51
|
Shchukin VN, Khmelenina VN, Eshinimayev BT, Suzina NE, Trotsenko YA. Primary characterization of dominant cell surface proteins of halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. Microbiology (Reading) 2011. [DOI: 10.1134/s0026261711050122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
52
|
Mutually exclusive distribution of the sap and eag S-layer genes and the lytB/lytA cell wall hydrolase genes in Bacillus thuringiensis. Antonie van Leeuwenhoek 2011; 100:349-64. [DOI: 10.1007/s10482-011-9590-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/11/2011] [Indexed: 11/28/2022]
|
53
|
Sleytr UB, Schuster B, Egelseer EM, Pum D, Horejs CM, Tscheliessnig R, Ilk N. Nanobiotechnology with S-layer proteins as building blocks. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 103:277-352. [PMID: 21999999 DOI: 10.1016/b978-0-12-415906-8.00003-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One of the key challenges in nanobiotechnology is the utilization of self- assembly systems, wherein molecules spontaneously associate into reproducible aggregates and supramolecular structures. In this contribution, we describe the basic principles of crystalline bacterial surface layers (S-layers) and their use as patterning elements. The broad application potential of S-layers in nanobiotechnology is based on the specific intrinsic features of the monomolecular arrays composed of identical protein or glycoprotein subunits. Most important, physicochemical properties and functional groups on the protein lattice are arranged in well-defined positions and orientations. Many applications of S-layers depend on the capability of isolated subunits to recrystallize into monomolecular arrays in suspension or on suitable surfaces (e.g., polymers, metals, silicon wafers) or interfaces (e.g., lipid films, liposomes, emulsomes). S-layers also represent a unique structural basis and patterning element for generating more complex supramolecular structures involving all major classes of biological molecules (e.g., proteins, lipids, glycans, nucleic acids, or combinations of these). Thus, S-layers fulfill key requirements as building blocks for the production of new supramolecular materials and nanoscale devices as required in molecular nanotechnology, nanobiotechnology, biomimetics, and synthetic biology.
Collapse
Affiliation(s)
- Uwe B Sleytr
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
54
|
Badelt-Lichtblau H, Kainz B, Völlenkle C, Egelseer EM, Sleytr UB, Pum D, Ilk N. Genetic engineering of the S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177 for the generation of functionalized nanoarrays. Bioconjug Chem 2010; 20:895-903. [PMID: 19402706 DOI: 10.1021/bc800445r] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mesophilic organism Lysinibacillus sphaericus CCM 2177 produces the surface (S)-layer protein SbpA, which after secretion completely covers the cell surface with a crystalline array exhibiting square lattice symmetry. Because of its excellent in vitro recrystallization properties on solid supports, SbpA represents a suitable candidate for genetically engineering to create a versatile self-assembly system for the development of a molecular construction kit for nanobiotechnological applications. The first goal of this study was to investigate the surface location of 3 different C-terminal amino acid positions within the S-layer lattice formed by SbpA. Therefore, three derivatives of SbpA were constructed, in which 90, 173, or 200 C-terminal amino acids were deleted, and the sequence encoding the short affinity tag Strep-tag II as well as a single cysteine residue were fused to their C-terminal end. Recrystallization studies of the rSbpA/STII/Cys fusion proteins indicated that C-terminal truncation and functionalization of the S-layer protein did not interfere with the self-assembly capability. Fluorescent labeling demonstrated that the orientation of the crystalline rSbpA(31-1178)/STII/Cys lattice on solid supports was the same, like the orientation of wild-type S-layer protein SbpA on the bacterial cell. In soluble and recrystallized rSbpA/STII/Cys fusion proteins, Strep-tag II was used for prescreening of the surface accessibility, whereas the thiol group of the end-standing cysteine residue was exploited for site-directed chemical linkage of differently sized preactivated macromolecules via heterobifunctional cross-linkers. Finally, functionalized two-dimensional S-layer lattices formed by rSbpA(31-1178)/STII/Cys exhibiting highly accessible cysteine residues in a well-defined arrangement on the surface were utilized for the template-assisted patterning of gold nanoparticles.
Collapse
Affiliation(s)
- Helga Badelt-Lichtblau
- Center for NanoBiotechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
55
|
Bernards DA, Desai TA. Nanoscale porosity in polymer films: fabrication and therapeutic applications. SOFT MATTER 2010; 6:1621-1631. [PMID: 22140398 PMCID: PMC3226808 DOI: 10.1039/b922303g] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This review focuses on current developments in the field of nanostructured bulk polymers and their application in bioengineering and therapeutic sciences. In contrast to well-established nanoscale materials, such as nanoparticles and nanofibers, bulk nanostructured polymers combine nanoscale structure in a macroscopic construct, which enables unique application of these materials. Contemporary fabrication and processing techniques capable of producing nanoporous polymer films are reviewed. Focus is placed on techniques capable of sub-100 nm features since this range approaches the size scale of biological components, such as proteins and viruses. The attributes of these techniques are compared, with an emphasis on the characteristic advantages and limitations of each method. Finally, application of these materials to biofiltration, immunoisolation, and drug delivery are reviewed.
Collapse
Affiliation(s)
- Daniel A. Bernards
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
| | - Tejal A. Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
| |
Collapse
|
56
|
Kroutil M, Pavkov T, Birner-Gruenberger R, Tesarz M, Sleytr UB, Egelseer EM, Keller W. Towards the structure of the C-terminal part of the S-layer protein SbsC. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:1042-7. [PMID: 19851018 PMCID: PMC2765897 DOI: 10.1107/s1744309109035386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Accepted: 09/02/2009] [Indexed: 11/10/2022]
Abstract
The S-layer protein SbsC from Geobacillus stearothermophilus ATCC 12980 is the most prevalent single protein produced by the bacterium and covers the complete bacterial surface in the form of a two-dimensional crystalline monolayer. In order to elucidate the structural features of the assembly domains, several N-terminally truncated fragments of SbsC have been crystallized. Crystals obtained from recombinant fragments showed anisotropic diffraction to a maximum of 3.5 A resolution using synchrotron radiation. The best diffracting crystals were obtained from rSbsC(755-1099), an unintentional in situ proteolytic degradation product of rSbsC(447-1099). Crystals were obtained in two different space groups, P2(1) and P4(1)2(1)2, and diffracted to 2.6 and 3 A resolution, respectively. Native and heavy-atom derivative data have been collected. The structure of the C-terminal part will yield atomic resolution information for the domains that are crucial for the assembly of the two-dimensional lattice.
Collapse
Affiliation(s)
- Markus Kroutil
- Karl-Franzens University, Institute of Molecular Biosciences, Graz, Austria
| | - Tea Pavkov
- Karl-Franzens University, Institute of Molecular Biosciences, Graz, Austria
| | - Ruth Birner-Gruenberger
- Medical University of Graz, Center for Medical Research, Proteomics Core Facility, Graz, Austria
| | - Manfred Tesarz
- Department of NanoBiotechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Uwe B. Sleytr
- Department of NanoBiotechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Eva M. Egelseer
- Department of NanoBiotechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Walter Keller
- Karl-Franzens University, Institute of Molecular Biosciences, Graz, Austria
| |
Collapse
|
57
|
Orange F, Westall F, Disnar JR, Prieur D, Bienvenu N, Le Romancer M, Défarge C. Experimental silicification of the extremophilic Archaea Pyrococcus abyssi and Methanocaldococcus jannaschii: applications in the search for evidence of life in early Earth and extraterrestrial rocks. GEOBIOLOGY 2009; 7:403-18. [PMID: 19656214 DOI: 10.1111/j.1472-4669.2009.00212.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Hydrothermal activity was common on the early Earth and associated micro-organisms would most likely have included thermophilic to hyperthermophilic species. 3.5-3.3 billion-year-old, hydrothermally influenced rocks contain silicified microbial mats and colonies that must have been bathed in warm to hot hydrothermal emanations. Could they represent thermophilic or hyperthermophilic micro-organisms and if so, how were they preserved? We present the results of an experiment to silicify anaerobic, hyperthermophilic micro-organisms from the Archaea Domain Pyrococcus abyssi and Methanocaldococcus jannaschii, that could have lived on the early Earth. The micro-organisms were placed in a silica-saturated medium for periods up to 1 year. Pyrococcus abyssi cells were fossilized but the M. jannaschii cells lysed naturally after the exponential growth phase, apart from a few cells and cell remains, and were not silicified although their extracellular polymeric substances were. In this first simulated fossilization of archaeal strains, our results suggest that differences between species have a strong influence on the potential for different micro-organisms to be preserved by fossilization and that those found in the fossil record represent probably only a part of the original diversity. Our results have important consequences for biosignatures in hydrothermal or hydrothermally influenced deposits on Earth, as well as on early Mars, as environmental conditions were similar on the young terrestrial planets and traces of early Martian life may have been similarly preserved as silicified microfossils.
Collapse
Affiliation(s)
- F Orange
- Centre de Biophysique Moléculaire, CNRS, Orléans cedex, France
| | | | | | | | | | | | | |
Collapse
|
58
|
Xiao F, Cai Y, Wang JCY, Green D, Cheng RH, Demeler B, Guo P. Adjustable ellipsoid nanoparticles assembled from re-engineered connectors of the bacteriophage phi29 DNA packaging motor. ACS NANO 2009; 3:2163-2170. [PMID: 19634910 PMCID: PMC2731514 DOI: 10.1021/nn900187k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 07/07/2009] [Indexed: 05/28/2023]
Abstract
A 24 x 30 nm ellipsoid nanoparticle containing 84 subunits or 7 dodecamers of the re-engineered core protein of the bacteriophage phi29 DNA packaging motor was constructed. Homogeneous nanoparticles were obtained with simple one-step purification. Electron microscopy and analytical ultracentrifugation were employed to elucidate the structure, shape, size, and mechanism of assembly. The formation of this structure was mediated and stabilized by N-terminal peptide extensions. Reversal of the 84-subunit ellipsoid nanoparticle to its dodecamer subunit was controlled by the cleavage of the extended N-terminal peptide with a protease. The 84 outward-oriented C-termini were conjugated with a streptavidin binding peptide which can be used for the incorporation of markers. This further extends the application of this nanoparticle to pathogen detection and disease diagnosis by signal enhancement.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Biomedical Engineering, College of Engineering and College of Medicine, University of Cincinnati, Cincinnati, Ohio 45221
| | - Ying Cai
- Department of Biomedical Engineering, College of Engineering and College of Medicine, University of Cincinnati, Cincinnati, Ohio 45221
| | - Joseph Che-Yen Wang
- Department of Molecular & Cellular Biology, University of California, Davis, California 95616
| | - Dominik Green
- Department of Molecular & Cellular Biology, University of California, Davis, California 95616
| | - R. Holland Cheng
- Department of Molecular & Cellular Biology, University of California, Davis, California 95616
| | - Borries Demeler
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Peixuan Guo
- Department of Biomedical Engineering, College of Engineering and College of Medicine, University of Cincinnati, Cincinnati, Ohio 45221
| |
Collapse
|
59
|
Construction of bacteriophage phi29 DNA packaging motor and its applications in nanotechnology and therapy. Ann Biomed Eng 2009; 37:2064-81. [PMID: 19495981 DOI: 10.1007/s10439-009-9723-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 05/20/2009] [Indexed: 01/16/2023]
Abstract
Nanobiotechnology involves the creation, characterization, and modification of organized nanomaterials to serve as building blocks for constructing nanoscale devices in technology and medicine. Living systems contain a wide variety of nanomachines and highly ordered structures of macromolecules. The novelty and ingenious design of the bacterial virus phi29 DNA packaging motor and its parts inspired the synthesis of this motor and its components as biomimetics. This 30-nm nanomotor uses six copies of an ATP-binding pRNA to gear the motor. The structural versatility of pRNA has been utilized to construct dimers, trimers, hexamers, and patterned superstructures via the interaction of two interlocking loops. The approach, based on bottom-up assembly, has also been applied to nanomachine fabrication, pathogen detection and the delivery of drugs, siRNA, ribozymes, and genes to specific cells in vitro and in vivo. Another essential component of the motor is the connector, which contains 12 copies of a protein gp10 to form a 3.6-nm central channel as a path for DNA. This article will review current studies of the structure and function of the phi29 DNA packaging motor, as well as the mechanism of motion, the principle of in vitro construction, and its potential nanotechnological and medical applications.
Collapse
|
60
|
Qazi O, Hitchen P, Tissot B, Panico M, Morris HR, Dell A, Fairweather N. Mass spectrometric analysis of the S-layer proteins from Clostridium difficile demonstrates the absence of glycosylation. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:368-374. [PMID: 18932172 DOI: 10.1002/jms.1514] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Like many other bacterial cell surfaces, the cell wall of Clostridium difficile is also encapsulated by a proteinaceous paracrystalline layer, the surface (S)-layer. In many bacterial species, the S-layer proteins (SLPs) have been shown to be glycosylated, whereas in other species glycosylation is absent. Unusually, the S-layer of C. difficile is composed of two distinct proteins, the high-molecular weight (HMW) and low-molecular-weight (LMW) SLPs. Previous investigations have reported that one or both of these SLPs are glycosylated, though no definitive study has been conducted. We have used a variety of mass spectrometric approaches to analyse SLPs from a number of strains of C. difficile for the presence of associated glycans. Analysis of intact SLPs by matrix assisted laser desorption/ionisation time of flight (MALDI-ToF) mass spectrometry demonstrated that the observed molecular masses matched the predicted masses of the LMW and HMW SLPs. Furthermore, analysis of Cyanogen bromide (CNBr) and tryptic peptides displayed no evidence of post-translational modification. In the first in-depth study of its kind, we unequivocally demonstrate that the S-layer proteins from the C. difficile strains investigated are not glycosylated.
Collapse
Affiliation(s)
- Omar Qazi
- Division of Molecular and Cell Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
61
|
Xiao F, Sun J, Coban O, Schoen P, Wang JCY, Cheng RH, Guo P. Fabrication of massive sheets of single layer patterned arrays using lipid directed reengineered phi29 motor dodecamer. ACS NANO 2009; 3:100-107. [PMID: 19206255 PMCID: PMC2651733 DOI: 10.1021/nn800409a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Accepted: 11/24/2008] [Indexed: 05/27/2023]
Abstract
The bottom-up assembly of patterned arrays is an exciting and important area in current nanotechnology. Arrays can be engineered to serve as components in chips for a virtually inexhaustible list of applications ranging from disease diagnosis to ultra-high-density data storage. Phi29 motor dodecamer has been reported to form elegant multilayer tetragonal arrays. However, multilayer protein arrays are of limited use for nanotechnological applications which demand nanoreplica or coating technologies. The ability to produce a single layer array of biological structures with high replication fidelity represents a significant advance in the area of nanomimetics. In this paper, we report on the assembly of single layer sheets of reengineered phi29 motor dodecamer. A thin lipid monolayer was used to direct the assembly of massive sheets of single layer patterned arrays of the reengineered motor dodecamer. Uniform, clean and highly ordered arrays were constructed as shown by both transmission electron microscopy and atomic force microscopy imaging.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45221
| | - Jinchuan Sun
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Oana Coban
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45221
| | - Peter Schoen
- Department of Scanning Probe Microscopy and Biophysical Chemistry, Radboud University, Nijmegen, The Netherlands
| | - Joseph Che-Yen Wang
- Department of Molecular & Cellular Biology, University of California, Davis, California 95616
| | - R. Holland Cheng
- Department of Molecular & Cellular Biology, University of California, Davis, California 95616
| | - Peixuan Guo
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45221
| |
Collapse
|
62
|
Shen TY, Qin HL. Research progress in mechanisms of lactobacillus adhering to intestinal epithelia. Shijie Huaren Xiaohua Zazhi 2008; 16:2631-2636. [DOI: 10.11569/wcjd.v16.i23.2631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lactobacillus, as the predominant microorganism in gut, is of vital importance in maintaining the stability of microbiological environment in intestine. The adhering of lactobacillus to intestinal epithelia is the primise and basis of these actions. In this article, we review the progress in the study of the active ingredients, the biological features, the adhering mechanisms of lactobacillus and their influencing factor.
Collapse
|
63
|
Prolonged stochastic single ion channel recordings in S-layer protein stabilized lipid bilayer membranes. Colloids Surf B Biointerfaces 2008; 65:178-85. [PMID: 18602253 DOI: 10.1016/j.colsurfb.2008.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 04/03/2008] [Accepted: 04/04/2008] [Indexed: 11/20/2022]
Abstract
S-layer proteins are commonly found in bacteria and archaea as two-dimensional monomolecular crystalline arrays as the outermost cell membrane component. These proteins have the unique property that following disruption by chemical agents, monomers of the protein can re-assemble to their original lattice structure. This unique property makes S-layers interesting for utilization in bio-nanotechnological applications. Here, we show that the addition of S-layer proteins to bilayer lipid membranes increases the lifetime and the stability of the bilayer. M2delta ion channels were functionally incorporated into these S-layer stabilized membranes and we were able to record their activity for up to 20 h. Transmission electron microscopy (TEM) was used to visualize the 2D crystalline pattern of the S-layer and the M2delta ion channel characteristics in bilayer lipid membrane's were compared in the presence and absence of S-layers.
Collapse
|
64
|
Tschiggerl H, Casey JL, Parisi K, Foley M, Sleytr UB. Display of a peptide mimotope on a crystalline bacterial cell surface layer (S-layer) lattice for diagnosis of Epstein-Barr virus infection. Bioconjug Chem 2008; 19:860-5. [PMID: 18376854 DOI: 10.1021/bc7003523] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fusion proteins based on the crystalline bacterial cell surface layer (S-layer) proteins SbpA from Bacillus sphaericus CCM 2177 and SbsB from Geobacillus stearothermophilus PV72/p2 and a peptide mimotope F1 that mimics an immunodominant epitope of Epstein-Barr virus (EBV) were designed and overexpressed in Escherichia coli. Constructs were designed such that the peptide mimotope was presented either at the C-terminus (SbpA/F1) or at the N-terminus (SbsB/F1) of the respective S-layer proteins. The resulting S-layer fusion proteins, SbpA/F1 and SbsB/F1, fully retained the intrinsic self-assembly capability of the S-layer moiety into monomolecular lattices. As determined by immunodot assays and ELISAs using monoclonal antibodies, the F1 mimotope was well-presented on the outer surface of the S-layer lattices and accessible for antibody binding. Further comparison of the two S-layer fusion proteins showed that the S-layer fusion protein SbpA/F1 had a higher antibody binding capacity than SbsB/F1 in aqueous solution and in immune sera, illustrating the importance of epitope orientation on the performance of solid-phase immunoassays. To assess the diagnostic values of S-layer mimotope fusion protein SbpA/F1, we screened a panel of 83 individual EBV IgM-positive, EBV negative, and potential cross-reactive sera for their reactivities. This resulted in 98.2% specificity and 89.3% sensitivity, and furthermore no cross-reactivity with related viral disease states including rheumatoid factor was observed. This study shows the potential of S-layer fusion proteins as a matrix for site-directed immobilization of small ligands in solid-phase immunoassays using EBV diagnostics as a model system.
Collapse
Affiliation(s)
- Helga Tschiggerl
- Center for NanoBiotechnology, University of Natural Resources and Applied Life Sciences, Gregor-Mendel-Strasse 33, A-1180 Vienna, Austria
| | | | | | | | | |
Collapse
|
65
|
Chiou SY, Kang PL, Liao TW, Jeang CL. Characterization, identification, and cloning of the S-layer protein from Cytophaga sp. Curr Microbiol 2008; 56:597-602. [PMID: 18322733 DOI: 10.1007/s00284-008-9132-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
Abstract
We characterized, identified, and cloned a major protein which comprised 16% of the total proteins from Cytophaga sp. cell lysate. After French pressing, the fraction of cell envelope was treated with 0.2% Triton X-100 to remove cell membranes. Subsequent SDS-PAGE analysis of the Triton X-100-insoluble cell wall revealed a protein of 120 kDa with a pI of 5.4, which was identified by gold immunostaining as the surface (S)-layer protein of this soil bacterium. The nucleotide sequence of the cloned S-layer protein gene (slp) encoding this protein consisted of 3144 nucleotides with an ORF for 1047 amino acids, which included a typical 32-amino acid leader peptide sequence. Amino acid sequence alignment revealed 29-48% similarity between this protein and the S-layer proteins from other prokaryotic organisms. The 120-kDa protein from the Cytophaga sp. cell lysate has been characterized as a member of the S-layer proteins, and the slp gene was cloned and expressed in Escherichia coli. E. coli harboring the plasmid containing the 600- or 800-bp DNA fragment upstream of the initiation codon of the slp gene, in the presence of the reporter gene rsda (raw starch digesting amylase), showed amylase activity in starch containing plate. The putative promoter region of slp located 600 bp upstream of the initiation codon might be used for foreign gene expression.
Collapse
Affiliation(s)
- Shiow Ying Chiou
- Department of Food Science and Biotechnology, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung, 402, Taiwan, R.O.C.
| | | | | | | |
Collapse
|
66
|
Messner P, Steiner K, Zarschler K, Schäffer C. S-layer nanoglycobiology of bacteria. Carbohydr Res 2008; 343:1934-51. [PMID: 18336801 DOI: 10.1016/j.carres.2007.12.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 12/05/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
Abstract
Cell surface layers (S-layers) are common structures of the bacterial cell envelope with a lattice-like appearance that are formed by a self-assembly process. Frequently, the constituting S-layer proteins are modified with covalently linked glycan chains facing the extracellular environment. S-layer glycoproteins from organisms of the Bacillaceae family possess long, O-glycosidically linked glycans that are composed of a great variety of sugar constituents. The observed variations already exceed the display found in eukaryotic glycoproteins. Recent investigations of the S-layer protein glycosylation process at the molecular level, which has lagged behind the structural studies due to the lack of suitable molecular tools, indicated that the S-layer glycoprotein glycan biosynthesis pathway utilizes different modules of the well-known biosynthesis routes of lipopolysaccharide O-antigens. The genetic information for S-layer glycan biosynthesis is usually present in S-layer glycosylation (slg) gene clusters acting in concert with housekeeping genes. To account for the nanometer-scale cell surface display feature of bacterial S-layer glycosylation, we have coined the neologism 'nanoglycobiology'. It includes structural and biochemical aspects of S-layer glycans as well as molecular data on the machinery underlying the glycosylation event. A key aspect for the full potency of S-layer nanoglycobiology is the unique self-assembly feature of the S-layer protein matrix. Being aware that in many cases the glycan structures associated with a protein are the key to protein function, S-layer protein glycosylation will add a new and valuable component to an 'S-layer based molecular construction kit'. In our long-term research strategy, S-layer nanoglycobiology shall converge with other functional glycosylation systems to produce 'functional' S-layer neoglycoproteins for diverse applications in the fields of nanobiotechnology and vaccine technology. Recent advances in the field of S-layer nanoglycobiology have made our overall strategy a tangible aim of the near future.
Collapse
Affiliation(s)
- Paul Messner
- Universität für Bodenkultur Wien, Zentrum für NanoBiotechnologie A-1180 Wien, Gregor-Mendel-Strasse 33, Austria.
| | | | | | | |
Collapse
|
67
|
Naser SM, Vancanneyt M, Snauwaert C, Vrancken G, Hoste B, De Vuyst L, Swings J. Reclassification of Lactobacillus amylophilus LMG 11400 and NRRL B-4435 as Lactobacillus amylotrophicus sp. nov. Int J Syst Evol Microbiol 2006; 56:2523-2527. [PMID: 17082384 DOI: 10.1099/ijs.0.64463-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The taxonomic position of six Lactobacillus amylophilus strains isolated from swine waste-corn fermentations was reinvestigated. All strains were included in a multilocus sequence analysis (MLSA) study for species identification of Lactobacillus using the genes encoding the phenylalanyl-tRNA synthase alpha subunit (pheS) and RNA polymerase alpha subunit (rpoA). Partial pheS and rpoA gene sequences showed that strains LMG 11400 and NRRL B-4435 represent a separate lineage that is distantly related to the type strain of L. amylophilus, LMG 6900T, and to three other strains of the species. The MLSA data showed that the two strains LMG 11400 and NRRL B-4435 constituted a distinct cluster, sharing 100 % pheS and rpoA gene sequence similarity. The other reference strains clustered together with the type strain of L. amylophilus, LMG 6900T, and were clearly differentiated from strains LMG 11400 and NRRL B-4435 (80 and 89 % pheS and rpoA gene sequence similarity, respectively). The 16S rRNA gene sequences of the latter two strains are 100 % identical, with the nearest phylogenetic neighbour L. amylophilus LMG 6900T showing only 97.2 % 16S rRNA gene sequence similarity. Further polyphasic taxonomic study based on whole-cell protein fingerprinting, DNA–DNA hybridization and biochemical features demonstrated that the two strains represent a single, novel Lactobacillus species, for which the name Lactobacillus amylotrophicus sp. nov. is proposed. The type strain is LMG 11400T (=NRRL B-4436T=DSM 20534T).
Collapse
MESH Headings
- Animal Husbandry
- Bacterial Proteins/genetics
- Bacterial Typing Techniques
- Carbohydrate Metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA-Directed RNA Polymerases/genetics
- Electrophoresis, Polyacrylamide Gel
- Genes, rRNA
- Industrial Waste
- Lactobacillus/classification
- Lactobacillus/cytology
- Lactobacillus/isolation & purification
- Lactobacillus/physiology
- Molecular Sequence Data
- Nucleic Acid Hybridization
- Phenylalanine-tRNA Ligase/genetics
- Phylogeny
- Protein Subunits/genetics
- Proteome/analysis
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Sabri M Naser
- BCCM™/LMG Bacteria Collection, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
- Laboratory of Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Marc Vancanneyt
- BCCM™/LMG Bacteria Collection, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Cindy Snauwaert
- BCCM™/LMG Bacteria Collection, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Gino Vrancken
- Research Group of Industrial Microbiology and Food Biotechnology, Department of Applied Biological Sciences and Engineering, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Bart Hoste
- BCCM™/LMG Bacteria Collection, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Department of Applied Biological Sciences and Engineering, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Jean Swings
- BCCM™/LMG Bacteria Collection, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
- Laboratory of Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| |
Collapse
|
68
|
Millaruelo M, Eng LM, Mertig M, Pilch B, Oertel U, Opitz J, Sieczkowska B, Simon F, Voit B. Photolabile carboxylic acid protected terpolymers for surface patterning. Part 2: Photocleavage and film patterning. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:9446-52. [PMID: 17042567 DOI: 10.1021/la060027h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The surface properties of films made of p-methoxyphenacyl derivative terpolymers, associated with photocleavage by UV irradiation, and their optical patterning are investigated. The deprotection reaction has been monitored by UV and FTIR spectroscopy, contact angle measurements, and X-ray photoelectron spectroscopy, revealing the photoremoval of the protecting p-methoxyphenacyl group in high yields under mild conditions. Parallel and serial patterning of the films has been performed by selective irradiation through optical masks and by laser irradiation via fiber tips of a scanning near-field optical microscope, respectively. By irradiation of photolabile protected functional groups, free carboxylic groups become exposed to the surface with which fluorescent dyes and proteins can be associated specifically.
Collapse
Affiliation(s)
- M Millaruelo
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, D-01069 Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Johnson-Henry KC, Hagen KE, Gordonpour M, Tompkins TA, Sherman PM. Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157:H7 adhesion to epithelial cells. Cell Microbiol 2006; 9:356-67. [PMID: 16925785 DOI: 10.1111/j.1462-5822.2006.00791.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Adherence of intestinal pathogens, including Escherichia coli O157:H7, to human intestinal epithelial cells is a key step in pathogenesis. Probiotic bacteria, including Lactobacillus helveticus R0052 inhibit the adhesion of E. coli O157:H7 to epithelial cells, a process which may be related to specific components of the bacterial surface. Surface-layer proteins (Slps) are located in a paracrystalline layer outside the bacterial cell wall and are thought to play a role in tissue adherence. However, the ability of S-layer protein extract derived from probiotic bacteria to block adherence of enteric pathogens has not been investigated. Human epithelial (HEp-2 and T84) cells were treated with S-layer protein extract alone, infected with E. coli O157:H7, or pretreated with S-layer protein extract prior to infection to determine their importance in the inhibition of pathogen adherence. The effects of S-layer protein extracts were characterized by phase-contrast and immunofluorescence microscopy and measurement of the transepithelial electrical resistance of polarized monolayers. Pre-treatment of host epithelial cells with S-layer protein extracts prior to E. coli O157:H7 infection decreased pathogen adherence and attaching-effacing lesions in addition to preserving the barrier function of monolayers. These in vitro studies indicate that a non-viable constituent derived from a probiotic strain may prove effective in interrupting the infectious process of an intestinal pathogen.
Collapse
|
70
|
Jacquemart I, Pamuła E, De Cupere VM, Rouxhet PG, Dupont-Gillain CC. Nanostructured collagen layers obtained by adsorption and drying. J Colloid Interface Sci 2006; 278:63-70. [PMID: 15313638 DOI: 10.1016/j.jcis.2004.05.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 05/24/2004] [Indexed: 11/30/2022]
Abstract
The supramolecular organization of collagen adsorbed from a 7 microg/ml solution on polystyrene was investigated as a function of the adsorption duration (from 1 min to 24 h) and of the drying conditions (fast drying under a nitrogen flow, slow drying in a water-saturated atmosphere). The morphology of the created surfaces was examined by atomic force microscopy (AFM), while complementary information regarding the adsorbed amount and the organization of the adsorbed layers was obtained using radioassays, X-ray photoelectron spectroscopy (XPS), and wetting measurements. The collagen adsorbed amount increased up to an adsorption duration of 5 h and then leveled off at a value of 0.9 microg/cm2. For samples obtained by fast drying, modeling of the N/C ratios obtained by XPS in terms of thickness and surface coverage, in combination with the adsorbed amount, water contact angle measurements and AFM images, indicated that the adsorbed layer formed a felt starting from 30 min of adsorption, the density and/or the thickness of which increased with the adsorption time. Upon slow drying, the collagen layers formed after adsorption times up to about 2 h underwent a strong reorganization. The obtained nanopatterns were attributed to dewetting, the liquid film being ruptured and adsorbed collagen being displaced by the water meniscus. At higher adsorption times, the organization of the collagen layer was similar to that obtained after fast drying, because the onset of dewetting and/or collagen displacement were prevented by the high density of the collagen felt.
Collapse
Affiliation(s)
- I Jacquemart
- Unité de chimie des interfaces, Université catholique de Louvain, Croix du Sud 2/18, 1348 Louvain-la-Neuve, Belgium
| | | | | | | | | |
Collapse
|
71
|
Fahmy K, Merroun M, Pollmann K, Raff J, Savchuk O, Hennig C, Selenska-Pobell S. Secondary structure and Pd(II) coordination in S-layer proteins from Bacillus sphaericus studied by infrared and X-ray absorption spectroscopy. Biophys J 2006; 91:996-1007. [PMID: 16698775 PMCID: PMC1563775 DOI: 10.1529/biophysj.105.079137] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The S-layer of Bacillus sphaericus strain JG-A12, isolated from a uranium-mining site, exhibits a high metal-binding capacity, indicating that it may provide a protective function by preventing the cellular uptake of heavy metals and radionuclides. This property has allowed the use of this and other S-layers as self-assembling organic templates for the synthesis of nanosized heavy metal cluster arrays. However, little is known about the molecular basis of the metal-protein interactions and their impact on secondary structure. We have studied the secondary structure, protein stability, and Pd((II)) coordination in S-layers from the B. sphaericus strains JG-A12 and NCTC 9602 to elucidate the molecular basis of their biological function and of the metal nanocluster growth. Fourier transform infrared spectroscopy reveals similar secondary structures, containing approximately 35% beta-sheets and little helical structure. pH-induced infrared absorption changes of the side-chain carboxylates evidence a remarkably low pK < 3 in both strains and a structural stabilization when Pd((II)) is bound. The COO(-)-stretching absorptions reveal a predominant Pd((II)) coordination by chelation/bridging by Asp and Glu residues. This agrees with XANES and EXAFS data revealing oxygens as coordinating atoms to Pd((II)). The additional participation of nitrogen is assigned to side chains rather than to the peptide backbone. The topology of nitrogen- and carboxyl-bearing side chains appears to mediate heavy metal binding to the large number of Asp and Glu in both S-layers at particularly low pH as an adaptation to the environment from which the strain JG-A12 has been isolated. These side chains are thus prime targets for the design of engineered S-layer-based nanoclusters.
Collapse
Affiliation(s)
- Karim Fahmy
- Division of Biophysics, Institute of Nuclear and Hadron Physics, Forschungszentrum Rossendorf, PF 510119, 01314 Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
72
|
Hansmeier N, Albersmeier A, Tauch A, Damberg T, Ros R, Anselmetti D, Pühler A, Kalinowski J. The surface (S)-layer gene cspB of Corynebacterium glutamicum is transcriptionally activated by a LuxR-type regulator and located on a 6 kb genomic island absent from the type strain ATCC 13032. Microbiology (Reading) 2006; 152:923-935. [PMID: 16549657 DOI: 10.1099/mic.0.28673-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The surface (S)-layer gene region of the Gram-positive bacterium Corynebacterium glutamicum ATCC 14067 was identified on fosmid clones, sequenced and compared with the genome sequence of C. glutamicum ATCC 13032, whose cell surface is devoid of an ordered S-layer lattice. A 5·97 kb DNA region that is absent from the C. glutamicum ATCC 13032 chromosome was identified. This region includes cspB, the structural gene encoding the S-layer protomer PS2, and six additional coding sequences. PCR experiments demonstrated that the respective DNA region is conserved in different C. glutamicum wild-type strains capable of S-layer formation. The DNA region is flanked by a 7 bp direct repeat, suggesting that illegitimate recombination might be responsible for gene loss in C. glutamicum ATCC 13032. Transfer of the cloned cspB gene restored the PS2− phenotype of C. glutamicum ATCC 13032, as confirmed by visualization of the PS2 proteins by SDS-PAGE and imaging of ordered hexagonal S-layer lattices on living C. glutamicum cells by atomic force microscopy. Furthermore, the promoter of the cspB gene was mapped by 5′ rapid amplification of cDNA ends PCR and the corresponding DNA fragment was used in DNA affinity purification assays. A 30 kDa protein specifically binding to the promoter region of the cspB gene was purified. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry and peptide mass fingerprinting of the purified protein led to the identification of the putative transcriptional regulator Cg2831, belonging to the LuxR regulatory protein family. Disruption of the cg2831 gene in C. glutamicum resulted in an almost complete loss of PS2 synthesis. These results suggested that Cg2831 is a transcriptional activator of cspB gene expression in C. glutamicum.
Collapse
MESH Headings
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Corynebacterium glutamicum/genetics
- Corynebacterium glutamicum/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/physiology
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation, Bacterial
- Gene Library
- Genomic Islands
- Mass Spectrometry
- Microscopy, Atomic Force
- Molecular Sequence Data
- Open Reading Frames
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Proteome/analysis
- Recombination, Genetic
- Repetitive Sequences, Nucleic Acid
- Repressor Proteins/genetics
- Repressor Proteins/isolation & purification
- Repressor Proteins/physiology
- Sequence Analysis, DNA
- Sequence Homology
- Synteny
- Terminal Repeat Sequences
- Trans-Activators/genetics
- Trans-Activators/isolation & purification
- Trans-Activators/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- Nicole Hansmeier
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Andreas Albersmeier
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Andreas Tauch
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Thomas Damberg
- Lehrstuhl für Experimentelle Biophysik und Angewandte Nanowissenschaften, Fakultät für Physik, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Robert Ros
- Lehrstuhl für Experimentelle Biophysik und Angewandte Nanowissenschaften, Fakultät für Physik, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Dario Anselmetti
- Lehrstuhl für Experimentelle Biophysik und Angewandte Nanowissenschaften, Fakultät für Physik, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Alfred Pühler
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
73
|
Naser SM, Hagen KE, Vancanneyt M, Cleenwerck I, Swings J, Tompkins TA. Lactobacillus suntoryeus Cachat and Priest 2005 is a later synonym of Lactobacillus helveticus (Orla-Jensen 1919) Bergey et al. 1925 (Approved Lists 1980). Int J Syst Evol Microbiol 2006; 56:355-360. [PMID: 16449439 DOI: 10.1099/ijs.0.64001-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain R0052, isolated from a North American dairy starter culture, was initially identified as Lactobacillus acidophilus based on phenotypic analyses. However, upon sequencing the 16S rRNA gene, it became clear that the isolate was very highly related to Lactobacillus suntoryeus, Lactobacillus helveticus and Lactobacillus gallinarum, as similarities ranging from 99·3 to 99·8 % were observed. As an initial screening test to investigate the relatedness of strain R0052 and reference strains of L. suntoryeus, L. helveticus and L. gallinarum, the partial sequences for the genes encoding the alpha subunit of ATP synthase (atpA), RNA polymerase alpha subunit (rpoA), phenylalanyl-tRNA synthase alpha subunit (pheS), the translational elongation factor Tu (tuf), a surface-layer protein (slp) and the Hsp60 chaperonins (groEL) were determined and they revealed high relatedness between all of the strains. The determination of the 16S–23S rRNA internally transcribed spacer (ITS) sequences revealed 98·3–100 % similarity between L. suntoryeus and L. helveticus strains. SDS-PAGE of whole-cell proteins did not distinguish between these species. Fluorescent amplified fragment length polymorphism (FAFLP) could distinguish between these taxa, but they still constituted a single cluster within the L. acidophilus group. Finally, DNA–DNA hybridization experiments between strain R0052 and the type strains of L. helveticus and L. suntoryeus yielded reassociation values above 70 % and confirmed that these names are synonyms.
Collapse
Affiliation(s)
- Sabri M Naser
- BCCMTM/LMG Bacteria Collection, Ghent University, K. L. Ledeganckstraat 35, Ghent 9000, Belgium
- Laboratory of Microbiology, Ghent University, K. L. Ledeganckstraat 35, Ghent 9000, Belgium
| | - Karen E Hagen
- Institut Rosell Inc., Research and Development, 6100 Royalmount Ave, Montreal, Quebec, Canada, H4P 2R2
| | - Marc Vancanneyt
- BCCMTM/LMG Bacteria Collection, Ghent University, K. L. Ledeganckstraat 35, Ghent 9000, Belgium
| | - Ilse Cleenwerck
- BCCMTM/LMG Bacteria Collection, Ghent University, K. L. Ledeganckstraat 35, Ghent 9000, Belgium
| | - Jean Swings
- BCCMTM/LMG Bacteria Collection, Ghent University, K. L. Ledeganckstraat 35, Ghent 9000, Belgium
- Laboratory of Microbiology, Ghent University, K. L. Ledeganckstraat 35, Ghent 9000, Belgium
| | - Thomas A Tompkins
- Institut Rosell Inc., Research and Development, 6100 Royalmount Ave, Montreal, Quebec, Canada, H4P 2R2
| |
Collapse
|
74
|
Huber C, Liu J, Egelseer EM, Moll D, Knoll W, Sleytr UB, Sára M. Heterotetramers formed by an S-layer-streptavidin fusion protein and core-streptavidin as a nanoarrayed template for biochip development. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2006; 2:142-50. [PMID: 17193570 DOI: 10.1002/smll.200500147] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Based on the S-layer protein SbpA of Bacillus sphaericus CCM 2177, an S-layer-streptavidin fusion protein was constructed. After heterologous expression, isolation of the fusion protein, and refolding, functional heterotetramers were obtained that had retained the ability to recrystallize into the square-lattice structure on plain gold chips and on gold chips precoated with secondary cell wall polymer (SCWP), which is the natural anchoring molecule for the S-layer protein in the bacterial cell wall. Monolayers generated by recrystallization of heterotetramers on plain gold chips or on gold chips precoated with thiolated SCWP were exploited for the binding of biotinylated oligonucleotides (30-mers). Hybridization experiments with complementary fluorescently labeled oligonucleotides carrying one mismatch or no mismatch (both 15-mers) were performed and evaluated with surface-plasmon-field-enhanced fluorescence spectroscopy. For surfaces generated by the recrystallization of heterotetramers on SCWP-coated gold chips, a detection limit of 1.57 pM could be determined, whereas for surfaces obtained by direct recrystallization of heterotetramers on plain gold chips, a detection limit of 8.2 pM was found. Measuring the association and dissociation processes of oligonucleotides carrying no mismatch led to a dissociation constant of K(D)=6.3 x 10(-10) m, whereas for oligonucleotides carrying one mismatch a dissociation constant of K(D)=7.9 x 10(-9) m was determined. This finding was confirmed by measuring the whole Langmuir isotherm, which resulted in a dissociation constant of K(D)=2.6 x 10(-8) m.
Collapse
Affiliation(s)
- Carina Huber
- Center for NanoBiotechnology, University of Natural Resources and Applied Life Sciences Vienna, Gregor Mendel Strasse 33, 1180 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
75
|
Hagen KE, Guan LL, Tannock GW, Korver DR, Allison GE. Detection, characterization, and in vitro and in vivo expression of genes encoding S-proteins in Lactobacillus gallinarum strains isolated from chicken crops. Appl Environ Microbiol 2005; 71:6633-43. [PMID: 16269691 PMCID: PMC1287629 DOI: 10.1128/aem.71.11.6633-6643.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thirty-eight isolates of Lactobacillus gallinarum cultured from the crops of broiler chickens were screened for the presence of genes encoding S-layer proteins. All of the isolates had two S-protein genes, which were designated Lactobacillus gallinarum S-protein (lgs) genes. One gene in each isolate was either lgsA or lgsB. The Lactobacillus isolates were further characterized by pulsed-field gel electrophoresis of DNA digests, which grouped the isolates into 17 genotypes (strains). The second gene in each of eight representative strains was sequenced and shown to differ among strains (lgsC, lgsD, lgsE, lgsF, lgsG, lgsH, and lgsI). The genome of each strain thus encoded a common S-protein (encoded by either lgsA or lgsB) and a strain-specific S-protein. The extraction of cell surface proteins from cultures of the eight strains showed that each strain produced a single S-protein that was always encoded by the strain-specific lgs gene. Two of the strains were used to inoculate chickens maintained in a protected environment which were Lactobacillus-free prior to inoculation. DNAs and RNAs extracted from the digesta of the chickens were used for PCR and reverse transcription-PCR, respectively, to demonstrate the presence and transcription of lgs genes in vivo. In both cases, only the strain-specific gene was transcribed. Both of the strains adhered to the crop epithelium, consistent with published data predicting that S-proteins of lactobacilli are adhesins. The results of this study provide a basis for the investigation of gene duplication and sequence variation as mechanisms by which bacterial strains of the same species can share the same habitat.
Collapse
Affiliation(s)
- Karen E Hagen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Canada
| | | | | | | | | |
Collapse
|
76
|
Martín-Molina A, Moreno-Flores S, Perez E, Pum D, Sleytr UB, Toca-Herrera JL. Structure, surface interactions, and compressibility of bacterial S-layers through scanning force microscopy and the surface force apparatus. Biophys J 2005; 90:1821-9. [PMID: 16361337 PMCID: PMC1367331 DOI: 10.1529/biophysj.105.067041] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-dimensional crystalline bacterial surface layers (S-layers) are found in a broad range of bacteria and archaea as the outermost cell envelope component. The self-assembling properties of the S-layers permit them to recrystallize on solid substrates. Beyond their biological interest as S-layers, they are currently used in nanotechnology to build supramolecular structures. Here, the structure of S-layers and the interactions between them are studied through surface force techniques. Scanning force microscopy has been used to study the structure of recrystallized S-layers from Bacillus sphaericus on mica at different 1:1 electrolyte concentrations. They give evidence of the two-dimensional organization of the proteins and reveal small corrugations of the S-layers formed on mica. The lattice parameters of the S-layers were a=b=14 nm, gamma=90 degrees and did not depend on the electrolyte concentration. The interaction forces between recrystallized S-layers on mica were studied with the surface force apparatus as a function of electrolyte concentration. Force measurements show that electrostatic and steric interactions are dominant at long distances. When the S-layers are compressed they exhibit elastic behavior. No adhesion between recrystallized layers takes place. We report for the first time, to our knowledge, the value of the compressibility modulus of the S-layer (0.6 MPa). The compressibility modulus is independent on the electrolyte concentration, although loads of 20 mN m-1 damage the layer locally. Control experiments with denatured S-proteins show similar elastic properties under compression but they exhibit adhesion forces between proteins, which were not observed in recrystallized S-layers.
Collapse
Affiliation(s)
- Alberto Martín-Molina
- Laboratoire de Physique Statistique de l'Ecole Normale Supérieure, CNRS and Universities Paris VI and Paris VII, 75231 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
77
|
Biotechnological Potential of Aerobic Methylotrophic Bacteria: A Review of Current State and Future Prospects. APPL BIOCHEM MICRO+ 2005. [DOI: 10.1007/s10438-005-0078-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
78
|
Frece J, Kos B, Svetec IK, Zgaga Z, Mrsa V, Susković J. Importance of S-layer proteins in probiotic activity of Lactobacillus acidophilus M92. J Appl Microbiol 2005; 98:285-92. [PMID: 15659182 DOI: 10.1111/j.1365-2672.2004.02473.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To investigate the functional role of surface layer proteins (S-layer) in probiotic strain Lactobacillus acidophilus M92, especially its influence on adhesiveness to mouse ileal epithelial cells. METHODS AND RESULTS Sodium dodecyl sulphate polyacrylamide gel electrophoresis of cell surface proteins revealed the presence of potential surface layer (S-layer) proteins, ca at 45 kDa in L. acidophilus M92. Southern blot with pBK1 plasmid, containing slpA gene, gave a positive signal, suggesting that L. acidophilus M92 has a slpA gene coding for the S-layer proteins. S-layer proteins of this strain are present during all phases of growth. The S-layer proteins appeared when cells treated with 5 mol l(-1) LiCl were allowed to grow again. Removal of the S-layer proteins reduced adhesion of L. acidophilus M92 to mouse ileal epithelial cells. Furthermore, the viability of cells without S-layer were reduced in simulated gastric juice at low pH range (2, 2.5, 3) and simulated pancreatic juice with bile salts (1.5 and 3 g l(-1)). S-layer proteins of L. acidophilus M92 were resistant to pepsin and pancreatin, in contrast, the treatment with proteinase K led to a significant proteolysis of the S-layer proteins. CONCLUSIONS These results demonstrated functional role of S-layer; it is responsible for adhesiveness of Lactobacillus acidophilus M92 to mouse ileal epithelial cells and has a protective role for this strain. SIGNIFICANCE AND IMPACT OF THE STUDY S-layer proteins have an important role in the establishment of probiotic strain Lactobacillus acidophilus M92 in the gastrointestinal tract.
Collapse
Affiliation(s)
- J Frece
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
79
|
Hansmeier N, Bartels FW, Ros R, Anselmetti D, Tauch A, Pühler A, Kalinowski J. Classification of hyper-variable Corynebacterium glutamicum surface-layer proteins by sequence analyses and atomic force microscopy. J Biotechnol 2005; 112:177-93. [PMID: 15288952 DOI: 10.1016/j.jbiotec.2004.03.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 02/19/2004] [Accepted: 03/19/2004] [Indexed: 11/26/2022]
Abstract
The structural S-layer proteins of 28 different Corynebacterium glutamicum isolates have been analyzed systematically. Treatment of whole C. glutamicum cells with detergents resulted in the isolation of S-layer proteins with different apparent molecular masses, ranging in size from 55 to 66 kDa. The S-layer genes analyzed were characterized by coding regions ranging from 1,473 to 1,533 nucleotides coding for S-layer proteins with a size of 490-510 amino acids. Using PCR techniques, the corresponding S-layer genes of the 28 C. glutamicum isolates were all cloned and sequenced. The deduced amino acid sequences of the S-layer proteins showed identities between 69 and 98% and could be grouped into five phylogenetic classes. Furthermore, sequence analyses indicated that the S-layer proteins of the analyzed C. glutamicum isolates exhibit a mosaic structure of highly conserved and highly variable regions. Several conserved regions were assumed to play a key role in the formation of the C. glutamicum S-layers. Especially the N-terminal signal peptides and the C-terminal anchor sequences of the S-layer proteins showed a nearly perfect amino acid sequence conservation. Analyses by atomic force microscopy revealed a committed hexagonal structure. Morphological diversity of the C. glutamicum S-layers was observed in a class-specific unit cell dimension (ranging from 15.2 to 17.4 nm), which correlates with the sequence similarity-based classification. It could be demonstrated that differences in the primary structure of the S-layer proteins were reflected by the S-layer morphology.
Collapse
Affiliation(s)
- Nicole Hansmeier
- Lehrstuhl für Genetik, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
80
|
Völlenkle C, Weigert S, Ilk N, Egelseer E, Weber V, Loth F, Falkenhagen D, Sleytr UB, Sára M. Construction of a functional S-layer fusion protein comprising an immunoglobulin G-binding domain for development of specific adsorbents for extracorporeal blood purification. Appl Environ Microbiol 2004; 70:1514-21. [PMID: 15006773 PMCID: PMC368406 DOI: 10.1128/aem.70.3.1514-1521.2004] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chimeric gene encoding a C-terminally-truncated form of the S-layer protein SbpA from Bacillus sphaericus CCM 2177 and two copies of the Fc-binding Z-domain was constructed, cloned, and heterologously expressed in Escherichia coli HMS174(DE3). The Z-domain is a synthetic analogue of the B-domain of protein A, capable of binding the Fc part of immunoglobulin G (IgG). The S-layer fusion protein rSbpA(31-1068)/ZZ retained the specific properties of the S-layer protein moiety to self-assemble in suspension and to recrystallize on supports precoated with secondary cell wall polymer (SCWP), which is the natural anchoring molecule for the S-layer protein in the bacterial cell wall. Due to the construction principle of the S-layer fusion protein, the ZZ-domains remained exposed on the outermost surface of the protein lattice. The binding capacity of the native or cross-linked monolayer for human IgG was determined by surface plasmon resonance measurements. For batch adsorption experiments, 3-microm-diameter, biocompatible cellulose-based, SCWP-coated microbeads were used for recrystallization of the S-layer fusion protein. In the case of the native monolayer, the binding capacity for human IgG was 5.1 ng/mm(2), whereas after cross-linking with dimethyl pimelimidate, 4.4 ng of IgG/mm(2) was bound. This corresponded to 78 and 65% of the theoretical saturation capacity of a planar surface for IgGs aligned in the upright position, respectively. Compared to commercial particles used as immunoadsorbents to remove autoantibodies from sera of patients suffering from an autoimmune disease, the IgG binding capacity of the S-layer fusion protein-coated microbeads was at least 20 times higher. For that reason, this novel type of microbeads should find application in the microsphere-based detoxification system.
Collapse
Affiliation(s)
- Christine Völlenkle
- Center for Ultrastructure Research and Ludwig Boltzmann Institute for Molecular Nanotechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Bayan N, Houssin C, Chami M, Leblon G. Mycomembrane and S-layer: two important structures of Corynebacterium glutamicum cell envelope with promising biotechnology applications. J Biotechnol 2003; 104:55-67. [PMID: 12948629 DOI: 10.1016/s0168-1656(03)00163-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Corynebacteria belong to a distinct Gram-positive group of bacteria including mycobacteria and nocardia, which are characterized by the presence of mycolic acids in their cell wall. These bacteria share the property of having an unusual cell envelope structural organization close to Gram-negative bacteria. In addition to the inner membrane, the cell envelope is constituted of a thick arabinogalactan-peptidoglycan polymer covalently linked to an outer lipid layer, which is mainly composed of mycolic acids and probably organized in an outer membrane like structure. In some species, the cell is covered by a crystalline surface layer composed of a single protein species, which is anchored in the outer membrane like barrier. An increasing number of reports have led to a better understanding of the structure of the cell wall of Corynebacterium glutamicum. These works included the characterization of several cell wall proteins like S-layer protein and porins, genetic and biochemical characterization of mycolic acids biosynthesis, ultrastructural description of the cell envelope, and chemical analysis of its constituents. All these data address new aspects regarding cell wall permeability towards macromolecules and amino acids but also open new opportunities for biotechnology applications.
Collapse
Affiliation(s)
- N Bayan
- Unité de Génétique Moléculaire, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
82
|
Sleytr UB, Schuster B, Pum D. Nanotechnology and biomimetics with 2-D protein crystals. IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE : THE QUARTERLY MAGAZINE OF THE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY 2003; 22:140-50. [PMID: 12845830 DOI: 10.1109/memb.2003.1213637] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- U B Sleytr
- Center for Ultrastructure Research, Ludwig Boltzmann-Institute for Molecular Nanotechnology, Universität für Bodenkultur Wien, Gregor Mendelstr. 33, A-1180 Vienna, Austria.
| | | | | |
Collapse
|
83
|
Li L, Kang DG, Cha HJ. Functional display of foreign protein on surface ofEscherichia coli using N-terminal domain of ice nucleation protein. Biotechnol Bioeng 2003; 85:214-21. [PMID: 14705004 DOI: 10.1002/bit.10892] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We investigated the ability of the N-terminal domain of InaK, an ice nucleation protein from Pseudomonas syringae KCTC1832, to act as an anchoring motif for the display of foreign proteins on the Escherichia coli cell surface. Total expression level and surface display efficiency of green fluorescent protein (GFP) was compared following their fusion with either the N-terminal domain of InaK (InaK-N), or with the known truncated InaK containing both N- and C-terminal domains (InaK-NC). We report that the InaK-N/GFP fusion protein showed a similar cell surface display efficiency ( approximately 50%) as InaK-NC/GFP, demonstrating that the InaK N-terminal region alone can direct translocation of foreign proteins to the cell surface and can be employed as a potential cell surface display motif. Moreover, InaK-N/GFP showed the highest levels of total expression and surface display based on unit cell density. InaK-N was also successful in directing cell surface display of organophosphorus hydrolase (OPH), confirming its ability to act as a display motif.
Collapse
Affiliation(s)
- Lin Li
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | |
Collapse
|
84
|
Jakava-Viljanen M, Avall-Jääskeläinen S, Messner P, Sleytr UB, Palva A. Isolation of three new surface layer protein genes (slp) from Lactobacillus brevis ATCC 14869 and characterization of the change in their expression under aerated and anaerobic conditions. J Bacteriol 2002; 184:6786-95. [PMID: 12446628 PMCID: PMC135479 DOI: 10.1128/jb.184.24.6786-6795.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two new surface layer (S-layer) proteins (SlpB and SlpD) were characterized, and three slp genes (slpB, slpC, and slpD) were isolated, sequenced, and studied for their expression in Lactobacillus brevis neotype strain ATCC 14869. Under different growth conditions, L. brevis strain 14869 was found to form two colony types, smooth (S) and rough (R), and to express the S-layer proteins differently. Under aerobic conditions R-colony type cells produced SlpB and SlpD proteins, whereas under anaerobic conditions S-colony type cells synthesized essentially only SlpB. Anaerobic and aerated cultivations of ATCC 14869 cells in rich medium also resulted in S-layer protein patterns similar to those of the S- and R-colony type cells, respectively. Electron microscopy suggested the presence of only a single S-layer with an oblique structure on the cells of both colony forms. The slpB and slpC genes were located adjacent to each other, whereas the slpD gene was not closely linked to the slpB-slpC gene region. Northern analyses confirmed that both slpB and slpD formed a monocistronic transcription unit and were effectively expressed, but slpD expression was induced under aerated conditions. slpC was a silent gene under the growth conditions tested. The amino acid contents of all the L. brevis ATCC 14869 S-layer proteins were typical of S-layer proteins, whereas their sequence similarities with other S-layer proteins were negligible. The interspecies identity of the L. brevis S-layer proteins was mainly restricted to the N-terminal regions of those proteins. Furthermore, Northern analyses, expression of a PepI reporter protein under the control of the slpD promoter, and quantitative real-time PCR analysis of slpD expression under aerated and anaerobic conditions suggested that, in L. brevis ATCC 14869, the variation of S-layer protein content involves activation of transcription by a soluble factor rather than DNA rearrangements that are typical for most of the S-layer phase variation mechanisms known.
Collapse
Affiliation(s)
- Miia Jakava-Viljanen
- Department of Basic Veterinary Sciences, Division of Microbiology, FIN-00014 University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
85
|
Ilk N, Völlenkle C, Egelseer EM, Breitwieser A, Sleytr UB, Sára M. Molecular characterization of the S-layer gene, sbpA, of Bacillus sphaericus CCM 2177 and production of a functional S-layer fusion protein with the ability to recrystallize in a defined orientation while presenting the fused allergen. Appl Environ Microbiol 2002; 68:3251-60. [PMID: 12089001 PMCID: PMC126809 DOI: 10.1128/aem.68.7.3251-3260.2002] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleotide sequence encoding the crystalline bacterial cell surface (S-layer) protein SbpA of Bacillus sphaericus CCM 2177 was determined by a PCR-based technique using four overlapping fragments. The entire sbpA sequence indicated one open reading frame of 3,804 bp encoding a protein of 1,268 amino acids with a theoretical molecular mass of 132,062 Da and a calculated isoelectric point of 4.69. The N-terminal part of SbpA, which is involved in anchoring the S-layer subunits via a distinct type of secondary cell wall polymer to the rigid cell wall layer, comprises three S-layer-homologous motifs. For screening of amino acid positions located on the outer surface of the square S-layer lattice, the sequence encoding Strep-tag I, showing affinity to streptavidin, was linked to the 5' end of the sequence encoding the recombinant S-layer protein (rSbpA) or a C-terminally truncated form (rSbpA(31-1068)). The deletion of 200 C-terminal amino acids did not interfere with the self-assembly properties of the S-layer protein but significantly increased the accessibility of Strep-tag I. Thus, the sequence encoding the major birch pollen allergen (Bet v1) was fused via a short linker to the sequence encoding the C-terminally truncated form rSpbA(31-1068). Labeling of the square S-layer lattice formed by recrystallization of rSbpA(31-1068)/Bet v1 on peptidoglycan-containing sacculi with a Bet v1-specific monoclonal mouse antibody demonstrated the functionality of the fused protein sequence and its location on the outer surface of the S-layer lattice. The specific interactions between the N-terminal part of SbpA and the secondary cell wall polymer will be exploited for an oriented binding of the S-layer fusion protein on solid supports to generate regularly structured functional protein lattices.
Collapse
Affiliation(s)
- Nicola Ilk
- Center for Ultrastructure Research, Ludwig Boltzmann-Institute for Molecular Nanotechnology, University of Agricultural Sciences, Gregor Mendelstrasse 33, 1180 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
86
|
Hynönen U, Westerlund-Wikström B, Palva A, Korhonen TK. Identification by flagellum display of an epithelial cell- and fibronectin-binding function in the SlpA surface protein of Lactobacillus brevis. J Bacteriol 2002; 184:3360-7. [PMID: 12029053 PMCID: PMC135103 DOI: 10.1128/jb.184.12.3360-3367.2002] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Depletion of the SlpA protein from the bacterial surface greatly reduced the adhesion of Lactobacillus brevis ATCC 8287 to the human intestinal cell lines Caco-2 and Intestine 407, the endothelial cell line EA-hy926, and the urinary bladder cell line T24, as well as immobilized fibronectin. For functional analysis of the SlpA surface protein, different regions of the slpA gene were expressed as internal in-frame fusions in the variable region of the fliC(H7) gene of Escherichia coli. The resulting chimeric flagella carried inserts up to 275 amino acids long from the mature S-layer protein, which is 435 amino acids in size. The expression of the SlpA fragments on the chimeric flagella was assessed by immunoelectron microscopy and Western blotting using anti-SlpA antibodies, and their binding to human cells was assessed by indirect immunofluorescence. Chimeric flagella harboring inserts that represented the N-terminal part of the S-layer protein bound to the epithelial cell lines, whereas the C-terminal part of the S-layer protein did not confer binding on the flagella. The shortest S-layer peptide capable of detectable binding was 81 amino acid residues in size and represented residues 96 through 176 in the unprocessed S-layer protein. The bacteria and the chimeric flagella did not show detectable binding to erythrocytes, whereas the SlpA-expressing ATCC 8287 cells as well as the chimeric SlpA 96-245/FliC flagella bound to immobilized fibronectin. The N-terminal SlpA peptide 96-176 or 96-200 fused to FliC was not recognized in Western blotting or immunoelectron microscopy by a polyclonal serum raised against the S-layer protein; the antiserum, however, reacted in immunofluorescence with the ATCC 8287 cells. In contrast, an antiserum raised against the His-tagged peptide 96-245 of SlpA bound to the hybrid flagella with the N-terminal SlpA inserts but did not react with ATCC 8287 cells. The results identify the S-layer of L. brevis ATCC 8287 as an adhesin with affinity for human epithelial cells and fibronectin and locate the receptor-binding region within a fragment of 81 amino acids in the N-terminal part of the molecule, which in native S-layer seems inaccessible to antibodies.
Collapse
Affiliation(s)
- Ulla Hynönen
- Division of General Microbiology, Department of Biosciences, University of Helsinki, Finland
| | | | | | | |
Collapse
|
87
|
Weygand M, Kjaer K, Howes PB, Wetzer B, Pum D, Sleytr UB, Lösche M. Structural Reorganization of Phospholipid Headgroups upon Recrystallization of an S-Layer Lattice. J Phys Chem B 2002. [DOI: 10.1021/jp0146418] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Markus Weygand
- Institute of Experimental Physics I, Leipzig University, Linnéstr. 5, D-04103 Leipzig, Germany, Materials Research Department, Risø National Laboratory, DK-4000 Roskilde, Denmark, Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, U.K., and Center for Ultrastructure Research and Ludwig-Boltzmann-Institute for Molecular Nanotechnology, University for Agricultural Sciences, A-1180 Vienna, Austria
| | - Kristian Kjaer
- Institute of Experimental Physics I, Leipzig University, Linnéstr. 5, D-04103 Leipzig, Germany, Materials Research Department, Risø National Laboratory, DK-4000 Roskilde, Denmark, Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, U.K., and Center for Ultrastructure Research and Ludwig-Boltzmann-Institute for Molecular Nanotechnology, University for Agricultural Sciences, A-1180 Vienna, Austria
| | - Paul B. Howes
- Institute of Experimental Physics I, Leipzig University, Linnéstr. 5, D-04103 Leipzig, Germany, Materials Research Department, Risø National Laboratory, DK-4000 Roskilde, Denmark, Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, U.K., and Center for Ultrastructure Research and Ludwig-Boltzmann-Institute for Molecular Nanotechnology, University for Agricultural Sciences, A-1180 Vienna, Austria
| | - Barbara Wetzer
- Institute of Experimental Physics I, Leipzig University, Linnéstr. 5, D-04103 Leipzig, Germany, Materials Research Department, Risø National Laboratory, DK-4000 Roskilde, Denmark, Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, U.K., and Center for Ultrastructure Research and Ludwig-Boltzmann-Institute for Molecular Nanotechnology, University for Agricultural Sciences, A-1180 Vienna, Austria
| | - Dietmar Pum
- Institute of Experimental Physics I, Leipzig University, Linnéstr. 5, D-04103 Leipzig, Germany, Materials Research Department, Risø National Laboratory, DK-4000 Roskilde, Denmark, Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, U.K., and Center for Ultrastructure Research and Ludwig-Boltzmann-Institute for Molecular Nanotechnology, University for Agricultural Sciences, A-1180 Vienna, Austria
| | - Uwe B. Sleytr
- Institute of Experimental Physics I, Leipzig University, Linnéstr. 5, D-04103 Leipzig, Germany, Materials Research Department, Risø National Laboratory, DK-4000 Roskilde, Denmark, Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, U.K., and Center for Ultrastructure Research and Ludwig-Boltzmann-Institute for Molecular Nanotechnology, University for Agricultural Sciences, A-1180 Vienna, Austria
| | - Mathias Lösche
- Institute of Experimental Physics I, Leipzig University, Linnéstr. 5, D-04103 Leipzig, Germany, Materials Research Department, Risø National Laboratory, DK-4000 Roskilde, Denmark, Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, U.K., and Center for Ultrastructure Research and Ludwig-Boltzmann-Institute for Molecular Nanotechnology, University for Agricultural Sciences, A-1180 Vienna, Austria
| |
Collapse
|
88
|
Abstract
S-layers are surface layers of bacterial cell walls. They are formed by two-dimensional, monomolecular crystalline arrays of identical units of protein or glycoprotein macromolecules (subunits). In general, each S-layer exhibits one of four possible 2-D lattice types: oblique (p1 or p2 symmetry), triangle (p3 symmetry), square (p4 symmetry) or hexagonal (p6 symmetry). The S-layer protein compasses up to 15% of the total protein of the bacterial cell and thus represents its major protein. Since 1972, S-layers have also been found in cyanobacteria. So far, they have been observed in 60 strains (isolates) of 23 species, belonging to 12 genera of unicellular Chroococcales and in just five strains or isolates (four species, four genera-only with p1 and p4 lattice symmetry) of filamentous Oscillatoriales; in further families of filamentous cyanobacteria (Nostocales, Stigonematales) they have not been detected, although filamentous cyanobacteria have been frequently studied in the electron microscope. In Chroococcales, relatively large cells of planktonic genera harbouring gas vesicles, S-layers are often present, while picoplanktonic species without gas vesicles usually do not have them. The p6 lattice symmetry appears to be the most common in cyanobacteria, having been found in 41 out of the 60 S-layers observed. All cells of a given strain, all strains capable of forming S-layers and all S-layer forming species of a given genus (as far as it is known) form S-layers of the same lattice type. Hence, the ability to form an S-layer appears to be useful as a supportive morphological marker for species classification. In 41 S-layer formers, the center-to-center spacing of their lattice unit arrays has been measured; the lattice constants range from 5 to 22nm, measured directly on surface of fixed cells. Coarse S-layers of p6 symmetry are the most frequent (with spacing of 15.0-22.0nm); p1 and p2 S-layers are the finest ones (with spacing of 5.0-10.0nm). Medium-spaced lattices (11.0-14.0nm) may be both of the p4 or p6 symmetry types. When measured on isolated S-layers, the spacings show a 10-60% higher value. All the hexagonal unit lattices have the same molecular architecture. Each S-layer unit resembles a truncated cone with an axial pore and with six protein subunits symmetrically placed around its opening. Adjoining units are interspaced by relatively fine channels. The fine detail of every S-layer of every individual strain is unique. Only the S-layer protein subunits of Synechococcus sp. strain GL24 have been analysed by electrophoresis. When incorporated into the S-layer units they confer a net neutral charge to the cell surface. This cyanobacterium induces mineralization of fine-grain gypsum and calcite in a saturated lake fresh water solution. This process is involved in the formation of stromatolites.
Collapse
Affiliation(s)
- Jan Smarda
- Department of Biology, Faculty of Medicine, Masaryk University, Jostova 10, CZ-662 44, Brno, Czech Republic.
| | | | | | | |
Collapse
|
89
|
Dufrêne YF. Application of atomic force microscopy to microbial surfaces: from reconstituted cell surface layers to living cells. Micron 2001; 32:153-65. [PMID: 10936459 DOI: 10.1016/s0968-4328(99)00106-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The application of atomic force microscopy (AFM) to probe the ultrastructure and physical properties of microbial cell surfaces is reviewed. The unique capabilities of AFM can be summarized as follows: imaging surface topography with (sub)nanometer lateral resolution; examining biological specimens under physiological conditions; measuring local properties and interaction forces. AFM is being used increasingly for: (i) visualizing the surface ultrastructure of microbial cell surface layers, including bacterial S-layers, purple membranes, porin OmpF crystals and fungal rodlet layers; (ii) monitoring conformational changes of individual membrane proteins; (iii) examining the morphology of bacterial biofilms, (iv) revealing the nanoscale structure of living microbial cells, including fungi, yeasts and bacteria, (v) mapping interaction forces at microbial surfaces, such as van der Waals and electrostatic forces, solvation forces, and steric/bridging forces; and (vi) probing the local mechanical properties of cell surface layers and of single cells.
Collapse
Affiliation(s)
- Y F Dufrêne
- Unité de chimie des interfaces, Université catholique de Louvain, Place Croix du Sud 2/18, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
90
|
Egelseer EM, Idris R, Jarosch M, Danhorn T, Sleytr UB, Sára M. ISBst12, a novel type of insertion-sequence element causing loss of S-layer-gene expression in Bacillus stearothermophilus ATCC 12980. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 9):2175-2183. [PMID: 10974105 DOI: 10.1099/00221287-146-9-2175] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cell surface of the surface layer (S-layer)-carrying strain of Bacillus stearothermophilus ATCC 12980 is completely covered with an oblique lattice composed of the S-layer protein SbsC. In the S-layer-deficient strain, theS-layer gene sbsC was still present but was interrupted by a novel type of insertion sequence (IS) element designated ISBst12. The insertion site was found to be located within the coding region of the sbsC gene, 199 bp downstream from the translation start of SbsC. ISBst12 is 1612 bp long, bounded by 16 bp imperfect inverted repeats and flanked by a directly repeated 8 bp target sequence. ISBst12 contains an ORF of 1446 bp and is predicted to encode a putative transposase of 482 aa with a calculated theoretical molecular mass of 55562 Da and an isoelectric point of 9.13. The putative transposase does not exhibit a typical DDE motif but displays aHis-Arg-Tyr triad characteristic of the active site of integrases from the bacteriophage lambda Int family. Furthermore, two overlapping leucine-zipper motifs were identified at the N-terminal part of the putative transposase. As revealed by Southern blotting, ISBst12 was present in multiple copies in the S-layer-deficient strain as well as in the S-layer-carrying strain. Northern blotting indicated that S-layer gene expression is already inhibited at the transcriptional level, since no sbsC-specific transcript could be identified in the S-layer-deficient strain. By using PCR, ISBst12 was also detected in B. stearothermophilus PV72/p6, in its oxygen-induced strain variant PV72/p2 and in the S-layer-deficient strain PV72/T5.
Collapse
Affiliation(s)
- Eva M Egelseer
- Zentrum für Ultrastrukturforschung und Ludwig Bolzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur, A-1180 Vienna, Austria1
| | - Rughia Idris
- Zentrum für Ultrastrukturforschung und Ludwig Bolzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur, A-1180 Vienna, Austria1
| | - Marina Jarosch
- Zentrum für Ultrastrukturforschung und Ludwig Bolzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur, A-1180 Vienna, Austria1
| | - Thomas Danhorn
- Zentrum für Ultrastrukturforschung und Ludwig Bolzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur, A-1180 Vienna, Austria1
| | - Uwe B Sleytr
- Zentrum für Ultrastrukturforschung und Ludwig Bolzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur, A-1180 Vienna, Austria1
| | - Margit Sára
- Zentrum für Ultrastrukturforschung und Ludwig Bolzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur, A-1180 Vienna, Austria1
| |
Collapse
|
91
|
Abstract
Many prokaryotic organisms (archaea and bacteria) are covered by a regularly ordered surface layer (S-layer) as the outermost cell wall component. S-layers are built up of a single protein or glycoprotein species and represent the simplest biological membrane developed during evolution. Pores in S-layers are of regular size and morphology, and functional groups on the protein lattice are aligned in well-defined positions and orientations. Due to the high degree of structural regularity S-layers represent unique systems for studying the structure, morphogenesis, and function of layered supramolecular assemblies. Isolated S-layer subunits of numerous organisms are able to assemble into monomolecular arrays either in suspension, at air/water interfaces, on planar mono- and bilayer lipid films, on liposomes and on solid supports (e.g. silicon wafers). Detailed studies on composite S-layer/lipid structures have been performed with Langmuir films, freestanding bilayer lipid membranes, solid supported lipid membranes, and liposomes. Lipid molecules in planar films and liposomes interact via their head groups with defined domains on the S-layer lattice. Electrostatic interactions are the most prevalent forces. The hydrophobic chains of the lipid monolayers are almost unaffected by the attachment of the S-layer and no impact on the hydrophobic thickness of the membranes has been observed. Upon crystallization of a coherent S-layer lattice on planar and vesicular lipid membranes, an increase in molecular order is observed, which is reflected in a decrease of the membrane tension and an enhanced mobility of probe molecules within an S-layer-supported bilayer. Thus, the terminology 'semifluid membrane' has been introduced for describing S-layer-supported lipid membranes. The most important feature of composite S-layer/lipid membranes is an enhanced stability in comparison to unsupported membranes.
Collapse
Affiliation(s)
- B Schuster
- Center for Ultrastructure Research and Ludwig Boltzmann Institute for Molecular Nano-technology, Universität für Bodenkultur Wien, Gregor-Mendel-Strasse 33, A-1180 Vienna, Austria.
| | | |
Collapse
|
92
|
Abstract
This review reports the significance of bilayer lipid membranes on a solid support (sBLM) for the construction of biosensors. The methods of formation of lipid membranes on different solid supports including different metals (silver, gold, stainless steel), agar and conducting polymers are presented. Several examples of the application of electrostriction and dielectric relaxation methods for the study of mechanical properties and dynamics of solid supported bilayers have been shown. We demonstrated that these methods are useful for determination of the binding of enzymes and antibodies to sBLM, for the study of hybridization of nucleic acids on membrane surfaces and for the study of physical properties of modified supported membranes.
Collapse
Affiliation(s)
- T Hianik
- Department of Biophysics and Chemical Physics, Comenius University, Mlynská dolina FI, 842 48 Bratislava, Slovak Republic.
| |
Collapse
|
93
|
Leininger S, Olenyuk B, Stang PJ. Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chem Rev 2000; 100:853-908. [PMID: 11749254 DOI: 10.1021/cr9601324] [Citation(s) in RCA: 2822] [Impact Index Per Article: 112.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- S Leininger
- Department of Chemistry, 315 South 1400 East, The University of Utah, Salt Lake City, Utah 84112
| | | | | |
Collapse
|
94
|
Affiliation(s)
- M Sára
- Centre for Ultrastructure Research and Ludwig Boltzmann Institute for Molecular Nanotechnology, University of Agricultural Sciences, Vienna, Austria.
| | | |
Collapse
|
95
|
Kim EJ, Yoo SK. Cell surface display of hepatitis B virus surface antigen by using Pseudomonas syringae ice nucleation protein. Lett Appl Microbiol 1999; 29:292-7. [PMID: 10664968 DOI: 10.1046/j.1365-2672.1999.00612.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A new system designed for cell surface display of recombinant proteins on Escherichia coli was evaluated for expression of eukaryotic viral antigens. The major surface antigen of hepatitis B virus (HBsAg) was fused to the ice nucleation protein (INP), an outer membrane protein of Pseudomonas syringae. Western blotting, immunofluorescence microscopy, whole-cell ELISA, and ice nucleation activity assay confirmed expression of recombinant proteins on the surface of Escherichia coli. This study indicated that INP-based cell surface display can be used for epitope mapping and recombinant bacteria expressing hepatitis viral antigens may be used for developing live vaccines.
Collapse
Affiliation(s)
- E J Kim
- Department of Biotechnology, College of Engineering and Bioproducts Research Center, Yonsei University, Seoul, Korea
| | | |
Collapse
|
96
|
Abstract
In the late 1970s, on the basis of rRNA phylogeny, Archaea (archaebacteria) was identified as a distinct domain of life besides Bacteria (eubacteria) and Eucarya. Though forming a separate domain, Archaea display an enormous diversity of lifestyles and metabolic capabilities. Many archaeal species are adapted to extreme environments with respect to salinity, temperatures around the boiling point of water, and/or extremely alkaline or acidic pH. This has posed the challenge of studying the molecular and mechanistic bases on which these organisms can cope with such adverse conditions. This review considers our cumulative knowledge on archaeal mechanisms of primary energy conservation, in relationship to those of bacteria and eucarya. Although the universal principle of chemiosmotic energy conservation also holds for Archaea, distinct features have been discovered with respect to novel ion-transducing, membrane-residing protein complexes and the use of novel cofactors in bioenergetics of methanogenesis. From aerobically respiring Archaea, unusual electron-transporting supercomplexes could be isolated and functionally resolved, and a proposal on the organization of archaeal electron transport chains has been presented. The unique functions of archaeal rhodopsins as sensory systems and as proton or chloride pumps have been elucidated on the basis of recent structural information on the atomic scale. Whereas components of methanogenesis and of phototrophic energy transduction in halobacteria appear to be unique to Archaea, respiratory complexes and the ATP synthase exhibit some chimeric features with respect to their evolutionary origin. Nevertheless, archaeal ATP synthases are to be considered distinct members of this family of secondary energy transducers. A major challenge to future investigations is the development of archaeal genetic transformation systems, in order to gain access to the regulation of bioenergetic systems and to overproducers of archaeal membrane proteins as a prerequisite for their crystallization.
Collapse
Affiliation(s)
- G Schäfer
- Institut für Biochemie, Medizinische Universität zu Lübeck, Lübeck, Germany.
| | | | | |
Collapse
|
97
|
Makarova KS, Aravind L, Koonin EV. A superfamily of archaeal, bacterial, and eukaryotic proteins homologous to animal transglutaminases. Protein Sci 1999; 8:1714-9. [PMID: 10452618 PMCID: PMC2144420 DOI: 10.1110/ps.8.8.1714] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Computer analysis using profiles generated by the PSI-BLAST program identified a superfamily of proteins homologous to eukaryotic transglutaminases. The members of the new protein superfamily are found in all archaea, show a sporadic distribution among bacteria, and were detected also in eukaryotes, such as two yeast species and the nematode Caenorhabditis elegans. Sequence conservation in this superfamily primarily involves three motifs that center around conserved cysteine, histidine, and aspartate residues that form the catalytic triad in the structurally characterized transglutaminase, the human blood clotting factor XIIIa'. On the basis of the experimentally demonstrated activity of the Methanobacterium phage pseudomurein endoisopeptidase, it is proposed that many, if not all, microbial homologs of the transglutaminases are proteases and that the eukaryotic transglutaminases have evolved from an ancestral protease.
Collapse
Affiliation(s)
- K S Makarova
- Department of Pathology, F.E. Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | | | |
Collapse
|
98
|
Kwak YD, Yoo SK, Kim EJ. Cell surface display of human immunodeficiency virus type 1 gp120 on Escherichia coli by using ice nucleation protein. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1999; 6:499-503. [PMID: 10391850 PMCID: PMC95715 DOI: 10.1128/cdli.6.4.499-503.1999] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A new system designed for cell surface display of recombinant proteins on Escherichia coli has been evaluated for expression of eukaryotic viral proteins. Human immunodeficiency virus type 1 (HIV-1) gp120 was fused to the C terminus of ice nucleation protein (INP), an outer membrane protein of Pseudomonas syringae. Western blotting, immunofluorescence microscopy, fluorescence-activated cell-sorting analysis, whole-cell enzyme-linked immunosorbent assay, and ice nucleation activity assay confirmed the successful expression of HIV-1 gp120 on the surface of Escherichia coli. This study shows that the INP system can be used for the expression of eukaryotic viral proteins. There is also a possibility that the INP system can be used as an AIDS diagnostic system, an oral vaccine delivery system, and an expression system for various heterologous higher-molecular-weight proteins.
Collapse
Affiliation(s)
- Y D Kwak
- Department of Biotechnology, College of Engineering and Bioproduct Research Center, Yonsei University, 134 Shinchon-Dong, Sudaemun-Ku, Seoul 120-749, Korea
| | | | | |
Collapse
|
99
|
Jarrell KF, Bayley DP, Correia JD, Thomas NA. Recent Excitement about the Archaea. Bioscience 1999. [DOI: 10.2307/1313474] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
100
|
Sleytr UB, Messner P, Pum D, Sára M. Kristalline Zelloberflächen-Schichten prokaryotischer Organismen (S-Schichten): von der supramolekularen Zellstruktur zur Biomimetik und Nanotechnologie. Angew Chem Int Ed Engl 1999. [DOI: 10.1002/(sici)1521-3757(19990419)111:8<1098::aid-ange1098>3.0.co;2-f] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|