51
|
A Highly Conserved Basidiomycete Peptide Synthetase Produces a Trimeric Hydroxamate Siderophore. Appl Environ Microbiol 2017; 83:AEM.01478-17. [PMID: 28842536 DOI: 10.1128/aem.01478-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/17/2017] [Indexed: 11/20/2022] Open
Abstract
The model white-rot basidiomycete, Ceriporiopsis (Gelatoporia) subvermispora B, encodes putative natural product biosynthesis genes. Among them is the gene for the seven-domain nonribosomal peptide synthetase CsNPS2. It is a member of the as-yet-uncharacterized fungal type VI siderophore synthetase family, which is highly conserved and widely distributed among the basidiomycetes. These enzymes include only one adenylation (A) domain, i.e., one complete peptide synthetase module, and two thiolation/condensation (T-C) didomain partial modules which together constitute an AT1C1T2C2T3C3 domain setup. The full-length CsNPS2 enzyme (274.5 kDa) was heterologously produced as a polyhistidine fusion in Aspergillus niger as a soluble and active protein. N 5-acetyl-N 5-hydroxy-l-ornithine (l-AHO) and N 5-cis-anhydromevalonyl-N 5 -hydroxy-l-ornithine (l-AMHO) were accepted as the substrates, based on results of an in vitro substrate-dependent [32P]ATP-pyrophosphate radioisotope exchange assay. Full-length holo-CsNPS2 catalyzed amide bond formation between three l-AHO molecules to release the linear l-AHO trimer, called basidioferrin, as the product in vitro, which was verified by liquid chromatography-high-resolution electrospray ionization-mass spectrometry analysis. Phylogenetic analyses suggested that type VI family siderophore synthetases are widespread in mushrooms and evolved in a common ancestor of basidiomycetes.IMPORTANCE The basidiomycete nonribosomal peptide synthetase CsNPS2 represents a member of a widely distributed but previously uninvestigated class (type VI) of fungal siderophore synthetases. Genes orthologous to CsNPS2 are highly conserved across various phylogenetic clades of the basidiomycetes. Hence, our work serves as a broadly applicable model for siderophore biosynthesis and iron metabolism in higher fungi. Also, our results on the amino acid substrate preference of CsNPS2 support a further understanding of the substrate selectivity of fungal adenylation domains. Methodologically, this report highlights the Aspergillus niger/SM-Xpress-based system as a suitable platform to heterologously express multimodular basidiomycete biosynthesis enzymes in the >250-kDa range in soluble and active form.
Collapse
|
52
|
Palominos MF, Verdugo L, Gabaldon C, Pollak B, Ortíz-Severín J, Varas MA, Chávez FP, Calixto A. Transgenerational Diapause as an Avoidance Strategy against Bacterial Pathogens in Caenorhabditis elegans. mBio 2017; 8:e01234-17. [PMID: 29018118 PMCID: PMC5635688 DOI: 10.1128/mbio.01234-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/30/2017] [Indexed: 12/22/2022] Open
Abstract
The dynamic response of organisms exposed to environmental pathogens determines their survival or demise, and the outcome of this interaction depends on the host's susceptibility and pathogen-dependent virulence factors. The transmission of acquired information about the nature of a pathogen to progeny may ensure effective defensive strategies for the progeny's survival in adverse environments. Environmental RNA interference (RNAi) is a systemic and heritable mechanism and has recently been linked to antibacterial and antifungal defenses in both plants and animals. Here, we report that the second generation of Caenorhabditis elegans living on pathogenic bacteria can avoid bacterial infection by entering diapause in an RNAi pathway-dependent mechanism. Furthermore, we demonstrate that the information encoding this survival strategy is transgenerationally transmitted to the progeny via the maternal germ line.IMPORTANCE Bacteria vastly influence physiology and behavior, and yet, the specific mechanisms by which they cause behavioral changes in hosts are not known. We use C. elegans as a host and the bacteria they eat to understand how microbes trigger a behavioral change that helps animals to survive. We found that animals faced with an infection for two generations could enter a hibernationlike state, arresting development by forming dauer larvae. Dauers have closed mouths and effectively avoid infection. Animals accumulate information that is transgenerationally transmitted to the next generations to form dauers. This work gives insight on how bacteria communicate in noncanonical ways with their hosts, resulting in long-lasting effects providing survival strategies to the community.
Collapse
Affiliation(s)
- M Fernanda Palominos
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Lidia Verdugo
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Carolaing Gabaldon
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Bernardo Pollak
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera Ortíz-Severín
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Macarena A Varas
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Francisco P Chávez
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Andrea Calixto
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
53
|
Dogs M, Wemheuer B, Wolter L, Bergen N, Daniel R, Simon M, Brinkhoff T. Rhodobacteraceae on the marine brown alga Fucus spiralis are abundant and show physiological adaptation to an epiphytic lifestyle. Syst Appl Microbiol 2017; 40:370-382. [PMID: 28641923 DOI: 10.1016/j.syapm.2017.05.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/05/2017] [Accepted: 05/12/2017] [Indexed: 12/01/2022]
Abstract
Macroalgae harbour specific microbial communities on their surface that have functions related to host health and defence. In this study, the bacterial biofilm of the marine brown alga Fucus spiralis was investigated using 16S rRNA gene amplicon-based analysis and isolation of bacteria. Rhodobacteraceae (Alphaproteobacteria) were the predominant family constituting 23% of the epibacterial community. At the genus level, Sulfitobacter, Loktanella, Octadecabacter and a previously undescribed cluster were most abundant, and together they comprised 89% of the Rhodobacteraceae. Supported by a specific PCR approach, 23 different Rhodobacteraceae-affiliated strains were isolated from the surface of F. spiralis, which belonged to 12 established and three new genera. For seven strains, closely related sequences were detected in the 16S rRNA gene dataset. Growth experiments with substrates known to be produced by Fucus spp. showed that all of them were consumed by at least three strains, and vitamin B12 was produced by 70% of the isolates. Since growth of F. spiralis depends on B12 supplementation, bacteria may provide the alga with this vitamin. Most strains produced siderophores, which can enhance algal growth under iron-deficient conditions. Inhibiting properties against other bacteria were only observed when F. spiralis material was present in the medium. Thus, the physiological properties of the isolates indicated adaption to an epiphytic lifestyle.
Collapse
Affiliation(s)
- Marco Dogs
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Bernd Wemheuer
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Laura Wolter
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Nils Bergen
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
54
|
Yu YY, Jiang CH, Wang C, Chen LJ, Li HY, Xu Q, Guo JH. An improved strategy for stable biocontrol agents selecting to control rice sheath blight caused by Rhizoctonia solani. Microbiol Res 2017; 203:1-9. [PMID: 28754202 DOI: 10.1016/j.micres.2017.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 05/15/2017] [Accepted: 05/21/2017] [Indexed: 10/19/2022]
Abstract
Rice sheath blight caused by Rhizoctonia solani Kühnis increasingly threatening rice production in China. DNA fingerprints of 220 R. solani strains isolated in 11 provinces of China were established by random amplified polymorphic DNA (RAPD)-PCR. Cluster analysis of strains isolated from the same region showed high similarity, indicating that the genetic diversity of R. solani strains is significantly related to geographical origin. We assessed potential bio-control abilities of bio-control agents (BCAs) by values according to inhibition zones against R. solani, extracellular hydrolytic enzymes activity and siderophores production in vitro. Fourteen strains with diverse expected bio-control potential were tested for their bio-control efficacy against rice sheath blight caused by 11 pathogenic exemplars and for growth promoting ability, separately. Bio-control efficacy of single bacterium against various R. solani strains differed significantly (-36.23%∼88.24%), while Pseudomonas fluorescens 4aYN11 achieved a relatively stable control efficacy of 32.26%-78.79% and growth promotion of 18.43%. Pearson correlation coefficient between bio-control efficacy of each BCAs and their assessment is 0.717. In the present study, we established an improved strategy for screening stable bio-control agents based on an assessment system, their growth promotion potential and phylogenetic diversity of pathogen R. solani, and the result provides us not only one promising bio-control strain 4aYN11 with an average bio-control efficacy of 56.50%, but also a practical way for future screen of novel BCAs.
Collapse
Affiliation(s)
- Yi-Yang Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, 210095, China
| | - Chun-Hao Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, 210095, China; College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, 210095, China; Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, 210042, China
| | - Liu-Jun Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, 210095, China; Wuxi Life Foundation Bio-Technology Co., Ltd., 36 Zhenxing Street, Mashan Town, Binhu District, Wuxi, 214000, China
| | - Hong-Yang Li
- Jiangsu Coastal Area Institute of Agricultural Science, Yancheng, 224003, China.
| | - Quan Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, 210095, China.
| | - Jian-Hua Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, 210095, China.
| |
Collapse
|
55
|
Profiling of Virulence Determinants in Cronobacter sakazakii Isolates from Different Plant and Environmental Commodities. Curr Microbiol 2017; 74:560-565. [DOI: 10.1007/s00284-017-1219-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 02/15/2017] [Indexed: 12/14/2022]
|
56
|
Shi P, Xing Z, Zhang Y, Chai T. Effect of heavy-metal on synthesis of siderophores by Pseudomonas aeruginosa ZGKD3. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1742-6596/52/1/012103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
57
|
Santiago CD, Yagi S, Ijima M, Nashimoto T, Sawada M, Ikeda S, Asano K, Orikasa Y, Ohwada T. Bacterial Compatibility in Combined Inoculations Enhances the Growth of Potato Seedlings. Microbes Environ 2017; 32:14-23. [PMID: 28163278 PMCID: PMC5371070 DOI: 10.1264/jsme2.me16127] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The compatibility of strains is crucial for formulating bioinoculants that promote plant growth. We herein assessed the compatibility of four potential bioinoculants isolated from potato roots and tubers (Sphingomonas sp. T168, Streptomyces sp. R170, Streptomyces sp. R181, and Methylibium sp. R182) that were co-inoculated in order to improve plant growth. We screened these strains using biochemical tests, and the results obtained showed that R170 had the highest potential as a bioinoculant, as indicated by its significant ability to produce plant growth-promoting substances, its higher tolerance against NaCl (2%) and AlCl3 (0.01%), and growth in a wider range of pH values (5.0–10.0) than the other three strains. Therefore, the compatibility of R170 with other strains was tested in combined inoculations, and the results showed that the co-inoculation of R170 with T168 or R182 synergistically increased plant weight over un-inoculated controls, indicating the compatibility of strains based on the increased production of plant growth promoters such as indole-3-acetic acid (IAA) and siderophores as well as co-localization on roots. However, a parallel test using strain R181, which is the same Streptomyces genus as R170, showed incompatibility with T168 and R182, as revealed by weaker plant growth promotion and a lack of co-localization. Collectively, our results suggest that compatibility among bacterial inoculants is important for efficient plant growth promotion, and that R170 has potential as a useful bioinoculant, particularly in combined inoculations that contain compatible bacteria.
Collapse
|
58
|
Deng QW, Wang YD, Ding DX, Hu N, Sun J, He JD, Xu F. Construction of the Syngonium podophyllum-Pseudomonas sp. XNN8 Symbiotic Purification System and Investigation of Its Capability of Remediating Uranium Wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5134-5143. [PMID: 27023802 DOI: 10.1007/s11356-016-6392-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
The endophyte Pseudomonas sp. XNN8 was separated from Typha orientalis which can secrete indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate deaminase and siderophores and has strong resistance to uranium it was then colonized in the Syngonium podophyllum; and the S. podophyllum-Pseudomonas sp. XNN8 symbiotic purification system (SPPSPS) for uranium-containing wastewater was constructed. Afterwards, the hydroponic experiments to remove uranium from uranium-containing wastewater by the SPPSPS were conducted. After 24 days of treatment, the uranium concentrations of the wastewater samples with uranium concentrations between 0.5 and 5.0 mg/L were lowered to below 0.05 mg/L. Furthermore, the uranium in the plants was assayed using Fourier transform infrared spectroscopy (FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The Pseudomonas sp. XNN8 was found to generate substantial organic groups in the roots of the Syngonium podophyllum, which could improve the complexing capability of S. podophyllum for uranium. The uranium in the roots of S. podophyllum was found to be the uranyl phosphate (47.4 %) and uranyl acetate (52.6 %).
Collapse
Affiliation(s)
- Qin-Wen Deng
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, 28 West Changsheng Road, Hengyang, Hunan, 421001, People's Republic of China
| | - Yong-Dong Wang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, 28 West Changsheng Road, Hengyang, Hunan, 421001, People's Republic of China
| | - De-Xin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, 28 West Changsheng Road, Hengyang, Hunan, 421001, People's Republic of China.
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, 28 West Changsheng Road, Hengyang, Hunan, 421001, People's Republic of China
| | - Jing Sun
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, 28 West Changsheng Road, Hengyang, Hunan, 421001, People's Republic of China
| | - Jia-Dong He
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, 28 West Changsheng Road, Hengyang, Hunan, 421001, People's Republic of China
| | - Fei Xu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, 28 West Changsheng Road, Hengyang, Hunan, 421001, People's Republic of China
| |
Collapse
|
59
|
Viktorova J, Jandova Z, Madlenakova M, Prouzova P, Bartunek V, Vrchotova B, Lovecka P, Musilova L, Macek T. Native Phytoremediation Potential of Urtica dioica for Removal of PCBs and Heavy Metals Can Be Improved by Genetic Manipulations Using Constitutive CaMV 35S Promoter. PLoS One 2016; 11:e0167927. [PMID: 27930707 PMCID: PMC5145202 DOI: 10.1371/journal.pone.0167927] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/22/2016] [Indexed: 01/20/2023] Open
Abstract
Although stinging nettle (Urtica dioica) has been shown to reduce HM (heavy metal) content in soil, its wider phytoremediation potential has been neglected. Urtica dioica was cultivated in soils contaminated with HMs or polychlorinated biphenyls (PCBs). After four months, up to 33% of the less chlorinated biphenyls and 8% of HMs (Zn, Pb, Cd) had been removed. Bacteria were isolated from the plant tissue, with the endophytic bacteria Bacillus shackletonii and Streptomyces badius shown to have the most significant effect. These bacteria demonstrated not only benefits for plant growth, but also extreme tolerance to As, Zn and Pb. Despite these results, the native phytoremediation potential of nettles could be improved by biotechnologies. Transient expression was used to investigate the functionality of the most common constitutive promoter, CaMV 35S in Urtica dioica. This showed the expression of the CUP and bphC transgenes. Collectively, our findings suggest that remediation by stinging nettle could have a much wider range of applications than previously thought.
Collapse
Affiliation(s)
- Jitka Viktorova
- UCT Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 3, Prague, Czech Republic
| | - Zuzana Jandova
- UCT Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 3, Prague, Czech Republic
| | - Michaela Madlenakova
- UCT Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 3, Prague, Czech Republic
| | - Petra Prouzova
- UCT Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 3, Prague, Czech Republic
| | - Vilem Bartunek
- UCT Prague, Faculty of Chemical Technology, Department of Inorganic Chemistry, Technicka 3, Prague, Czech Republic
| | - Blanka Vrchotova
- UCT Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 3, Prague, Czech Republic
| | - Petra Lovecka
- UCT Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 3, Prague, Czech Republic
| | - Lucie Musilova
- UCT Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 3, Prague, Czech Republic
| | - Tomas Macek
- UCT Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 3, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
60
|
Andrews MY, Santelli CM, Duckworth OW. Layer plate CAS assay for the quantitation of siderophore production and determination of exudation patterns for fungi. J Microbiol Methods 2016; 121:41-3. [DOI: 10.1016/j.mimet.2015.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
|
61
|
Madsen JLH, Johnstone TC, Nolan EM. Chemical Synthesis of Staphyloferrin B Affords Insight into the Molecular Structure, Iron Chelation, and Biological Activity of a Polycarboxylate Siderophore Deployed by the Human Pathogen Staphylococcus aureus. J Am Chem Soc 2015; 137:9117-27. [DOI: 10.1021/jacs.5b04557] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Julie L. H. Madsen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Timothy C. Johnstone
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
62
|
Conjunctively screening of biocontrol agents (BCAs) against fusarium root rot and fusarium head blight caused by Fusarium graminearum. Microbiol Res 2015. [PMID: 26211964 DOI: 10.1016/j.micres.2015.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Fusarium root-rot and fusarium head blight are plant diseases caused by Fusarium sp. in different growth periods of wheat, bring heavy losses to crop production in China. This research is aiming to screen biocontrol agents conjunctively for controlling these two diseases at the same time, as well as evaluate our previous BCAs (Biological Control Agents) screening strategies in more complex situation, considering biocontrol is well concerned as an environmental-friendly plant disease controlling method. METHODS Totally 966 bacterial isolates were screened from different parts of wheat tissues, of which potential biocontrol values were detected according to their abilities in antagonism inhibition and secreting extracellular hydrolytic enzyme. Biocontrol tests against fusarium root rot and fusarium head blight were carried out on 37 bacterial isolates with potential biocontrol capacity after pre-selection through ARDRA- and BOX-PCR analysis on strains with high assessment points. RESULTS We acquired 10 BCAs with obvious biocontrol efficacy (more than 40%) in greenhouse and field tests. Pseudomonas fluorescens LY1-8 performed well in both two tests (biocontrol efficacy: 44.62% and 58.31%), respectively. Overall, correlation coefficient is 0.720 between assessment values of 37 tested BCA strains and their biocontrol efficacy in trails against fusarium root rot; correlation coefficient is 0.806 between their assessment values and biocontrol efficacy in trails against fusarium head blight. CONCLUSION We acquired 10 well-performed potential BCAs, especially P. fluorescens LY1-8 displayed good biocontrol capacity against two different diseases on wheat. Biocontrol efficacies results in both greenhouse and field tests showed high positive correlation with assessment values (0.720 and 0.806), suggesting that the BCAs screening and assessing strategy previously developed in our lab is also adaptable for conjunctively screening BCAs for controlling both root and shoot diseases on wheat caused by same fungal pathogen.
Collapse
|
63
|
Wang X, Mavrodi DV, Ke L, Mavrodi OV, Yang M, Thomashow LS, Zheng N, Weller DM, Zhang J. Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils. Microb Biotechnol 2015; 8:404-18. [PMID: 25219642 PMCID: PMC4408174 DOI: 10.1111/1751-7915.12158] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/19/2014] [Accepted: 07/24/2014] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to inventory the types of plant growth-promoting rhizobacteria (PGPR) present in the rhizosphere of plants grown in soils contaminated with heavy metals, recalcitrant organics, petroleum sewage or salinity in China. We screened 1223 isolates for antifungal activity and about 24% inhibited Rhizoctonia solani or Sclerotinia sclerotiorum. Twenty-four strains inhibitory to R. solani, Gaeumannomyces graminis var. tritici and/or S. sclerotiorum and representing the dominant morphotypes were assayed for PGPR activity. Seven strains contained phlD, prnD, pltC or phzF genes and produced the antibiotics 2,4-diacetylphloroglucinol, pyrrolnitrin, pyoluteorin and phenazines respectively. Six strains contained acdS, which encodes 1-aminocyclopropane-1-carboxylic acid deaminase. Phylogenetic analysis of 16S rDNA and phlD, phzF and acdS genes demonstrated that some strains identified as Pseudomonas were similar to model PGPR strains Pseudomonas protegens Pf-5, Pseudomonas chlororaphis subsp. aureofaciens 30-84 and P. brassicacearum Q8r1-96. Pseudomonas protegens- and P. chlororaphis-like strains had the greatest biocontrol activity against Rhizoctonia root rot and take-all of wheat. Pseudomonas protegens and P. brassicacearum-like strains showed the greatest promotion of canola growth. Our results indicate that strains from contaminated soils are similar to well-described PGPR found in agricultural soils worldwide.
Collapse
Affiliation(s)
- Xuefei Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, Hubei, 430070, China
- Department of Plant Pathology, Washington State UniversityPullman, WA, 99164-6430, USA
| | - Dmitri V Mavrodi
- Department of Biological Sciences, The University of Southern MississippiHattiesburg, MS, 39406, USA
| | - Linfeng Ke
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, Hubei, 430070, China
| | - Olga V Mavrodi
- Department of Plant Pathology, Washington State UniversityPullman, WA, 99164-6430, USA
| | - Mingming Yang
- Department of Plant Pathology, Washington State UniversityPullman, WA, 99164-6430, USA
| | - Linda S Thomashow
- Agricultural Research Service, Root Disease and Biological Control Research Unit, United States Department of AgriculturePullman, WA, 99164-6430, USA
| | - Na Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, Hubei, 430070, China
| | - David M Weller
- Agricultural Research Service, Root Disease and Biological Control Research Unit, United States Department of AgriculturePullman, WA, 99164-6430, USA
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, Hubei, 430070, China
| |
Collapse
|
64
|
Sura-de Jong M, Reynolds RJB, Richterova K, Musilova L, Staicu LC, Chocholata I, Cappa JJ, Taghavi S, van der Lelie D, Frantik T, Dolinova I, Strejcek M, Cochran AT, Lovecka P, Pilon-Smits EAH. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties. FRONTIERS IN PLANT SCIENCE 2015; 6:113. [PMID: 25784919 PMCID: PMC4345804 DOI: 10.3389/fpls.2015.00113] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/11/2015] [Indexed: 05/07/2023]
Abstract
Selenium (Se)-rich plants may be used to provide dietary Se to humans and livestock, and also to clean up Se-polluted soils or waters. This study focused on endophytic bacteria of plants that hyperaccumulate selenium (Se) to 0.5-1% of dry weight. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to compare the diversity of endophytic bacteria of hyperaccumulators Stanleya pinnata (Brassicaceae) and Astragalus bisulcatus (Fabaceae) with those from related non-accumulators Physaria bellii (Brassicaceae) and Medicago sativa (Fabaceae) collected on the same, seleniferous site. Hyperaccumulators and non-accumulators showed equal T-RF diversity. Parsimony analysis showed that T-RFs from individuals of the same species were more similar to each other than to those from other species, regardless of plant Se content or spatial proximity. Cultivable endophytes from hyperaccumulators S. pinnata and A. bisulcatus were further identified and characterized. The 66 bacterial morphotypes were shown by MS MALDI-TOF Biotyper analysis and 16S rRNA gene sequencing to include strains of Bacillus, Pseudomonas, Pantoea, Staphylococcus, Paenibacillus, Advenella, Arthrobacter, and Variovorax. Most isolates were highly resistant to selenate and selenite (up to 200 mM) and all could reduce selenite to red elemental Se, reduce nitrite and produce siderophores. Seven isolates were selected for plant inoculation and found to have plant growth promoting properties, both in pure culture and when co-cultivated with crop species Brassica juncea (Brassicaceae) or M. sativa. There were no effects on plant Se accumulation. We conclude that Se hyperaccumulators harbor an endophytic bacterial community in their natural seleniferous habitat that is equally diverse to that of comparable non-accumulators. The hyperaccumulator endophytes are characterized by high Se resistance, capacity to produce elemental Se and plant growth promoting properties.
Collapse
Affiliation(s)
- Martina Sura-de Jong
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in PraguePrague, Czech Republic
- Life Sciences and Technology, Van Hall Larenstein University of Applied SciencesLeeuwarden, Netherlands
| | | | - Klara Richterova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in PraguePrague, Czech Republic
| | - Lucie Musilova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in PraguePrague, Czech Republic
| | - Lucian C. Staicu
- Biology Department, Colorado State UniversityFort Collins, CO, USA
| | - Iva Chocholata
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in PraguePrague, Czech Republic
| | | | - Safiyh Taghavi
- FMC Corporation, Center of Excellence for Agricultural Biosolutions, Research Triangle ParkNC, USA
| | - Daniel van der Lelie
- FMC Corporation, Center of Excellence for Agricultural Biosolutions, Research Triangle ParkNC, USA
| | - Tomas Frantik
- Institute of Botany, Academy of Sciences of the Czech RepublicPruhonice, Czech Republic
| | - Iva Dolinova
- The Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of LiberecLiberec, Czech Republic
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in PraguePrague, Czech Republic
| | | | - Petra Lovecka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in PraguePrague, Czech Republic
| | | |
Collapse
|
65
|
Abstract
CONTEXT Escherichia coli is known as causative agent of urinary tract infections (UTIs) tends to form microcolonies in mucosa lining of urinary bladder known as biofilm. These biofilms make the organism to resist the host immune response, more virulent and lead to the evolution of antibacterial drug resistance by enclosing them in an extracellular biochemical matrix. AIMS This study was done to know the association of various virulence factors and biofilm production in uropathogenic E. coli (UPEC) and antibiotic susceptibility pattern. SETTINGS AND DESIGN This study was conducted in Pt. B.D. Sharma PGIMS, Rohtak, Haryana during a period of 1 year from January 2011 to December 2011. METHODS AND MATERIAL Biofilm was detected by microtiter plate (MTP) method, and various virulence factors like hemolysin, hemagglutination, gelatinase, siderophore production, serum resistance, and hydrophobicity were detected. The antibiotic susceptibility testing was done by modified Kirby-Bauer disk diffusion and the disk diffusion method was used to confirm the ESBL, AmpC, MBL production by the UPEC statistical analysis used: The data were analyzed by using SPSS version 17.0. A two-sided P-value of less than or equal to 0·05 was considered to be significant. RESULTS Biofilm production was found in 18 (13·5%) isolates, more commonly in females (two times). These isolates were found to be resistant to antibiotics common in use and were 100% MDR. CONCLUSIONS Biofilm production makes the organism to be more resistant to antibiotics and virulent as compared to non-biofilm producers.
Collapse
|
66
|
Xiong H, Li Y, Cai Y, Cao Y, Wang Y. Isolation of Bacillus amyloliquefaciens JK6 and identification of its lipopeptides surfactin for suppressing tomato bacterial wilt. RSC Adv 2015. [DOI: 10.1039/c5ra13142a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A rhizobacteria strain, B. amyloliquefaciens JK6, isolated from the rhizosphere soil of healthy tomato plants, significantly inhibited Ralstonia solanacearum (RS).
Collapse
Affiliation(s)
- Hanqin Xiong
- College of Natural Resources and Environment
- South China Agricultural University
- Guangzhou
- PR China
| | - Yongtao Li
- College of Natural Resources and Environment
- South China Agricultural University
- Guangzhou
- PR China
| | - Yanfei Cai
- College of Natural Resources and Environment
- South China Agricultural University
- Guangzhou
- PR China
| | - Yu Cao
- College of Natural Resources and Environment
- South China Agricultural University
- Guangzhou
- PR China
| | - Yan Wang
- College of Natural Resources and Environment
- South China Agricultural University
- Guangzhou
- PR China
| |
Collapse
|
67
|
Yang Q, Anh NDQ, Bossier P, Defoirdt T. Norepinephrine and dopamine increase motility, biofilm formation, and virulence of Vibrio harveyi. Front Microbiol 2014; 5:584. [PMID: 25414697 PMCID: PMC4222227 DOI: 10.3389/fmicb.2014.00584] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 10/17/2014] [Indexed: 12/29/2022] Open
Abstract
Vibrio harveyi is one of the major pathogens of aquatic organisms, affecting both vertebrates and invertebrates, and causes important losses in the aquaculture industry. In order to develop novel methods to control disease caused by this pathogen, we need to obtain a better understanding of pathogenicity mechanisms. Sensing of catecholamines increases both growth and production of virulence-related factors in pathogens of terrestrial animals and humans. However, at this moment, knowledge on the impact of catecholamines on the virulence of pathogens of aquatic organisms is lacking. In the present study, we report that in V. harveyi, norepinephrine (NE) and dopamine (Dopa) increased growth in serum-supplemented medium, siderophore production, swimming motility, and expression of genes involved in flagellar motility, biofilm formation, and exopolysaccharide production. Consistent with this, pretreatment of V. harveyi with catecholamines prior to inoculation into the rearing water resulted in significantly decreased survival of gnotobiotic brine shrimp larvae, when compared to larvae challenged with untreated V. harveyi. Further, NE-induced effects could be neutralized by α-adrenergic antagonists or by the bacterial catecholamine receptor antagonist LED209, but not by β-adrenergic or dopaminergic antagonists. Dopa-induced effects could be neutralized by dopaminergic antagonists or LED209, but not by adrenergic antagonists. Together, our results indicate that catecholamine sensing increases the success of transmission of V. harveyi and that interfering with catecholamine sensing might be an interesting strategy to control vibriosis in aquaculture. We hypothesize that upon tissue and/or hemocyte damage during infection, pathogens come into contact with elevated catecholamine levels, and that this stimulates the expression of virulence factors that are required to colonize a new host.
Collapse
Affiliation(s)
- Qian Yang
- Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Production, Ghent University Ghent, Belgium
| | - Nguyen D Q Anh
- Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Production, Ghent University Ghent, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Production, Ghent University Ghent, Belgium
| | - Tom Defoirdt
- Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Production, Ghent University Ghent, Belgium
| |
Collapse
|
68
|
Yang MM, Wen SS, Mavrodi DV, Mavrodi OV, von Wettstein D, Thomashow LS, Guo JH, Weller DM. Biological control of wheat root diseases by the CLP-producing strain Pseudomonas fluorescens HC1-07. PHYTOPATHOLOGY 2014; 104:248-56. [PMID: 24512115 PMCID: PMC5523110 DOI: 10.1094/phyto-05-13-0142-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Pseudomonas fluorescens HC1-07, previously isolated from the phyllosphere of wheat grown in Hebei province, China, suppresses the soilborne disease of wheat take-all, caused by Gaeumannomyces graminis var. tritici. We report here that strain HC1-07 also suppresses Rhizoctonia root rot of wheat caused by Rhizoctonia solani AG-8. Strain HC1-07 produced a cyclic lipopeptide (CLP) with a molecular weight of 1,126.42 based on analysis by electrospray ionization mass spectrometry. Extracted CLP inhibited the growth of G. graminis var. tritici and R. solani in vitro. To determine the role of this CLP in biological control, plasposon mutagenesis was used to generate two nonproducing mutants, HC1-07viscB and HC1-07prtR2. Analysis of regions flanking plasposon insertions in HC1-07prtR2 and HC1-07viscB revealed that the inactivated genes were similar to prtR and viscB, respectively, of the well-described biocontrol strain P. fluorescens SBW25 that produces the CLP viscosin. Both genes in HC1-07 were required for the production of the viscosin-like CLP. The two mutants were less inhibitory to G. graminis var. tritici and R. solani in vitro and reduced in ability to suppress take-all. HC1-07viscB but not HC-07prtR2 was reduced in ability to suppress Rhizoctonia root rot. In addition to CLP production, prtR also played a role in protease production.
Collapse
|
69
|
Chang S, Park S, Kang D. Development of novel agar media for isolating guaiacol producing Alicyclobacillus spp. Int J Food Microbiol 2013; 164:1-6. [DOI: 10.1016/j.ijfoodmicro.2013.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/04/2013] [Accepted: 03/16/2013] [Indexed: 11/30/2022]
|
70
|
Construction of iucB and iucBiutA mutants of avian pathogenic Escherichia coli and evaluation of their pathogenicity. Vet Microbiol 2012; 159:420-31. [DOI: 10.1016/j.vetmic.2012.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 04/14/2012] [Accepted: 04/20/2012] [Indexed: 11/20/2022]
|
71
|
Requirement of siderophore biosynthesis for plant colonization by Salmonella enterica. Appl Environ Microbiol 2012; 78:4561-70. [PMID: 22522683 DOI: 10.1128/aem.07867-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Contaminated fresh produce has become the number one vector of nontyphoidal salmonellosis to humans. However, Salmonella enterica genes essential for the life cycle of the organism outside the mammalian host are for the most part unknown. Screening deletion mutants led to the discovery that an aroA mutant had a significant root colonization defect due to a failure to replicate. AroA is part of the chorismic acid biosynthesis pathway, a central metabolic node involved in aromatic amino acid and siderophore production. Addition of tryptophan or phenylalanine to alfalfa root exudates did not restore aroA mutant replication. However, addition of ferrous sulfate restored replication of the aroA mutant, as well as alfalfa colonization. Tryptophan and phenylalanine auxotrophs had minor plant colonization defects, suggesting that suboptimal concentrations of these amino acids in root exudates were not major limiting factors for Salmonella replication. An entB mutant defective in siderophore biosynthesis had colonization and growth defects similar to those of the aroA mutant, and the defective phenotype was complemented by the addition of ferrous sulfate. Biosynthetic genes of each Salmonella siderophore, enterobactin and salmochelin, were upregulated in alfalfa root exudates, yet only enterobactin was sufficient for plant survival and persistence. Similar results in lettuce leaves indicate that siderophore biosynthesis is a widespread or perhaps universal plant colonization fitness factor for Salmonella, unlike phytobacterial pathogens, such as Pseudomonas and Xanthomonas.
Collapse
|
72
|
Marques MP, Walshe K, Doyle S, Fernandes P, de Carvalho CC. Anchoring high-throughput screening methods to scale-up bioproduction of siderophores. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
73
|
Expression of multidrug resistance efflux pump gene norA is iron responsive in Staphylococcus aureus. J Bacteriol 2012; 194:1753-62. [PMID: 22267518 DOI: 10.1128/jb.06582-11] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus aureus utilizes efflux transporter NorA to pump out a wide range of structurally dissimilar drugs, conferring low-level multidrug resistance. The regulation of norA expression has yet to be fully understood although past studies have revealed that this gene is under the control of the global transcriptional regulator MgrA and the two-component system ArlRS. To identify additional regulators of norA, we screened a transposon library in strain Newman expressing the transcriptional fusion norA-lacZ for altered β-galactosidase activity. We identify a transposon insertion in fhuB, a gene that encodes a ferric hydroxamate uptake system permease, and propose that the norA transcription is iron responsive. In agreement with this observation, addition of FeCl(3) repressed the induction of norA-lacZ, suggesting that bacterial iron uptake plays an important role in regulating norA transcription. In addition, a fur (ferric uptake regulator) deletion exhibited compromised norA transcription and reduced resistance to quinolone compared to the wild-type strain, indicating that fur functions as a positive regulator of norA. A putative Fur box identified in the promoter region of norA was confirmed by electrophoretic mobility shift and DNase I footprint assays. Finally, by employing a siderophore secretion assay, we reveal that NorA may contribute to the export of siderophores. Collectively, our experiments uncover some novel interactions between cellular iron level and norA regulation in S. aureus.
Collapse
|
74
|
Engels C, Gänzle MG, Schieber A. Fast LC–MS analysis of gallotannins from mango (Mangifera indica L.) kernels and effects of methanolysis on their antibacterial activity and iron binding capacity. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
75
|
Yang MM, Mavrodi DV, Mavrodi OV, Bonsall RF, Parejko JA, Paulitz TC, Thomashow LS, Yang HT, Weller DM, Guo JH. Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields. PHYTOPATHOLOGY 2011; 101:1481-1491. [PMID: 22070279 DOI: 10.1094/phyto-04-11-0096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Take-all disease of wheat caused by the soilborne fungus Gaeumannomyces graminis var. tritici is one of the most important root diseases of wheat worldwide. Bacteria were isolated from winter wheat from irrigated and rainfed fields in Hebei and Jiangsu provinces in China, respectively. Samples from rhizosphere soil, roots, stems, and leaves were plated onto King's medium B agar and 553 isolates were selected. On the basis of in vitro tests, 105 isolates (19% of the total) inhibited G. graminis var. tritici and all were identified as Pseudomonas spp. by amplified ribosomal DNA restriction analysis. Based on biocontrol assays, 13 strains were selected for further analysis. All of them aggressively colonized the rhizosphere of wheat and suppressed take-all. Of the 13 strains, 3 (HC9-07, HC13-07, and JC14-07, all stem endophytes) had genes for the biosynthesis of phenazine-1-carboxylic acid (PCA) but none had genes for the production of 2,4-diacetylphloroglucinol, pyoluteorin, or pyrrolnitrin. High-pressure liquid chromatography (HPLC) analysis of 2-day-old cultures confirmed that HC9-07, HC13-07, and JC14-07 produced PCA but no other phenazines were detected. HPLC quantitative time-of-flight 2 mass-spectrometry analysis of extracts from roots of spring wheat colonized by HC9-07, HC13-07, or Pseudomonas fluorescens 2-79 demonstrated that all three strains produced PCA in the rhizosphere. Loss of PCA production by strain HC9-07 resulted in a loss of biocontrol activity. Analysis of DNA sequences within the key phenazine biosynthesis gene phzF and of 16S rDNA indicated that strains HC9-07, HC13-07, and JC14-07 were similar to the well-described PCA producer P. fluorescens 2-79. This is the first report of 2-79-like bacteria being isolated from Asia.
Collapse
Affiliation(s)
- Ming-Ming Yang
- Department of Plant Pathology, Nanjing Agricultural University, Jiangsu Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Guo J, Tang S, Ju X, Ding Y, Liao S, Song N. Effects of inoculation of a plant growth promoting rhizobacterium Burkholderia sp. D54 on plant growth and metal uptake by a hyperaccumulator Sedum alfredii Hance grown on multiple metal contaminated soil. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0762-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
77
|
Characterization of putative virulence genes on the related RepFIB plasmids harbored by Cronobacter spp. Appl Environ Microbiol 2011; 77:3255-67. [PMID: 21421789 DOI: 10.1128/aem.03023-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cronobacter spp. are emerging neonatal pathogens that cause meningitis, sepsis, and necrotizing enterocolitis. The genus Chronobacter consists of six species: C. sakazakii, C. malonaticus, C. muytjensii, C. turicensis, C. dublinensis, and Cronobacter genomospecies group 1. Whole-genome sequencing of C. sakazakii BAA-894 and C. turicensis z3032 revealed that they harbor similarly sized plasmids identified as pESA3 (131 kb) and pCTU1 (138 kb), respectively. In silico analysis showed that both plasmids encode a single RepFIB-like origin of replication gene, repA, as well as two iron acquisition systems (eitCBAD and iucABCD/iutA). In a chrome azurol S agar diffusion assay, it was demonstrated that siderophore activity was associated with the presence of pESA3 or pCTU1. Additionally, pESA3 contains a cpa (Cronobacter plasminogen activator) gene and a 17-kb type 6 secretion system (T6SS) locus, while pCTU1 contains a 27-kb region encoding a filamentous hemagglutinin gene (fhaB), its specifc transporter gene (fhaC), and associated putative adhesins (FHA locus), suggesting that these are virulence plasmids. In a repA-targeted PCR assay, 97% of 229 Cronobacter species isolates were found to possess a homologous RepFIB plasmid. All repA PCR-positive strains were also positive for the eitCBAD and iucABCD/iutA iron acquisition systems. However, the presence of cpa, T6SS, and FHA loci depended on species, demonstrating a strong correlation with the presence of virulence traits, plasmid type, and species. These results support the hypothesis that these plasmids have evolved from a single archetypical plasmid backbone through the cointegration, or deletion, of specific virulence traits in each species.
Collapse
|
78
|
Wang Y, Zhang XH, Austin B. Comparative analysis of the phenotypic characteristics of high- and low-virulent strains of Edwardsiella tarda. JOURNAL OF FISH DISEASES 2010; 33:985-994. [PMID: 21091725 DOI: 10.1111/j.1365-2761.2010.01204.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Edwardsiella tarda is a causative agent of edwardsiellosis in freshwater and marine fish. Extracellular enzymic, haemolytic, hydrophobic and serum resistance activities, haemagglutination, autoagglutination and siderophores of high- and low- virulent E. tarda strains were examined. The results revealed different haemagglutination, autoagglutination, haemolytic, hydrophobic and serum resistance activities in different strains. Analysis of extracellular proteins (ECPs) and outer membrane proteins (OMPs) demonstrated several major, low molecular weight, virulent-strain-specific proteins, which could be virulence-related. Based on the database search with MALDI-TOF MS data, the closest homologies of the three protein bands Ed1, Ed2 and Ed3 were phosphotransferase enzyme family protein, nitrite reductase [NAD(P)H], large subunit and ATP-dependent Lon protease, respectively. A comparison of pathogenicity of purified lipopolysaccharide (LPS) and lipid A from virulent and avirulent strains demonstrated that LPS was one of the virulence factors of the E. tarda isolates, and lipid A was a biologically active determinant of LPS.
Collapse
Affiliation(s)
- Y Wang
- Department of Marine Biology, Ocean University of China, Qingdao, China
| | | | | |
Collapse
|
79
|
Naik MM, Dubey SK. Lead-Enhanced Siderophore Production and Alteration in Cell Morphology in a Pb-Resistant Pseudomonas aeruginosa Strain 4EA. Curr Microbiol 2010; 62:409-14. [DOI: 10.1007/s00284-010-9722-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 07/07/2010] [Indexed: 11/28/2022]
|
80
|
Kümmerli R, Jiricny N, Clarke LS, West SA, Griffin AS. Phenotypic plasticity of a cooperative behaviour in bacteria. J Evol Biol 2008; 22:589-98. [PMID: 19170825 DOI: 10.1111/j.1420-9101.2008.01666.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is strong evidence that natural selection can favour phenotypic plasticity as a mechanism to maximize fitness in animals. Here, we aim to investigate phenotypic plasticity of a cooperative trait in bacteria--the production of an iron-scavenging molecule (pyoverdin) by Pseudomonas aeruginosa. Pyoverdin production is metabolically costly to the individual cell, but provides a benefit to the local group and can potentially be exploited by nonpyoverdin-producing cheats. Here, we subject bacteria to changes in the social environment in media with different iron availabilities and test whether cells can adjust pyoverdin production in response to these changes. We found that pyoverdin production per cell significantly decreased at higher cell densities and increased in the presence of cheats. This phenotypic plasticity significantly influenced the costs and benefits of cooperation. Specifically, the investment of resources into pyoverdin production was reduced in iron-rich environments and at high cell densities, but increased under iron limitation, and when pyoverdin was exploited by cheats. Our study demonstrates that phenotypic plasticity in a cooperative trait as a response to changes in the environment occurs in even the simplest of organisms, a bacterium.
Collapse
Affiliation(s)
- R Kümmerli
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK Food Microbiology Research Group, University of Ulster, UK.
| | | | | | | | | |
Collapse
|
81
|
Matilla MA, Ramos JL, Duque E, de Dios Alché J, Espinosa-Urgel M, Ramos-González MI. Temperature and pyoverdine-mediated iron acquisition control surface motility of Pseudomonas putida. Environ Microbiol 2008; 9:1842-50. [PMID: 17564617 DOI: 10.1111/j.1462-2920.2007.01286.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas putida KT2440 is unable to swarm at its common temperature of growth in the laboratory (30 degrees C) but exhibits surface motility similar to swarming patterns in other Pseudomonas between 18 degrees C and 28 degrees C. These motile cells show differentiation, consisting on elongation and the presence of surface appendages. Analysis of a collection of mutants to define the molecular determinants of this type of surface movement in KT2440 shows that while type IV pili and lipopolysaccharide O-antigen are requisites flagella are not. Although surface motility of flagellar mutants was macroscopically undistinguishable from that of the wild type, microscopy analysis revealed that these mutants move using a distinct mechanism to that of the wild-type strain. Mutants either in the siderophore pyoverdine (ppsD) or in the FpvA siderophore receptor were also unable to spread on surfaces. Motility in the ppsD strain was totally restored with pyoverdine and partially with the wild-type ppsD allele. Phenotype of the fpvA strain was not complemented by this siderophore. We discuss that iron influences surface motility and that it can be an environmental cue for swarming-like movement in P. putida. This study constitutes the first report assigning an important role to pyoverdine iron acquisition in en masse bacterial surface movement.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidin, CSIC, Profesor Albareda, 1 Granada 18008, Spain
| | | | | | | | | | | |
Collapse
|
82
|
Rhizoremediation of Cadmium Soil Using a Cadmium-Resistant Plant Growth-Promoting Rhizopseudomonad. Curr Microbiol 2008; 56:403-7. [DOI: 10.1007/s00284-008-9099-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 11/06/2007] [Indexed: 11/26/2022]
|
83
|
Vagarali MA, Karadesai SG, Patil CS, Metgud SC, Mutnal MB. HAEMAGGLUTINATION AND SIDEROPHORE PRODUCTION AS THE UROVIRULENCE MARKERS OF UROPATHOGENIC ESCHERICHIA COLI. Indian J Med Microbiol 2008. [DOI: 10.1016/s0255-0857(21)01997-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
84
|
Yang JH, Liu HX, Zhu GM, Pan YL, Xu LP, Guo JH. Diversity analysis of antagonists from rice-associated bacteria and their application in biocontrol of rice diseases. J Appl Microbiol 2007; 104:91-104. [PMID: 17850318 DOI: 10.1111/j.1365-2672.2007.03534.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To understand the diversity, taxonomy and antagonistic potential of rice-associated bacteria, and to discover new bacteria for biocontrol of rice foliar pathogens. METHODS AND RESULTS Amplified ribosomal DNA restriction analysis (ARDRA), BOX-PCR and 16S rRNA gene sequence analysis were used to identify the diversity of 203 rice-associated antagonistic bacteria. Eleven potential biocontrol bacteria were used to test their biological control of rice blast in a natural field experiment. Eleven different genera were encountered in five divisions, including Bacilli, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Deinococci. The most prominent genus in all microenvironments was Bacillus (68 x 5%). The efficacy of rice leaf blast biocontrol was 64 x 35% for strain 1Pe2, 57 x 86% for strain 2R37 and 56 x 44% for strain 1Re14. CONCLUSIONS Biocontrol data from the field experiments demonstrated no positive correlation between antagonism, physiological characteristics and biocontrol efficacy. There was significant diversity among the rice-associated bacteria isolated from different microenvironments. The most prominent genus of all microenvironments was Bacillus. Brevibacillus brevis strain 1Pe2 and Deinococcus aquaticus strain 1Re14 have good potential for field application and commercial use. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first attempt to study the diversity and identification of rice-associated antagonistic bacteria from different microenvironments, and endophytic bacteria Deinococcus aquaticus strain 1Re14, Acidovorax sp. isolate 3Re21 and Brevibacillus brevis strain 1Pe2 are first reported as rice-associated bacteria.
Collapse
Affiliation(s)
- J-H Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
85
|
Cabaj A, Kosakowska A. Iron-dependent growth of and siderophore production by two heterotrophic bacteria isolated from brackish water of the southern Baltic Sea. Microbiol Res 2007; 164:570-7. [PMID: 17689229 DOI: 10.1016/j.micres.2007.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 07/02/2007] [Accepted: 07/03/2007] [Indexed: 11/19/2022]
Abstract
Iron is indispensable to the growth and metabolism of all marine organisms, including bacteria. In this work, we investigated and compared the influence of iron(III) concentration on the growth of and siderophore production by two heterotrophic bacteria--Micrococcus luteus and Bacillus silvestris. Our results showed that the iron concentration strongly influences the growth of both species. The growth curves were different for each iron concentration and each strain. M. luteus grew more rapidly than B. silvestris, but produced a roughly four times smaller quantity of siderophores. Both M. luteus and B. silvestris secreted hydroxamate-type siderophores and alpha-keto/alpha-hydroxy acids, but did not produce catecholates. This paper is probably the first to report on siderophore production by B. silvestris and M. luteus isolated from seawater. Moreover, the influence of different iron concentrations on the growth of and siderophore production in these bacteria has been documented. This provides further evidence indicating iron bioavailability as the actual reason for siderophore release by biota.
Collapse
Affiliation(s)
- Agnieszka Cabaj
- Marine Chemistry and Biochemistry Department, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, Sopot, Poland.
| | | |
Collapse
|
86
|
Pérez-Miranda S, Cabirol N, George-Téllez R, Zamudio-Rivera LS, Fernández FJ. O-CAS, a fast and universal method for siderophore detection. J Microbiol Methods 2007; 70:127-31. [PMID: 17507108 DOI: 10.1016/j.mimet.2007.03.023] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/28/2007] [Accepted: 03/28/2007] [Indexed: 11/17/2022]
Abstract
In this work, the popular CAS assay for siderophore detection, based on the utilization of chrome azurol S, was redesigned and optimized to produce a new, fast, non-toxic, and easy method to determine a wide variety of microorganisms capable of siderophore production on a solid medium. Furthermore, this specific bioassay allows for the identification of more than one single siderophore-producing microorganism at the same time, using an overlay technique in which a modified CAS medium is cast upon culture agar plates (thus its name "O-CAS", for overlaid CAS). Detection was optimized through adjustments to the medium's composition and a quantifying strategy. Specificity of the bioassay was tested on microorganisms known for siderophore production. As a result, a total of 48 microorganisms were isolated from three different types of samples (fresh water, salt water, and alkaline soil), of which 36 were determined as siderophore producers. The compounds identified through this method belonged to both hydroxamate and catechol-types, previously reported to cause color change of the CAS medium from blue to orange and purple, respectively. Some isolated microorganisms, however, caused a color change that differed from previous descriptions.
Collapse
Affiliation(s)
- S Pérez-Miranda
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa. A.P. 55-535, Mexico, DF, 09340, Mexico
| | | | | | | | | |
Collapse
|
87
|
Boyanapalli R, Bullerjahn GS, Pohl C, Croot PL, Boyd PW, McKay RML. Luminescent whole-cell cyanobacterial bioreporter for measuring Fe availability in diverse marine environments. Appl Environ Microbiol 2006; 73:1019-24. [PMID: 17158623 PMCID: PMC1800772 DOI: 10.1128/aem.01670-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Synechococcus sp. strain PCC 7002 Fe bioreporter was constructed containing the isiAB promoter fused to the Vibrio harveyi luxAB genes. Bioreporter luminescence was characterized with respect to the free ferric ion concentration in trace metal-buffered synthetic medium. The applicability of the Fe bioreporter to assess Fe availability in the natural environment was tested by using samples collected from the Baltic Sea and from the high-nutrient, low-chlorophyll subarctic Pacific Ocean. Parallel assessment of dissolved Fe and bioreporter response confirmed that direct chemical measurements of dissolved Fe should not be considered alone when assessing Fe availability to phytoplankton.
Collapse
Affiliation(s)
- Ramakrishna Boyanapalli
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | | | | | | | | | | |
Collapse
|
88
|
Suzuki K, Tanabe T, Moon YH, Funahashi T, Nakao H, Narimatsu S, Yamamoto S. Identification and transcriptional organization of aerobactin transport and biosynthesis cluster genes of Vibrio hollisae. Res Microbiol 2006; 157:730-40. [PMID: 16809025 DOI: 10.1016/j.resmic.2006.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 04/22/2006] [Accepted: 05/10/2006] [Indexed: 11/22/2022]
Abstract
We had previously reported that Vibrio hollisae produces aerobactin in response to iron starvation. In the present study, we identified in V. hollisae ATCC33564 the aerobactin system cluster which consists of eight genes, hatCDB, iucABCD and iutA. The hatCDB genes encode proteins homologous to components of bacterial ATP binding cassette transport systems for ferric aerobactin. The iucABCD and iutA orthologs code for aerobactin biosynthesis enzymes and the ferric aerobactin receptor, respectively. In accordance with their iron-regulated expression, putative Fur box sequences were found within the respective promoter regions of hatC, iucA and iutA. The monocistronic iutA transcript was detected by northern blotting. Moreover, phenotypic comparison between the wild-type strain and its targeted gene disruptants supported the biological functions that were expected for the respective operons and genes on the basis of the homology search. The arrangement of the aerobactin gene clusters thus far found in Vibrio and enterobacterial species was compared and discussed from an evolutionary point of view.
Collapse
Affiliation(s)
- Koichi Suzuki
- Department of Molecular Biopharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | | | | | | | |
Collapse
|
89
|
Weger HG, Matz CJ, Magnus RS, Walker CN, Fink MB, Treble RG. Differences between two green algae in biological availability of iron bound to strong chelators. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
N,N′-di(2-hydroxybenzoyl)-ethylenediamine-N,N′-diacetic acid (HBED) is a very strong Fe3+ chelator. Strategy I vascular plants, which use a reductive system for iron acquisition, similar to many green algae, are able to access iron from HBED (R.L. Chaney. 1988. J. Plant Nutr. 11: 1033–1050). However, iron-limited cells of the Strategy I green alga Chlamydomonas reinhardtii Dangeard were unable to access iron present as Fe3+–HBED. In contrast, Fe3+ chelated with hydroxyethylethylenediaminetriacetic acid (HEDTA; a weaker chelator) was rapidly taken up by iron-limited Chlamydomonas cells. Chlamydomonas ferric reduction rates with Fe3+–HBED were approximately 15% of the rate observed with Fe3+–HEDTA, suggesting that low reduction rates with Fe3+–HBED might be one factor in the low rate of iron acquisition. By contrast, iron-limited cells of the Strategy I green alga Chlorella kessleri Fott et Nováková were able to rapidly assimilate Fe3+ chelated by HBED, although ferric reduction rates with Fe3+–HBED were approximately 38% the rate of activity with Fe3+–HEDTA. Similar differential iron uptake rates for the two algal species were obtained using the strong Fe3+ chelator (and siderophore analogue) desferrioxamine B mesylate and the cyanobacterial siderophore schizokinen. These results suggest that there are differences among Strategy I green algae in their abilities to acquire Fe3+ from various ferric chelates: not all Strategy I algae can equally access tightly complexed Fe3+. Chlamydomonas appears to be the first documented Strategy I organism that is unable to acquire iron from Fe3+–HBED. These results also suggest that green algal iron acquisition from siderophores is species dependent. Finally, we suggest that iron acquisition from Fe3+–HBED might serve as an assay for an organisms’ ability to access tightly complexed iron.
Collapse
Affiliation(s)
- Harold G. Weger
- Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada
- Saskatchewn Health, Regina, SK S4S 5W6, Canada
| | - Carlyn J. Matz
- Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada
- Saskatchewn Health, Regina, SK S4S 5W6, Canada
| | - Rachel S. Magnus
- Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada
- Saskatchewn Health, Regina, SK S4S 5W6, Canada
| | - Crystal N. Walker
- Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada
- Saskatchewn Health, Regina, SK S4S 5W6, Canada
| | - Michael B. Fink
- Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada
- Saskatchewn Health, Regina, SK S4S 5W6, Canada
| | - Ron G. Treble
- Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada
- Saskatchewn Health, Regina, SK S4S 5W6, Canada
| |
Collapse
|
90
|
Park RY, Choi MH, Sun HY, Shin SH. Production of catechol-siderophore and utilization of transferrin-bound iron in Bacillus cereus. Biol Pharm Bull 2006; 28:1132-5. [PMID: 15930764 DOI: 10.1248/bpb.28.1132] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study we attempted to ascertain whether Bacillus cereus was able to produce catechol-siderophore(s), and whether it was able to utilize transferrin-bound iron. The growth of B. cereus was stimulated in proportion to the iron-saturation level of the transferrin, and catechol-siderophores were produced in inverse proportion to this level. B. cereus was proved to uptake iron from partially iron-saturated transferrin or holotransferrin, without destroying the transferrin by its proteases. The catechol-siderophores from B. cereus were able to sustain and augment its growth on the transferrin-bound iron. These results indicate that B. cereus has the ability to produce catechol-siderophores, and to utilize transferrin-bound iron as an iron source for growth, via the siderophore-mediated iron-uptake system.
Collapse
Affiliation(s)
- Ra-Young Park
- Research Center for Resistant Cells, Department of Microbiology, Chosun University Medical School, Gwangju, ROK
| | | | | | | |
Collapse
|
91
|
Kim SJ, Park RY, Kang SM, Choi MH, Kim CM, Shin SH. Pseudomonas aeruginosa Alkaline Protease Can Facilitate Siderophore-Mediated Iron-Uptake via the Proteolytic Cleavage of Transferrins. Biol Pharm Bull 2006; 29:2295-300. [PMID: 17077532 DOI: 10.1248/bpb.29.2295] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to determine whether Pseudomonas aeruginosa alkaline protease AprA is involved in facilitating siderophore-mediated iron-acquisition from human transferrins, we measured bacterial growth, the production of siderophore and AprA, iron-acquisition from transferrins, and the proteolytic cleavage of transferrins in an alkaline minimal medium (pH 8.3) containing human transferrins as an iron source and compared these on a time scale. The growth of P. aeruginosa was found to be stimulated in proportion to the iron-saturation levels of transferrins. AprA production and the proteolytic cleavage of transferrins began concomitantly with siderophore production from the early growth phase when P. aeruginosa was actively growing and consuming most iron for growth. However, the AprA-free, but siderophore-containing, culture ultrafiltrates could also remove iron from transferrin. These results indicate that alkaline protease AprA can facilitate the siderophore-mediated iron-uptake of P. aeruginosa via the proteolytic cleavage of transferrins. However, the proteolytic cleavage by AprA is not essentially required for iron-acquisition from transferrins.
Collapse
Affiliation(s)
- Seong-Jung Kim
- Department of Emergency Medicine, Chosun University Medical School, Gwangju, Republic of Korea
| | | | | | | | | | | |
Collapse
|
92
|
Silva-Stenico ME, Pacheco FTH, Rodrigues JLM, Carrilho E, Tsai SM. Growth and siderophore production of Xylella fastidiosa under iron-limited conditions. Microbiol Res 2005; 160:429-36. [PMID: 16255148 DOI: 10.1016/j.micres.2005.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study, the production of siderophores by Xylella fastidiosa from the citrus bacteria isolate 31b9a5c (FAPESP - ONSA, Brazil) was investigated. The preliminary evidence supporting the existence of siderophore in X. fastidiosa was found during the evaluation of sequencing data generated in our lab using the BLAST-X tool, which indicated putative open reading frames (ORFs) associated with iron-binding proteins. In an iron-limited medium siderophores were detected in the supernatant of X. fastidiosa cultures. The endophytic bacterium Methylobacterium extorquens was also evaluated. Capillary electrophoresis was used to separate putative siderophores produced by X. fastidiosa. The bacterial culture supernatants of X. fastidiosa were identified negative for hydroxamate and catechol and positive for M. extorquens that secreted hydroxamate-type siderophores.
Collapse
Affiliation(s)
- Maria Estela Silva-Stenico
- Laboratório de Biologia Celular e Molecular, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil.
| | | | | | | | | |
Collapse
|
93
|
Carrillo-Castañeda G, Muñoz JJ, Peralta-Videa JR. A spectrophotometric method to determine the siderophore production by strains of fluorescent Pseudomonas in the presence of copper and iron. Microchem J 2005. [DOI: 10.1016/j.microc.2005.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
94
|
Shin SH, Sun HY, Park RY, Kim CM, Kim SY, Rhee JH. Vibrio vulnificusmetalloprotease VvpE has no direct effect on the iron-assimilation from human holotransferrin. FEMS Microbiol Lett 2005; 247:221-9. [PMID: 15936899 DOI: 10.1016/j.femsle.2005.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 04/04/2005] [Accepted: 05/05/2005] [Indexed: 12/17/2022] Open
Abstract
In order to elucidate the role of Vibrio vulnificus metalloprotease VvpE in the uptake of iron from human transferrin, we constructed a VvpE-deficient mutant and a merozygotic vvpE-transcriptional reporter from the wild type strain MO6-24/O. All three strains were able to grow only in deferrated Heart Infusion broth (DF-HI) with human holotransferrin (HT), but not in DF-HI containing partially iron-saturated transferrin or apotransferrin, without noticeable differences among the strains. All strains consumed most iron in the early growth phase. Both the transcription and extracellular production of VvpE proceeded at undetectable levels when bacterial growth was severely retarded in the DF-HI. When HT or FeCl(3) was added to the DF-HI, the retarded bacterial growth was restored and vvpE transcription dramatically increased in the late growth phase, but the extracellular VvpE production was negligible as compared to its transcription. All strains were unable to degrade HT even in normal HI broth containing HT, in which extracellular VvpE activity was remarkably high. The uptake of iron from HT in all strains was consistent with the production of catechol-siderophore rather than hydroxamate-siderophore. Similar results were also observed when clinical isolates from septicemic patients were used. In conclusion, we determined that VvpE was not directly involved in the siderophore-mediated iron-uptake from human transferrin. In addition, the discrepancy between the transcription and extracellular production of VvpE suggests that additional posttranscriptional events are involved in the extracellular production of VvpE.
Collapse
Affiliation(s)
- Sung-Heui Shin
- Research Center for Resistant Cells and Department of Microbiology, Chosun University Medical School, 375 Seosuk-Dong, Dong-Gu, Gwangju 501-759, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
95
|
Ahn YJ, Park SK, Oh JW, Sun HY, Shin SH. Bacterial growth in amniotic fluid is dependent on the iron-availability and the activity of bacterial iron-uptake system. J Korean Med Sci 2004; 19:333-40. [PMID: 15201496 PMCID: PMC2816831 DOI: 10.3346/jkms.2004.19.3.333] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study, the relationship among iron-availability, antibacterial activity, role of meconium as an iron source and the activity of bacterial iron-uptake system (IUS) for bacterial growth in amniotic fluid (AF) were investigated. Staphylococcus aureus ATCC 6538 and its streptonigrin-resistant (SR) mutant with defective IUS were used as the test strains. The growth of S. aureus in AF was stimulated dose-dependently by addition of meconium. Bacterial growth stimulated by meconium was re-inhibited dose-dependently by addition of iron-chelator, dipyridyl and apotransferrin. Iron concentration was correlated with the meconium content in AF (r(2)= 0.989, p=0.001). High-affinity IUS of S. aureus was expressed only in AF but not in AF with meconium. The growth of SR strain was more retarded than that of the parental strain in the iron-deficient brain heart infusion (ID-BHI), clear AF and AF containing apotransferrin. The retarded growth of both strains in the ID-BHI and AF was recovered by addition of holotransferrin, hemoglobin and FeCl3. Taken together, the antibacterial activity of AF is closely related with low iron-availability. Bacterial growth in AF considerably depends on the activity of bacterial IUS. Meconium acts as one of the exogenous iron-sources and thus can stimulate bacterial growth in AF.
Collapse
Affiliation(s)
- Young-Joon Ahn
- Department of Pediatrics, Seonam University Medical School, Namwon, Korea.
| | | | | | | | | |
Collapse
|
96
|
Matz CJ, Christensen MR, Bone AD, Gress CD, Widenmaier SB, Weger HG. Only iron-limited cells of the cyanobacteriumAnabaena flos-aquaeinhibit growth of the green algaChlamydomonas reinhardtii. ACTA ACUST UNITED AC 2004. [DOI: 10.1139/b04-022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cocultivation of iron-limited cells of the cyanobacterium Anabaena flos-aquae (Lyng.) Brèb. and the green alga Chlamydomonas reinhardtii Dangeard resulted in growth of Anabaena but not Chlamydomonas, even in the presence of excess exogenous iron. This effect was also observed during the cultivation of Chlamydomonas in a medium in which iron-limited Anabaena cells had been growing, but were removed prior to culture of Chlamydomonas. Conversely, iron-limited Chlamydomonas cells grew very well in medium from iron (nutrient)-sufficient, phosphate-limited, and nitrogen-limited Anabaena cultures. Iron-limited Anabaena cultures produced siderophores, while the other types of Anabaena cultures did not. Treatment of Anabaena iron-limited medium with activated charcoal completely removed the inhibitory effect on Chlamydomonas growth, and boiling the medium removed most of the inhibitory effect. Both the charcoal and the boiling treatments also removed siderophores from the medium. Partially purified Anabaena siderophore preparations were also inhibitory to Chlamydomonas growth. The inhibitory effect of iron-limited Anabaena medium could be partially overcome by addition of excess micronutrients (especially cobalt copper) but not by addition of iron. We suggest that Anabaena-derived siderophores, present only in iron-limited Anabaena medium, inhibit the growth of Chlamydomonas cells via a previously uncharacterized toxicity. This effect is different from previously described experiments in which cyanobacterial siderophores suppressed green algal growth via competition for limiting amounts of iron.Key words: Anabaena, Chlamydomonas, cocultivation, iron limitation, micronutrients; siderophores.
Collapse
|