51
|
Kawamoto Y, Kondo H, Hasegawa M, Kurimoto C, Ishii Y, Kato C, Botei T, Shinya M, Murate T, Ueno Y, Kawabe M, Goto Y, Yamamoto R, Iida M, Yajima I, Ohgami N, Kato M, Takeda K. Inhibition of mast cell degranulation by melanin. Biochem Pharmacol 2019; 163:178-193. [DOI: 10.1016/j.bcp.2019.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/12/2019] [Indexed: 10/27/2022]
|
52
|
McAdoo S, Tam FWK. Role of the Spleen Tyrosine Kinase Pathway in Driving Inflammation in IgA Nephropathy. Semin Nephrol 2019; 38:496-503. [PMID: 30177021 PMCID: PMC6135887 DOI: 10.1016/j.semnephrol.2018.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Summary: IgA nephropathy is the most common type of primary glomerulonephritis worldwide. At least 25% of patients may progress to kidney failure requiring dialysis or transplantation. Treatment of IgA nephropathy using generalized immunosuppression is controversial, with concerns regarding the balance of safety and efficacy in a nonspecific approach. This review describes the recent scientific evidence, and a current clinical trial, investigating whether spleen tyrosine kinase (SYK) may be a novel and selective therapeutic target for IgA nephropathy. SYK, a cytoplasmic tyrosine kinase, has a pivotal role as an early intermediate in intracellular signal transduction cascades for the B-cell receptor and the immunoglobulin Fc receptor, and thus is critical for B-cell proliferation, differentiation, and activation, and for mediating proinflammatory responses after Fc-receptor engagement in various cell types. In renal biopsy specimens of patients with IgA nephropathy, increased expression and phosphorylation of SYK were detected, and this correlated with the histologic features of mesangial and endocapillary proliferation. In cell culture studies, patient-derived IgA1 stimulated mesangial cell SYK activation, cell proliferation, and cytokine production, and these responses were attenuated by pharmacologic or molecular inhibition of SYK. A global, randomized, double-blind, placebo-controlled trial investigating the safety and efficacy of fostamatinib (an oral prodrug SYK inhibitor) in the treatment of patients with IgA nephropathy is ongoing, which may provide important evidence of the safety and efficacy of targeting this pathway in clinical disease.
Collapse
Affiliation(s)
- Stephen McAdoo
- Renal and Vascular Inflammation Section, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
| | - Frederick W K Tam
- Renal and Vascular Inflammation Section, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom..
| |
Collapse
|
53
|
Size-Dependent Segregation Controls Macrophage Phagocytosis of Antibody-Opsonized Targets. Cell 2019; 174:131-142.e13. [PMID: 29958103 DOI: 10.1016/j.cell.2018.05.059] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/20/2018] [Accepted: 05/29/2018] [Indexed: 12/18/2022]
Abstract
Macrophages protect the body from damage and disease by targeting antibody-opsonized cells for phagocytosis. Though antibodies can be raised against antigens with diverse structures, shapes, and sizes, it is unclear why some are more effective at triggering immune responses than others. Here, we define an antigen height threshold that regulates phagocytosis of both engineered and cancer-specific antigens by macrophages. Using a reconstituted model of antibody-opsonized target cells, we find that phagocytosis is dramatically impaired for antigens that position antibodies >10 nm from the target surface. Decreasing antigen height drives segregation of antibody-bound Fc receptors from the inhibitory phosphatase CD45 in an integrin-independent manner, triggering Fc receptor phosphorylation and promoting phagocytosis. Our work shows that close contact between macrophage and target is a requirement for efficient phagocytosis, suggesting that therapeutic antibodies should target short antigens in order to trigger Fc receptor activation through size-dependent physical segregation.
Collapse
|
54
|
Gudmundsdottir AB, Brynjolfsdottir A, Olafsdottir ES, Hardardottir I, Freysdottir J. Exopolysaccharides from Cyanobacterium aponinum induce a regulatory dendritic cell phenotype and inhibit SYK and CLEC7A expression in dendritic cells, T cells and keratinocytes. Int Immunopharmacol 2019; 69:328-336. [PMID: 30772700 DOI: 10.1016/j.intimp.2019.01.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/24/2022]
Abstract
Regular bathing in the Blue Lagoon has beneficial effects on psoriasis. Previously, we showed that exopolysaccharides (EPS-Ca) secreted by Cyanobacterium aponinum, a dominating organism in the Blue Lagoon, increased IL-10 secretion by human dendritic cells (DCs). In addition, co-culturing allogeneic CD4+ T cells with DCs matured in the presence of EPS-Ca increased differentiation of T cells into T regulatory cells at the cost of the disease inducing Th17 cells. In the present study, EPS-Ca increased the proportion of DCs expressing CD141, a surface molecule linked to regulatory DCs, and the CD141+ cells secreted more IL-10 than the CD141- cells. EPS-Ca decreased T cell secretion of IL-17, IL-13 and IL-10 and the proportion of T cells expressing the activation marker CD69 that has also been linked to lymphocyte retention. In addition, EPS-Ca reduced keratinocyte secretion of CCL20 and CXCL10, chemokines implicated in recruitment of inflammatory cells. EPS-Ca decreased DC expression of Dectin-1/CLEC7A and SYK, keratinocyte expression of CLEC7A, SYK and CAMP (the gene for LL37), and T cell expression of phosphorylated Zap70. These results indicate that EPS-Ca may induce a regulatory phenotype of DCs, T cells that are less active/inflammatory and less prone to being retained in the skin, and keratinocytes that induce less recruitment of inflammatory cells to the skin and that these effects may be mediated by the effects of EPS-Ca on CLEC7A and SYK. Overall the results indicate that EPS-Ca may be involved in the beneficial effects psoriasis patients experience when bathing in the Blue Lagoon.
Collapse
Affiliation(s)
- Asa B Gudmundsdottir
- Faculty of Medicine, University of Iceland, Biomedical Center, Vatnsmyrarvegur 16, IS-101 Reykjavik, Iceland; Department of Immunology, Landspitali-The National University Hospital of Iceland, Bld 14 at Eiriksgata, IS-101 Reykjavik, Iceland; Center for Rheumatology Research, Landspitali-The National University Hospital of Iceland, Bld 14 at Eiriksgata, IS-101 Reykjavik, Iceland
| | | | - Elin Soffia Olafsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Ingibjorg Hardardottir
- Faculty of Medicine, University of Iceland, Biomedical Center, Vatnsmyrarvegur 16, IS-101 Reykjavik, Iceland; Department of Immunology, Landspitali-The National University Hospital of Iceland, Bld 14 at Eiriksgata, IS-101 Reykjavik, Iceland
| | - Jona Freysdottir
- Faculty of Medicine, University of Iceland, Biomedical Center, Vatnsmyrarvegur 16, IS-101 Reykjavik, Iceland; Department of Immunology, Landspitali-The National University Hospital of Iceland, Bld 14 at Eiriksgata, IS-101 Reykjavik, Iceland; Center for Rheumatology Research, Landspitali-The National University Hospital of Iceland, Bld 14 at Eiriksgata, IS-101 Reykjavik, Iceland.
| |
Collapse
|
55
|
Patel KR, Roberts JT, Barb AW. Multiple Variables at the Leukocyte Cell Surface Impact Fc γ Receptor-Dependent Mechanisms. Front Immunol 2019; 10:223. [PMID: 30837990 PMCID: PMC6382684 DOI: 10.3389/fimmu.2019.00223] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/25/2019] [Indexed: 12/18/2022] Open
Abstract
Fc γ receptors (FcγR) expressed on the surface of human leukocytes bind clusters of immunoglobulin G (IgG) to induce a variety of responses. Many therapeutic antibodies and vaccine-elicited antibodies prevent or treat infectious diseases, cancers and autoimmune disorders by binding FcγRs, thus there is a need to fully define the variables that impact antibody-induced mechanisms to properly evaluate candidate therapies and design new intervention strategies. A multitude of factors influence the IgG-FcγR interaction; one well-described factor is the differential affinity of the six distinct FcγRs for the four human IgG subclasses. However, there are several other recently described factors that may prove more relevant for disease treatment. This review covers recent reports of several aspects found at the leukocyte membrane or outside the cell that contribute to the cell-based response to antibody-coated targets. One major focus is recent reports covering post-translational modification of the FcγRs, including asparagine-linked glycosylation. This review also covers the organization of FcγRs at the cell surface, and properties of the immune complex. Recent technical advances provide high-resolution measurements of these often-overlooked variables in leukocyte function and immune system activation.
Collapse
Affiliation(s)
- Kashyap R Patel
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Jacob T Roberts
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
56
|
NF-κB activation mediates LPS-or zymosan-induced hypotension and inflammation reversed by BAY61-3606, a selective Syk inhibitor, in rat models of septic and non-septic shock. Clin Exp Pharmacol Physiol 2019; 46:173-182. [PMID: 30347478 DOI: 10.1111/1440-1681.13045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 11/26/2022]
|
57
|
Bian X, Wu L, Mu L, Yin X, Wei X, Zhong X, Yang Y, Wang J, Li Y, Guo Z, Ye J. Spleen tyrosine kinase from Nile tilapia (Oreochromis niloticus): Molecular characterization, expression pattern upon bacterial infection and the potential role in BCR signaling and inflammatory response. FISH & SHELLFISH IMMUNOLOGY 2018; 82:162-172. [PMID: 30114435 DOI: 10.1016/j.fsi.2018.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Spleen tyrosine kinase (SYK), a member of non-receptor tyrosine kinase family, plays an important role in immune responses against pathogen infection, which is capable of activating B cells signaling pathway and regulating inflammatory response. In this study, Nile tilapia (Oreochromis niloticus) ortholog (OnSYK) was identified and characterized at expression pattern against bacterial infection, function in B cells activation pathway and inflammatory response. The cDNA of OnSYK ORF contained 1851 bp of nucleotide sequence encoding polypeptides of 616 amino acids. The deduced OnSYK protein was highly homologous to other species SYK, containing two SH2 domains and a TyrKc domain. Spatial mRNA expression analysis revealed that OnSYK had wide tissue distribution and was highly expressed in the liver. After challenge of Streptococcus agalactiae (S. agalactiae) in vivo, mRNA expression of OnSYK was significantly up-regulated in the head kidney, spleen and liver. The up-regulation of OnSYK transcript was also displayed in the head kidney and spleen leukocytes stimulation with S. agalactiae and LPS in vitro, which was confirmed at protein level in the head kidney leukocytes by FACS analysis. In addition, after induction with mouse anti-OnIgM monoclonal antibody in vitro, the expressions of OnSYK and its downstream molecules (OnLYN, OnBLNK and OnAP-1) were significantly up-regulated in the head kidney leukocytes, and pharmacological inhibition of SYK activity with inhibitor (P505-15) significantly attenuated the expressions of OnLYN, OnBLNK and OnAP-1. Moreover, upon LPS challenge, the expressions of OnSYK, OnTNF-α, OnIL-6 and OnAP-1 were also up-regulated in the head kidney monocytes/macrophages. After treatment with SYK inhibitor (BAY 61-3606), the expressions of OnTNF-α, OnIL-6 and OnAP-1 were inhibited in the LPS-challenged head kidney monocytes/macrophages. Taken together, the results of this study indicated that OnSYK, playing potential roles in BCR signaling and inflammatory response, was likely to get involved in host defense against bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Xia Bian
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Liting Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Liangliang Mu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Xiaoxue Yin
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Xiufang Wei
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Xiaofang Zhong
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Yanjian Yang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Junru Wang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Yuan Li
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Zheng Guo
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China.
| |
Collapse
|
58
|
Gao D, Wang L, Zhang H, Yan X, Yang J, Zhou R, Chang X, Sun Y, Tian S, Yao Z, Zhang K, Liu Z, Ma Z. Spleen tyrosine kinase
SYK
(L) interacts with
YY
1 and coordinately suppresses
SNAI
2
transcription in lung cancer cells. FEBS J 2018; 285:4229-4245. [DOI: 10.1111/febs.14665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/26/2018] [Accepted: 09/21/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Dan Gao
- Department of Biochemistry and Molecular Biology, Immunology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin Medical University China
| | - Lingling Wang
- Department of Biochemistry and Molecular Biology, Immunology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin Medical University China
| | - Hua Zhang
- Department of Biochemistry and Molecular Biology, Immunology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin Medical University China
| | - Xiaojie Yan
- Department of Biochemistry and Molecular Biology, Immunology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin Medical University China
- State Key Laboratory of Medicinal Chemical Biology Nankai University Tianjin China
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, Immunology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin Medical University China
| | - Ruimin Zhou
- Department of Biochemistry and Molecular Biology, Immunology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin Medical University China
| | - Xinzhong Chang
- Department of Breast Cancer Breast Cancer Center Tianjin Medical University Cancer Institute and Hospital China
| | - Yanan Sun
- Department of Biochemistry and Molecular Biology, Immunology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin Medical University China
| | - Shanshan Tian
- Department of Biochemistry and Molecular Biology, Immunology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin Medical University China
| | - Zhi Yao
- Department of Biochemistry and Molecular Biology, Immunology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin Medical University China
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education Tianjin Medical University China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, Immunology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin Medical University China
| | - Zhe Liu
- Department of Biochemistry and Molecular Biology, Immunology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin Medical University China
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education Tianjin Medical University China
| | - Zhenyi Ma
- Department of Biochemistry and Molecular Biology, Immunology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin Medical University China
| |
Collapse
|
59
|
Hayashi H, Kaneko R, Demizu S, Akasaka D, Tayama M, Harada T, Irie H, Ogino Y, Fujino N, Sasaki E. TAS05567, a Novel Potent and Selective Spleen Tyrosine Kinase Inhibitor, Abrogates Immunoglobulin-Mediated Autoimmune and Allergic Reactions in Rodent Models. J Pharmacol Exp Ther 2018; 366:84-95. [PMID: 29728446 DOI: 10.1124/jpet.118.248153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 03/08/2025] Open
Abstract
Spleen tyrosine kinase (Syk) is involved in regulation of B-cell receptor (BCR) and Fc receptor downstream signal pathways. Syk plays an essential role in production of inflammatory mediators and differentiation in various immune cells and is therefore an attractive target for treating inflammatory conditions, such as autoimmune and allergic diseases. We identified TAS05567 as a highly selective Syk inhibitor and evaluated its therapeutic potential in animal models. In vitro biochemical assays were performed with available kinase assay panels. Inhibitory effects of TAS05567 on immune cells were analyzed by assessing the Syk downstream signaling pathway and production of inflammatory factors. In vivo effects of TAS05567 were evaluated in animal models of autoimmune diseases and antigen-specific IgE transgenic mice. TAS05567 inhibited only 4 of 191 kinases tested but inhibited Syk enzymatic activity with high potency. TAS05567 inhibited BCR-dependent signal transduction in Ramos cells, FcγR-mediated tumor necrosis factor-α production in THP-1 cells, and FcεR-mediated histamine release from RBL-2H3 cells. In rheumatoid arthritis models, TAS05567 suppressed hind-paw swelling in a dose-dependent manner compared with vehicle. Moreover, TAS05667 markedly reduced histopathologic scores in an established rat arthritis model. In a mouse immune thrombocytopenic purpura model, platelet counts were reduced with injection of anti-platelet antibody. TAS05567 prevented the platelet count decrease in a dose-dependent manner. Finally, TAS05567 treatment suppressed IgE-mediated ear swelling in vivo. Collectively, our data indicate TAS05567 is a selective Syk inhibitor and potential therapeutic candidate for treating humoral immune-mediated inflammatory conditions such as autoimmune and allergic diseases.
Collapse
Affiliation(s)
- Hiroaki Hayashi
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Ryusuke Kaneko
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Shunsuke Demizu
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Daichi Akasaka
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Manabu Tayama
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Takafumi Harada
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Hiroki Irie
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Yoshio Ogino
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Naoko Fujino
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Eiji Sasaki
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| |
Collapse
|
60
|
Systems-Based Interactome Analysis for Hematopoiesis Effect of Angelicae sinensis Radix: Regulated Network of Cell Proliferation towards Hemopoiesis. Chin J Integr Med 2018; 25:939-947. [DOI: 10.1007/s11655-018-3003-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2016] [Indexed: 10/28/2022]
|
61
|
Dagher Z, Xu S, Negoro PE, Khan NS, Feldman MB, Reedy JL, Tam JM, Sykes DB, Mansour MK. Fluorescent Tracking of Yeast Division Clarifies the Essential Role of Spleen Tyrosine Kinase in the Intracellular Control of Candida glabrata in Macrophages. Front Immunol 2018; 9:1058. [PMID: 29868018 PMCID: PMC5964189 DOI: 10.3389/fimmu.2018.01058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/27/2018] [Indexed: 01/07/2023] Open
Abstract
Macrophages play a critical role in the elimination of fungal pathogens. They are sensed via cell surface pattern-recognition receptors and are phagocytosed into newly formed organelles called phagosomes. Phagosomes mature through the recruitment of proteins and lysosomes, resulting in addition of proteolytic enzymes and acidification of the microenvironment. Our earlier studies demonstrated an essential role of Dectin-1-dependent activation of spleen tyrosine kinase (Syk) in the maturation of fungal containing phagosomes. The absence of Syk activity interrupted phago-lysosomal fusion resulting in arrest at an early phagosome stage. In this study, we sought to define the contribution of Syk to the control of phagocytosed live Candida glabrata in primary macrophages. To accurately measure intracellular yeast division, we designed a carboxyfluorescein succinimidyl ester (CFSE) yeast division assay in which bright fluorescent parent cells give rise to dim daughter cells. The CFSE-labeling of C. glabrata did not affect the growth rate of the yeast. Following incubation with macrophages, internalized CFSE-labeled C. glabrata were retrieved by cellular lysis, tagged using ConA-647, and the amount of residual CFSE fluorescence was assessed by flow cytometry. C. glabrata remained undivided (CFSE bright) for up to 18 h in co-culture with primary macrophages. Treatment of macrophages with R406, a specific Syk inhibitor, resulted in loss of intracellular control of C. glabrata with initiation of division within 4 h. Delayed Syk inhibition after 8 h was less effective indicating that Syk is critically required at early stages of macrophage–fungal interaction. In conclusion, we demonstrate a new method of tracking division of C. glabrata using CFSE labeling. Our results suggest that early Syk activation is essential for macrophage control of phagocytosed C. glabrata.
Collapse
Affiliation(s)
- Zeina Dagher
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shuying Xu
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Paige E Negoro
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Nida S Khan
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Biomedical Engineering and Biotechnology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Michael B Feldman
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, United States
| | - Jennifer L Reedy
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jenny M Tam
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Michael K Mansour
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
62
|
Pollard DJ, Berger CN, So EC, Yu L, Hadavizadeh K, Jennings P, Tate EW, Choudhary JS, Frankel G. Broad-Spectrum Regulation of Nonreceptor Tyrosine Kinases by the Bacterial ADP-Ribosyltransferase EspJ. mBio 2018; 9:e00170-18. [PMID: 29636436 PMCID: PMC5893879 DOI: 10.1128/mbio.00170-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/08/2018] [Indexed: 12/11/2022] Open
Abstract
Tyrosine phosphorylation is key for signal transduction from exogenous stimuli, including the defense against pathogens. Conversely, pathogens can subvert protein phosphorylation to control host immune responses and facilitate invasion and dissemination. The bacterial effectors EspJ and SeoC are injected into host cells through a type III secretion system by enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively), Citrobacter rodentium, and Salmonella enterica, where they inhibit Src kinase by coupled amidation and ADP-ribosylation. C. rodentium, which is used to model EPEC and EHEC infections in humans, is a mouse pathogen triggering colonic crypt hyperplasia (CCH) and colitis. Enumeration of bacterial shedding and CCH confirmed that EspJ affects neither tolerance nor resistance to infection. However, comparison of the proteomes of intestinal epithelial cells isolated from mice infected with wild-type C. rodentium or C. rodentium encoding catalytically inactive EspJ revealed that EspJ-induced ADP-ribosylation regulates multiple nonreceptor tyrosine kinases in vivo Investigation of the substrate repertoire of EspJ revealed that in HeLa and A549 cells, Src and Csk were significantly targeted; in polarized Caco2 cells, EspJ targeted Src and Csk and the Src family kinase (SFK) Yes1, while in differentiated Thp1 cells, EspJ modified Csk, the SFKs Hck and Lyn, the Tec family kinases Tec and Btk, and the adapter tyrosine kinase Syk. Furthermore, Abl (HeLa and Caco2) and Lyn (Caco2) were enriched specifically in the EspJ-containing samples. Biochemical assays revealed that EspJ, the only bacterial ADP-ribosyltransferase that targets mammalian kinases, controls immune responses and the Src/Csk signaling axis.IMPORTANCE Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively) strains cause significant mortality and morbidity worldwide. Citrobacter rodentium is a mouse pathogen used to model EPEC and EHEC pathogenesis in vivo Diarrheal disease is triggered following injection of bacterial effectors, via a type III secretion system (T3SS), into intestinal epithelial cells (IECs). While insights into the role of the effectors were historically obtained from pathological, immunologic, or cell culture phenotypes, subtle roles of individual effectors in vivo are often masked. The aim of this study was to elucidate the role and specificity of the ADP-ribosyltransferase effector EspJ. For the first time, we show that the in vivo processes affected by a T3SS effector can be studied by comparing the proteomes of IECs extracted from mice infected with wild-type C. rodentium or an espJ catalytic mutant. We show that EspJ, the only bacterial ADP-ribosyltransferase that targets mammalian kinases, regulates the host immune response in vivo.
Collapse
Affiliation(s)
- Dominic J Pollard
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London United Kingdom, London, United Kingdom
| | - Cedric N Berger
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London United Kingdom, London, United Kingdom
| | - Ernest C So
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London United Kingdom, London, United Kingdom
| | - Lu Yu
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, United Kingdom
| | - Kate Hadavizadeh
- Department of Chemistry, Imperial College, London United Kingdom, London, United Kingdom
| | | | - Edward W Tate
- Department of Chemistry, Imperial College, London United Kingdom, London, United Kingdom
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, United Kingdom
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London United Kingdom, London, United Kingdom
| |
Collapse
|
63
|
Köhler C, Fuhr V, Dinekov M. Distribution of spleen tyrosine kinase and tau phosphorylated at tyrosine 18 in a mouse model of tauopathy and in the human hippocampus. Brain Res 2017; 1677:1-13. [DOI: 10.1016/j.brainres.2017.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/11/2017] [Accepted: 08/25/2017] [Indexed: 12/01/2022]
|
64
|
Unperturbed Immune Function despite Mutation of C-Terminal Tyrosines in Syk Previously Implicated in Signaling and Activity Regulation. Mol Cell Biol 2017; 37:MCB.00216-17. [PMID: 28760774 DOI: 10.1128/mcb.00216-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/26/2017] [Indexed: 11/20/2022] Open
Abstract
The nonreceptor tyrosine kinase Syk, a central regulator of immune cell differentiation and activation, is a promising drug target for treatment of leukemia and allergic and inflammatory diseases. The clinical failure of Syk inhibitors underscores the importance of understanding the regulation of Syk function and activity. A series of previous studies emphasized the importance of three C-terminal tyrosines in Syk for kinase activity regulation, as docking sites for downstream effector molecules, and for Ca2+ mobilization. Here, we investigated the roles of these C-terminal tyrosines in the mouse. Surprisingly, expression of a triple tyrosine-to-phenylalanine human Syk mutant, SYK(Y3F), was not associated with discernible signaling defects either in reconstituted DT40 cells or in B or mast cells from mice expressing SYK(Y3F) instead of wild-type Syk. Remarkably, lymphocyte differentiation, calcium mobilization, and 2,4,6-trinitrophenyl (TNP)-specific immune responses were unperturbed in SYK(Y3F) mice. These results emphasize the capacity of immune cells to compensate for specific molecular defects, likely using redundant intermolecular interactions, and highlight the importance of in vivo analyses for understanding cellular signaling mechanisms.
Collapse
|
65
|
Alhazmi A, Choi J, Ulanova M. Syk inhibitor R406 downregulates inflammation in an in vitro model of Pseudomonas aeruginosa infection. Can J Physiol Pharmacol 2017; 96:182-190. [PMID: 29020462 DOI: 10.1139/cjpp-2017-0307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As Pseudomonas aeruginosa infections are characterized by strong inflammation of infected tissues, anti-inflammatory therapies in combination with antibiotics have been considered for the treatment of associated diseases. Syk tyrosine kinase is an important regulator of inflammatory responses, and its specific inhibition was explored as a therapeutic option in several inflammatory conditions; however, this has not been studied in bacterial infections. We used a model of in vitro infection of human monocytic cell line THP-1 and lung epithelial cell line H292 with both wild-type and flagella-deficient mutant of P. aeruginosa strain K, as well as with clinical isolates from cystic fibrosis patients, to study the effect of a small molecule Syk inhibitor R406 on inflammatory responses induced by this pathogen. One-hour pretreatment of THP-1 cells with 10 μmol/L R406 resulted in a significant downregulation of the expression of the adhesion molecule ICAM-1, pro-inflammatory cytokines TNF-α and IL-1β, and phosphorylated signaling proteins ERK2, JNK, p-38, and IκBα, as well as significantly decreased TNF-α release by infected H292 cells. The results suggest that Syk is involved in the regulation of inflammatory responses to P. aeruginosa, and R406 may potentially be useful in dampening the damage caused by severe inflammation associated with this infection.
Collapse
Affiliation(s)
- Alaa Alhazmi
- a Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Joshua Choi
- b Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| | - Marina Ulanova
- a Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada.,b Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
66
|
Schwartz SL, Cleyrat C, Olah MJ, Relich PK, Phillips GK, Hlavacek WS, Lidke KA, Wilson BS, Lidke DS. Differential mast cell outcomes are sensitive to FcεRI-Syk binding kinetics. Mol Biol Cell 2017; 28:3397-3414. [PMID: 28855374 PMCID: PMC5687039 DOI: 10.1091/mbc.e17-06-0350] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 11/11/2022] Open
Abstract
Cross-linking of immunoglobulin E-bound FcεRI triggers multiple cellular responses, including degranulation and cytokine production. Signaling is dependent on recruitment of Syk via docking of its dual SH2 domains to phosphorylated tyrosines within the FcεRI immunoreceptor tyrosine-based activation motifs. Using single-molecule imaging in live cells, we directly visualized and quantified the binding of individual mNeonGreen-tagged Syk molecules as they associated with the plasma membrane after FcεRI activation. We found that Syk colocalizes transiently to FcεRI and that Syk-FcεRI binding dynamics are independent of receptor aggregate size. Substitution of glutamic acid for tyrosine between the Syk SH2 domains (Syk-Y130E) led to an increased Syk-FcεRI off-rate, loss of site-specific Syk autophosphorylation, and impaired downstream signaling. Genome edited cells expressing only Syk-Y130E were deficient in antigen-stimulated calcium release, degranulation, and production of some cytokines (TNF-a, IL-3) but not others (MCP-1, IL-4). We propose that kinetic discrimination along the FcεRI signaling pathway occurs at the level of Syk-FcεRI interactions, with key outcomes dependent upon sufficiently long-lived Syk binding events.
Collapse
Affiliation(s)
- Samantha L Schwartz
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Cédric Cleyrat
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Mark J Olah
- Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Peter K Relich
- Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Genevieve K Phillips
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - William S Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Keith A Lidke
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131.,Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S Wilson
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Diane S Lidke
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131 .,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
67
|
Marczynke M, Gröger K, Seitz O. Selective Binders of the Tandem Src Homology 2 Domains in Syk and Zap70 Protein Kinases by DNA-Programmed Spatial Screening. Bioconjug Chem 2017; 28:2384-2392. [PMID: 28767218 DOI: 10.1021/acs.bioconjchem.7b00382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Members of the Syk family of tyrosine kinases arrange Src homology 2 (SH2) domains in tandem to allow the firm binding of immunoreceptor tyrosine-based interaction motifs (ITAMs). While the advantages provided by the bivalency enhanced interactions are evident, the impact on binding specificity is less-clear. For example, the spleen tyrosine kinase (Syk) and the ζ-chain-associated protein kinase (ZAP-70) recognize the consensus sequence pYXXI/L(X)6-8 pYXXI/L with near-identical nanomolar affinity. The nondiscriminatory recognition, on the one hand, poses a specificity challenge for the design of subtype selective protein binders and, on the other hand, raises the question as to how differential activation of Syk and ZAP-70 is ensured when both kinases are co-expressed. Herein, we identified the criteria for the design of binders that specifically address either the Syk or the Zap-70 tSH2 domain. Our approach is based on DNA-programmed spatial screening. Tyrosine-phosphorylated peptides containing the pYXXI/L motif were attached to oligonucleotides and aligned in tandem on a DNA template by means of nucleic acid hybridization. The distance between the pYXXI/L motifs and the orientation of strands were varied. The exploration exposed remarkably different recognition characteristics. While Syk tSH2 has a rather broad substrate scope, ZAP-70 tSH2 required a proximal arrangement of the phosphotyrosine ligands in defined strand orientation. The spatial screen led to the design of mutually selective, DNA-free binders, which discriminate Zap-70 and Syk tSH2 by 1 order of magnitude in affinity.
Collapse
Affiliation(s)
- Michaela Marczynke
- Institut für Chemie, Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2, D-12489 Berlin, Germany
| | - Katharina Gröger
- Institut für Chemie, Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2, D-12489 Berlin, Germany
| | - Oliver Seitz
- Institut für Chemie, Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2, D-12489 Berlin, Germany
| |
Collapse
|
68
|
Fasbender F, Claus M, Wingert S, Sandusky M, Watzl C. Differential Requirements for Src-Family Kinases in SYK or ZAP70-Mediated SLP-76 Phosphorylation in Lymphocytes. Front Immunol 2017; 8:789. [PMID: 28736554 PMCID: PMC5500614 DOI: 10.3389/fimmu.2017.00789] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/22/2017] [Indexed: 01/10/2023] Open
Abstract
In a synthetic biology approach using Schneider (S2) cells, we show that SLP-76 is directly phosphorylated at tyrosines Y113 and Y128 by SYK in the presence of ITAM-containing adapters such as CD3ζ, DAP12, or FcεRγ. This phosphorylation was dependent on at least one functional ITAM and a functional SH2 domain within SYK. Inhibition of Src-kinases by inhibitors PP1 and PP2 did not reduce SLP-76 phosphorylation in S2 cells, suggesting an ITAM and SYK dependent, but Src-kinase independent signaling pathway. This direct ITAM/SYK/SLP-76 signaling pathway therefore differs from previously described ITAM signaling. However, the SYK-family kinase ZAP70 required the additional co-expression of the Src-family kinases Fyn or Lck to efficiently phosphorylate SLP-76 in S2 cells. This difference in Src-family kinase dependency of SYK versus ZAP70-mediated ITAM-based signaling was further demonstrated in human lymphocytes. ITAM signaling in ZAP70-expressing T cells was dependent on the activity of Src-family kinases. In contrast, Src-family kinases were partially dispensable for ITAM signaling in SYK-expressing B cells or in natural killer cells, which express SYK and ZAP70. This demonstrates that SYK can signal using a Src-kinase independent ITAM-based signaling pathway, which may be involved in calibrating the threshold for lymphocyte activation.
Collapse
Affiliation(s)
- Frank Fasbender
- Leibniz Research Centre for Working Environment and Human Factors, IfADo, TU-Dortmund, Dortmund, Germany
| | - Maren Claus
- Leibniz Research Centre for Working Environment and Human Factors, IfADo, TU-Dortmund, Dortmund, Germany
| | - Sabine Wingert
- Leibniz Research Centre for Working Environment and Human Factors, IfADo, TU-Dortmund, Dortmund, Germany
| | - Mina Sandusky
- Leibniz Research Centre for Working Environment and Human Factors, IfADo, TU-Dortmund, Dortmund, Germany
| | - Carsten Watzl
- Leibniz Research Centre for Working Environment and Human Factors, IfADo, TU-Dortmund, Dortmund, Germany
| |
Collapse
|
69
|
Yue X, Ai J, Xu Y, Chen Y, Huang M, Yang X, Hu B, Zhang H, He C, Yang X, Tang W, Peng X, Dong L, Wang H, Fan J, Ding J, Geng M. Polymeric immunoglobulin receptor promotes tumor growth in hepatocellular carcinoma. Hepatology 2017; 65:1948-1962. [PMID: 28073159 DOI: 10.1002/hep.29036] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/23/2016] [Accepted: 12/26/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED Deregulation of the immune system is believed to contribute to cancer malignancy, which has led to recent therapeutic breakthroughs facilitating antitumor immunity. In a malignant setting, immunoglobulin receptors, which are fundamental components of the human immune system, fulfill paradoxical roles in cancer pathogenesis. This study describes a previously unrecognized pro-oncogenic function of polymeric immunoglobulin receptor (pIgR) in the promotion of cell transformation and proliferation. Mechanistically, pIgR overexpression is associated with YES proto-oncogene 1, Src family tyrosine kinase (Yes) activation, which is required for pIgR-induced oncogenic growth. Specifically, pIgR activates the Yes-DNAX-activating protein of 12 kDa-spleen tyrosine kinase-Rac1/CDC42-MEK (extracellular signal-regulated kinase kinase)/ERK (extracellular signal-regulated kinase) cascade in an immunoreceptor tyrosine-based activating motif (ITAM)-dependent manner to promote cell transformation and tumor growth, although pIgR itself does not contain an ITAM sequence. Additionally, the combination of pIgR and phosphorylated Yes (p-Yes) levels serves as a prognostic biomarker for hepatitis B surface antigen-positive and early-stage hepatocellular carcinoma (HCC) patients. Moreover, pharmacological targeting of MEK/ERK or Yes represents a therapeutic option for the subgroup of patients with pIgR/p-Yes-positive HCC based on our results with both cancer cell-line-based xenografts and primary patient-derived xenografts. CONCLUSION Our findings reveal the molecular mechanism by which pIgR promotes cancer malignancy, suggest the clinical potential of targeting this pathway in HCC, and provide new insight into the oncogenic role of immunoglobulin receptors. (Hepatology 2017;65:1948-1962).
Collapse
Affiliation(s)
- Xihua Yue
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jing Ai
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Yang Xu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Yi Chen
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Min Huang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Xinying Yang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Bo Hu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Haotian Zhang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Changxi He
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Xinrong Yang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Weiguo Tang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Xia Peng
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Liwei Dong
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Second Military Medical University, Shanghai, P.R. China
| | - Hongyang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Second Military Medical University, Shanghai, P.R. China
| | - Jia Fan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
- Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Jian Ding
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Meiyu Geng
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| |
Collapse
|
70
|
Park JE, Rotondo JA, Cullins DL, Brand DD, Yi AK, Stuart JM, Kang AH, Myers LK. Characterization of the Syk-Dependent T Cell Signaling Response to an Altered Peptide. THE JOURNAL OF IMMUNOLOGY 2016; 197:4569-4575. [PMID: 27837109 DOI: 10.4049/jimmunol.1600771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/12/2016] [Indexed: 11/19/2022]
Abstract
Rheumatoid arthritis is an autoimmune disorder characterized by T cell dysregulation. We have shown that an altered peptide ligand (A9) activates T cells to use an alternate signaling pathway that is dependent on FcRγ and spleen tyrosine kinase, resulting in downregulation of inflammation. In the experiments described in this study, we have attempted to determine the molecular basis of this paradox. Three major Src family kinases found in T cells (Lck, Fyn, and Lyn) were tested for activation following stimulation by A9/I-Aq Unexpectedly we found they are not required for T cell functions induced by A9/I-Aq, nor are they required for APL stimulation of cytokines. On the other hand, the induction of the second messenger inositol trisphosphate and the mobilization of calcium are clearly triggered by the APL A9/I-Aq stimulation and are required for cytokine production, albeit the cytokines induced are different from those produced after activation of the canonical pathway. DBA/1 mice doubly deficient in IL-4 and IL-10 were used to confirm that these two cytokines are important for the APL-induced attenuation of arthritis. These studies provide a basis for exploring the effectiveness of analog peptides and the inhibitory T cells they induce as therapeutic tools for autoimmune arthritis.
Collapse
Affiliation(s)
- Jeoung-Eun Park
- Department of Medicine, University of Tennessee Health Science Center, Memphis TN 38163
| | - Jeffrey A Rotondo
- Department of Medicine, University of Tennessee Health Science Center, Memphis TN 38163
| | - David L Cullins
- Department of Medicine, University of Tennessee Health Science Center, Memphis TN 38163
| | - David D Brand
- Department of Medicine, University of Tennessee Health Science Center, Memphis TN 38163.,Research Service, Veterans Affairs Medical Center, Memphis TN 38104
| | - Ae-Kyung Yi
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis TN 38163; and
| | - John M Stuart
- Department of Medicine, University of Tennessee Health Science Center, Memphis TN 38163.,Research Service, Veterans Affairs Medical Center, Memphis TN 38104
| | - Andrew H Kang
- Department of Medicine, University of Tennessee Health Science Center, Memphis TN 38163.,Research Service, Veterans Affairs Medical Center, Memphis TN 38104
| | - Linda K Myers
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis TN 38163
| |
Collapse
|
71
|
David JM, Dominguez C, Palena C. Pharmacological and immunological targeting of tumor mesenchymalization. Pharmacol Ther 2016; 170:212-225. [PMID: 27916651 DOI: 10.1016/j.pharmthera.2016.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Controlling the spread of carcinoma cells to distant organs is the foremost challenge in cancer treatment, as metastatic disease is generally resistant to therapy and is ultimately incurable for the majority of patients. The plasticity of tumor cell phenotype, in which the behaviors and functions of individual tumor cells differ markedly depending upon intrinsic and extrinsic factors, is now known to be a central mechanism in cancer progression. Our expanding knowledge of epithelial and mesenchymal phenotypic states in tumor cells, and the dynamic nature of the transitions between these phenotypes has created new opportunities to intervene to better control the behavior of tumor cells. There are now a variety of innovative pharmacological approaches to preferentially target tumor cells that have acquired mesenchymal features, including cytotoxic agents that directly kill these cells, and inhibitors that block or revert the process of mesenchymalization. Furthermore, novel immunological strategies have been developed to engage the immune system in seeking out and destroying mesenchymalized tumor cells. This review highlights the relevance of phenotypic plasticity in tumor biology, and discusses recently developed pharmacological and immunological means of targeting this phenomenon.
Collapse
Affiliation(s)
- Justin M David
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Charli Dominguez
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
72
|
Shah S, Gibson AW, Ji C, Darrington E, Mobley J, Kojima K, Edberg JC, Kimberly RP. Regulation of FcRγ function by site-specific serine phosphorylation. J Leukoc Biol 2016; 101:421-428. [PMID: 27630214 DOI: 10.1189/jlb.2ab0516-228r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/03/2016] [Accepted: 08/25/2016] [Indexed: 01/01/2023] Open
Abstract
The common FcRγ, an immunoreceptor tyrosine-based activation motif (ITAM)- containing adaptor protein, associates with multiple leukocyte receptor complexes and mediates signal transduction through the ITAM in the cytoplasmic domain. The presence of multiple serine and threonine residues within this motif suggests the potential for serine/threonine phosphorylation in modulating signaling events. Single-site mutational analysis of these residues in RBL-2H3 cells indicates that each may contribute to net FcRγ-mediated signaling, and mass spectrometry of WT human FcRγ from receptor-stimulated cells shows consistent preferential phosphorylation of the serine residue at position 51. Immunoblot analysis, mass spectrometry, and mutational analyses showed that phosphorylation of serine 51 in the 7-residue spacer between the 2 YxxL sequences regulates FcRγ signaling by inhibiting tyrosine phosphorylation at the membrane proximal Y47 position of the ITAM, but not phosphorylation at position Y58. This inhibition results in reduced Syk recruitment and activation. With in vitro kinase assays, PKC-δ and PKA show preferential phosphorylation of S51. Serine/threonine phosphorylation of the FcRγ ITAM, which functions as an integrator of multiple signaling elements, may explain in part the contribution of variants in PKC-δ and other PKC isoforms to some autoimmune phenotypes.
Collapse
Affiliation(s)
- Spandan Shah
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Andrew W Gibson
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Chuanyi Ji
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Eric Darrington
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - James Mobley
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kyoko Kojima
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeffrey C Edberg
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Robert P Kimberly
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
73
|
Witkowska M, Smolewski P, Majchrzak A, Robak T. Innovation in non-Hodgkin lymphoma drug discovery: what needs to be done? Expert Opin Drug Discov 2016; 11:1033-1045. [PMID: 27569454 DOI: 10.1080/17460441.2016.1230095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION A new generation of anticancer agents called target drugs has been recently developed for the treatment of non-Hodgkin lymphomas. Current recovery rates in these diseases are up to 70% with immunotherapy based on the anti-CD20 monoclonal antibody combined with standard chemotherapeutics. However, there are still refractory or relapsed patients. Recently, several novel anti-lymphoma agents have been developed. Choosing the most effective personalized therapy still remains a crucial challenge in hematology. Areas covered: New drugs can specifically target malignant cells and inhibit cancer cell growth, proliferation and survival by specific interactions with one or more target proteins. Recent clinical studies have illustrated promising outcomes for novel drugs used as single agents and in combination with traditional therapeutics. In this article, the authors discuss novel targeted therapies with a promising outcome in NHL patients that are becoming integrated into treatment paradigms. Expert opinion: The development of new treatment options may help to avoid cytotoxic chemotherapy entirely in some clinical settings. Multicenter studies should be continued to investigate small agents and pathways inhibitors as this will enable us to enhance not only the duration of the treatment response but also the quality of the extended survival.
Collapse
Affiliation(s)
- Magdalena Witkowska
- a Department of Experimental Hematology , Medical University of Lodz , Lodz , Poland
| | - Piotr Smolewski
- a Department of Experimental Hematology , Medical University of Lodz , Lodz , Poland
| | - Agata Majchrzak
- a Department of Experimental Hematology , Medical University of Lodz , Lodz , Poland.,b Department of Hematology , Medical University of Lodz , Lodz , Poland
| | - Tadeusz Robak
- b Department of Hematology , Medical University of Lodz , Lodz , Poland
| |
Collapse
|
74
|
Long AJ, Sampson E, McCarthy RW, Harris CM, Barnard M, Shi D, Conlon D, Caldwell R, Honor D, Wishart N, Hoemann M, Duggan L, Fritz D, Stedman C, O'Connor E, Mikaelian I, Schwartz A. Syk Inhibition Induces Platelet Dependent Peri-islet Hemorrhage in the Rat Pancreas. Toxicol Pathol 2016; 44:998-1012. [PMID: 27324990 DOI: 10.1177/0192623316654015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Spleen tyrosine kinase (Syk) is a nonreceptor tyrosine kinase that is an important signaling enzyme downstream of immunoreceptors containing an intracellular immunoreceptor tyrosine activating motif (ITAM). These receptors encompass a wide variety of biological functions involved in autoimmune disease pathogenesis. There has been considerable interest in the development of inhibitors of the Syk pathway for the treatment of rheumatoid arthritis and systemic lupus erythematosus. We report that Syk inhibition mechanistically caused peri-islet hemorrhages and fibrin deposition in the rat pancreas and that this finding is due to a homeostatic functional defect in platelets. In more limited studies, similar lesions could not be induced in mice, dogs, and cynomolgus monkeys at similar or higher plasma drug concentrations. Irradiation-induced thrombocytopenia caused a phenotypically similar peri-islet pancreas lesion and the formation of this lesion could be prevented by platelet transfusion. In addition, Syk inhibitor-induced lesions were prevented by the coadministration of prednisone. A relatively greater sensitivity of rat platelets to Syk inhibition was supported by functional analyses demonstrating rat-specific differences in response to convulxin, a glycoprotein VI agonist that signals through Syk. These data demonstrate that the Syk pathway is critical in platelet-endothelial cell homeostasis in the peri-islet pancreatic microvasculature in rats.
Collapse
Affiliation(s)
- Andrew J Long
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Erik Sampson
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | | | | | - Marc Barnard
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Dan Shi
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Donna Conlon
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | | | - David Honor
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Neil Wishart
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | | | - Lori Duggan
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Douglas Fritz
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | | | | | - Igor Mikaelian
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | | |
Collapse
|
75
|
Fostamatinib, an oral spleen tyrosine kinase inhibitor, in the treatment of rheumatoid arthritis: a meta-analysis of randomized controlled trials. Rheumatol Int 2016; 36:1077-87. [DOI: 10.1007/s00296-016-3482-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/15/2016] [Indexed: 12/15/2022]
|
76
|
Na HG, Bae CH, Choi YS, Song SY, Kim YD. Spleen tyrosine kinase induces MUC5AC expression in human airway epithelial cell. Am J Rhinol Allergy 2016; 30:89-93. [PMID: 26980390 DOI: 10.2500/ajra.2016.30.4276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
BACKGROUND MUC5AC, a major secreted mucin, is increased in chronic inflammatory airway disease. Spleen tyrosine kinase (SYK) is a mediator, which acts as an important regulator of intracellular signal transduction in the inflammatory response. SYK was originally identified in hematopoietic cells, and its expression in some nonhematopoietic cells, including respiratory epithelial cells, was recently demonstrated. However, the effects of SYK on mucin secretion in human airway epithelial cells have not been studied. The objective of this study was to investigate the effect and brief signaling pathways of SYK on MUC5AC expression in human airway epithelial cells. METHODS In mucin-producing human NCI-H292 cells and primary cultures of human nasal epithelial cells, the effects and signaling pathways of SYK on MUC5AC expression were investigated by reverse transcriptase-polymerase chain reaction, real-time polymerase chain reaction, enzyme immunoassay, and immunoblot analysis with several specific inhibitors and small interfering RNA (siRNA). RESULTS SYK induced MUC5AC expression. SYK activated significant phosphorylation of extracellular signal-related kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) signaling pathways. SYK-induced MUC5AC expression was significantly attenuated by pretreatment with U0126 (ERK1/2 MAPK inhibitor) and SB203580 (p38 MAPK inhibitor). In addition, the knockdown of ERK2 and p38 MAPK by ERK2 and p38 MAPK siRNA significantly blocked SYK-induced MUC5AC expression. CONCLUSION These results indicated that SYK increased MUC5AC expression via ERK2 and p38 MAPK signaling pathways in human airway epithelial cells.
Collapse
Affiliation(s)
- Hyung Gyun Na
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | | | | | | | | |
Collapse
|
77
|
Spleen Tyrosine Kinase Mediates EGFR Signaling to Regulate Keratinocyte Terminal Differentiation. J Invest Dermatol 2016; 136:192-201. [DOI: 10.1038/jid.2015.381] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 07/31/2015] [Accepted: 08/19/2015] [Indexed: 11/09/2022]
|
78
|
Osicka R, Osickova A, Hasan S, Bumba L, Cerny J, Sebo P. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. eLife 2015; 4:e10766. [PMID: 26650353 PMCID: PMC4755762 DOI: 10.7554/elife.10766] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/09/2015] [Indexed: 12/24/2022] Open
Abstract
Integrins are heterodimeric cell surface adhesion and signaling receptors that are essential for metazoan existence. Some integrins contain an I-domain that is a major ligand binding site. The ligands preferentially engage the active forms of the integrins and trigger signaling cascades that alter numerous cell functions. Here we found that the adenylate cyclase toxin (CyaA), a key virulence factor of the whooping cough agent Bordetella pertussis, preferentially binds an inactive form of the integrin complement receptor 3 (CR3), using a site outside of its I-domain. CyaA binding did not trigger downstream signaling of CR3 in human monocytes and CyaA-catalyzed elevation of cAMP effectively blocked CR3 signaling initiated by a natural ligand. This unprecedented type of integrin-ligand interaction distinguishes CyaA from all other known ligands of the I-domain-containing integrins and provides a mechanistic insight into the previously observed central role of CyaA in the pathogenesis of B. pertussis.
Collapse
Affiliation(s)
- Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Shakir Hasan
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Cerny
- Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
79
|
Koerber RM, Held SAE, Heine A, Kotthoff P, Daecke SN, Bringmann A, Brossart P. Analysis of the anti-proliferative and the pro-apoptotic efficacy of Syk inhibition in multiple myeloma. Exp Hematol Oncol 2015; 4:21. [PMID: 26251761 PMCID: PMC4526421 DOI: 10.1186/s40164-015-0016-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/20/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a clonal B cell malignancy characterized by proliferation of malignant plasma cells in the bone marrow. Despite high-dose melphalan therapy with autologous stem cell transplantation (ASCT) and the introduction of immunomodulatory drugs like bortezomib or lenalidomide, that have been associated with improved survival, MM is still incurable and new treatment options are needed. In B cell malignancies such as chronic lymphocytic leukaemia (CLL) or diffuse large B cell lymphoma (DLBCL), Syk (spleen tyrosine kinase) inhibitors have shown promising in vitro and first clinical results. In our study, we analyzed the potential of Syk as a target in MM. METHODS The MM cell lines AMO-1, U266 and RPMI8226 and primary MM cells were treated with the Syk inhibitors BAY61-3606, R406 or Piceatannol and proliferation, migration and apoptosis induction were analyzed. Effects on involved intracellular signaling cascades were determined by Western blotting. Furthermore, we analyzed synergistic and additive effects of Syk inhibitors in combination with established anti-myeloma drugs and experimental inhibitors (e.g. PI-3-Kinase inhibitor NVP-BEZ235). RESULTS Incubation of MM cell lines as well as primary MM cells with Syk inhibitors resulted in a reduced proliferation and stromal cell-derived factor-1 alpha (SDF-1 alpha) induced migration that was accompanied by a concentration dependent inhibition of the MAP-Kinase, characterized by reduced phosphorylation of ERK an p38 molecules, and NF-kappaB signalling pathways. Furthermore, Syk inhibition induced apoptosis in MM cells in a dose-dependent manner, characterized by reduced expression of pro-caspase 3, increased PARP-1 cleavage and enhanced release of cytochrome c. In addition combined treatment of MM cells with Syk inhibitors and NVP-BEZ235 (dual PI3-kinase/mTOR inhibitor) or MAPK inhibitors (PD98059, SP600125, U0126, SB203580) resulted in increased apoptotic activity of the drugs. CONCLUSIONS Our results show that Syk inhibition might represent a promising new treatment option in MM with an increased efficacy when combined with MAP kinase inhibitors. Furthermore, our study strongly underlines the potency of Syk inhibitors as a potential therapeutic treatment option for MM patients.
Collapse
Affiliation(s)
- Ruth-Miriam Koerber
- Medical Clinic III, Department of Hematology and Oncology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Stefanie Andrea Erika Held
- Medical Clinic III, Department of Hematology and Oncology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Annkristin Heine
- Medical Clinic III, Department of Hematology and Oncology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Philipp Kotthoff
- Medical Clinic III, Department of Hematology and Oncology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Solveig Nora Daecke
- Medical Clinic III, Department of Hematology and Oncology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Anita Bringmann
- Medical Clinic III, Department of Hematology and Oncology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Peter Brossart
- Medical Clinic III, Department of Hematology and Oncology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| |
Collapse
|
80
|
Ramis I, Otal R, Carreño C, Domènech A, Eichhorn P, Orellana A, Maldonado M, De Alba J, Prats N, Fernández JC, Vidal B, Miralpeix M. A novel inhaled Syk inhibitor blocks mast cell degranulation and early asthmatic response. Pharmacol Res 2015; 99:116-24. [PMID: 26051661 DOI: 10.1016/j.phrs.2015.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/14/2015] [Accepted: 05/26/2015] [Indexed: 01/05/2023]
Abstract
Spleen tyrosine kinase (Syk) is essential for signal transduction of immunoreceptors. Inhibition of Syk abrogates mast cell degranulation and B cell responses. We hypothesized that Syk inhibition in the lung by inhaled route could block airway mast cells degranulation and the early asthmatic response without the need of systemic exposure. We discovered LAS189386, a novel Syk inhibitor with suitable properties for inhaled administration. The aim of this study was to characterize the in vitro and in vivo profile of LAS189386. The compound was profiled in Syk enzymatic assay, against a panel of selected kinases and in Syk-dependent cellular assays in mast cells and B cells. Pharmacokinetics and in vivo efficacy was assessed by intratracheal route. Airway resistance and mast cell degranulation after OVA challenge was evaluated in an ovalbumin-sensitized Brown Norway rat model. LAS189386 potently inhibits Syk enzymatic activity (IC50 7.2 nM), Syk phosphorylation (IC50 41 nM), LAD2 cells degranulation (IC50 56 nM), and B cell activation (IC50 22 nM). LAS189386 inhibits early asthmatic response and airway mast cell degranulation without affecting systemic mast cells. The present results support the hypothesis that topical inhibition of Syk in the lung, without systemic exposure, is sufficient to inhibit EAR in rats. Syk inhibition by inhaled route constitutes a promising therapeutic option for asthma.
Collapse
Affiliation(s)
- Isabel Ramis
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain.
| | - Raquel Otal
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | | | - Anna Domènech
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain.
| | - Peter Eichhorn
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain.
| | | | | | - Jorge De Alba
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain.
| | - Neus Prats
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain.
| | | | - Bernat Vidal
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain.
| | | |
Collapse
|
81
|
Design, synthesis of diaminopyrimidine inhibitors targeting IgE- and IgG-mediated activation of Fc receptor signaling. Bioorg Med Chem Lett 2015; 25:2122-8. [DOI: 10.1016/j.bmcl.2015.03.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/21/2015] [Accepted: 03/25/2015] [Indexed: 11/19/2022]
|
82
|
Liu C, Su P, Li R, Zhang Q, Zhu T, Liu X, Li Q. Molecular cloning, expression pattern, and molecular evolution of the spleen tyrosine kinase in lamprey, Lampetra japonica. Dev Genes Evol 2015; 225:113-20. [PMID: 25682127 DOI: 10.1007/s00427-015-0492-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/26/2015] [Indexed: 01/15/2023]
Abstract
Spleen tyrosine kinase (Syk), a member of Syk family of cytoplasmic non-receptor tyrosine kinases, is a key component of B cell receptor signaling and regulates multiple physiological functions of B lymphocytes in vertebrates. In the current study, a Syk homologue was identified in the lamprey Lampetra japonica (Lj-Syk). The cDNA fragment of Lj-Syk contains a 1953-bp open reading frame which encodes 651 amino acids, a 12-bp fragment of 5'-untranslated region, and a 1029-bp 3'-untranslated region. The same as vertebrate's Syks, Lj-Syk protein also contains a tyrosine kinase catalytic domain which functions as its kinase activity center and two Src homology 2 (SH2) domains which are the targets when Syk is recruited by phosphorylated immunoreceptor tyrosine-based activation motif. It is revealed by multiple sequence alignment that the tyrosine kinase catalytic domain and two SH2 domains are conserved throughout the Syk gene family in vertebrates. The evolutionary dynamics of Syks were analyzed by MEME software using conserved motifs as markers. Among 19 conserved motifs elicited from 22 Syks or Syk-like proteins, 12 motifs that locate at N-terminal, two tandem SH2, Inter SH2, and Tyrkc domains are conserved in Syks from jawless to jawed vertebrates. From the absence and existence of the other seven motifs, it can be concluded that the primary Syk gene evolved to modern functional gene through short insertion and deletion strategy in their gene sequence rather than gene duplication. The expression of lamprey Syk was examined by real-time quantitative PCR and Western blot methods in leukocyte cells, gills, supraneural myeloid bodies, kidneys, and hearts of lampreys before and after the animals were stimulated with lipopolysaccharide (LPS). The transcriptional level of lamprey Syk was upregulated in gill, kidney, heart, and leukocyte cells, and the protein expression level is upregulated in leukocyte cells and supraneural myeloid bodies after stimulated with LPS. It could be deduced that Lj-Syk may play a crucial role in immune response of the jawless vertebrates.
Collapse
Affiliation(s)
- Chang Liu
- College of Life Science, Liaoning Normal University, Dalian, 116029, China
| | | | | | | | | | | | | |
Collapse
|
83
|
Manne BK, Badolia R, Dangelmaier C, Eble JA, Ellmeier W, Kahn M, Kunapuli SP. Distinct pathways regulate Syk protein activation downstream of immune tyrosine activation motif (ITAM) and hemITAM receptors in platelets. J Biol Chem 2015; 290:11557-68. [PMID: 25767114 DOI: 10.1074/jbc.m114.629527] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 11/06/2022] Open
Abstract
Tyrosine kinase pathways are known to play an important role in the activation of platelets. In particular, the GPVI and CLEC-2 receptors are known to activate Syk upon tyrosine phosphorylation of an immune tyrosine activation motif (ITAM) and hemITAM, respectively. However, unlike GPVI, the CLEC-2 receptor contains only one tyrosine motif in the intracellular domain. The mechanisms by which this receptor activates Syk are not completely understood. In this study, we identified a novel signaling mechanism in CLEC-2-mediated Syk activation. CLEC-2-mediated, but not GPVI-mediated, platelet activation and Syk phosphorylation were abolished by inhibition of PI3K, which demonstrates that PI3K regulates Syk downstream of CLEC-2. Ibrutinib, a Tec family kinase inhibitor, also completely abolished CLEC-2-mediated aggregation and Syk phosphorylation in human and murine platelets. Furthermore, embryos lacking both Btk and Tec exhibited cutaneous edema associated with blood-filled vessels in a typical lymphatic pattern similar to CLEC-2 or Syk-deficient embryos. Thus, our data show, for the first time, that PI3K and Tec family kinases play a crucial role in the regulation of platelet activation and Syk phosphorylation downstream of the CLEC-2 receptor.
Collapse
Affiliation(s)
- Bhanu Kanth Manne
- From the Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Rachit Badolia
- From the Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Carol Dangelmaier
- From the Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Johannes A Eble
- the Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Wilfried Ellmeier
- the Division of Immunobiology, Institution of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria, and
| | - Mark Kahn
- the Department of Medicine and Division of Cardiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5159
| | - Satya P Kunapuli
- From the Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140,
| |
Collapse
|
84
|
Muellner MK, Mair B, Ibrahim Y, Kerzendorfer C, Lechtermann H, Trefzer C, Klepsch F, Müller AC, Leitner E, Macho-Maschler S, Superti-Furga G, Bennett KL, Baselga J, Rix U, Kubicek S, Colinge J, Serra V, Nijman SMB. Targeting a cell state common to triple-negative breast cancers. Mol Syst Biol 2015; 11:789. [PMID: 25699542 PMCID: PMC4358660 DOI: 10.15252/msb.20145664] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Some mutations in cancer cells can be exploited for therapeutic intervention. However, for many cancer subtypes, including triple-negative breast cancer (TNBC), no frequently recurring aberrations could be identified to make such an approach clinically feasible. Characterized by a highly heterogeneous mutational landscape with few common features, many TNBCs cluster together based on their ‘basal-like’ transcriptional profiles. We therefore hypothesized that targeting TNBC cells on a systems level by exploiting the transcriptional cell state might be a viable strategy to find novel therapies for this highly aggressive disease. We performed a large-scale chemical genetic screen and identified a group of compounds related to the drug PKC412 (midostaurin). PKC412 induced apoptosis in a subset of TNBC cells enriched for the basal-like subtype and inhibited tumor growth in vivo. We employed a multi-omics approach and computational modeling to address the mechanism of action and identified spleen tyrosine kinase (SYK) as a novel and unexpected target in TNBC. Quantitative phosphoproteomics revealed that SYK inhibition abrogates signaling to STAT3, explaining the selectivity for basal-like breast cancer cells. This non-oncogene addiction suggests that chemical SYK inhibition may be beneficial for a specific subset of TNBC patients and demonstrates that targeting cell states could be a viable strategy to discover novel treatment strategies.
Collapse
Affiliation(s)
- Markus K Muellner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Barbara Mair
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Yasir Ibrahim
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Claudia Kerzendorfer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Hannelore Lechtermann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Claudia Trefzer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Freya Klepsch
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ernestine Leitner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - José Baselga
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Uwe Rix
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jacques Colinge
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Sebastian M B Nijman
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
85
|
Wu NL, Huang DY, Tsou HN, Lin YC, Lin WW. Syk Mediates IL−17-Induced CCL20 Expression by Targeting Act1-Dependent K63-Linked Ubiquitination of TRAF6. J Invest Dermatol 2015; 135:490-498. [DOI: 10.1038/jid.2014.383] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 12/21/2022]
|
86
|
Lin YC, Huang DY, Wang JS, Lin YL, Hsieh SL, Huang KC, Lin WW. Syk is involved in NLRP3 inflammasome-mediated caspase-1 activation through adaptor ASC phosphorylation and enhanced oligomerization. J Leukoc Biol 2015; 97:825-835. [PMID: 25605870 DOI: 10.1189/jlb.3hi0814-371rr] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/03/2014] [Accepted: 11/30/2014] [Indexed: 12/27/2022] Open
Abstract
NLRP3 is the most crucial member of the NLR family, as it detects the existence of pathogen invasion and self-derived molecules associated with cellular damage. Several studies have reported that excessive NLRP3 inflammasome-mediated caspase-1 activation is a key factor in the development of diseases. Recent studies have reported that Syk is involved in pathogen-induced NLRP3 inflammasome activation; however, the detailed mechanism linking Syk to NLRP3 inflammasome remains unclear. In this study, we showed that Syk mediates NLRP3 stimuli-induced processing of procaspase-1 and the consequent activation of caspase-1. Moreover, the kinase activity of Syk is required to potentiate caspase-1 activation in a reconstituted NLRP3 inflammasome system in HEK293T cells. The adaptor protein ASC bridges NLRP3 with the effector protein caspase-1. Herein, we find that Syk can associate directly with ASC and NLRP3 by its kinase domain but interact indirectly with procaspase-1. Syk can phosphorylate ASC at Y146 and Y187 residues, and the phosphorylation of both residues is critical to enhance ASC oligomerization and the recruitment of procaspase-1. Together, our results reveal a new molecular pathway through which Syk promotes NLRP3 inflammasome formation, resulting from the phosphorylation of ASC. Thus, the control of Syk activity might be effective to modulate NLRP3 inflammasome activation and treat NLRP3-related immune diseases.
Collapse
Affiliation(s)
- Ying-Cing Lin
- *Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences and Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences and Genomics Research Center, Academia Sinica, Taipei, Taiwan; and Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Duen-Yi Huang
- *Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences and Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences and Genomics Research Center, Academia Sinica, Taipei, Taiwan; and Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jang-Shiun Wang
- *Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences and Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences and Genomics Research Center, Academia Sinica, Taipei, Taiwan; and Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ling Lin
- *Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences and Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences and Genomics Research Center, Academia Sinica, Taipei, Taiwan; and Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shie-Liang Hsieh
- *Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences and Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences and Genomics Research Center, Academia Sinica, Taipei, Taiwan; and Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuo-Chin Huang
- *Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences and Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences and Genomics Research Center, Academia Sinica, Taipei, Taiwan; and Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wan-Wan Lin
- *Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences and Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences and Genomics Research Center, Academia Sinica, Taipei, Taiwan; and Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
87
|
Ghotra VPS, He S, van der Horst G, Nijhoff S, de Bont H, Lekkerkerker A, Janssen R, Jenster G, van Leenders GJLH, Hoogland AMM, Verhoef EI, Baranski Z, Xiong J, van de Water B, van der Pluijm G, Snaar-Jagalska BE, Danen EHJ. SYK is a candidate kinase target for the treatment of advanced prostate cancer. Cancer Res 2015; 75:230-40. [PMID: 25388286 DOI: 10.1158/0008-5472.can-14-0629] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Improved targeted therapies are needed to combat metastatic prostate cancer. Here, we report the identification of the spleen kinase SYK as a mediator of metastatic dissemination in zebrafish and mouse xenograft models of human prostate cancer. Although SYK has not been implicated previously in this disease, we found that its expression is upregulated in human prostate cancers and associated with malignant progression. RNAi-mediated silencing prevented invasive outgrowth in vitro and bone colonization in vivo, effects that were reversed by wild-type but not kinase-dead SYK expression. In the absence of SYK expression, cell surface levels of the progression-associated adhesion receptors integrin α2β1 and CD44 were diminished. RNAi-mediated silencing of α2β1 phenocopied SYK depletion in vitro and in vivo, suggesting an effector role for α2β1 in this setting. Notably, pharmacologic inhibitors of SYK kinase currently in phase I-II trials for other indications interfered similarly with the invasive growth and dissemination of prostate cancer cells. Our findings offer a mechanistic rationale to reposition SYK kinase inhibitors for evaluation in patients with metastatic prostate cancer.
Collapse
Affiliation(s)
- Veerander P S Ghotra
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Shuning He
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, Leiden, the Netherlands
| | | | - Steffen Nijhoff
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Hans de Bont
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | | | | | - Guido Jenster
- Department of Urology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - A Marije M Hoogland
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Esther I Verhoef
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Zuzanna Baranski
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Jiangling Xiong
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Bob van de Water
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Gabri van der Pluijm
- Department of Urology, Leiden University Medical Center, Leiden, the Netherlands
| | - B Ewa Snaar-Jagalska
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, Leiden, the Netherlands.
| | - Erik H J Danen
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
88
|
Barrera-Vargas A, Gómez-Martín D, Alcocer-Varela J. T cell receptor-associated protein tyrosine kinases: the dynamics of tolerance regulation by phosphorylation and its role in systemic lupus erythematosus. Hum Immunol 2014; 75:945-52. [PMID: 25173412 DOI: 10.1016/j.humimm.2014.08.207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 06/10/2014] [Accepted: 08/21/2014] [Indexed: 01/27/2023]
Abstract
There are different abnormalities that lead to the autoreactive phenotype in T cells from systemic lupus erythematosus (SLE) patients. Proximal signaling, involving the T-cell receptor (TCR) and its associated protein tyrosine kinases (PTKs), is significantly affected in SLE. This ultimately leads to aberrant responses, which include enhanced tyrosine phosphorylation and calcium release, as well as decreased IL-2 secretion. Lck, ZAP70 and Syk, which are PTKs with a major role in proximal signaling, all present abnormal functioning that contributes to an altered T cell response in these patients. A number of other molecules, especially regulatory proteins, are also involved. This review will focus on the PTKs that participate in proximal signaling, with specific emphasis on their relevance in maintaining peripheral tolerance, their abnormalities in SLE and how these contribute to an altered T cell response.
Collapse
Affiliation(s)
- Ana Barrera-Vargas
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14000 Mexico City, Mexico.
| | - Diana Gómez-Martín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14000 Mexico City, Mexico.
| | - Jorge Alcocer-Varela
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14000 Mexico City, Mexico.
| |
Collapse
|
89
|
Jayasundera K, Iliuk AB, Nguyen A, Higgins R, Geahlen RL, Tao WA. Global phosphoproteomics of activated B cells using complementary metal ion functionalized soluble nanopolymers. Anal Chem 2014; 86:6363-71. [PMID: 24905233 PMCID: PMC4079319 DOI: 10.1021/ac500599r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/06/2014] [Indexed: 02/01/2023]
Abstract
Engagement of the B cell receptor for antigen (BCR) leads to immune responses through a cascade of intracellular signaling events. Most studies to date have focused on the BCR and protein tyrosine phosphorylation. Because spleen tyrosine kinase, Syk, is an upstream kinase in multiple BCR-regulated signaling pathways, it also affects many downstream events that are modulated through the phosphorylation of proteins on serine and threonine residues. Here, we report a novel phosphopeptide enrichment strategy and its application to a comprehensive quantitative phosphoproteomics analysis of Syk-dependent downstream signaling events in B cells, focusing on serine and threonine phosphorylation. Using a combination of the Syk inhibitor piceatannol, SILAC quantification, peptide fractionation, and complementary PolyMAC-Ti and PolyMAC-Zr enrichment techniques, we analyzed changes in BCR-stimulated protein phosphorylation that were dependent on the activity of Syk. We identified and quantified over 13,000 unique phosphopeptides, with a large percentage dependent on Syk activity in BCR-stimulated B cells. Our results not only confirmed many known functions of Syk, but more importantly, suggested many novel roles, including in the ubiquitin proteasome pathway, that warrant further exploration.
Collapse
Affiliation(s)
- Keerthi
B. Jayasundera
- Department
of Chemistry, Department of Biochemistry, School of Chemical Engineering, Department of Medicinal
Chemistry and Molecular Pharmacology, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anton B. Iliuk
- Department
of Chemistry, Department of Biochemistry, School of Chemical Engineering, Department of Medicinal
Chemistry and Molecular Pharmacology, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andrew Nguyen
- Department
of Chemistry, Department of Biochemistry, School of Chemical Engineering, Department of Medicinal
Chemistry and Molecular Pharmacology, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Renee Higgins
- Department
of Chemistry, Department of Biochemistry, School of Chemical Engineering, Department of Medicinal
Chemistry and Molecular Pharmacology, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Robert L. Geahlen
- Department
of Chemistry, Department of Biochemistry, School of Chemical Engineering, Department of Medicinal
Chemistry and Molecular Pharmacology, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - W. Andy Tao
- Department
of Chemistry, Department of Biochemistry, School of Chemical Engineering, Department of Medicinal
Chemistry and Molecular Pharmacology, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
90
|
Functional roles of Syk in macrophage-mediated inflammatory responses. Mediators Inflamm 2014; 2014:270302. [PMID: 25045209 PMCID: PMC4090447 DOI: 10.1155/2014/270302] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 05/27/2014] [Indexed: 01/09/2023] Open
Abstract
Inflammation is a series of complex biological responses to protect the host from pathogen invasion. Chronic inflammation is considered a major cause of diseases, such as various types of inflammatory/autoimmune diseases and cancers. Spleen tyrosine kinase (Syk) was initially found to be highly expressed in hematopoietic cells and has been known to play crucial roles in adaptive immune responses. However, recent studies have reported that Syk is also involved in other biological functions, especially in innate immune responses. Although Syk has been extensively studied in adaptive immune responses, numerous studies have recently presented evidence that Syk has critical functions in macrophage-mediated inflammatory responses and is closely related to innate immune response. This review describes the characteristics of Syk-mediated signaling pathways, summarizes the recent findings supporting the crucial roles of Syk in macrophage-mediated inflammatory responses and diseases, and discusses Syk-targeted drug development for the therapy of inflammatory diseases.
Collapse
|
91
|
Patterson H, Nibbs R, McInnes I, Siebert S. Protein kinase inhibitors in the treatment of inflammatory and autoimmune diseases. Clin Exp Immunol 2014; 176:1-10. [PMID: 24313320 PMCID: PMC3958149 DOI: 10.1111/cei.12248] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 12/12/2022] Open
Abstract
Protein kinases mediate protein phosphorylation, which is a fundamental component of cell signalling, with crucial roles in most signal transduction cascades: from controlling cell growth and proliferation to the initiation and regulation of immunological responses. Aberrant kinase activity is implicated in an increasing number of diseases, with more than 400 human diseases now linked either directly or indirectly to protein kinases. Protein kinases are therefore regarded as highly important drug targets, and are the subject of intensive research activity. The success of small molecule kinase inhibitors in the treatment of cancer, coupled with a greater understanding of inflammatory signalling cascades, has led to kinase inhibitors taking centre stage in the pursuit for new anti-inflammatory agents for the treatment of immune-mediated diseases. Herein we discuss the main classes of kinase inhibitors; namely Janus kinase (JAK), mitogen-activated protein kinase (MAPK) and spleen tyrosine kinase (Syk) inhibitors. We provide a mechanistic insight into how these inhibitors interfere with kinase signalling pathways and discuss the clinical successes and failures in the implementation of kinase-directed therapeutics in the context of inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- H Patterson
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
| | - R Nibbs
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
| | - I McInnes
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
| | - S Siebert
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
| |
Collapse
|
92
|
Puri KD, Di Paolo JA, Gold MR. B-cell receptor signaling inhibitors for treatment of autoimmune inflammatory diseases and B-cell malignancies. Int Rev Immunol 2014; 32:397-427. [PMID: 23886342 DOI: 10.3109/08830185.2013.818140] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
B-cell receptor (BCR) signaling is essential for normal B-cell development, selection, survival, proliferation, and differentiation into antibody-secreting cells. Similarly, this pathway plays a key role in the pathogenesis of multiple B-cell malignancies. Genetic and pharmacological approaches have established an important role for the Spleen tyrosine kinase (Syk), Bruton's tyrosine kinase (Btk), and phosphatidylinositol 3-kinase isoform p110delta (PI3Kδ) in coupling the BCR and other BCRs to B-cell survival, migration, and activation. In the past few years, several small-molecule inhibitory drugs that target PI3Kδ, Btk, and Syk have been developed and shown to have efficacy in clinical trials for the treatment of several types of B-cell malignancies. Emerging preclinical data have also shown a critical role of BCR signaling in the activation and function of self-reactive B cells that contribute to autoimmune diseases. Because BCR signaling plays a major role in both B-cell-mediated autoimmune inflammation and B-cell malignancies, inhibition of this pathway may represent a promising new strategy for treating these diseases. This review summarizes recent achievements in the mechanism of action, pharmacological properties, and clinical activity and toxicity of these BCR signaling inhibitors, with a focus on their emerging role in treating lymphoid malignancies and autoimmune disorders.
Collapse
|
93
|
Ghosh AK, Kay NE. Critical signal transduction pathways in CLL. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 792:215-39. [PMID: 24014299 DOI: 10.1007/978-1-4614-8051-8_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Receptor tyrosine kinases (RTKs) are cell-surface transmembrane receptors that contain regulated kinase activity within their cytoplasmic domain and play a critical role in signal transduction in both normal and malignant cells. Besides B cell receptor (BCR) signaling in chronic lymphocytic leukemia (CLL), multiple RTKs have been reported to be constitutively active in CLL B cells, resulting in enhanced survival and resistance to apoptosis of the leukemic cells induced by chemotherapeutic agents. In addition to increased plasma levels of various types of cytokines/growth factors in CLL, we and others have detected that CLL B cells spontaneously produce multiple cytokines in vitro which may constitute an autocrine loop of RTK activation on the leukemic B cells. Moreover, aberrant expression and activation of non-RTKs, for example, Src/Syk kinases, induce resistance of the leukemic B cells to therapy. Based on current available knowledge, we detailed the impact of aberrant activities of various RTKs/non-RTKs on CLL B cell survival and the potential of using these signaling components as future therapeutic targets in CLL therapy.
Collapse
Affiliation(s)
- Asish K Ghosh
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | |
Collapse
|
94
|
Discovery of dual ZAP70 and Syk kinases inhibitors by docking into a rare C-helix-out conformation of Syk. Bioorg Med Chem Lett 2014; 24:1523-7. [PMID: 24569110 DOI: 10.1016/j.bmcl.2014.01.083] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 01/02/2023]
Abstract
The non-receptor tyrosine kinase Syk (spleen tyrosine kinase) is a pharmaceutical relevant target because its over-activation is observed in several autoimmune diseases, allergy, and asthma. Here we report the identification of two novel inhibitors of Syk by high-throughput docking into a rare C-helix-out conformation published recently. Interestingly, both compounds are slightly more active on ZAP70 (Zeta-chain-associated protein kinase 70), which is the kinase closest to Syk in the phylogenetic tree of human kinases. Taken together, the docking pose and experimental results suggest that the higher affinity of the inhibitors for ZAP70 than Syk originates from a more populated C-helix-out conformation in ZAP70. The latter observation is congruent with the 100-fold lower intrinsic activity of ZAP70 than Syk, as the C-helix-out conformation is inactive. The pharmacophore features of DFG-in, C-helix-out compounds are analyzed in relation to DFG-out inhibitors.
Collapse
|
95
|
Baluom M, Grossbard EB, Mant T, Lau DTW. Pharmacokinetics of fostamatinib, a spleen tyrosine kinase (SYK) inhibitor, in healthy human subjects following single and multiple oral dosing in three phase I studies. Br J Clin Pharmacol 2014. [PMID: 23190017 DOI: 10.1111/bcp.12048] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM Fostamatinib (R788) is an orally dosed prodrug designed to deliver the active metabolite R940406 (R406), a spleen tyrosine kinase (SYK) inhibitor, for the treatment of rheumatoid arthritis. The objectives were to evaluate the human pharmacokinetic properties of fostamatinib and R406. METHOD Three clinical studies were conducted in healthy subjects: (A) A single ascending dose study for R406 with doses ranging from 80-600 mg, (B) a single- and multiple-dose study of fostamatinib in aqueous suspension, with single doses ranging from 80-400 mg and multiple doses at 160 mg twice daily and (C) a study comparing suspension and tablet of fostamatinib, with the latter tested in both fed and fasted states. RESULTS These studies demonstrated that when administered as a solution, R406 was rapidly absorbed. Increases in exposure were observed with doses up to 400 mg. A terminal half-life of 12-21 h was observed. Similar R406 exposure could be achieved with fostamatinib suspension and steady-state was achieved after 3-4 days following twice daily administration. Fostamatinib tablet and suspension exhibited similar R406 exposure. Upon co-administration with food, a delay in peak time and lower peak concentrations of R406 were observed but at the same time the overall exposure did not change. CONCLUSION Fostamatinib demonstrates rapid and extensive conversion to R406, an inhibitor of SYK. Solid dosage forms of fostamatinib overcome the challenge of low aqueous solubility of R406. The PK profile of R406 could potentially allow once daily or twice daily oral administration of fostamatinib.
Collapse
Affiliation(s)
- Muhammad Baluom
- Rigel Pharmaceuticals, Inc., 1180 Veterans Blvd., South San Francisco, CA 94080, USA.
| | | | | | | |
Collapse
|
96
|
Type II phosphatidylinositol 4-kinases interact with FcεRIγ subunit in RBL-2H3 cells. Mol Cell Biochem 2014; 390:197-203. [PMID: 24481753 DOI: 10.1007/s11010-014-1970-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
Ligation of high-affinity IgE receptor I (FcεRI) on RBL-2H3 cells leads to recruitment of FcεRI and type II phosphatidylinositol 4-kinases (PtdIns 4-kinases) into lipid rafts. Lipid raft integrity is required for the activation of type II PtdIns 4-kinases and signal transduction through FcεRIγ during RBL-2H3 cell activation. However, the molecular mechanism by which PtdIns 4-kinases are coupled to FcεRI signaling is elusive. Here, we report association of type II PtdIns 4-kinase activity with FcεRIγ subunit in anti-FcεRIγ immunoprecipitates. FcεRIγ-associated PtdIns 4-kinase activity increases threefold upon FcεRI ligation in anti-FcεRIγ immunoprecipitates. Biochemical characterization of PtdIns 4-kinase activity associated with FcεRIγ reveals that it is a type II PtdIns 4-kinases. Canonical tyrosine residues mutation in FcεRIγ ITAM (Y65 and Y76) reveals that these two tyrosine residues in γ subunit are required for its interaction with type II PtdIns 4-kinases.
Collapse
|
97
|
Coffey G, Betz A, Graf J, Stephens G, Hua Lin P, Imboden J, Sinha U. Methotrexate and a spleen tyrosine kinase inhibitor cooperate to inhibit responses to peripheral blood B cells in rheumatoid arthritis. Pharmacol Res Perspect 2013; 1:e00016. [PMID: 25505569 PMCID: PMC4186432 DOI: 10.1002/prp2.16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/09/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Selective disruption of the spleen tyrosine kinase (Syk) represents a novel strategy to control B-cell functional responses by inhibition of B-cell antigen receptor (BCR) signaling. PRT062607 (P505-15) is a highly selective small molecule Syk inhibitor that potently suppresses B-cell function in human and rodent blood, and reduces inflammation in rodent models of rheumatoid arthritis (RA). AIMS In this study, we sought to determine the potency of Syk inhibition by PRT062607 in whole blood from RA patients, and elucidate covariates that affect the potency of immune-regulation by this compound. MATERIALS AND METHODS Whole blood was collected from 30 patients diagnosed with RA as part of a single-center outpatient study. Disease severity, serum protein markers of inflammation, and co-medications were related to each other, and to PRT062607 activity in ex vivo Syk-mediated immune function assays. RESULTS We report here that PRT062607 exhibited greater potency in suppressing BCR mediated B-cell functional responses in whole blood from RA patients who received stable methotrexate (MTX) therapy. We demonstrate that the B-cell functional response to BCR ligation is influenced by cytokines and JAK/STAT signaling. DISCUSSION MTX is a known cytokine modulating agent, and this mechanism may act in concert with PRT062607 to control B-cell function. CONCLUSION These data have important implications for the co-administration of Syk inhibitors and MTX for the treatment of RA.
Collapse
Affiliation(s)
- Greg Coffey
- Portola Pharmaceuticals, Inc. South San Francisco, California, 94080
| | - Andreas Betz
- Portola Pharmaceuticals, Inc. South San Francisco, California, 94080
| | - Jonathan Graf
- University of California San Francisco, School of Medicine San Francisco, California, 94143
| | - Gillian Stephens
- Portola Pharmaceuticals, Inc. South San Francisco, California, 94080
| | - Pei Hua Lin
- Portola Pharmaceuticals, Inc. South San Francisco, California, 94080
| | - John Imboden
- University of California San Francisco, School of Medicine San Francisco, California, 94143
| | - Uma Sinha
- Portola Pharmaceuticals, Inc. South San Francisco, California, 94080
| |
Collapse
|
98
|
Futosi K, Fodor S, Mócsai A. Reprint of Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 2013; 17:1185-97. [PMID: 24263067 DOI: 10.1016/j.intimp.2013.11.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/07/2012] [Accepted: 06/09/2013] [Indexed: 12/13/2022]
Abstract
Neutrophils play a critical role in the host defense against bacterial and fungal infections, but their inappropriate activation also contributes to tissue damage during autoimmune and inflammatory diseases. Neutrophils express a large number of cell surface receptors for the recognition of pathogen invasion and the inflammatory environment. Those include G-protein-coupled chemokine and chemoattractant receptors, Fc-receptors, adhesion receptors such as selectins/selectin ligands and integrins, various cytokine receptors, as well as innate immune receptors such as Toll-like receptors and C-type lectins. The various cell surface receptors trigger very diverse signal transduction pathways including activation of heterotrimeric and monomeric G-proteins, receptor-induced and store-operated Ca(2+) signals, protein and lipid kinases, adapter proteins and cytoskeletal rearrangement. Here we provide an overview of the receptors involved in neutrophil activation and the intracellular signal transduction processes they trigger. This knowledge is crucial for understanding how neutrophils participate in antimicrobial host defense and inflammatory tissue damage and may also point to possible future targets of the pharmacological therapy of neutrophil-mediated autoimmune or inflammatory diseases.
Collapse
Affiliation(s)
- Krisztina Futosi
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
| | | | | |
Collapse
|
99
|
Futosi K, Fodor S, Mócsai A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 2013; 17:638-50. [PMID: 23994464 PMCID: PMC3827506 DOI: 10.1016/j.intimp.2013.06.034] [Citation(s) in RCA: 476] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/07/2012] [Accepted: 06/09/2013] [Indexed: 12/29/2022]
Abstract
Neutrophils play a critical role in the host defense against bacterial and fungal infections, but their inappropriate activation also contributes to tissue damage during autoimmune and inflammatory diseases. Neutrophils express a large number of cell surface receptors for the recognition of pathogen invasion and the inflammatory environment. Those include G-protein-coupled chemokine and chemoattractant receptors, Fc-receptors, adhesion receptors such as selectins/selectin ligands and integrins, various cytokine receptors, as well as innate immune receptors such as Toll-like receptors and C-type lectins. The various cell surface receptors trigger very diverse signal transduction pathways including activation of heterotrimeric and monomeric G-proteins, receptor-induced and store-operated Ca2 + signals, protein and lipid kinases, adapter proteins and cytoskeletal rearrangement. Here we provide an overview of the receptors involved in neutrophil activation and the intracellular signal transduction processes they trigger. This knowledge is crucial for understanding how neutrophils participate in antimicrobial host defense and inflammatory tissue damage and may also point to possible future targets of the pharmacological therapy of neutrophil-mediated autoimmune or inflammatory diseases. Neutrophils are crucial players in innate and adaptive immunity. Neutrophils also participate in autoimmune and inflammatory diseases. Various neutrophil receptors recognize pathogens and the inflammatory environment. The various cell surface receptors trigger diverse intracellular signaling. Neutrophil receptors and signaling are potential targets in inflammatory diseases.
Collapse
Affiliation(s)
- Krisztina Futosi
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
| | - Szabina Fodor
- Department of Computer Science, Corvinus University of Budapest, 1093 Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
- Corresponding author at: Department of Physiology, Semmelweis University School of Medicine, Tűzoltó utca 37–47, 1094 Budapest, Hungary. Tel.: + 36 1 459 1500x60 409; fax: + 36 1 266 7480.
| |
Collapse
|
100
|
Lin YC, Huang DY, Chu CL, Lin YL, Lin WW. The tyrosine kinase Syk differentially regulates Toll-like receptor signaling downstream of the adaptor molecules TRAF6 and TRAF3. Sci Signal 2013; 6:ra71. [PMID: 23962979 DOI: 10.1126/scisignal.2003973] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Toll-like receptors (TLRs) are a major family of pattern recognition receptors, and they play a crucial role in innate immune responses. Activation of TLR4 signaling at the plasma membrane by its ligand lipopolysaccharide (LPS) stimulates a proinflammatory pathway dependent on the E3 ubiquitin ligase TRAF6 (tumor necrosis factor receptor-associated factor 6) and the kinase TAK1 (transforming growth factor β-activated kinase 1), whereas TLR4 signaling at endosomes stimulates the production of type I interferons (IFNs) through a pathway that depends on TRAF3 and the kinase TBK1 (TANK-binding kinase-1). We found that the nonreceptor tyrosine kinase Syk partially mediated the endocytosis of TLR4, but it also played a dual role in TLR4-mediated signaling. LPS-dependent stimulation of TLR4 in Syk-deficient macrophages led to enhanced activation of TAK1 and increased production of proinflammatory cytokines compared to that in wild-type macrophages. In contrast, Syk-deficient macrophages exhibited decreased TLR4-dependent activation of TBK1 signaling and production of type I IFNs. We found that Syk was present in both TRAF6- and TRAF3-containing signaling complexes; however, the LPS-dependent, lysine 63-linked ubiquitination of TRAF6 and TRAF3 was oppositely regulated by Syk. We identified the domains of Syk that interacted with TRAF3, TRAF6, TAK1, and TBK1, factors activated by multiple TLRs, which suggests that Syk may act as a common regulator of various TLR responses. Together, our results demonstrate the opposing regulatory roles of Syk in TLR-mediated TRAF6 and TRAF3 signaling pathways, which suggests that Syk may fine-tune the innate immune response to lessen inflammation.
Collapse
Affiliation(s)
- Ying-Cing Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | | | | | | | | |
Collapse
|