicine, Nagoya, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
92
|
Sehnert B, Burkhardt H, Finzel S, Dübel S, Voll RE. The sneaking ligand approach for cell type-specific modulation of intracellular signalling pathways. Clin Immunol 2017; 186:14-20. [PMID: 28867254 DOI: 10.1016/j.clim.2017.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 11/30/2022]
Abstract
Small molecules interfering with intracellular signalling pathways are used in the treatment of multiple diseases including RA. However, small molecules usually affect signalling in most cell types, not only in those which need to be targeted. This general inhibition of signalling pathways causes often adverse effects, which could be avoided by cell type-specific inhibitors. For cell-type specific modulation of signal transduction, we developed the sneaking ligand fusion proteins (SLFPs). SLFPs contain three domains: (1) the binding domain mediating cell type-specific targeting and endocytosis; (2) the endosomal release sequence releasing the effector domain into the cytoplasm; (3) the effector domain modulating signalling. Using our SLFP NF-kappaB inhibitor termed SLC1 we demonstrated that cell-type-specific modulation of intracellular signalling pathways is feasible, that endothelial NF-kappaB activation is critical for arthritis and peritonitis and that SLFPs help to identify disease-relevant pathways in defined cell types. Hence, SLFPs may improve risk-benefit ratios of therapeutic interventions.
Collapse
Affiliation(s)
- Bettina Sehnert
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Harald Burkhardt
- Division of Rheumatology, Department of Internal Medicine II, Fraunhofer IME-Project-Group Translational Medicine and Pharmacology, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Stephanie Finzel
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Dübel
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technical University Braunschweig, Braunschweig, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
93
|
Wang Y, Chen M. Fentanyl Ameliorates Severe Acute Pancreatitis-Induced Myocardial Injury in Rats by Regulating NF-κB Signaling Pathway. Med Sci Monit 2017; 23:3276-3283. [PMID: 28680032 PMCID: PMC5510983 DOI: 10.12659/msm.902245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Acute pancreatitis (AP) is a sudden inflammation of the pancreas. It results in multiple, severe complications, and 15–20% of patients develop severe acute pancreatitis (SAP) with mortality as high as 30%. Consequently, it is imperative to develop an effective therapy for SAP. Material/Methods We used 30 adult male Sprague Dawley (SD) rats. Rats were randomly divided into 3 groups – sham, SAP, and fentanyl+SAP – with 10 rats in each group. An automatic biochemical analyzer was used to analyze the concentration of creatine kinase isoenzyme (CK-MB) and lactate dehydrogenase (LDH). Terminal-deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) assay was applied to assess the cell apoptosis rate. Pathological changes in pancreas/heart were detected with hematoxylin and eosin (HE) staining. Western immunoblot assay was used to analyze protein levels of interleukin (IL)-1β, IL-6, and IκB. Results Fentanyl pre-treatment inhibits SAP-induced elevation of CK-MB/LDH concentrations in serum. Compared with the sham group, SAP generates a higher brown/yellow staining rate, which is abated by fentanyl. In the pancreas, SAP generated more serious interstitial edema/hemorrhage and fat necrosis than in the sham group, which are attenuated by fentanyl. Likewise, compared to the sham group, SAP generates swelled/disordered myocardial fibers and congested blood vessels in myocardium, which are ameliorated by fentanyl. In the sham group, there was little IL-1β/IL-6, and fentanyl significantly inhibited SAP-induced up-regulation of IL-1β/IL-6 levels. Compared with the sham group, SAP significantly reduced IκB level, which was rescued by fentanyl. Conclusions Fentanyl effectively alleviates SAP-induced pancreas and heart injuries through regulating the nuclear factor-κB (NF-κB) signaling pathway.
Collapse
Affiliation(s)
- Yayun Wang
- Department of Cardiology, The Central Hospital of Wuhan, Wuhan, Hubei, China (mainland)
| | - Manhua Chen
- Department of Cardiology, The Central Hospital of Wuhan, Wuhan, Hubei, China (mainland)
| |
Collapse
|
94
|
Chen X, Zhang S, Xuan Z, Ge D, Chen X, Zhang J, Wang Q, Wu Y, Liu B. The Phenolic Fraction of Mentha haplocalyx and Its Constituent Linarin Ameliorate Inflammatory Response through Inactivation of NF-κB and MAPKs in Lipopolysaccharide-Induced RAW264.7 Cells. Molecules 2017; 22:E811. [PMID: 28509854 PMCID: PMC6154462 DOI: 10.3390/molecules22050811] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 12/11/2022] Open
Abstract
Mentha haplocalyx has been widely used for its flavoring and medicinal properties and as a traditional Chinese medicine with its anti-inflammation properties. The present study was designed to investigate the anti-inflammatory effects and potential molecular mechanisms of the phenolic fraction of M. haplocalyx (MHP) and its constituent linarin in lipopolysaccharide (LPS)-induced RAW264.7 cells. The high-performance liquid chromatography coupled with linear ion trap-orbitrap mass spectrometry (HPLC-LTQ-Orbitrap MS) was used to analyze the chemical composition of MHP. Using the enzyme-linked immunosorbent assay (ELISA) and quantitative realtime polymerase chain reaction (qRT-PCR), the expression of pro-inflammatory meditators and cytokines was measured at the transcriptional and translational levels. Western blot analysis was used to further investigate changes in the nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and Akt signaling pathways. Fourteen phenolic constituents were identified from MHP based on the data of the mass spectrometry (MS)/MS analysis. MHP and linarin decreased the production of NO, tumor necrosis factor-α (TNF-α), interlenkin-1β (IL-1β), and IL-6. The messenger ribonucleic acid (mRNA) expression levels of inducible NO synthase (iNOS), TNF-α, IL-1β, and IL-6 were also suppressed by MHP and linarin. Further investigation showed that MHP and linarin down-regulated LPS-induced phosphorylation content of NF-κB p65, inhibitor kappa B α (IκBα), extracellular signal-regulated kinase (ERK), c-Jun NH₂-terminal kinase (JNK), and p38. However, MHP and linarin showed no inhibitory effect on the phosphorylated Akt. These results suggested that MHP and linarin exerted a potent inhibitory effect on pro-inflammatory meditator and cytokines production via the inactivation of NF-κB and MAPKs, and they may serve as potential modulatory agents for the prevention and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xiangyang Chen
- Department of Traditional Chinese Medicine Chemistry, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Shujing Zhang
- Department of Scientific Research Center, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Zinan Xuan
- Department of Microbiology and Immunology, School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Dongyu Ge
- Department of Scientific Research Center, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xiaoming Chen
- Department of Microbiology and Immunology, School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Junjie Zhang
- Department of Microbiology and Immunology, School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Qian Wang
- Department of Pathology, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Ying Wu
- Department of Microbiology and Immunology, School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Bin Liu
- Department of Traditional Chinese Medicine Chemistry, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
95
|
Koshiguchi M, Komazaki H, Hirai S, Egashira Y. Ferulic acid suppresses expression of tryptophan metabolic key enzyme indoleamine 2, 3-dioxygenase via NFκB and p38 MAPK in lipopolysaccharide-stimulated microglial cells. Biosci Biotechnol Biochem 2017; 81:966-971. [DOI: 10.1080/09168451.2016.1274636] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Ferulic acid (FA) is a phenol compound found in plants that has anti-inflammatory properties. Indoleamine 2, 3-dioxygenase (IDO) is a tryptophan catabolic enzyme induced in immune cells, including glial cells, during inflammation. Enhanced IDO expression leads to reduced tryptophan levels and increased levels of toxic metabolites, including quinolinic acid. Therefore, inhibition of IDO expression may be effective in suppressing progression of neurodegenerative diseases. In this study, we examined the effect of FA in microglial cells on IDO expression levels and related inflammatory signal molecules. FA suppressed LPS-induced IDO mRNA expression and also suppressed nuclear translocation of NF-κB and phosphorylation of p38 MAPK. However, FA did not affect the production of LPS-induced inflammatory mediators and phosphorylation of JNK. Our results indicate that FA suppresses LPS-induced IDO mRNA expression, which may be mediated by inhibition of the NF-κB and p38 MAPK pathways in microglial cells.
Collapse
Affiliation(s)
- Manami Koshiguchi
- Laboratory of Food and Nutrition, Graduate School of Horticulture, Chiba University, Chiba, Japan
| | - Hitoshi Komazaki
- Laboratory of Food and Nutrition, Graduate School of Horticulture, Chiba University, Chiba, Japan
| | - Shizuka Hirai
- Laboratory of Food and Nutrition, Graduate School of Horticulture, Chiba University, Chiba, Japan
| | - Yukari Egashira
- Laboratory of Food and Nutrition, Graduate School of Horticulture, Chiba University, Chiba, Japan
| |
Collapse
|
96
|
Capsular Polysaccharide is a Main Component of Mycoplasma ovipneumoniae in the Pathogen-Induced Toll-Like Receptor-Mediated Inflammatory Responses in Sheep Airway Epithelial Cells. Mediators Inflamm 2017; 2017:9891673. [PMID: 28553017 PMCID: PMC5434471 DOI: 10.1155/2017/9891673] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
Mycoplasma ovipneumoniae (M. ovipneumoniae) is characterized as an etiological agent of primary atypical pneumonia that specifically infects sheep and goat. In an attempt to better understand the pathogen-host interaction between the invading M. ovipneumoniae and airway epithelial cells, we investigated the host inflammatory responses against capsular polysaccharide (designated as CPS) of M. ovipneumoniae using sheep bronchial epithelial cells cultured in an air-liquid interface (ALI) model. Results showed that CPS derived from M. ovipneumoniae could activate toll-like receptor- (TLR-) mediated inflammatory responses, along with an elevated expression of nuclear factor kappa B (NF-κB), activator protein-1 (AP-1), and interferon regulatory factor 3 (IRF3) as well as various inflammatory-associated mediators, representatively including proinflammatory cytokines, such as IL1β, TNFα, and IL8, and anti-inflammatory cytokines such as IL10 and TGFβ of TLR signaling cascade. Mechanistically, the CPS-induced inflammation was TLR initiated and was mediated by activations of both MyD88-dependent and MyD88-independent signaling pathways. Of importance, a blockage of CPS with specific antibody led a significant reduction of M. ovipneumoniae-induced inflammatory responses in sheep bronchial epithelial cells. These results suggested that CPS is a key virulent component of M. ovipneumoniae, which may play a crucial role in the inflammatory response induced by M. ovipneumoniae infections.
Collapse
|
97
|
Wang W, Yang C, Lin S, Vellaisamy K, Li G, Tan W, Leung CH, Ma DL. First Synthesis of an Oridonin-Conjugated Iridium(III) Complex for the Intracellular Tracking of NF-κB in Living Cells. Chemistry 2017; 23:4929-4935. [DOI: 10.1002/chem.201700770] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Wanhe Wang
- Department of Chemistry; Hong Kong Baptist University, Kowloon Tong; Hong Kong P. R. China
| | - Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences; University of Macau; Macao P. R. China
| | - Sheng Lin
- Department of Chemistry; Hong Kong Baptist University, Kowloon Tong; Hong Kong P. R. China
| | - Kasipandi Vellaisamy
- Department of Chemistry; Hong Kong Baptist University, Kowloon Tong; Hong Kong P. R. China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences; University of Macau; Macao P. R. China
| | - Weihong Tan
- Department of Chemistry, and Department of Physiology and Functional Genomics; Center for Research at the Bio/Nano Interface; Shands Cancer Center; UF Genetics Institute; McKnight Brain Institute; University of Florida; Gainesville USA
- Molecular Sciences and Biomedicine Laboratory; State Key Laboratory for Chemo/Biosensing and Chemometrics, Department of Chemistry; College of Chemistry and Chemical Engineering, College of Biology; Collaborative Innovation Center for Molecular Engineering and Theranostics; Hunan University; Changsha P. R. China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences; University of Macau; Macao P. R. China
| | - Dik-Lung Ma
- Department of Chemistry; Hong Kong Baptist University, Kowloon Tong; Hong Kong P. R. China
| |
Collapse
|
98
|
Fan FY, Sang LX, Jiang M. Catechins and Their Therapeutic Benefits to Inflammatory Bowel Disease. Molecules 2017; 22:E484. [PMID: 28335502 PMCID: PMC6155401 DOI: 10.3390/molecules22030484] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/19/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023] Open
Abstract
Catechins are natural polyphenolic phytochemicals that exist in food and medicinal plants, such as tea, legume and rubiaceae. An increasing number of studies have associated the intake of catechins-rich foods with the prevention and treatment of chronic diseases in humans, such as inflammatory bowel disease (IBD). Some studies have demonstrated that catechins could significantly inhibit the excessive oxidative stress through direct or indirect antioxidant effects and promote the activation of the antioxidative substances such as glutathione peroxidases (GPO) and glutathione (GSH), reducing the oxidative damages to the colon. In addition, catechins can also regulate the infiltration and proliferation of immune related-cells, such as neutrophils, colonic epithelial cells, macrophages, and T lymphocytes, helping reduce the inflammatory relations and provide benefits to IBD. Perhaps catechins can further inhibit the deterioration of intestinal lesions through regulating the cell gap junctions. Furthermore, catechins can exert their significant anti-inflammatory properties by regulating the activation or deactivation of inflammation-related oxidative stress-related cell signaling pathways, such as nuclear factor-kappa B (NF-κB), mitogen activated protein kinases (MAPKs), transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2), signal transducer and the activator of transcription 1/3 (STAT1/3) pathways. Finally, catechins can also stabilize the structure of the gastrointestinal micro-ecological environment via promoting the proliferation of beneficial intestinal bacteria and regulating the balance of intestinal flora, so as to relieve the IBD. Furthermore, catechins may regulate the tight junctions (TJ) in the epithelium. This paper elaborates the currently known possible molecular mechanisms of catechins in favor of IBD.
Collapse
Affiliation(s)
- Fei-Yan Fan
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China.
| | - Li-Xuan Sang
- Department of Geriatrics, First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China.
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China.
| |
Collapse
|
99
|
Sánchez-Machado DI, López-Cervantes J, Sendón R, Sanches-Silva A. Aloe vera : Ancient knowledge with new frontiers. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2016.12.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
100
|
Tokizane K, Konishi H, Makide K, Kawana H, Nakamuta S, Kaibuchi K, Ohwada T, Aoki J, Kiyama H. Phospholipid localization implies microglial morphology and function via Cdc42 in vitro. Glia 2017; 65:740-755. [PMID: 28181299 DOI: 10.1002/glia.23123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 12/20/2022]
Abstract
Under a quiescent state, microglia exhibit a ramified shape, rather than the amoeboid-like morphology following injury or inflammation. The manipulation of microglial morphology in vitro has not been very successful, which has impeded the progress of microglial studies. We demonstrate that lysophosphatidylserine (LysoPS), a kind of lysophospholipids, rapidly and substantially alters the morphology of primary cultured microglia to an in vivo-like ramified shape in a receptor independent manner. This mechanism is mediated by Cdc42 activity. LysoPS is incorporated into the plasma membrane and converted to phosphatidylserine (PS) via the Lands' cycle. The accumulated PS on the membrane recruits Cdc42. Both Cdc42 and PS colocalize predominantly in primary and secondary processes, but not in peripheral branches or tips of microglia. Along with the morphological changes LysoPS suppresses inflammatory cytokine production and NF-kB activity. The present study provides a tool to manipulate a microglial phenotype from an amoeboid to a fully ramified in vitro, which certainly contributes to studies exploring microglial physiology and pathology.
Collapse
Affiliation(s)
- Kyohei Tokizane
- Department of Functional Anatomy and Neuroscience, Nagoya University, Graduate School of Medicine, Nagoya, 65 Tsurumai-cho, Showa-ku, Aichi, 466-8550, Japan
| | - Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Nagoya University, Graduate School of Medicine, Nagoya, 65 Tsurumai-cho, Showa-ku, Aichi, 466-8550, Japan
| | - Kumiko Makide
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Hiroki Kawana
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Shinichi Nakamuta
- Department of Cell Pharmacology, Nagoya University, Graduate School of Medicine, Nagoya, 65 Tsurumai-cho, Showa-ku, Aichi, 466-8550, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University, Graduate School of Medicine, Nagoya, 65 Tsurumai-cho, Showa-ku, Aichi, 466-8550, Japan
| | - Tomohiko Ohwada
- Laboratory of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Junken Aoki
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University, Graduate School of Medicine, Nagoya, 65 Tsurumai-cho, Showa-ku, Aichi, 466-8550, Japan
| |
Collapse
|