51
|
Adhesion of enteropathogenic, enterotoxigenic and commensal Escherichia coli to the Major Zymogen Granule Membrane Glycoprotein 2. Appl Environ Microbiol 2022; 88:e0227921. [PMID: 35020452 PMCID: PMC8904060 DOI: 10.1128/aem.02279-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic bacteria, such as enteropathogenic Escherichia coli (EPEC) and enterotoxigenic E. coli (ETEC), cause diarrhea in mammals. In particular, E. coli colonizes and infects the gastrointestinal tract via type 1 fimbriae (T1F). Here, the major zymogen granule membrane glycoprotein 2 (GP2) acts as a host cell receptor. GP2 is also secreted by the pancreas and various mucous glands, interacting with luminal type 1 fimbriae-positive E. coli. It is unknown whether GP2 isoforms demonstrate specific E. coli pathotype binding. In this study, we investigated interactions of human, porcine, and bovine EPEC and ETEC, as well as commensal E. coli isolates with human, porcine, and bovine GP2. We first defined pathotype- and host-associated FimH variants. Second, we could prove that GP2 isoforms bound to FimH variants to various degrees. However, the GP2-FimH interactions did not seem to be influenced by the host specificity of E. coli. In contrast, soluble GP2 affected ETEC infection and phagocytosis rates of macrophages. Preincubation of the ETEC pathotype with GP2 reduced the infection of cell lines. Furthermore, preincubation of E. coli with GP2 improved the phagocytosis rate of macrophages. Our findings suggest that GP2 plays a role in the defense against E. coli infection and in the corresponding host immune response. IMPORTANCE Infection by pathogenic bacteria, such as certain Escherichia coli pathotypes, results in diarrhea in mammals. Pathogens, including zoonotic agents, can infect different hosts or show host specificity. There are Escherichia coli strains which are frequently transmitted between humans and animals, whereas other Escherichia coli strains tend to colonize only one host. This host specificity is still not fully understood. We show that glycoprotein 2 is a selective receptor for particular Escherichia coli strains or variants of the adhesin FimH but not a selector for a species-specific Escherichia coli group. We demonstrate that GP2 is involved in the regulation of colonization and infection and thus represents a molecule of interest for the prevention or treatment of disease.
Collapse
|
52
|
Irgen-Gioro S, Yoshida S, Walling V, Chong S. Fixation can change the appearance of phase separation in living cells. eLife 2022; 11:79903. [PMID: 36444977 PMCID: PMC9817179 DOI: 10.7554/elife.79903] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022] Open
Abstract
Fixing cells with paraformaldehyde (PFA) is an essential step in numerous biological techniques as it is thought to preserve a snapshot of biomolecular transactions in living cells. Fixed-cell imaging techniques such as immunofluorescence have been widely used to detect liquid-liquid phase separation (LLPS) in vivo. Here, we compared images, before and after fixation, of cells expressing intrinsically disordered proteins that are able to undergo LLPS. Surprisingly, we found that PFA fixation can both enhance and diminish putative LLPS behaviors. For specific proteins, fixation can even cause their droplet-like puncta to artificially appear in cells that do not have any detectable puncta in the live condition. Fixing cells in the presence of glycine, a molecule that modulates fixation rates, can reverse the fixation effect from enhancing to diminishing LLPS appearance. We further established a kinetic model of fixation in the context of dynamic protein-protein interactions. Simulations based on the model suggest that protein localization in fixed cells depends on an intricate balance of protein-protein interaction dynamics, the overall rate of fixation, and notably, the difference between fixation rates of different proteins. Consistent with simulations, live-cell single-molecule imaging experiments showed that a fast overall rate of fixation relative to protein-protein interaction dynamics can minimize fixation artifacts. Our work reveals that PFA fixation changes the appearance of LLPS from living cells, presents a caveat in studying LLPS using fixation-based methods, and suggests a mechanism underlying the fixation artifact.
Collapse
Affiliation(s)
- Shawn Irgen-Gioro
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaUnited States
| | - Shawn Yoshida
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaUnited States,Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Victoria Walling
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaUnited States
| | - Shasha Chong
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
53
|
Sime-Ngando T, Jobard M. Real-Time Quantitative PCR Assay for the Assessment of Uncultured Zoosporic Fungi. Fungal Biol 2022. [DOI: 10.1007/978-3-030-83749-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
54
|
Zand E, Froehling A, Schoenher C, Zunabovic-Pichler M, Schlueter O, Jaeger H. Potential of Flow Cytometric Approaches for Rapid Microbial Detection and Characterization in the Food Industry-A Review. Foods 2021; 10:3112. [PMID: 34945663 PMCID: PMC8701031 DOI: 10.3390/foods10123112] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
As microbial contamination is persistent within the food and bioindustries and foodborne infections are still a significant cause of death, the detection, monitoring, and characterization of pathogens and spoilage microorganisms are of great importance. However, the current methods do not meet all relevant criteria. They either show (i) inadequate sensitivity, rapidity, and effectiveness; (ii) a high workload and time requirement; or (iii) difficulties in differentiating between viable and non-viable cells. Flow cytometry (FCM) represents an approach to overcome such limitations. Thus, this comprehensive literature review focuses on the potential of FCM and fluorescence in situ hybridization (FISH) for food and bioindustry applications. First, the principles of FCM and FISH and basic staining methods are discussed, and critical areas for microbial contamination, including abiotic and biotic surfaces, water, and air, are characterized. State-of-the-art non-specific FCM and specific FISH approaches are described, and their limitations are highlighted. One such limitation is the use of toxic and mutagenic fluorochromes and probes. Alternative staining and hybridization approaches are presented, along with other strategies to overcome the current challenges. Further research needs are outlined in order to make FCM and FISH even more suitable monitoring and detection tools for food quality and safety and environmental and clinical approaches.
Collapse
Affiliation(s)
- Elena Zand
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria;
| | - Antje Froehling
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Quality and Safety of Food and Feed, 14469 Potsdam, Germany; (A.F.); (O.S.)
| | - Christoph Schoenher
- Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (C.S.); (M.Z.-P.)
| | - Marija Zunabovic-Pichler
- Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (C.S.); (M.Z.-P.)
| | - Oliver Schlueter
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Quality and Safety of Food and Feed, 14469 Potsdam, Germany; (A.F.); (O.S.)
| | - Henry Jaeger
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria;
| |
Collapse
|
55
|
Bastian F, Melayah D, Hugoni M, Dempsey NM, Simonet P, Frenea-Robin M, Fraissinet-Tachet L. Eukaryotic Cell Capture by Amplified Magnetic in situ Hybridization Using Yeast as a Model. Front Microbiol 2021; 12:759478. [PMID: 34790184 PMCID: PMC8591292 DOI: 10.3389/fmicb.2021.759478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
A non-destructive approach based on magnetic in situ hybridization (MISH) and hybridization chain reaction (HCR) for the specific capture of eukaryotic cells has been developed. As a prerequisite, a HCR-MISH procedure initially used for tracking bacterial cells was here adapted for the first time to target eukaryotic cells using a universal eukaryotic probe, Euk-516R. Following labeling with superparamagnetic nanoparticles, cells from the model eukaryotic microorganism Saccharomyces cerevisiae were hybridized and isolated on a micro-magnet array. In addition, the eukaryotic cells were successfully targeted in an artificial mixture comprising bacterial cells, thus providing evidence that HCR-MISH is a promising technology to use for specific microeukaryote capture in complex microbial communities allowing their further morphological characterization. This new study opens great opportunities in ecological sciences, thus allowing the detection of specific cells in more complex cellular mixtures in the near future.
Collapse
Affiliation(s)
- Fabiola Bastian
- DTAMB, Université Claude Bernard Lyon 1, Bât. Gregor Mendel, Villeurbanne Cedex, France
| | - Delphine Melayah
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Mylène Hugoni
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
- Institut Universitaire de France (IUF), Paris, France
| | - Nora M. Dempsey
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, France
| | - Pascal Simonet
- Université Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, INSA Lyon, CNRS, Ampère, UMR 5005, Ecully, France
| | - Marie Frenea-Robin
- Université Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, INSA Lyon, CNRS, Ampère, UMR 5005, Ecully, France
| | - Laurence Fraissinet-Tachet
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
56
|
Siqueira JF, Rôças IN. A critical analysis of research methods and experimental models to study the root canal microbiome. Int Endod J 2021; 55 Suppl 1:46-71. [PMID: 34714548 DOI: 10.1111/iej.13656] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
Endodontic microbiology deals with the study of the microbial aetiology and pathogenesis of pulpal and periradicular inflammatory diseases. Research in endodontic microbiology started almost 130 years ago and since then has mostly focussed on establishing and confirming the infectious aetiology of apical periodontitis, identifying the microbial species associated with the different types of endodontic infections and determining the efficacy of treatment procedures in eradicating or controlling infection. Diverse analytical methods have been used over the years, each one with their own advantages and limitations. In this review, the main features and applications of the most used technologies are discussed, and advice is provided to improve study designs in order to properly address the scientific questions and avoid setbacks that can compromise the results. Finally, areas of future research are described.
Collapse
Affiliation(s)
- José F Siqueira
- Department of Endodontics and Molecular Microbiology Laboratory, Faculty of Dentistry, Grande Rio University, Rio de Janeiro, Brazil.,Department of Dental Research, Faculty of Dentistry, Iguaçu University (UNIG), Nova Iguaçu, Brazil
| | - Isabela N Rôças
- Department of Endodontics and Molecular Microbiology Laboratory, Faculty of Dentistry, Grande Rio University, Rio de Janeiro, Brazil.,Department of Dental Research, Faculty of Dentistry, Iguaçu University (UNIG), Nova Iguaçu, Brazil
| |
Collapse
|
57
|
Cong S, Xu Y, Lu Y. Growth Coordination Between Butyrate-Oxidizing Syntrophs and Hydrogenotrophic Methanogens. Front Microbiol 2021; 12:742531. [PMID: 34603271 PMCID: PMC8481629 DOI: 10.3389/fmicb.2021.742531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Syntrophy is a thermodynamically required mutualistic cooperation between fatty acid-oxidizing bacteria and methanogens that plays the important role in organic decomposition and methanogenesis in anoxic environments. In this study, three experiments were conducted to evaluate the cell-to-cell interaction in a thermophilic coculture consisting of Syntrophothermus lipocalidus and Methanocella conradii and a mesophilic coculture consisting of Syntrophomonas wolfei and Methanococcus maripaludis. First, syntrophs and methanogens were inoculated at different initial cell ratios to evaluate the growth synchronization. The quantitative PCR analysis revealed that the organism with a lower relative abundance at the beginning always grew faster, and the cell ratio converged over time to relative constant values in both the thermophilic and mesophilic cocultures. Next, intermittent ultrasound and constant shaking treatments were used to evaluate the influence of physical disturbance on microbial aggregation in the mesophilic coculture. The fluorescence in situ hybridization and scanning electron microscopy revealed that the tendency of syntrophic aggregation was not affected by the physical disturbances, although the activity was slightly depressed. Syntrophomonas dominated in the initial microbial aggregates, which, however, did not grow until Methanococcus was attached and increased to a significant extent, indicating the local growth synchronization during the formation and maturation of syntrophic aggregates. Last, microfluidic experiments revealed that whether or not Syntrophomonas or Methanococcus was loaded first, the second organism preferred moving to the place where the first organism was located, suggesting the cell-to-cell attraction between Syntrophomonas and Methanococcus. Collectively, our study demonstrated the growth synchronization and cell-to-cell attraction between the butyrate-oxidizing bacteria and methanogens for optimizing the syntrophic cooperation.
Collapse
Affiliation(s)
- Shuqi Cong
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yiqin Xu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
58
|
Lahlali R, Ibrahim DS, Belabess Z, Kadir Roni MZ, Radouane N, Vicente CS, Menéndez E, Mokrini F, Barka EA, Galvão de Melo e Mota M, Peng G. High-throughput molecular technologies for unraveling the mystery of soil microbial community: challenges and future prospects. Heliyon 2021; 7:e08142. [PMID: 34693062 PMCID: PMC8515249 DOI: 10.1016/j.heliyon.2021.e08142] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/08/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Soil microbial communities play a crucial role in soil fertility, sustainability, and plant health. However, intensive agriculture with increasing chemical inputs and changing environments have influenced native soil microbial communities. Approaches have been developed to study the structure, diversity, and activity of soil microbes to better understand the biology and plant-microbe interactions in soils. Unfortunately, a good understanding of soil microbial community remains a challenge due to the complexity of community composition, interactions of the soil environment, and limitations of technologies, especially related to the functionality of some taxa rarely detected using conventional techniques. Culture-based methods have been shown unable and sometimes are biased for assessing soil microbial communities. To gain further knowledge, culture-independent methods relying on direct analysis of nucleic acids, proteins, and lipids are worth exploring. In recent years, metagenomics, metaproteomics, metatranscriptomics, and proteogenomics have been increasingly used in studying microbial ecology. In this review, we examined the importance of microbial community to soil quality, the mystery of rhizosphere and plant-microbe interactions, and the biodiversity and multi-trophic interactions that influence the soil structure and functionality. The impact of the cropping system and climate change on the soil microbial community was also explored. Importantly, progresses in molecular biology, especially in the development of high-throughput biotechnological tools, were extensively assessed for potential uses to decipher the diversity and dynamics of soil microbial communities, with the highlighted advantages/limitations.
Collapse
Affiliation(s)
- Rachid Lahlali
- Plant Pathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknes, BP S/40, 50001, Meknes, Morocco
| | - Dina S.S. Ibrahim
- Department of Nematodes Diseases and Central Lab of Biotechnology, Plant Pathology Research Institute, Agricultural Research Center (ARC), 12619, Egypt
| | - Zineb Belabess
- Plant Protection Laboratory. Regional Center of Agricultural Research of Oujda, National Institute of Agricultural Research, Avenue Mohamed VI, BP428 60000 Oujda, Morocco
| | - Md Zohurul Kadir Roni
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences (JIRCAS), 1091-1 Maezato-Kawarabaru, Ishigaki, Okinawa, 907-0002, Japan
| | - Nabil Radouane
- Plant Pathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknes, BP S/40, 50001, Meknes, Morocco
- Department of Biology, Laboratory of Functional Ecology and Environmental Engineering, FST-Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Cláudia S.L. Vicente
- MED – Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research (IIFA), Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
- INIAV, I.P. - Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, 2780-159 Oeiras, Portugal
| | - Esther Menéndez
- INIAV, I.P. - Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, 2780-159 Oeiras, Portugal
- Department of Microbiology and Genetics / Spanish-Portuguese Institute for Agricultural Research (CIALE). University of Salamanca, 37007, Salamanca, Spain
| | - Fouad Mokrini
- Plant Protection Laboratory, INRA, Centre Régional de la Recherche Agronomique (CRRA), Rabat, Morocco
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-protection des Plantes, EA 4707, USC, INRAe1488, Université de Reims Champagne-Ardenne, France
| | - Manuel Galvão de Melo e Mota
- NemaLab, MED – Mediterranean Institute for Agriculture, Environment and Development & Department of Biology, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Gary Peng
- Saskatoon Research Development Centre, Agriculture and Agri-Food, Saskatchewan, Canada
| |
Collapse
|
59
|
Esteves GM, Pereira JA, Azevedo NF, Azevedo AS, Mendes L. Friends with Benefits: An Inside Look of Periodontal Microbes' Interactions Using Fluorescence In Situ Hybridization-Scoping Review. Microorganisms 2021; 9:1504. [PMID: 34361938 PMCID: PMC8306857 DOI: 10.3390/microorganisms9071504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) has proven to be particularly useful to describe the microbial composition and spatial organization of mixed microbial infections, as it happens in periodontitis. This scoping review aims to identify and map all the documented interactions between microbes in periodontal pockets by the FISH technique. Three electronic sources of evidence were consulted in search of suitable articles up to 7 November 2020: MEDLINE (via PubMed), Scopus (Elsevier: Amsterdam, The Netherlands), and Web of Science (Clarivate Analytics: Philadelphia, PA, USA) online databases. Studies that showed ex vivo and in situ interactions between, at least, two microorganisms were found eligible. Ten papers were included. Layered or radially ordered multiple-taxon structures are the most common form of consortium. Strict or facultative anaerobic microorganisms are mostly found in the interior and the deepest portions of the structures, while aerobic microorganisms are mostly found on the periphery. We present a model of the microbial spatial organization in sub- and supragingival biofilms, as well as how the documented interactions can shape the biofilm formation. Despite the already acquired knowledge, available evidence regarding the structural composition and interactions of microorganisms within dental biofilms is incomplete and large-scale studies are needed.
Collapse
Affiliation(s)
- Guilherme Melo Esteves
- Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; (J.A.P.); (L.M.)
| | - José António Pereira
- Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; (J.A.P.); (L.M.)
| | - Nuno Filipe Azevedo
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (N.F.A.); (A.S.A.)
| | - Andreia Sofia Azevedo
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (N.F.A.); (A.S.A.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Luzia Mendes
- Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; (J.A.P.); (L.M.)
| |
Collapse
|
60
|
Schätzle PK, Wisshak M, Bick A, Freiwald A, Kieneke A. Exploring confocal laser scanning microscopy (CLSM) and fluorescence staining as a tool for imaging and quantifying traces of marine microbioerosion and their trace-making microendoliths. J Microsc 2021; 284:118-131. [PMID: 34231217 DOI: 10.1111/jmi.13046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/28/2022]
Abstract
Microscopic organisms that penetrate calcareous structures by actively dissolving the carbonate matrix, namely microendoliths, have an important influence on the breakdown of marine carbonates. The study of these microorganisms and the bioerosion traces they produce is crucial for understanding the impact of their bioeroding activity on the carbonate recycling in environments under global climate change. Traditionally, either the extracted microendoliths were studied by conventional microscopy or their traces were investigated using scanning electron microscopy (SEM) of epoxy resin casts. A visualisation of the microendoliths in situ, that is within their complex microbioerosion structures, was previously limited to the laborious and time-consuming double-inclusion cast-embedding technique. Here, we assess the applicability of various fluorescence staining methods in combination with confocal laser scanning microscopy (CLSM) for the study of fungal microendoliths in situ in partly translucent mollusc shells. Among the tested methods, specific staining with dyes against the DNA (nuclei) of the trace making organisms turned out to be a useful and reproducible approach. Bright and clearly delineated fluorescence signals of microendolithic nuclei allow, for instance, a differentiation between abandoned and still populated microborings. Furthermore, infiltrating the microborings with fluorescently stained resin seems to be of great capability for the visualisation and quantification of microbioerosion structures in their original spatial orientation. Potential fields of application are rapid assessments of endolithic bio- and ichnodiversity and the quantification of the impact of microendoliths on the overall calcium carbonate turnover. The method can be applied after CLSM of the stained microendoliths and retains the opportunity for a subsequent investigation of epoxy casts with SEM. This allows a three-fold approach in studying microendoliths in the context of their microborings, thereby fostering the integration of biological and ichnological aspects of microbial bioerosion.
Collapse
Affiliation(s)
- Philipp-Konrad Schätzle
- Institut für Biowissenschaften, Meeresbiologie, Universität Rostock, Albert-Einstein-Straße 3, Rostock, Germany
| | - Max Wisshak
- Senckenberg am Meer, Abteilung für Meeresforschung, Südstrand 40, Wilhelmshaven, Germany
| | - Andreas Bick
- Institut für Biowissenschaften, Allgemeine & Spezielle Zoologie, Universität Rostock, Universitätsplatz 2, Rostock, Germany
| | - André Freiwald
- Senckenberg am Meer, Abteilung für Meeresforschung, Südstrand 40, Wilhelmshaven, Germany.,Marum - Zentrum für Marine Umweltwissenschaften, Universität Bremen, Loebener Straße 8, Bremen, Germany
| | - Alexander Kieneke
- Senckenberg am Meer, Deutsches Zentrum für Marine Biodiversitätsforschung, Südstrand 44, Wilhelmshaven, Germany
| |
Collapse
|
61
|
Ye J, Ren G, Wang C, Hu A, Li F, Zhou S, He Z. A facile and fast strategy for cathodic electroactive-biofilm assembly via magnetic nanoparticle bioconjugation. Biosens Bioelectron 2021; 190:113464. [PMID: 34197998 DOI: 10.1016/j.bios.2021.113464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 02/04/2023]
Abstract
Microbial electrosynthesis is a promising electricity-driven technology for converting carbon dioxide into value-added compounds, but the formation of cathodic electroactive-biofilms (CEBs) is challenging. Herein, we have demonstrated an innovative strategy for CEBs assembly via magnetic nanoparticle bioconjugation, which lies in the synergistic interactions among a bonder (Streptavidin, SA), conductive nanomaterials (Fe3O4), and a methanogen (M. barkeri). The results showed that the bioconjugated M. barkeri-SA-Fe3O4 biohybrids significantly enhanced both methane yield (33.2-fold) and faradaic efficiency (5.6-fold), compared with that of bare M. barkeri. Such an enhancement was attributed to the improved viability of CEBs with a higher biomass density. Particularly, more live cells were presented in the inner biofilms and promoted the long-distance electron exchange between the live outer-layer biofilm and the cathode electrode. Meanwhile, the higher redox activity of CEBs with the M. barkeri-SA-Fe3O4 biohybrids resulted in an improved transient charge storage capability, which was beneficial for the biological CO2-to-CH4 conversion via acting as an additional electron donor. This work has provided a new approach to accelerate the formation of CEBs and subsequent electron transfer, which holds a great potential for accomplishing electrosynthesis and CO2 fixation.
Collapse
Affiliation(s)
- Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guoping Ren
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chao Wang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Andong Hu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fengqi Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
62
|
Spindler N, Moter A, Wiessner A, Gradistanac T, Borger M, Rodloff AC, Langer S, Kikhney J. Fluorescence in situ Hybridization (FISH) in the Microbiological Diagnostic of Deep Sternal Wound Infection (DSWI). Infect Drug Resist 2021; 14:2309-2319. [PMID: 34188497 PMCID: PMC8232876 DOI: 10.2147/idr.s310139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/04/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose Postoperative mediastinitis after cardiac surgery is still a devastating complication. Insufficient microbiological specimens obtained by superficial swabbing may only detect bacteria on the surface, but pathogens that are localized in the deep tissue may be missed. The aim of this study was to analyze deep sternal wound infection (DSWI) samples by conventional microbiological procedures and fluorescence in situ hybridization (FISH) in order to discuss a diagnostic benefit of the culture-independent methods and to map spatial organization of pathogens and microbial biofilms in the wounds. Methods Samples from 12 patients were collected and analyzed using classic microbiological culture and FISH in combination with molecular nucleic acid amplification techniques (FISHseq). Frequency of and the time to occurrence of a DSWI was recorded, previous operative interventions, complications, as well as individual risk factors and the microbiologic results were documented. Results Tissue samples were taken from 12 patients suffering from DSWI. Classical microbiological culture resulted in the growth of microorganisms in the specimens of five patients (42%), including bacteria and in one case Candida. FISHseq gave additional diagnostic information in five cases (41%) and confirmed culture results in seven cases (59%). Conclusion Microbial biofilms are not always present in DSWI wounds, but microorganisms are distributed in a “patchy” pattern in the tissue. Therefore, a deep excision of the wound has to be performed to control the infection. We recommend to analyze at least two wound samples from different locations by culture and in difficult to interpret cases, additional molecular biological analysis by FISHseq.
Collapse
Affiliation(s)
- Nick Spindler
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Annette Moter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Institute of Microbiology, Infectious Diseases and Immunology, Biofilmcenter, Berlin, Germany.,MoKi Analytics GmbH, Berlin, Germany
| | - Alexandra Wiessner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Institute of Microbiology, Infectious Diseases and Immunology, Biofilmcenter, Berlin, Germany.,MoKi Analytics GmbH, Berlin, Germany
| | - Tanja Gradistanac
- Department of Pathology, University Clinic Leipzig, Leipzig, Germany
| | - Michael Borger
- Department of Cardiac Surgery, Leipzig Heart Center, University of Leipzig, Leipzig, Germany
| | - Arne C Rodloff
- Institute of Microbiology and Epidemiology of Infectious Diseases, University Hospital Leipzig, Leipzig, Germany
| | - Stefan Langer
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Judith Kikhney
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Institute of Microbiology, Infectious Diseases and Immunology, Biofilmcenter, Berlin, Germany.,MoKi Analytics GmbH, Berlin, Germany
| |
Collapse
|
63
|
Clarke ZA, Andrews TS, Atif J, Pouyabahar D, Innes BT, MacParland SA, Bader GD. Tutorial: guidelines for annotating single-cell transcriptomic maps using automated and manual methods. Nat Protoc 2021; 16:2749-2764. [PMID: 34031612 DOI: 10.1038/s41596-021-00534-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 03/12/2021] [Indexed: 11/09/2022]
Abstract
Single-cell transcriptomics can profile thousands of cells in a single experiment and identify novel cell types, states and dynamics in a wide variety of tissues and organisms. Standard experimental protocols and analysis workflows have been developed to create single-cell transcriptomic maps from tissues. This tutorial focuses on how to interpret these data to identify cell types, states and other biologically relevant patterns with the objective of creating an annotated map of cells. We recommend a three-step workflow including automatic cell annotation (wherever possible), manual cell annotation and verification. Frequently encountered challenges are discussed, as well as strategies to address them. Guiding principles and specific recommendations for software tools and resources that can be used for each step are covered, and an R notebook is included to help run the recommended workflow. Basic familiarity with computer software is assumed, and basic knowledge of programming (e.g., in the R language) is recommended.
Collapse
Affiliation(s)
- Zoe A Clarke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Tallulah S Andrews
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jawairia Atif
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Delaram Pouyabahar
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Brendan T Innes
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Sonya A MacParland
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, Ontario, Canada. .,Department of Immunology, University of Toronto, Toronto, Ontario, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. .,The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada. .,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada. .,Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
64
|
Azevedo AS, Rocha R, Dias N. Flow-FISH Using Nucleic Acid Mimic Probes for the Detection of Bacteria. Methods Mol Biol 2021; 2246:263-277. [PMID: 33576995 DOI: 10.1007/978-1-0716-1115-9_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Flow-Fluorescence in situ hybridization (Flow-FISH) enables multiparametric high-throughput detection of target nucleic acid sequences at the single cell-level, allowing an accurate quantification of different cell populations by using a combination of flow cytometry and fluorescent in situ hybridization (FISH). In this chapter, a flow-FISH protocol is described with labeled nucleic acid mimics (NAMs) (e.g. LNA/2'OMe and PNA) acting as the reporter molecules. This protocol allows for the specific detection of bacterial cells. Hence, this protocol can be carried out with minor adjustments, in order to simultaneously detect different species of bacteria in different types of clinical, food, or environmental samples.
Collapse
Affiliation(s)
- Andreia S Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal. .,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, Porto, Portugal. .,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
| | - Rui Rocha
- CISAS - Centre for Research and Development in Agrifood Systems and Sustainability, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
| | - Nicolina Dias
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
65
|
Nardi P, Laanbroek HJ, Nicol GW, Renella G, Cardinale M, Pietramellara G, Weckwerth W, Trinchera A, Ghatak A, Nannipieri P. Biological nitrification inhibition in the rhizosphere: determining interactions and impact on microbially mediated processes and potential applications. FEMS Microbiol Rev 2021; 44:874-908. [PMID: 32785584 DOI: 10.1093/femsre/fuaa037] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Nitrification is the microbial conversion of reduced forms of nitrogen (N) to nitrate (NO3-), and in fertilized soils it can lead to substantial N losses via NO3- leaching or nitrous oxide (N2O) production. To limit such problems, synthetic nitrification inhibitors have been applied but their performance differs between soils. In recent years, there has been an increasing interest in the occurrence of biological nitrification inhibition (BNI), a natural phenomenon according to which certain plants can inhibit nitrification through the release of active compounds in root exudates. Here, we synthesize the current state of research but also unravel knowledge gaps in the field. The nitrification process is discussed considering recent discoveries in genomics, biochemistry and ecology of nitrifiers. Secondly, we focus on the 'where' and 'how' of BNI. The N transformations and their interconnections as they occur in, and are affected by, the rhizosphere, are also discussed. The NH4+ and NO3- retention pathways alternative to BNI are reviewed as well. We also provide hypotheses on how plant compounds with putative BNI ability can reach their targets inside the cell and inhibit ammonia oxidation. Finally, we discuss a set of techniques that can be successfully applied to solve unresearched questions in BNI studies.
Collapse
Affiliation(s)
- Pierfrancesco Nardi
- Consiglio per la ricerca e l'analisi dell'economia agraria - Research Centre for Agriculture and Environment (CREA-AA), Via della Navicella 2-4, Rome 00184, Italy
| | - Hendrikus J Laanbroek
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Graeme W Nicol
- Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Ecully, 69134, France
| | - Giancarlo Renella
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Massimiliano Cardinale
- Department of Biological and Environmental Sciences and Technologies - DiSTeBA, University of Salento, Centro Ecotekne - via Provinciale Lecce-Monteroni, I-73100, Lecce, Italy
| | - Giacomo Pietramellara
- Department of Agriculture, Food, Environment and Forestry, University of Firenze, P.le delle Cascine 28, Firenze 50144, Italy
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Alessandra Trinchera
- Consiglio per la ricerca e l'analisi dell'economia agraria - Research Centre for Agriculture and Environment (CREA-AA), Via della Navicella 2-4, Rome 00184, Italy
| | - Arindam Ghatak
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Paolo Nannipieri
- Department of Agriculture, Food, Environment and Forestry, University of Firenze, P.le delle Cascine 28, Firenze 50144, Italy
| |
Collapse
|
66
|
Kniggendorf AK, Nogueira R, Lorey C, Roth B. Calcium carbonate deposits and microbial assemblages on microplastics in oligotrophic freshwaters. CHEMOSPHERE 2021; 266:128942. [PMID: 33220990 DOI: 10.1016/j.chemosphere.2020.128942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Microplastics are solid polymer particles with a wide variety of surface properties, found in most waterbodies, and known as carriers of distinct microbial communities affecting the fate of the particles in the environment. Little is known about the formation of mineral deposits on microplastics and how these deposits connect to microbial assemblages and affect the physicochemical properties of the particles. In addition, most of the available research on this topic is based on large microplastics with sizes between 100 μm and up to 5 mm, rather than the small microplastics often found in drinking water sources. To narrow this gap in our understanding of environmental effects on small microplastics, two types of small microplastics made of two distinct polymers, poly(methyl methacrylate) (PMMA) and poly(tetrafluoroethylene) (PTFE) with sizes ranging from 15 to 150 μm, were incubated for six months in unprocessed and processed drinking water with increasing ionic concentration to allow for the formation of mineral deposits and microbial assemblages. Spatially resolved analysis with fluorescent in situ hybridization and confocal Raman microscopic imaging revealed deposits of calcium carbonates and scattered microbial assemblages on all microplastics, with structure, extend, and microbial association with the carbonates depending on the respective microplastic. Notably, PTFE floatation was overcome after three months in unprocessed drinking water but remained unchanged in processed drinking water, whereas PMMA appeared unaffected, indicating that the fate of microplastics in the environment may depend on polymer type and the encountered aquatic conditions forming mineral and microbial attachments to the particle surface.
Collapse
Affiliation(s)
- Ann-Kathrin Kniggendorf
- Hannover Centre for Optical Technologies, Gottfried Wilhelm Leibniz Universität Hannover, Nienburger Str. 17, 30167, Hannover, Germany.
| | - Regina Nogueira
- Institute for Sanitary Engineering and Waste Management, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany.
| | - Corinna Lorey
- Institute for Sanitary Engineering and Waste Management, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany.
| | - Bernhard Roth
- Hannover Centre for Optical Technologies, Gottfried Wilhelm Leibniz Universität Hannover, Nienburger Str. 17, 30167, Hannover, Germany; Cluster of Excellence PhoenixD, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany.
| |
Collapse
|
67
|
Park AJ, Wright MA, Roach EJ, Khursigara CM. Imaging host-pathogen interactions using epithelial and bacterial cell infection models. J Cell Sci 2021; 134:134/5/jcs250647. [PMID: 33622798 DOI: 10.1242/jcs.250647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The age-old saying, seeing is believing, could not be truer when we think about the value of imaging interactions between epithelial cells and bacterial pathogens. Imaging and culturing techniques have vastly improved over the years, and the breadth and depth of these methods is ever increasing. These technical advances have benefited researchers greatly; however, due to the large number of potential model systems and microscopy techniques to choose from, it can be overwhelming to select the most appropriate tools for your research question. This Review discusses a variety of available epithelial culturing methods and quality control experiments that can be performed, and outlines various options commonly used to fluorescently label bacterial and mammalian cell components. Both light- and electron-microscopy techniques are reviewed, with descriptions of both technical aspects and common applications. Several examples of imaging bacterial pathogens and their interactions with epithelial cells are discussed to provide researchers with an idea of the types of biological questions that can be successfully answered by using microscopy.
Collapse
Affiliation(s)
- Amber J Park
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Madison A Wright
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Elyse J Roach
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.,Molecular and Cellular Imaging Facility, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada .,Molecular and Cellular Imaging Facility, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
68
|
|
69
|
Photocatalytic Inactivation as a Method of Elimination of E. coli from Drinking Water. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The presence of microorganisms, specifically the Escherichia coli, in drinking water is of global concern. This is mainly due to the health implications of these pathogens. Several conventional methods have been developed for their removal; however, this pathogen is still found in most drinking water. In the continuous quest for a more effective removal approach, photocatalysis has been considered as an alternative method for the elimination of pathogens including E. coli from water. Photocatalysis has many advantages compared to the conventional methods. It offers the advantage of non-toxicity and utilizes the energy from sunlight, thereby making it a completely green route. Since most photocatalysts could only be active in the ultraviolet region of the solar spectrum, which is less than 5% of the entire spectrum, the challenge associated with photocatalysis is the design of a system for the effective harvest and complete utilization of the solar energy for the photocatalytic process. In this review, different photocatalysts for effective inactivation of E. coli and the mechanism involved in the process were reviewed. Various strategies that have been adopted in order to modulate the band gap energy of these photocatalysts have been explored. In addition, different methods of estimating and detecting E. coli in drinking water were presented. Furthermore, different photocatalytic reactor designs for photocatalytic inactivation of E. coli were examined. Finally, the kinetics of E. coli inactivation was discussed.
Collapse
|
70
|
Marcovecchio F, Perrino C. Contribution of Primary Biological Aerosol Particles to airborne particulate matter in indoor and outdoor environments. CHEMOSPHERE 2021; 264:128510. [PMID: 33049501 DOI: 10.1016/j.chemosphere.2020.128510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
The atmospheric concentration of bioparticles was determined in some outdoor and indoor sites by using a commercial low-volume sampler and a detection method based on particle collection on polycarbonate filters, propidium iodide staining, observation by fluorescence microscopy and image analysis. Outdoor sampling was continuously carried out from May 2015 to October 2016 by cumulating monthly samples over individual filters. PBAPs contribution to PM10 concentration was in the range 0.7-13%. Seasonal differences were found in PBAPs concentration, shape and mass distribution. Higher concentrations were recorded during the warm period, when the bioparticles were more numerous, larger and more elongated. Simultaneous indoor and outdoor daily samples were collected during the spring of 2014 and 2017 in domestic environments. In indoor sites PBAPs were much higher in concentration than outdoors and showed a different visual appearance, with very wide polyhedral-shaped particles identifiable as skin flakes. Indoor/outdoor ratio (I/O) of PBAPs was in the range 6-16. Indoors, PBAPs contributed 21-77% to organic matter and 16-68% to PM10. When sampling into a sealed room, I/O was only 0.01 for individual bioparticles heavier than100 ng, while it was in the range 0.24-0.43 for PBAPs below 20 ng. This suggests that the infiltration factor of wide bioparticles was very low and that their concentration increase in indoor environments was due to indoor sources, namely the presence of human beings. Samplings carried out in different rooms of an apartment showed that most of the PBAPs mass was due to particles heavier than 100 ng, particularly in the bedroom.
Collapse
Affiliation(s)
- Francesca Marcovecchio
- C.N.R. Institute of Atmospheric Pollution Research, Via Salaria km. 29,300, 00015, Monterotondo St., Rome, Italy
| | - Cinzia Perrino
- C.N.R. Institute of Atmospheric Pollution Research, Via Salaria km. 29,300, 00015, Monterotondo St., Rome, Italy.
| |
Collapse
|
71
|
Detection of an alkene monooxygenase in vinyl chloride-oxidizing bacteria with GeneFISH. J Microbiol Methods 2021; 181:106147. [PMID: 33493490 DOI: 10.1016/j.mimet.2021.106147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 11/23/2022]
Abstract
Fluorescence in situ hybridization (FISH) can provide information on the morphology, spatial arrangement, and local environment of individual cells enabling the investigation of intact microbial communities. GeneFISH uses polynucleotide probes and enzymatic signal amplification to detect genes that are present in low copy numbers. Previously, this technique has only been applied in a small number of closely related organisms. However, many important functional genes, such as those involved in xenobiotic degradation or pathogenesis, are present in diverse microbial strains. Here, we present a geneFISH method for the detection of the functional gene etnC, which encodes the alpha subunit of an alkene monooxygenase used by aerobic ethene and vinyl chloride oxidizing bacteria (etheneotrophs). The probe concentration was optimized and found to be 100 pg/μl, similar to previous geneFISH reports. Permeabilization was necessary for successful geneFISH labeling of Mycobacteria; sequential treatment with lysozyme and achromopeptidase was the most effective treatment. This method was able to detect etnC in several organisms including Mycobacteria and Nocardioides, demonstrating for the first time that a single geneFISH probe can detect a variety of alleles (>80% sequence similarity) across multiple species. Detection of etnC with geneFISH has practical applications for bioremediation. This method can be readily adapted for other functional genes and has broad applications for investigating microbial communities in natural and engineered systems.
Collapse
|
72
|
Hariharan G, Prasannath K. Recent Advances in Molecular Diagnostics of Fungal Plant Pathogens: A Mini Review. Front Cell Infect Microbiol 2021; 10:600234. [PMID: 33505921 PMCID: PMC7829251 DOI: 10.3389/fcimb.2020.600234] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Phytopathogenic fungal species can cause enormous losses in quantity and quality of crop yields and this is a major economic issue in the global agricultural sector. Precise and rapid detection and identification of plant infecting fungi are essential to facilitate effective management of disease. DNA-based methods have become popular methods for accurate plant disease diagnostics. Recent developments in standard and variant polymerase chain reaction (PCR) assays including nested, multiplex, quantitative, bio and magnetic-capture hybridization PCR techniques, post and isothermal amplification methods, DNA and RNA based probe development, and next-generation sequencing provide novel tools in molecular diagnostics in fungal detection and differentiation fields. These molecular based detection techniques are effective in detecting symptomatic and asymptomatic diseases of both culturable and unculturable fungal pathogens in sole and co-infections. Even though the molecular diagnostic approaches have expanded substantially in the recent past, there is a long way to go in the development and application of molecular diagnostics in plant diseases. Molecular techniques used in plant disease diagnostics need to be more reliable, faster, and easier than conventional methods. Now the challenges are with scientists to develop practical techniques to be used for molecular diagnostics of plant diseases. Recent advancement in the improvement and application of molecular methods for diagnosing the widespread and emerging plant pathogenic fungi are discussed in this review.
Collapse
Affiliation(s)
- Ganeshamoorthy Hariharan
- Department of Agricultural Biology, Faculty of Agriculture, Eastern University, Chenkalady, Sri Lanka
| | - Kandeeparoopan Prasannath
- Department of Agricultural Biology, Faculty of Agriculture, Eastern University, Chenkalady, Sri Lanka
| |
Collapse
|
73
|
Million M, Gaudin M, Melenotte C, Chasson L, Edouard S, Verdonk C, Prudent E, Amphoux B, Meresse S, Dorent R, Lepidi H, La Scola B, Gorvel JP, Desnues C, Raoult D. Metagenomic Analysis of Microdissected Valvular Tissue for Etiological Diagnosis of Blood Culture-Negative Endocarditis. Clin Infect Dis 2021; 70:2405-2412. [PMID: 31309973 DOI: 10.1093/cid/ciz655] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/12/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Etiological diagnosis is a key to therapeutic adaptation and improved prognosis, particularly for infections such as endocarditis. In blood culture-negative endocarditis (BCNE), 22% of cases remain undiagnosed despite an updated comprehensive syndromic approach. This prompted us to develop a new diagnostic approach. METHODS Eleven valves from 10 BCNE patients were analyzed using a method that combines human RNA bait-depletion with phi29 DNA polymerase-based multiple displacement amplification and shotgun DNA sequencing. An additional case in which a microbe was serendipitously visualized by immunofluorescence was analyzed using the same method, but after laser capture microdissection. RESULTS Background DNA prevented any diagnosis in cases analyzed without microdissection because the majority of sequences were contaminants. Moraxella sequences were dramatically enriched in the stained microdissected region of the additional case. A consensus genome sequence of 2.4 Mbp covering more than 94% of the Moraxella osloensis KSH reference genome was reconstructed with 234X average coverage. Several antibiotic-resistance genes were observed. Etiological diagnosis was confirmed using Western blot and specific polymerase chain reaction with sequencing on a different valve sample. CONCLUSIONS Microdissection could be a key to the metagenomic diagnosis of infectious diseases when a microbe is visualized but remains unidentified despite an updated optimal approach. Moraxella osloensis should be tested in blood culture-negative endocarditis.
Collapse
Affiliation(s)
- Matthieu Million
- Institut Hospitalo-Universitaire (IHU) -Méditerranée Infection, Marseille.,Aix Marseille Univ, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille, Unité Microbes Evolution Phylogenie et Infections (MEPHI)
| | - Maxime Gaudin
- Institut Hospitalo-Universitaire (IHU) -Méditerranée Infection, Marseille.,Aix Marseille Univ, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille, Unité Microbes Evolution Phylogenie et Infections (MEPHI)
| | - Cléa Melenotte
- Institut Hospitalo-Universitaire (IHU) -Méditerranée Infection, Marseille.,Aix Marseille Univ, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille, Unité Microbes Evolution Phylogenie et Infections (MEPHI)
| | - Lionel Chasson
- Aix Marseille Univ, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML)
| | - Sophie Edouard
- Institut Hospitalo-Universitaire (IHU) -Méditerranée Infection, Marseille.,Aix Marseille Univ, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille, Unité Microbes Evolution Phylogenie et Infections (MEPHI)
| | - Constance Verdonk
- Department of Cardiology, Hôpital Bichat, Assistance Publique - Hôpitaux de Paris (APHP), Paris
| | - Elsa Prudent
- Institut Hospitalo-Universitaire (IHU) -Méditerranée Infection, Marseille.,Aix Marseille Univ, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille, Unité Microbes Evolution Phylogenie et Infections (MEPHI)
| | - Bernard Amphoux
- Institut Hospitalo-Universitaire (IHU) -Méditerranée Infection, Marseille.,Aix Marseille Univ, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille, Unité Microbes Evolution Phylogenie et Infections (MEPHI)
| | - Stéphane Meresse
- Aix Marseille Univ, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML)
| | - Richard Dorent
- Department of Cardiology, Hôpital Bichat, Assistance Publique - Hôpitaux de Paris (APHP), Paris
| | - Hubert Lepidi
- Institut Hospitalo-Universitaire (IHU) -Méditerranée Infection, Marseille.,Aix Marseille Univ, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille, Unité Microbes Evolution Phylogenie et Infections (MEPHI).,Service d'anatomie et cytologie pathologique et de neuropathologie, Centre Hospitalo-Universitaire (CHU) Timone, Assistance Publique Hôpitaux de Marseille,, France
| | - Bernard La Scola
- Institut Hospitalo-Universitaire (IHU) -Méditerranée Infection, Marseille.,Aix Marseille Univ, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille, Unité Microbes Evolution Phylogenie et Infections (MEPHI)
| | - Jean-Pierre Gorvel
- Aix Marseille Univ, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML)
| | - Christelle Desnues
- Institut Hospitalo-Universitaire (IHU) -Méditerranée Infection, Marseille.,Aix Marseille Univ, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille, Unité Microbes Evolution Phylogenie et Infections (MEPHI).,Aix Marseille Univ, Université de Toulon, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Mediterranean Institute of Oceanography, France
| | - Didier Raoult
- Institut Hospitalo-Universitaire (IHU) -Méditerranée Infection, Marseille.,Aix Marseille Univ, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille, Unité Microbes Evolution Phylogenie et Infections (MEPHI)
| |
Collapse
|
74
|
Kikhney J, Moter A. Quality Control in Diagnostic Fluorescence In Situ Hybridization (FISH) in Microbiology. Methods Mol Biol 2021; 2246:301-316. [PMID: 33576998 DOI: 10.1007/978-1-0716-1115-9_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This overview addresses fluorescence in situ hybridization (FISH) in a diagnostic microbiology setting with its associated problems and pitfalls and how to control them, but also the advantages and opportunities the method offers. This article focuses mainly on diagnostic FISH assays on tissue sections and on techniques and experiences in our laboratory. FISH in a routine diagnostic setting in microbiology requires strict quality control measures to ensure consistent high-quality and reliable assay results. Here, for the first time, we define quality control requirements for microbiological diagnostic FISH applications and discuss their impact and possible future developments of the FISH technique for infection diagnostics. We focus on diagnosis of biofilm-associated infections including infective endocarditis, oral biofilms, and device-associated infections as well as infections due to fastidious or yet uncultured microorganisms like Treponema spp., Tropheryma whipplei, Bartonella, Coxiella burnetii, or Brachyspira.
Collapse
Affiliation(s)
- Judith Kikhney
- Biofilmcenter, Institute for Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- MoKi Analytics GmbH, Berlin, Germany
| | - Annette Moter
- Biofilmcenter, Institute for Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
75
|
Malik A, Fatma T, Shamsi W, Khan HA, Gul A, Jamal A, Bhatti MF. Molecular Characterization of Medically Important Fungi: Current Research and Future Prospects. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
76
|
Teixeira H, Sousa AL, Azevedo AS. Bioinformatic Tools and Guidelines for the Design of Fluorescence In Situ Hybridization Probes. Methods Mol Biol 2021; 2246:35-50. [PMID: 33576981 DOI: 10.1007/978-1-0716-1115-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fluorescence in situ hybridization (FISH) is a well-established technique that allows the detection of microorganisms in diverse types of samples (e.g., clinical, food, environmental samples, and biofilm communities). The FISH probe design is an essential step in this technique. For this, two strategies can be used, the manual form based on multiple sequence alignment to identify conserved regions and programs/software specifically developed for the selection of the sequence of the probe. Additionally, databases/software for the theoretical evaluation of the probes in terms of specificity, sensitivity, and thermodynamic parameters (melting temperature and Gibbs free energy change) are used. The purpose of this chapter is to describe the essential steps and guidelines for the design of FISH probes (e.g., DNA and Nucleic Acid Mimic (NAM) probes), and its theoretical evaluation through the application of diverse bioinformatic tools.
Collapse
Affiliation(s)
- Helena Teixeira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Ana L Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.,INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Andreia S Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal. .,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal. .,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
| |
Collapse
|
77
|
Escudero C, Del Campo A, Ares JR, Sánchez C, Martínez JM, Gómez F, Amils R. Visualizing Microorganism-Mineral Interaction in the Iberian Pyrite Belt Subsurface: The Acidovorax Case. Front Microbiol 2020; 11:572104. [PMID: 33324359 PMCID: PMC7726209 DOI: 10.3389/fmicb.2020.572104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/20/2020] [Indexed: 11/18/2022] Open
Abstract
Despite being considered an extreme environment, several studies have shown that life in the deep subsurface is abundant and diverse. Microorganisms inhabiting these systems live within the rock pores and, therefore, the geochemical and geohydrological characteristics of this matrix may influence the distribution of underground biodiversity. In this study, correlative fluorescence and Raman microscopy (Raman-FISH) was used to analyze the mineralogy associated with the presence of members of the genus Acidovorax, an iron oxidizing microorganisms, in native rock samples of the Iberian Pyrite Belt subsurface. Our results suggest a strong correlation between the presence of Acidovorax genus and pyrite, suggesting that the mineral might greatly influence its subsurface distribution.
Collapse
Affiliation(s)
- Cristina Escudero
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Planetología y Habitabilidad, Centro de Astrobiología (CAB, INTA-CSIC), Madrid, Spain
| | - Adolfo Del Campo
- Departamento de Electrocerámica, Instituto de Cerámica y Vidrio, CSIC, Madrid, Spain
| | - Jose R Ares
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Carlos Sánchez
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Jose M Martínez
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Felipe Gómez
- Departamento de Planetología y Habitabilidad, Centro de Astrobiología (CAB, INTA-CSIC), Madrid, Spain
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Planetología y Habitabilidad, Centro de Astrobiología (CAB, INTA-CSIC), Madrid, Spain
| |
Collapse
|
78
|
Adebowale O, Good L. Development of a fixation-free fluorescence in situ hybridization for the detection of Salmonella species. Biol Methods Protoc 2020; 5:bpaa024. [PMID: 33381652 PMCID: PMC7756007 DOI: 10.1093/biomethods/bpaa024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 11/13/2022] Open
Abstract
Salmonella is one of the most important infectious bacteria causing severe gastroenteritis and deaths in humans and animals, and the prompt diagnosis is crucial for effective control and treatment. The detection of Salmonella still depends principally on culture-based methods, which is time-consuming and laborious. Recently, polyhexamethylene biguanide (PHMB) was discovered to have cellular delivery properties and its combination with the fluorescence in situ hybridization (FISH) method was exploited for oligomer delivery and the rapid detection of Salmonella spps in this study. Cell-associated fluorescence was quantified using Volocity® 3-D image analysis software (Volocity 6.3, PerkinElmer, Inc.). PHMB complexed with fluorophore-labelled species-specific oligomers permeabilized freshly grown viable strains of Salmonella cells and mediated strong cell-associated fluorescence signals. This strategy further enabled a fixation-free protocol and hybridization in a single reaction. Using the modified FISH method, monoculture Salmonella strains were validated as well as detected in artificially contaminated water and milk within a turnaround period of 5 h. The method was observed to be comparable with the standard FISH technique (sFISH; P > 0.05). The findings suggest that fixation-free delivery and hybridization of oligomers using PHMB can provide a simplified and prompt strategy for Salmonella detection at the species level, and promote early management responses to the disease and appropriate antimicrobial therapy.
Collapse
Affiliation(s)
- Oluwawemimo Adebowale
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Liam Good
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK
| |
Collapse
|
79
|
Nguyen J, Tropini C. Bacterial species singled out from a diverse crowd. Nature 2020; 588:591-592. [PMID: 33268877 DOI: 10.1038/d41586-020-03315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
80
|
Pinheiro BG, Hahn RC, de Camargo ZP, Rodrigues AM. Molecular Tools for Detection and Identification of Paracoccidioides Species: Current Status and Future Perspectives. J Fungi (Basel) 2020; 6:E293. [PMID: 33217898 PMCID: PMC7711936 DOI: 10.3390/jof6040293] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/01/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a mycotic disease caused by the Paracoccidioides species, a group of thermally dimorphic fungi that grow in mycelial form at 25 °C and as budding yeasts when cultured at 37 °C or when parasitizing the host tissues. PCM occurs in a large area of Latin America, and the most critical regions of endemicity are in Brazil, Colombia, and Venezuela. The clinical diagnosis of PCM needs to be confirmed through laboratory tests. Although classical laboratory techniques provide valuable information due to the presence of pathognomonic forms of Paracoccidioides spp., nucleic acid-based diagnostics gradually are replacing or complementing culture-based, biochemical, and immunological assays in routine microbiology laboratory practice. Recently, taxonomic changes driven by whole-genomic sequencing of Paracoccidioides have highlighted the need to recognize species boundaries, which could better ascertain Paracoccidioides taxonomy. In this scenario, classical laboratory techniques do not have significant discriminatory power over cryptic agents. On the other hand, several PCR-based methods can detect polymorphisms in Paracoccidioides DNA and thus support species identification. This review is focused on the recent achievements in molecular diagnostics of paracoccidioidomycosis, including the main advantages and pitfalls related to each technique. We discuss these breakthroughs in light of taxonomic changes in the Paracoccidioides genus.
Collapse
Affiliation(s)
- Breno Gonçalves Pinheiro
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (B.G.P.); (Z.P.d.C.)
| | - Rosane Christine Hahn
- Laboratory of Mycology/Research, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso 78060900, Brazil;
- Federal University of Mato Grosso, Júlio Muller University Hospital, Mato Grosso 78048902, Brazil
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (B.G.P.); (Z.P.d.C.)
- Department of Medicine, Discipline of infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
| | - Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (B.G.P.); (Z.P.d.C.)
| |
Collapse
|
81
|
Locke A, Fitzgerald S, Mahadevan-Jansen A. Advances in Optical Detection of Human-Associated Pathogenic Bacteria. Molecules 2020; 25:E5256. [PMID: 33187331 PMCID: PMC7696695 DOI: 10.3390/molecules25225256] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial infection is a global burden that results in numerous hospital visits and deaths annually. The rise of multi-drug resistant bacteria has dramatically increased this burden. Therefore, there is a clinical need to detect and identify bacteria rapidly and accurately in their native state or a culture-free environment. Current diagnostic techniques lack speed and effectiveness in detecting bacteria that are culture-negative, as well as options for in vivo detection. The optical detection of bacteria offers the potential to overcome these obstacles by providing various platforms that can detect bacteria rapidly, with minimum sample preparation, and, in some cases, culture-free directly from patient fluids or even in vivo. These modalities include infrared, Raman, and fluorescence spectroscopy, along with optical coherence tomography, interference, polarization, and laser speckle. However, these techniques are not without their own set of limitations. This review summarizes the strengths and weaknesses of utilizing each of these optical tools for rapid bacteria detection and identification.
Collapse
Affiliation(s)
- Andrea Locke
- Vanderbilt Biophotonics Center, Nashville, TN 37232, USA; (A.L.); (S.F.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Sean Fitzgerald
- Vanderbilt Biophotonics Center, Nashville, TN 37232, USA; (A.L.); (S.F.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Anita Mahadevan-Jansen
- Vanderbilt Biophotonics Center, Nashville, TN 37232, USA; (A.L.); (S.F.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
82
|
Gamez RM, Ramirez S, Montes M, Cardinale M. Complementary Dynamics of Banana Root Colonization by the Plant Growth-Promoting Rhizobacteria Bacillus amyloliquefaciens Bs006 and Pseudomonas palleroniana Ps006 at Spatial and Temporal Scales. MICROBIAL ECOLOGY 2020; 80:656-668. [PMID: 32778917 PMCID: PMC7476998 DOI: 10.1007/s00248-020-01571-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Banana (Musa acuminata) growth for commercial purposes requires high amounts of chemical fertilizers, generating high costs and deleterious effects on the environment. In a previous study, we demonstrated that two plant growth-promoting rhizobacteria (PGPR), Bacillus amyloliquefaciens Bs006 and Pseudomonas palleroniana Ps006, isolated in Colombia, could partially replace chemical fertilizers for banana seedling growth. In a second work, the effects of the two inoculants on banana transcripts were found to occur at different times, earlier for Bs006 and later for Ps006. This leads to the hypothesis that the two rhizobacteria have different colonization dynamics. Accordingly, the aim of this work was to analyze the dynamics of root colonization of the two PGPR, Bs006 and Ps006, on banana growth over a time frame of 30 days. We used fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM), followed by three-dimensional reconstruction and quantitative image analysis. Bacillus amyloliquefaciens Bs006 abundantly colonized banana roots earlier (from 1 to 48 h), ectophytically on the rhizoplane, and then decreased. Pseudomonas palleroniana Ps006 was initially scarce, but after 96 h it increased dramatically and became clearly endophytic. Here we identify and discuss the potential genetic factors responsible for this complementary behavior. This information is crucial for optimizing the formulation of an effective biofertilizer for banana and its inoculation strategy.
Collapse
Affiliation(s)
- Rocío Margarita Gamez
- Corporación Colombiana de Investigación Agropecuaria – Agrosavia, C.I. Turipaná, Montería, Cordoba Colombia
| | - Sandra Ramirez
- Corporación Colombiana de Investigación Agropecuaria – Agrosavia, C.I. Tibaitatá, Mosquera, Cundinamarca Colombia
| | - Martha Montes
- Corporación Colombiana de Investigación Agropecuaria – Agrosavia, C.I. Caribia, Zona Bananera, Magdalena Colombia
| | - Massimiliano Cardinale
- Institute of Applied Microbiology, Justus-Liebig-University Giessen, Giessen, Germany
- Department of Biological and Environmental Sciences and Technologies – DiSTeBA, University of Salento, Centro Ecotekne - via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy
| |
Collapse
|
83
|
Sulen A, Islam S, Wolff ASB, Oftedal BE. The prospects of single-cell analysis in autoimmunity. Scand J Immunol 2020; 92:e12964. [PMID: 32869859 DOI: 10.1111/sji.12964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/18/2020] [Accepted: 08/21/2020] [Indexed: 12/29/2022]
Abstract
In the last decade, there has been a tremendous development of technologies focused on analysing various molecular attributes in single cells, with an ever-increasing number of parameters becoming available at the DNA, RNA and protein levels. Much of this progress has involved cells in suspension, but also in situ analysis of tissues has taken great leaps. Paralleling the development in the laboratory, and because of increasing complexity, the analysis of single-cell data is also constantly being updated with new algorithms and analysis platforms. Our immune system shares this complexity, and immunologists have therefore been in the forefront of this technological development. These technologies clearly open new avenues for immunology research, maybe particularly within autoimmunity where the interaction between the faulty immune system and the thymus or the target organ is important. However, the technologies currently available can seem overwhelming and daunting. The aim of this review is to remedy this by giving a balanced overview of the prospects of using single-cell analysis in basal and clinical autoimmunity research, with an emphasis on endocrine autoimmunity.
Collapse
Affiliation(s)
- André Sulen
- KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Shahinul Islam
- KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anette S B Wolff
- KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Bergithe E Oftedal
- KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
84
|
Lemos SS, Cesar DE, ProcÓpio SW, Machado FC, Ribeiro LC, Ribeiro RA. Qualitative and quantitative molecular analysis of bacteria in root canals of primary teeth with pulp necrosis. Braz Oral Res 2020; 34:e093. [PMID: 32785473 DOI: 10.1590/1807-3107bor-2020.vol34.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/18/2020] [Indexed: 11/21/2022] Open
Abstract
Information about bacterial diversity, such as the number of each species in the root canals of primary teeth, contributes to improving our effective management of infections of endodontic origin in primary teeth. This study made a qualitative and quantitative assessment of the bacteria in the root canals of primary teeth with necrotic pulp, using the fluorescence in situ hybridization (FISH) technique. Thirty-one primary teeth with pulp necrosis from 31 children were evaluated using the FISH technique, to detect the presence and density of Aggregatibacter actinomycetemcomitans, Campylobacter rectus, Enterococcus faecalis, Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens, Streptococcus, Streptococcus mutans, Streptococcus sobrinus, Tannerella forsythia and Treponema denticola. Descriptive measures explained the data related to density, and Student's t-test assessed the differences among the densities of each bacterium, according to signs and symptoms. The bacterial density was paired and correlated. All bacteria tested were detected and identified in all the samples. The average number of bacterial individuals from each species ranged from 1.9 x 108 cells/mL (S. mutans) to 3.1 x 108 cells/mL (F. nucleatum) (p > 0.05). The sum of the mean counts of each bacterium represented almost 80% of the entire microbial community. Patients with pain had significantly more T. denticola, and those with edema showed a greater density of Streptococcus and P. nigrescens (p < 0.05). This study revealed that all 12 bacteria evaluated were found in all primary teeth with pulp necrosis. There was no predominance among the species studied; all species had a similar number of individuals.
Collapse
Affiliation(s)
- Samira Salomão Lemos
- Postgraduate Program in Dentistry, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Dionéia Evangelista Cesar
- Department of Ecology and Molecular Biology of Microorganisms, Biological Sciences Institute, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Stefânia Werneck ProcÓpio
- Postgraduate Program in Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernanda Campos Machado
- Department of Social and Child Dentistry, School of Dentistry, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Luiz Claudio Ribeiro
- Department of Statistics, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Rosangela Almeida Ribeiro
- Department of Social and Child Dentistry, School of Dentistry, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| |
Collapse
|
85
|
Lima JF, Maia P, T Magalhães B, Cerqueira L, Azevedo NF. A comprehensive model for the diffusion and hybridization processes of nucleic acid probes in fluorescence in situ hybridization. Biotechnol Bioeng 2020; 117:3212-3223. [PMID: 32946120 DOI: 10.1002/bit.27462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 01/04/2023]
Abstract
Fluorescence in situ hybridization (FISH) has been extensively used in the past decades for the detection and localization of microorganisms. However, a mechanistic approach of the whole FISH process is still missing, and the main limiting steps for the hybridization to occur remain unclear. In here, FISH is approached as a particular case of a diffusion-reaction kinetics, where molecular probes (MPs) move from the hybridization solution to the target RNA site within the cells. Based on literature models, the characteristic times taken by different MPs to diffuse across multiple cellular barriers, as well as the reaction time associated with the formation of the duplex molecular probe-RNA, were estimated. Structural and size differences at the membrane level of bacterial and animal cells were considered. For bacterial cells, the limiting step for diffusion is likely to be the peptidoglycan layer (characteristic time of 7.94 × 102 - 4.39 × 103 s), whereas for animal cells, the limiting step should be the diffusion of the probe through the bulk (1.8-5.0 s) followed by the diffusion through the lipid membrane (1 s). The information provided here may serve as a basis for a more rational development of FISH protocols in the future.
Collapse
Affiliation(s)
- Joana F Lima
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.,Biomode, S.A., Braga, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Paulo Maia
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Beatriz T Magalhães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Laura Cerqueira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.,Biomode, S.A., Braga, Portugal
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
86
|
Fei X, Xing Y, Zhang B, Zhu S, Liu L. A novel dicationic Quinoline-Carzole fluorescent probe: preparation and labelling of Microthrix parvicella. ENVIRONMENTAL TECHNOLOGY 2020; 41:2393-2399. [PMID: 30640558 DOI: 10.1080/09593330.2019.1567606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
A novel dicationic Quinoline-Carbazole fluorescent probe with hydrophobic long-chain alkane was designed and synthesized based on the property of Microthrix parvicella (M. parvicella) in situ utilizing long-chain fatty acids (LCFA) in the activated sludge system. 1H NMR spectrum, ultraviolet-visible (UV-Vis) absorption spectra, and fluorescent spectra analysis demonstrated that the probe was successfully obtained. The probe had a large stokes-shift ranging from 102 to 144 nm in different solvents, which were benefit for the fluorescent labelling properties. The labelling experiment indicated that the prepared probe could absorb onto the surface of M. parvicella through hydrophobic bond. Much stronger yellow fluorescence of M. parvicella was observed at the concentration of 1.0 × 10-5 mol/L when compared with the zooglea, which makes it easy to distinguish M. parvicella from the zooglea. In addition, the photostability of the probe was also investigated, and the result showed that the probe was quite stable in a long period of time. All the results indicated that the prepared probe was suitable for the labelling of M. parvicella.
Collapse
Affiliation(s)
- Xuening Fei
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, People's Republic of China
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, Tianjin Chengjian University, Tianjin, People's Republic of China
- School of Science, Tianjin Chengjian University, Tianjin, People's Republic of China
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Yanjun Xing
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, People's Republic of China
| | - Buqing Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, People's Republic of China
| | - Sen Zhu
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, Tianjin Chengjian University, Tianjin, People's Republic of China
- School of Science, Tianjin Chengjian University, Tianjin, People's Republic of China
| | - Lijuan Liu
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, Tianjin Chengjian University, Tianjin, People's Republic of China
- School of Science, Tianjin Chengjian University, Tianjin, People's Republic of China
| |
Collapse
|
87
|
Takahashi H, Horio K, Kato S, Kobori T, Watanabe K, Aki T, Nakashimada Y, Okamura Y. Direct detection of mRNA expression in microbial cells by fluorescence in situ hybridization using RNase H-assisted rolling circle amplification. Sci Rep 2020; 10:9588. [PMID: 32541674 PMCID: PMC7295810 DOI: 10.1038/s41598-020-65864-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/04/2020] [Indexed: 11/11/2022] Open
Abstract
Meta-analyses using next generation sequencing is a powerful strategy for studying microbiota; however, it cannot clarify the role of individual microbes within microbiota. To know which cell expresses what gene is important for elucidation of the individual cell’s function in microbiota. In this report, we developed novel fluorescence in situ hybridization (FISH) procedure using RNase-H-assisted rolling circle amplification to visualize mRNA of interest in microbial cells without reverse transcription. Our results show that this method is applicable to both Gram-negative and Gram-positive microbes without any noise from DNA, and it is possible to visualize the target mRNA expression directly at the single-cell level. Therefore, our procedure, when combined with data of meta-analyses, can help to understand the role of individual microbes in the microbiota.
Collapse
Affiliation(s)
- Hirokazu Takahashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8530, Japan.
| | - Kyohei Horio
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Setsu Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8530, Japan.,Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Toshiro Kobori
- Division of Food Biotechnology, Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8642, Japan
| | - Kenshi Watanabe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8530, Japan.,Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Tsunehiro Aki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8530, Japan.,Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Yutaka Nakashimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8530, Japan.,Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Yoshiko Okamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, 739-8530, Japan. .,Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, 739-8530, Japan.
| |
Collapse
|
88
|
Wang X, Zhao Z, Tang N, Zhao Y, Xu J, Li L, Qian L, Zhang J, Fan Y. Microbial Community Analysis of Saliva and Biopsies in Patients With Oral Lichen Planus. Front Microbiol 2020; 11:629. [PMID: 32435231 PMCID: PMC7219021 DOI: 10.3389/fmicb.2020.00629] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/20/2020] [Indexed: 12/25/2022] Open
Abstract
The specific etiology and pathogenesis of oral lichen planus (OLP) remain elusive, and microbial dysbiosis may play an important role in OLP. We evaluated the saliva and tissue bacterial community of patients with OLP and identified the colonization of bacteria in OLP tissues. The saliva (n = 60) and tissue (n = 24) samples from OLP patients and the healthy controls were characterized by 16S rDNA gene sequencing and the bacterial signals in OLP tissues were detected by fluorescence in situ hybridization (FISH) targeting the bacterial 16S rDNA gene. Results indicate that the OLP tissue microbiome was different from the microbiota of OLP saliva. Compared with the healthy controls, Capnocytophaga and Gemella were higher in OLP saliva, while Escherichia–Shigella and Megasphaera were higher in OLP tissues, whereas seven taxa, including Carnobacteriaceae, Flavobacteriaceae, and Megasphaera, were enriched in both saliva and tissues of OLP patients. Furthermore, FISH found that the average optical density (AOD) of bacteria in the lamina propria of OLP tissues was higher than that of the healthy controls, and the AOD of bacteria in OLP epithelium and lamina propria was positively correlated. These data provide a different perspective for future investigation on the OLP microbiome.
Collapse
Affiliation(s)
- Xuewei Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Zhibai Zhao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Nan Tang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yuping Zhao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Juanyong Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Liuyang Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ling Qian
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Junfeng Zhang
- Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Fan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
89
|
Yaban B, Kikhney J, Musci M, Petrich A, Schmidt J, Hajduczenia M, Schoenrath F, Falk V, Moter A. Aerococcus urinae - A potent biofilm builder in endocarditis. PLoS One 2020; 15:e0231827. [PMID: 32325482 PMCID: PMC7180067 DOI: 10.1371/journal.pone.0231827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/01/2020] [Indexed: 01/15/2023] Open
Abstract
The diagnosis of infective endocarditis (IE) remains a challenge. One of the rare bacterial species recently associated with biofilms and negative cultures in infective endocarditis is Aerococcus urinae. Whether the low number of reported cases might be due to lack of awareness and misidentification, mainly as streptococci, is currently being discussed. To verify the relevance and biofilm potential of Aerococcus in endocarditis, we used fluorescence in situ hybridization to visualize the microorganisms within the heart valve tissue. We designed and optimized a specific FISH probe (AURI) for in situ visualization and identification of A. urinae in sections of heart valves from two IE patients whose 16S rRNA gene sequencing had deteced A. urinae. Both patients had a history of urinary tract infections. FISH visualized impressive in vivo grown biofilms in IE, thus confirming the potential of A. urinae as a biofilm pathogen. In both cases, FISH/PCR was the only method to unequivocally identify A. urinae as the only causative pathogen for IE. The specific FISH assay for A. urinae is now available for further application in research and diagnostics. A. urinae should be considered in endocarditis patients with a history of urinary tract infections. These findings support the biofilm potential of A. urinae as a virulence factor and are meant to raise the awareness of this pathogen.
Collapse
Affiliation(s)
- Berrin Yaban
- Biofilmzentrum, Dept. of Microbiology, Infectious Disease and Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Judith Kikhney
- Biofilmzentrum, Dept. of Microbiology, Infectious Disease and Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- MoKi Analytics GmbH, Marienplatz, Berlin, Germany
| | - Michele Musci
- Dept. of Congenital Heart Surgery—Pediatric Heart Surgery, German Heart Center Berlin, Berlin, Germany
| | - Annett Petrich
- Biofilmzentrum, Dept. of Microbiology, Infectious Disease and Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Julia Schmidt
- Biofilmzentrum, Dept. of Microbiology, Infectious Disease and Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- MoKi Analytics GmbH, Marienplatz, Berlin, Germany
| | - Maria Hajduczenia
- Biofilmzentrum, Dept. of Microbiology, Infectious Disease and Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Felix Schoenrath
- Dept. of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Volkmar Falk
- Dept. of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Dept. of Cardiothoracic Surgery, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Annette Moter
- Biofilmzentrum, Dept. of Microbiology, Infectious Disease and Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- MoKi Analytics GmbH, Marienplatz, Berlin, Germany
- * E-mail:
| |
Collapse
|
90
|
González-Pérez M, Martins S, Manhita A, Caldeira AT, Pereira A. Coumarin Amine-Reactive DYE C392STP: an Efficient Building Block to Synthesize Single Labeled Oligonucleotides with Application as Fish Probes. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
91
|
Romano I, Ventorino V, Pepe O. Effectiveness of Plant Beneficial Microbes: Overview of the Methodological Approaches for the Assessment of Root Colonization and Persistence. FRONTIERS IN PLANT SCIENCE 2020; 11:6. [PMID: 32076431 PMCID: PMC7006617 DOI: 10.3389/fpls.2020.00006] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/06/2020] [Indexed: 05/22/2023]
Abstract
Issues concerning the use of harmful chemical fertilizers and pesticides that have large negative impacts on environmental and human health have generated increasing interest in the use of beneficial microorganisms for the development of sustainable agri-food systems. A successful microbial inoculant has to colonize the root system, establish a positive interaction and persist in the environment in competition with native microorganisms living in the soil through rhizocompetence traits. Currently, several approaches based on culture-dependent, microscopic and molecular methods have been developed to follow bioinoculants in the soil and plant surface over time. Although culture-dependent methods are commonly used to estimate the persistence of bioinoculants, it is difficult to differentiate inoculated organisms from native populations based on morphological characteristics. Therefore, these methods should be used complementary to culture-independent approaches. Microscopy-based techniques (bright-field, electron and fluorescence microscopy) allow to obtain a picture of microbial colonization outside and inside plant tissues also at high resolution, but it is not possible to always distinguish living cells from dead cells by direct observation as well as distinguish bioinoculants from indigenous microbial populations living in soils. In addition, the development of metagenomic techniques, including the use of DNA probes, PCR-based methods, next-generation sequencing, whole-genome sequencing and pangenome methods, provides a complementary approach useful to understand plant-soil-microbe interactions. However, to ensure good results in microbiological analysis, the first fundamental prerequisite is correct soil sampling and sample preparation for the different methodological approaches that will be assayed. Here, we provide an overview of the advantages and limitations of the currently used methods and new methodological approaches that could be developed to assess the presence, plant colonization and soil persistence of bioinoculants in the rhizosphere. We further discuss the possibility of integrating multidisciplinary approaches to examine the variations in microbial communities after inoculation and to track the inoculated microbial strains.
Collapse
Affiliation(s)
- Ida Romano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Valeria Ventorino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- *Correspondence: Valeria Ventorino,
| | - Olimpia Pepe
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
92
|
Ren G, Chen P, Yu J, Liu J, Ye J, Zhou S. Recyclable magnetite-enhanced electromethanogenesis for biomethane production from wastewater. WATER RESEARCH 2019; 166:115095. [PMID: 31542548 DOI: 10.1016/j.watres.2019.115095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/20/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Improving the yield and methane content of biogas is of great concern for wastewater treatment by anaerobic digestion. Herein we developed a nanomagnetite-enhanced electromethanogenesis (EMnano) process for the first time, the sustainable utilization of which improved the biomethane production rate from dairy wastewater. The maximum CH4 production rate in the EMnano process is 2.3 ± 0.3-fold higher than it is in the conventional methanogenesis (CM) process, and it is accompanied by an almost delay-free start-up. The technical-economic evaluation revealed that an 82.1 ± 5.0% greater net benefit was obtained in the third generation of the EMnano process compared with the CM process. The improved methanogenesis was attributed to the formation of dense planktonic cell co-aggregates that are triggered by nanomagnetite, which facilitated the interspecies electron exchange during acetoclastic methanogenesis. Simultaneously, a cathode biofilm with high viability and catalytic activity was also formed in the EMnano process that decreased the biofilm resistance and facilitated the electron transfer during electromethanogenesis. This study is a worthwhile attempt to combine recyclable conductive materials with an electromethanogenesis process for wastewater treatment, and it effectively achieves energy recovery with high stability and cost-effectiveness.
Collapse
Affiliation(s)
- Guoping Ren
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Piao Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Yu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianbo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
93
|
Branco P, Candeias A, Caldeira AT, González‐Pérez M. An important step forward for the future development of an easy and fast procedure for identifying the most dangerous wine spoilage yeast, Dekkera bruxellensis, in wine environment. Microb Biotechnol 2019; 12:1237-1248. [PMID: 31197952 PMCID: PMC6801150 DOI: 10.1111/1751-7915.13422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 04/04/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
Dekkera bruxellensis is the main reason for spoilage in the wine industry. It renders the products unacceptable leading to large economic losses. Fluorescence In Situ Hybridization (FISH) technique has the potential for allowing its specific detection. Nevertheless, some experimental difficulties can be encountered when FISH technique is applied in the wine environment (e.g. matrix and cells' autofluorescence, fluorophore inadequate selection and probes' low specificity to the target organisms). An easy and fast in-suspension RNA-FISH procedure was applied for the first time for identifying D. bruxellensis in wine. A previously designed RNA-FISH probe to detect D. bruxellensis (26S D. brux.5.1) was used, and the matrix and cells' fluorescence interferences, the influence of three fluorophores in FISH performance and the probe specificity were evaluated. The results revealed that to apply RNA-FISH technique in the wine environment, a red-emitting fluorophore should be used. Good probe performance and specificity were achieved with 25% of formamide. The resulting RNA-FISH protocol was applied in wine samples artificially inoculated with D. bruxellensis. This spoilage microorganism was detected in wine at cell densities lower than those associated with phenolic off-flavours. Thus, the RNA-FISH procedure described in this work represents an advancement to facilitate early detection of the most dangerous wine spoilage yeast and, consequently, to reduce the economic losses caused by this yeast to the wine industry.
Collapse
Affiliation(s)
- Patrícia Branco
- HERCULES LaboratoryÉvora UniversityLargo Marquês de Marialva 87000‐809ÉvoraPortugal
| | - António Candeias
- HERCULES LaboratoryÉvora UniversityLargo Marquês de Marialva 87000‐809ÉvoraPortugal
- Chemistry DepartmentSchool of Sciences and TechnologyÉvora UniversityRua Romão Ramalho 597000‐671ÉvoraPortugal
| | - Ana Teresa Caldeira
- HERCULES LaboratoryÉvora UniversityLargo Marquês de Marialva 87000‐809ÉvoraPortugal
- Chemistry DepartmentSchool of Sciences and TechnologyÉvora UniversityRua Romão Ramalho 597000‐671ÉvoraPortugal
| | | |
Collapse
|
94
|
Ayupe MC, Silva FMDCE, Oliveira EED, Ambrósio MGE, Freitas PAS, Medeiros JD, Macedo GC, Andrade JMDC, Cesar DE, Ferreira AP. Obesity causes pulmonary dysbiosis affecting innate immune response in murine asthma model. Allergy 2019; 74:2230-2233. [PMID: 31006120 DOI: 10.1111/all.13827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/07/2019] [Accepted: 03/20/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Marina Caçador Ayupe
- Departament of Parasitology, Microbiology and Immunology, Institute of Biological Sciences Federal University of Juiz de Fora Juiz de Fora Brazil
| | - Flávia Márcia de Castro e Silva
- Departament of Parasitology, Microbiology and Immunology, Institute of Biological Sciences Federal University of Juiz de Fora Juiz de Fora Brazil
| | - Erick Esteves de Oliveira
- Departament of Parasitology, Microbiology and Immunology, Institute of Biological Sciences Federal University of Juiz de Fora Juiz de Fora Brazil
| | - Marcilene Gomes Evangelista Ambrósio
- Departament of Parasitology, Microbiology and Immunology, Institute of Biological Sciences Federal University of Juiz de Fora Juiz de Fora Brazil
| | - Pollyana Amaral Salvador Freitas
- Departament of Parasitology, Microbiology and Immunology, Institute of Biological Sciences Federal University of Juiz de Fora Juiz de Fora Brazil
| | - Julliane Dutra Medeiros
- Departament of Parasitology, Microbiology and Immunology, Institute of Biological Sciences Federal University of Juiz de Fora Juiz de Fora Brazil
| | - Gilson Costa Macedo
- Departament of Parasitology, Microbiology and Immunology, Institute of Biological Sciences Federal University of Juiz de Fora Juiz de Fora Brazil
| | - Juciane Maria de Castro Andrade
- Departament of Parasitology, Microbiology and Immunology, Institute of Biological Sciences Federal University of Juiz de Fora Juiz de Fora Brazil
| | - Dionéia Evangelista Cesar
- Departament of Biology, Institute of Biological Sciences Federal University of Juiz de Fora Juiz de Fora Brazil
| | - Ana Paula Ferreira
- Departament of Parasitology, Microbiology and Immunology, Institute of Biological Sciences Federal University of Juiz de Fora Juiz de Fora Brazil
| |
Collapse
|
95
|
Nguyen Quang M, Rogers T, Hofman J, Lanham AB. Global Sensitivity Analysis of Metabolic Models for Phosphorus Accumulating Organisms in Enhanced Biological Phosphorus Removal. Front Bioeng Biotechnol 2019; 7:234. [PMID: 31637235 PMCID: PMC6787149 DOI: 10.3389/fbioe.2019.00234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 09/09/2019] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to identify, quantify and prioritize for the first time the sources of uncertainty in a mechanistic model describing the anaerobic-aerobic metabolism of phosphorus accumulating organisms (PAO) in enhanced biological phosphorus removal (EBPR) systems. These wastewater treatment systems play an important role in preventing eutrophication and metabolic models provide an advanced tool for improving their stability via system design, monitoring and prediction. To this end, a global sensitivity analysis was conducted using standard regression coefficients and Sobol sensitivity indices, taking into account the effect of 39 input parameters on 10 output variables. Input uncertainty was characterized with data in the literature and propagated to the output using the Monte Carlo method. The low degree of linearity between input parameters and model outputs showed that model simplification by linearization can be pursued only in very well defined circumstances. Differences between first and total-order sensitivity indices showed that variance in model predictions was due to interactions between combinations of inputs, as opposed to the direct effect of individual inputs. The major sources of uncertainty affecting the prediction of liquid phase concentrations, as well as intra-cellular glycogen and poly-phosphate was due to 64% of the input parameters. In contrast, the contribution to variance in intra-cellular PHA constituents was uniformly distributed among all inputs. In addition to the intra-cellular biomass constituents, notably PHB, PH2MV and glycogen, uncertainty with respect to input parameters directly related to anaerobic propionate uptake, aerobic poly-phosphate formation, glycogen formation and temperature contributed most to the variance of all model outputs. Based on the distribution of total-order sensitivities, characterization of the influent stream and intra-cellular fractions of PHA can be expected to significantly improve model reliability. The variance of EBPR metabolic model predictions was quantified. The means to account for this variance, with respect to each quantity of interest, given knowledge of the corresponding input uncertainties, was prescribed. On this basis, possible avenues and pre-requisite requirements to simplify EBPR metabolic models for PAO, both structurally via linearization, as well as by reduction of the number of non-influential variables were outlined.
Collapse
Affiliation(s)
- Minh Nguyen Quang
- Department of Chemical Engineering, Water Innovation and Research Centre, University of Bath, Bath, United Kingdom
| | - Tim Rogers
- Department of Mathematical Sciences, Centre for Networks and Collective Behaviour, University of Bath, Bath, United Kingdom
| | - Jan Hofman
- Department of Chemical Engineering, Water Innovation and Research Centre, University of Bath, Bath, United Kingdom
| | - Ana B Lanham
- Department of Chemical Engineering, Water Innovation and Research Centre, University of Bath, Bath, United Kingdom
| |
Collapse
|
96
|
|
97
|
Petitte J, Doherty M, Ladd J, Marin CL, Siles S, Michelou V, Damon A, Quattrini Eckert E, Huang X, Rice JW. Use of high-content analysis and machine learning to characterize complex microbial samples via morphological analysis. PLoS One 2019; 14:e0222528. [PMID: 31545814 PMCID: PMC6756541 DOI: 10.1371/journal.pone.0222528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/01/2019] [Indexed: 11/23/2022] Open
Abstract
High Content Analysis (HCA) has become a cornerstone of cellular analysis within the drug discovery industry. To expand the capabilities of HCA, we have applied the same analysis methods, validated in numerous mammalian cell models, to microbiology methodology. Image acquisition and analysis of various microbial samples, ranging from pure cultures to culture mixtures containing up to three different bacterial species, were quantified and identified using various machine learning processes. These HCA techniques allow for faster cell enumeration than standard agar-plating methods, identification of “viable but not plate culturable” microbe phenotype, classification of antibiotic treatment effects, and identification of individual microbial strains in mixed cultures. These methods greatly expand the utility of HCA methods and automate tedious and low-throughput standard microbiological methods.
Collapse
Affiliation(s)
- Jennifer Petitte
- Novozymes North America, Inc., Durham, North Carolina, United States of America
| | - Michael Doherty
- Novozymes North America, Inc., Durham, North Carolina, United States of America
| | - Jacob Ladd
- Novozymes North America, Inc., Durham, North Carolina, United States of America
| | - Cassandra L. Marin
- Novozymes North America, Inc., Durham, North Carolina, United States of America
| | - Samuel Siles
- Novozymes North America, Inc., Durham, North Carolina, United States of America
| | - Vanessa Michelou
- Novozymes North America, Inc., Durham, North Carolina, United States of America
| | - Amanda Damon
- Novozymes North America, Inc., Durham, North Carolina, United States of America
| | | | - Xiang Huang
- Novozymes North America, Inc., Durham, North Carolina, United States of America
| | - John W. Rice
- Novozymes North America, Inc., Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
98
|
Liu XL, Ye S, Cheng CY, Li HW, Lu B, Yang WJ, Yang JS. Identification and characterization of a symbiotic agglutination-related C-type lectin from the hydrothermal vent shrimp Rimicaris exoculata. FISH & SHELLFISH IMMUNOLOGY 2019; 92:1-10. [PMID: 31141718 DOI: 10.1016/j.fsi.2019.05.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/16/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Rimicaris exoculata (Decapoda: Bresiliidae) is one of the dominant species of hydrothermal vent communities, which inside its gill chamber harbors ectosymbioses with taxonomic invariability while compositional flexibility. Several studies have revealed that the establishment of symbiosis can be initiated and selected by innate immunity-related pattern recognition receptors (PRRs), such as C-type lectins (CTLs). In this research, a CTL was identified in R. exoculata (termed RCTL), which showed high expression at both mRNA and protein levels in the scaphognathite, an organ where the ectosymbionts are attached outside its setae. Linear correlationships were observed between the relative quantities of two major symbionts and the expression of RCTL based on analyzing different shrimp individuals. The recombinant protein of RCTL could recognize and agglutinate the cultivable γ-proteobacterium of Escherichia coli in a Ca2+-dependent manner, obeying a dose-dependent and time-cumulative pattern. Unlike conventional crustacean CTLs, the involvement of RCTL could not affect the bacterial growth, which is a key issue for the successful establishment of symbiosis. These results implied that RCTL might play a critical role in symbiotic recognition and attachment to R. exoculata. It also provides insights to understand how R. exoculata adapted to such a chemosynthesis-based environment.
Collapse
Affiliation(s)
- Xiao-Li Liu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Sen Ye
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Cai-Yuan Cheng
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Hua-Wei Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Bo Lu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang, 310012, PR China
| | - Wei-Jun Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Jin-Shu Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
99
|
Jayasena Kaluarachchi TD, Weerasekera MM, McBain AJ, Ranasinghe S, Wickremasinghe R, Yasawardene S, Jayanetti N, Wickremasinghe R. Diagnosing Cutaneous leishmaniasis using Fluorescence in Situ Hybridization: the Sri Lankan Perspective. Pathog Glob Health 2019; 113:180-190. [PMID: 31429388 DOI: 10.1080/20477724.2019.1650228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cutaneous leishmaniasis (CL) caused by Leishmania donovani MON-37 is becoming a major public health problem in Sri Lanka, with 100 new cases per month being reported in endemic regions. Diagnosis of CL is challenging for several reasons. Due to relative specificity and rapidity we propose Fluorescence in Situ Hybridization as a diagnostic tool for CL. The objective was to evaluate the potential of Fluorescence in Situ Hybridization as a diagnostic method for Cutaneous leishmaniasis in Sri Lanka. Literature on current laboratory tests used to diagnose Cutaneous leishmaniasis in Sri Lanka and globally was reviewed. Sri Lankan data were reviewed systematically following the PRISMA guidelines. A narrative of the results is presented. There is currently no gold standard diagnostic method for Cutaneous leishmaniasis. Fluorescence in Situ Hybridization has been previously applied to detect dermal pathologies including those involving infectious agents, and its use to detect the Leishmania parasite in human cutaneous lesions reported in small number of studies, generally with limited numbers of subjects. Advantages of FISH has been specificity, cost and ease-of-use compared to the alternatives. Based on the available literature and our current work, FISH has potential for diagnosing CL and should now be evaluated in larger cohorts in endemic regions. FISH for CL diagnosis could find application in countries such as Sri Lanka, where laboratory facilities may be limited in rural areas where the disease burden is highest.
Collapse
Affiliation(s)
| | - Manjula Manoji Weerasekera
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura , Nugegoda , Sri Lanka
| | - Andrew J McBain
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura , Nugegoda , Sri Lanka.,Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester , Manchester
| | - Shalindra Ranasinghe
- Department of Parasitology, Faculty of Medical Sciences, University of Sri Jayewardenepura , Colombo , Sri Lanka
| | - Renu Wickremasinghe
- Department of Parasitology, Faculty of Medical Sciences, University of Sri Jayewardenepura , Colombo , Sri Lanka
| | - Surangi Yasawardene
- Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayewardenepura , Colombo , Sri Lanka
| | - Nisal Jayanetti
- Department of Parasitology, Faculty of Medical Sciences, University of Sri Jayewardenepura , Colombo , Sri Lanka
| | - Rajitha Wickremasinghe
- Department of Public Health, Faculty of Medicine, University of Kelaniya , Kelaniya , Sri Lanka
| |
Collapse
|
100
|
Boolchandani M, D'Souza AW, Dantas G. Sequencing-based methods and resources to study antimicrobial resistance. Nat Rev Genet 2019; 20:356-370. [PMID: 30886350 PMCID: PMC6525649 DOI: 10.1038/s41576-019-0108-4] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antimicrobial resistance extracts high morbidity, mortality and economic costs yearly by rendering bacteria immune to antibiotics. Identifying and understanding antimicrobial resistance are imperative for clinical practice to treat resistant infections and for public health efforts to limit the spread of resistance. Technologies such as next-generation sequencing are expanding our abilities to detect and study antimicrobial resistance. This Review provides a detailed overview of antimicrobial resistance identification and characterization methods, from traditional antimicrobial susceptibility testing to recent deep-learning methods. We focus on sequencing-based resistance discovery and discuss tools and databases used in antimicrobial resistance studies.
Collapse
Affiliation(s)
- Manish Boolchandani
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Alaric W D'Souza
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|