51
|
Zhang J, Liu S, Zhang L, Nian H, Chen L. Effect of aluminum stress on the expression of calmodulin and the role of calmodulin in aluminum tolerance. J Biosci Bioeng 2016; 122:558-562. [PMID: 27133707 DOI: 10.1016/j.jbiosc.2016.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 11/17/2022]
Abstract
Calmodulin (CaM) is a calcium ion-binding protein that regulates a variety of cellular functions through its downstream target proteins. Previous studies have reported that overexpression of CaM enhances tolerance to stress, including resistance to salt, heat, cold, drought and plant pathogens. In this study, the growth of Cryptococcus humicola was inhibited by the CaM inhibitor, trifluoperazine, under aluminum (Al) stress. The expression of CaM of C. humicola (ChCaM) was upregulated when the concentration and treatment time with Al was increased. These results indicate that Al stress affects the transcription and translation of ChCaM and that ChCaM may play an important role in Al tolerance. Transgenic ChCaM Saccharomyces cerevisiae was constructed and designated as Sc-ChCaM. The ability of Sc-ChCaM to develop resistance to Al was significantly higher than that of control yeast containing the empty vector pYES3/CT designated as Sc. The residual Al content in the medium containing ChCaM transgenic yeast in culture was significantly lower than the initial amount of Al added in the medium or the residual Al content in the medium containing the control yeast in culture. This finding suggests that ChCaM confers Al tolerance in transgenic yeast, and the absorption of active Al from the culture may be one reason for Al tolerance. These results indicate that ChCaM may be a candidate gene for Al tolerance in engineered plants.
Collapse
Affiliation(s)
- Jingjing Zhang
- Biotechnology Research Center, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuai Liu
- Biotechnology Research Center, Kunming University of Science and Technology, Kunming 650500, China
| | - Lei Zhang
- Biotechnology Research Center, Kunming University of Science and Technology, Kunming 650500, China
| | - Hongjuan Nian
- Biotechnology Research Center, Kunming University of Science and Technology, Kunming 650500, China.
| | - Limei Chen
- Biotechnology Research Center, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
52
|
Wu M, Li Y, Chen D, Liu H, Zhu D, Xiang Y. Genome-wide identification and expression analysis of the IQD gene family in moso bamboo (Phyllostachys edulis). Sci Rep 2016; 6:24520. [PMID: 27094318 PMCID: PMC4837358 DOI: 10.1038/srep24520] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/30/2016] [Indexed: 12/14/2022] Open
Abstract
Members of the plant-specific IQ67-domain (IQD) protein family are involved in various aspects of normal plant growth and developmental processes as well as basal defence response. Although hundreds of IQD proteins have been identified, only a small number of IQDs have been functionally characterized. Moreover, no systematic study has been performed on moso bamboo. In this study, we performed for the first time a genome-wide identification and expression analysis of the IQD gene family in moso bamboo. We identified 29 non-redundant PeIQD encoding genes. Analysis of the evolutionary patterns and divergence revealed that the IQD genes underwent a large-scale event around 12 million years ago and the division times of IQD family genes between moso bamboo and rice, and, between moso bamboo and Brachypodium, were found to be 20-35 MYA and 25-40 MYA, respectively. We surveyed the putative promoter regions of the PeIQD genes, which showed that largely stress-related cis-elements existed in these genes. The expression profiles of the IQD genes shed light on their functional divergence. Additionally, a yeast two-hybrid assay proved that PeIQD8 can interact with PeCaM2 and that IQ or I in the IQ motif is required for PeIQD8 to combine with CaM2.
Collapse
Affiliation(s)
- Min Wu
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Yuan Li
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Danmei Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Huanlong Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Dongyue Zhu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Yan Xiang
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
53
|
Lan T, You J, Kong L, Yu M, Liu M, Yang Z. The interaction of salicylic acid and Ca(2+) alleviates aluminum toxicity in soybean (Glycine max L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 98:146-54. [PMID: 26691059 DOI: 10.1016/j.plaphy.2015.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 05/08/2023]
Abstract
Both calcium ion (Ca(2+)) and salicylic acid (SA) influence various stress responses in plants. In acidic soils, aluminum (Al) toxicity adversely affects crop yield. In this study, we determined the influences of Ca(2+) and SA on root elongation, Al accumulation, and citrate secretion in soybean plant. We also investigated the activity of antioxidative enzymes in Al-exposed soybean roots. Root elongation was severally inhibited when the roots were exposed to 30 μM Al. The Al-induced inhibition of root elongation was ameliorated by Ca(2+) and SA but aggravated by Ca(2+) channel inhibitor (VP), CaM antagonists (TFP), Ca(2+) chelator (EGTA), and SA biosynthesis inhibitor (PAC). Furthermore, 1.0 mM CaCl2 and 10 μM SA reduced the accumulation of Al in roots, but their inhibitors stimulated the accumulation of Al in roots. Citrate secretion from these roots increased with the addition of either 1.0 mM CaCl2 or 10 μM SA but did not increase significantly when treated with higher Ca(2+) concentration. Enzymatic analysis showed that Ca(2+) and SA stimulated the activities of superoxidase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) in Al-treated roots. In addition, SA restored the inhibition of Ca(2+) inhibitors on root elongation and Al content. Thus, both Ca(2+) and SA contribute to Al tolerance in soybean. Furthermore, Ca(2+) supplements rapidly increased Al-induced accumulation of free-SA or conjugated SA (SAG), while Ca(2+) inhibitors delayed the accumulation of SA for more than 8 h. Within 4 h of treatment, SA increased cytosolic Ca(2+) concentration in Al-treated roots, and upregulated the expression of four genes that possibly encode calmodulin-like (CML) proteins. These findings indicate that SA is involved in Ca(2+)-mediated signal transduction pathways in Al tolerance.
Collapse
Affiliation(s)
- Tu Lan
- College of Plant Science, Jilin University, Changchun 130062, PR China; Laboratory of Soil and Plant Molecular Genetics, Jilin University, Changchun 130062, PR China
| | - Jiangfeng You
- College of Plant Science, Jilin University, Changchun 130062, PR China; Laboratory of Soil and Plant Molecular Genetics, Jilin University, Changchun 130062, PR China
| | - Lingnan Kong
- College of Plant Science, Jilin University, Changchun 130062, PR China; Laboratory of Soil and Plant Molecular Genetics, Jilin University, Changchun 130062, PR China
| | - Miao Yu
- College of Plant Science, Jilin University, Changchun 130062, PR China; Laboratory of Soil and Plant Molecular Genetics, Jilin University, Changchun 130062, PR China
| | - Minghui Liu
- College of Plant Science, Jilin University, Changchun 130062, PR China; Laboratory of Soil and Plant Molecular Genetics, Jilin University, Changchun 130062, PR China
| | - Zhenming Yang
- College of Plant Science, Jilin University, Changchun 130062, PR China; Laboratory of Soil and Plant Molecular Genetics, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
54
|
Mazzucotelli E, Trono D. Cloning, expression analysis, and functional characterization of two secretory phospholipases A2 in durum wheat (Triticum durum Desf.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:295-306. [PMID: 26706080 DOI: 10.1016/j.plantsci.2015.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/16/2015] [Accepted: 10/17/2015] [Indexed: 06/05/2023]
Abstract
We previously isolated four cDNAs in durum wheat, TdsPLA2I, TdsPLA2II, TdsPLA2III and TdsPLA2IV, that encode proteins with homology to plant secretory phospholipases A2 (sPLA2s) (Verlotta et al., Int. J. Mol. Sci., 14, 2013, 5146-5169). In this study, we have further characterized TdsPLA2II and TdsPLA2III sequences that, on the basis of our previous findings, might encode sPLA2 isoforms with different features. Functional analysis revealed that, similarly to other known sPLA2s, TdsPLA2II and TdsPLA2III have an optimum at pH 9.0, require Ca(2+), are heat stable, and are inhibited by the disulfide-bond-reducing agent dithiothreitol. However, differences emerged between these TdsPLA2 isoforms. Transcript analysis revealed that the TdsPLA2III gene is highly up-regulated under different environmental stresses; conversely, the TdsPLA2II gene is expressed at constant levels under almost all of the stress conditions examined. Moreover, TdsPLA2II is saturated at micromolar substrate and Ca(2+) concentrations, whereas TdsPLA2III requires millimolar concentrations to reach maximal activity. This suggests that TdsPLA2II normally functions under optimal conditions in vivo, whereas TdsPLA2III is only partially activated, depending on the specific phospholipid and Ca(2+) levels. Altogether these data lead to the hypothesis that in vivo TdsPLA2II and TdsPLA2III are differently regulated at both molecular and biochemical level and that TdsPLA2III plays a major role in durum wheat response to adverse environmental conditions.
Collapse
MESH Headings
- Amino Acid Sequence
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Gene Expression Regulation, Plant
- Molecular Sequence Data
- Phospholipases A2, Secretory/genetics
- Phospholipases A2, Secretory/metabolism
- Phylogeny
- Plant Proteins/genetics
- Plant Proteins/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Sequence Alignment
- Triticum/enzymology
- Triticum/genetics
- Triticum/metabolism
Collapse
Affiliation(s)
- Elisabetta Mazzucotelli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Genomica Vegetale, Via San Protaso 302, 29017 Fiorenzuola d'Arda, Italy
| | - Daniela Trono
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura, S.S. 673, Km 25,200, 71122 Foggia, Italy.
| |
Collapse
|
55
|
Chen C, Sun X, Duanmu H, Zhu D, Yu Y, Cao L, Liu A, Jia B, Xiao J, Zhu Y. GsCML27, a Gene Encoding a Calcium-Binding Ef-Hand Protein from Glycine soja, Plays Differential Roles in Plant Responses to Bicarbonate, Salt and Osmotic Stresses. PLoS One 2015; 10:e0141888. [PMID: 26550992 PMCID: PMC4638360 DOI: 10.1371/journal.pone.0141888] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 10/14/2015] [Indexed: 01/29/2023] Open
Abstract
Calcium, as the most widely accepted messenger, plays an important role in plant stress responses through calcium-dependent signaling pathways. The calmodulin-like family genes (CMLs) encode Ca2+ sensors and function in signaling transduction in response to environmental stimuli. However, until now, the function of plant CML proteins, especially soybean CMLs, is largely unknown. Here, we isolated a Glycine soja CML protein GsCML27, with four conserved EF-hands domains, and identified it as a calcium-binding protein through far-UV CD spectroscopy. We further found that expression of GsCML27 was induced by bicarbonate, salt and osmotic stresses. Interestingly, ectopic expression of GsCML27 in Arabidopsis enhanced plant tolerance to bicarbonate stress, but decreased the salt and osmotic tolerance during the seed germination and early growth stages. Furthermore, we found that ectopic expression of GsCML27 decreases salt tolerance through modifying both the cellular ionic (Na+, K+) content and the osmotic stress regulation. GsCML27 ectopic expression also decreased the expression levels of osmotic stress-responsive genes. Moreover, we also showed that GsCML27 localized in the whole cell, including cytoplasm, plasma membrane and nucleus in Arabidopsis protoplasts and onion epidermal cells, and displayed high expression in roots and embryos. Together, these data present evidence that GsCML27 as a Ca2+-binding EF-hand protein plays a role in plant responses to bicarbonate, salt and osmotic stresses.
Collapse
Affiliation(s)
- Chao Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Xiaoli Sun
- Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Huizi Duanmu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Dan Zhu
- College of Life Science, Qingdao Agricultural University, Qingdao, P.R. China
| | - Yang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Lei Cao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Ailin Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Bowei Jia
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Jialei Xiao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| |
Collapse
|
56
|
Virdi AS, Singh S, Singh P. Abiotic stress responses in plants: roles of calmodulin-regulated proteins. FRONTIERS IN PLANT SCIENCE 2015; 6:809. [PMID: 26528296 PMCID: PMC4604306 DOI: 10.3389/fpls.2015.00809] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/16/2015] [Indexed: 05/20/2023]
Abstract
Intracellular changes in calcium ions (Ca(2+)) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca(2+)-sensing proteins and has been shown to be involved in transduction of Ca(2+) signals. After interacting with Ca(2+), CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Amardeep S. Virdi
- Texture Analysis Laboratory, Department of Food Science & Technology, Guru Nanak Dev UniversityAmritsar, India
| | - Supreet Singh
- Plant Molecular Biology Laboratory, Department of Biotechnology, Guru Nanak Dev UniversityAmritsar, India
| | - Prabhjeet Singh
- Plant Molecular Biology Laboratory, Department of Biotechnology, Guru Nanak Dev UniversityAmritsar, India
| |
Collapse
|
57
|
Cai R, Zhang C, Zhao Y, Zhu K, Wang Y, Jiang H, Xiang Y, Cheng B. Genome-wide analysis of the IQD gene family in maize. Mol Genet Genomics 2015; 291:543-58. [PMID: 26453258 DOI: 10.1007/s00438-015-1122-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/18/2015] [Indexed: 12/25/2022]
Abstract
IQD gene family plays important roles in plant developmental processes and stress responses. To date, no systematic characterization of this gene family has been carried out in maize. In this study, 26 IQD genes, from ZmIQD1 to ZmIQD26, were identified using Blast search tools. The phylogenetic analysis showed these genes were divided into four subfamilies (IQD I-IV) and members within the same subfamily shared conserved exon/intron distribution and motif composition. The 26 ZmIQD genes are distributed unevenly on 8 of the 10 chromosomes, with 9 segmental duplication events, suggesting that the expansion of IQDs in maize was due to the segmental duplication. The analysis of Ka/Ks ratios showed that the duplicated ZmIQDs had primarily undergone strong purifying selection. In addition, the 26 ZmIQDs displayed different expression patterns at different developmental stages of maize based on transcriptome analysis. Further, quantitative real-time PCR analysis showed that all 26 ZmIQD genes were responsive to drought treatment, suggesting their crucial roles in drought stress response. Yeast two-hybrid assay proved that ZmIQD2 and ZmIQD15 can interact with ZmCaM2 and IQ or I in IQ motif is required for ZmIQD15 to combine with CaM2. Our results present a comprehensive overview of the maize IQD gene family and lay an important foundation for further analysis aimed at uncovering the biological functions of ZmIQDs in growth and development.
Collapse
Affiliation(s)
- Ronghao Cai
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Congsheng Zhang
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yang Zhao
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Kejun Zhu
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yufu Wang
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Haiyang Jiang
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China. .,Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Beijiu Cheng
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
58
|
Calmodulin-binding transcription activators and perspectives for applications in biotechnology. Appl Microbiol Biotechnol 2015; 99:10379-85. [PMID: 26450508 DOI: 10.1007/s00253-015-6966-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/23/2015] [Accepted: 08/26/2015] [Indexed: 01/31/2023]
Abstract
In recent years, a novel family of calmodulin-binding transcription activators (CAMTAs) has been reported in various species. The CAMTAs share a conserved domain organization, with a CG-1 DNA-binding domain, a transcription factor immunoglobulin domain, several ankyrin repeats, a calmodulin-binding domain, and a varying number of IQ motifs. CAMTAs participate in transcriptional regulation by recognizing and binding to a specific cis-element: (G/A/C)CGCG(C/G/T). Plants suffer from the environmental challenges, including abiotic and biotic stresses. Investigations in various plant species indicate a broad range of CAMTA functions involved in developmental regulation, environmental stress response, and hormone cross talk. In this review, we focus on the expression patterns and biological functions of CAMTAs to explore their probable applications in biotechnology. Furthermore, the identification and phylogenetic analysis of CAMTAs in crops could open new perspectives for enhancing stress tolerance, which could lead to improved crop production.
Collapse
|
59
|
Pandey GK, Kanwar P, Singh A, Steinhorst L, Pandey A, Yadav AK, Tokas I, Sanyal SK, Kim BG, Lee SC, Cheong YH, Kudla J, Luan S. Calcineurin B-Like Protein-Interacting Protein Kinase CIPK21 Regulates Osmotic and Salt Stress Responses in Arabidopsis. PLANT PHYSIOLOGY 2015; 169:780-92. [PMID: 26198257 PMCID: PMC4577403 DOI: 10.1104/pp.15.00623] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/18/2015] [Indexed: 05/20/2023]
Abstract
The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes.
Collapse
Affiliation(s)
- Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| | - Poonam Kanwar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| | - Amarjeet Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| | - Leonie Steinhorst
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| | - Amita Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| | - Akhlilesh K Yadav
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| | - Indu Tokas
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| | - Beom-Gi Kim
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| | - Sung-Chul Lee
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| | - Yong-Hwa Cheong
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| | - Jörg Kudla
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| | - Sheng Luan
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India (G.K.P., P.K., A.S., A.P., A.K.Y., I.T., S.K.S.);Molekulargenetik und Zellbiologie der Pflanzen Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany (L.S., J.K.);Department of Molecular Breeding, National Academy of Agricultural Science, Jeonju 560-500, Korea (B.-G.K.);Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (B.-G.K., S.-C.L., Y.-H.C., S.L.);Department of Life Science, Chung-Ang University, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea (S.-C.L.); andDepartment of Bio-Environmental Science, Sunchon National University, Suncheon, Jeonnam 540-742, Korea (Y.-H.C.)
| |
Collapse
|
60
|
Zeng H, Xu L, Singh A, Wang H, Du L, Poovaiah BW. Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2015; 6:600. [PMID: 26322054 PMCID: PMC4532166 DOI: 10.3389/fpls.2015.00600] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/20/2015] [Indexed: 05/18/2023]
Abstract
Transient changes in intracellular Ca(2+) concentration have been well recognized to act as cell signals coupling various environmental stimuli to appropriate physiological responses with accuracy and specificity in plants. Calmodulin (CaM) and calmodulin-like proteins (CMLs) are major Ca(2+) sensors, playing critical roles in interpreting encrypted Ca(2+) signals. Ca(2+)-loaded CaM/CMLs interact and regulate a broad spectrum of target proteins such as channels/pumps/antiporters for various ions, transcription factors, protein kinases, protein phosphatases, metabolic enzymes, and proteins with unknown biochemical functions. Many of the target proteins of CaM/CMLs directly or indirectly regulate plant responses to environmental stresses. Basic information about stimulus-induced Ca(2+) signal and overview of Ca(2+) signal perception and transduction are briefly discussed in the beginning of this review. How CaM/CMLs are involved in regulating plant responses to abiotic stresses are emphasized in this review. Exciting progress has been made in the past several years, such as the elucidation of Ca(2+)/CaM-mediated regulation of AtSR1/CAMTA3 and plant responses to chilling and freezing stresses, Ca(2+)/CaM-mediated regulation of CAT3, MAPK8 and MKP1 in homeostasis control of reactive oxygen species signals, discovery of CaM7 as a DNA-binding transcription factor regulating plant response to light signals. However, many key questions in Ca(2+)/CaM-mediated signaling warrant further investigation. Ca(2+)/CaM-mediated regulation of most of the known target proteins is presumed based on their interaction. The downstream targets of CMLs are mostly unknown, and how specificity of Ca(2+) signaling could be realized through the actions of CaM/CMLs and their target proteins is largely unknown. Future breakthroughs in Ca(2+)/CaM-mediated signaling will not only improve our understanding of how plants respond to environmental stresses, but also provide the knowledge base to improve stress-tolerance of crops.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Luqin Xu
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Amarjeet Singh
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, PullmanWA, USA
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Liqun Du
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - B. W. Poovaiah
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, PullmanWA, USA
| |
Collapse
|
61
|
Yue R, Lu C, Sun T, Peng T, Han X, Qi J, Yan S, Tie S. Identification and expression profiling analysis of calmodulin-binding transcription activator genes in maize (Zea mays L.) under abiotic and biotic stresses. FRONTIERS IN PLANT SCIENCE 2015; 6:576. [PMID: 26284092 PMCID: PMC4516887 DOI: 10.3389/fpls.2015.00576] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/13/2015] [Indexed: 05/20/2023]
Abstract
The calmodulin-binding transcription activators (CAMTA) play critical roles in plant growth and responses to environmental stimuli. However, how CAMTAs function in responses to abiotic and biotic stresses in maize (Zea mays L.) is largely unknown. In this study, we first identified all the CAMTA homologous genes in the whole genome of maize. The results showed that nine ZmCAMTA genes showed highly diversified gene structures and tissue-specific expression patterns. Many ZmCAMTA genes displayed high expression levels in the roots. We then surveyed the distribution of stress-related cis-regulatory elements in the -1.5 kb promoter regions of ZmCAMTA genes. Notably, a large number of stress-related elements present in the promoter regions of some ZmCAMTA genes, indicating a genetic basis of stress expression regulation of these genes. Quantitative real-time PCR was used to test the expression of ZmCAMTA genes under several abiotic stresses (drought, salt, and cold), various stress-related hormones [abscisic acid, auxin, salicylic acid (SA), and jasmonic acid] and biotic stress [rice black-streaked dwarf virus (RBSDV) infection]. Furthermore, the expression pattern of ZmCAMTA genes under RBSDV infection was analyzed to investigate their potential roles in responses of different maize cultivated varieties to RBSDV. The expression of most ZmCAMTA genes responded to both abiotic and biotic stresses. The data will help us to understand the roles of CAMTA-mediated Ca(2+) signaling in maize tolerance to environmental stresses.
Collapse
Affiliation(s)
- Runqing Yue
- Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Lab. of Maize BiologyZhengzhou, China
| | - Caixia Lu
- Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Lab. of Maize BiologyZhengzhou, China
| | - Tao Sun
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Tingting Peng
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Xiaohua Han
- Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Lab. of Maize BiologyZhengzhou, China
| | - Jianshuang Qi
- Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Lab. of Maize BiologyZhengzhou, China
| | - Shufeng Yan
- Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Lab. of Maize BiologyZhengzhou, China
| | - Shuanggui Tie
- Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Lab. of Maize BiologyZhengzhou, China
- *Correspondence: Shuanggui Tie, Henan Academy of Agricultural Sciences, 116# Huayuan Road, Zhengzhou 450002, China
| |
Collapse
|
62
|
Ma H, Feng L, Chen Z, Chen X, Zhao H, Xiang Y. Genome-wide identification and expression analysis of the IQD gene family in Populus trichocarpa. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:96-110. [PMID: 25443837 DOI: 10.1016/j.plantsci.2014.08.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 08/28/2014] [Accepted: 08/30/2014] [Indexed: 06/04/2023]
Abstract
IQD proteins are downstream targets of calcium sensors, which play important roles in development and responses to environmental cues in plants. Comprehensive analyses of IQD genes have been conducted in Arabidopsis, rice, tomato, and Brachypodium distachyon, but have not been reported from poplar. The availability of the Populus trichocarpa genome sequence allowed us to conduct phylogenetic, gene structure, chromosomal location, and microarray analyses of the predicted IQD genes in P. trichocarpa. We identified 40 IQD genes (PtIQD1-40) classified in four subfamilies (I-IV). Gene structure and protein motif analyses showed that these genes are relatively conserved within each subfamily. The 40 PtIQD genes are distributed on 18 of the 19 chromosomes, with 16 gene pairs involved in segmental duplication events. The Ka/Ks ratios of the 16 segmentally-duplicated gene pairs show that the duplicated pairs underwent purifying selection with restrictive functional divergence after the duplication events. Analyses of microarray data for 38 PtIQD genes showed tissue/organ-specific expression patterns. We also performed quantitative real-time RT-PCR (qRT-PCR) analyses of twelve selected PtIQD genes in plants treated with MeJA and PEG in order to explore their stress-related expression patterns. Our results will be valuable for further analysis of poplar IQD genes to characterize their important biological functions.
Collapse
Affiliation(s)
- Hui Ma
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Lin Feng
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Zhu Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Xue Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Hualin Zhao
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Biology of Anhui Agriculture University, Hefei 230036, China.
| |
Collapse
|
63
|
Feng L, Chen Z, Ma H, Chen X, Li Y, Wang Y, Xiang Y. The IQD gene family in soybean: structure, phylogeny, evolution and expression. PLoS One 2014; 9:e110896. [PMID: 25343341 PMCID: PMC4208818 DOI: 10.1371/journal.pone.0110896] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/19/2014] [Indexed: 01/28/2023] Open
Abstract
Members of the plant-specific IQ67-domain (IQD) protein family are involved in plant development and the basal defense response. Although systematic characterization of this family has been carried out in Arabidopsis, tomato (Solanum lycopersicum), Brachypodium distachyon and rice (Oryza sativa), systematic analysis and expression profiling of this gene family in soybean (Glycine max) have not previously been reported. In this study, we identified and structurally characterized IQD genes in the soybean genome. A complete set of 67 soybean IQD genes (GmIQD1-67) was identified using Blast search tools, and the genes were clustered into four subfamilies (IQD I-IV) based on phylogeny. These soybean IQD genes are distributed unevenly across all 20 chromosomes, with 30 segmental duplication events, suggesting that segmental duplication has played a major role in the expansion of the soybean IQD gene family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the GmIQD family primarily underwent purifying selection. Microsynteny was detected in most pairs: genes in clade 1-3 might be present in genome regions that were inverted, expanded or contracted after the divergence; most gene pairs in clade 4 showed high conservation with little rearrangement among these gene-residing regions. Of the soybean IQD genes examined, six were most highly expressed in young leaves, six in flowers, one in roots and two in nodules. Our qRT-PCR analysis of 24 soybean IQD III genes confirmed that these genes are regulated by MeJA stress. Our findings present a comprehensive overview of the soybean IQD gene family and provide insights into the evolution of this family. In addition, this work lays a solid foundation for further experiments aimed at determining the biological functions of soybean IQD genes in growth and development.
Collapse
Affiliation(s)
- Lin Feng
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Zhu Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Hui Ma
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Xue Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yuan Li
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yiyi Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Biology of Anhui Agriculture University, Hefei, China
| |
Collapse
|
64
|
Zhang X, Zhou H, Zang X, Gong L, Sun H, Zhang X. MIPS: a calmodulin-binding protein of Gracilaria lemaneiformis under heat shock. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:475-483. [PMID: 24535704 DOI: 10.1007/s10126-014-9565-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 01/20/2014] [Indexed: 06/03/2023]
Abstract
To study the Ca(2+)/Calmodulin (CaM) signal transduction pathway of Gracilaria lemaneiformis under heat stress, myo-inositol-1-phosphate synthase (MIPS), a calmodulin-binding protein, was isolated using the yeast two-hybrid system. cDNA and DNA sequences of mips were cloned from G. lemaneiformis by using 5'RACE and genome walking procedures. The MIPS DNA sequence was 2,067 nucleotides long, containing an open reading frame (ORF) of 1,623 nucleotides with no intron. The mips ORF was predicted to encode 540 amino acids, which included the conserved MIPS domain and was 61-67 % similar to that of other species. After analyzing the amino acid sequence of MIPS, the CaM-Binding Domain (CaMBD) was inferred to be at a site spanning from amino acid 212 to amino acid 236. The yeast two-hybrid results proved that MIPS can interact with CaM and that MIPS is a type of calmodulin-binding protein. Next, the expression of CaM and MIPS in wild-type G. lemaneiformis and a heat-tolerant G. lemaneiformis cultivar, "981," were analyzed using real-time PCR under a heat shock of 32 °C. The expression level displayed a cyclical upward trend. Compared with wild type, the CaM expression levels of cultivar 981 were higher, which might directly relate to its resistance to high temperatures. This paper indicates that MIPS and CaM may play important roles in the high-temperature resistance of G. lemaneiformis.
Collapse
Affiliation(s)
- Xuan Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, Shandong province, China
| | | | | | | | | | | |
Collapse
|
65
|
Shin SB, Golovkin M, Reddy ASN. A pollen-specific calmodulin-binding protein, NPG1, interacts with putative pectate lyases. Sci Rep 2014; 4:5263. [PMID: 24919580 PMCID: PMC4053719 DOI: 10.1038/srep05263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/17/2014] [Indexed: 12/18/2022] Open
Abstract
Previous genetic studies have revealed that a pollen-specific calmodulin-binding protein, No Pollen Germination 1 (NPG1), is required for pollen germination. However, its mode of action is unknown. Here we report direct interaction of NPG1 with pectate lyase-like proteins (PLLs). A truncated form of AtNPG1 lacking the N-terminal tetratricopeptide repeat 1 (TPR1) failed to interact with PLLs, suggesting that it is essential for NPG1 interaction with PLLs. Localization studies with AtNPG1 fused to a fluorescent reporter driven by its native promoter revealed its presence in the cytosol and cell wall of the pollen grain and the growing pollen tube of plasmolyzed pollen. Together, our data suggest that the function of NPG1 in regulating pollen germination is mediated through its interaction with PLLs, which may modify the pollen cell wall and regulate pollen tube emergence and growth.
Collapse
Affiliation(s)
- Sung-Bong Shin
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- Current Address: United States Department of Agriculture – Tree Fruit Research Laboratory, Wenatchee, WA 98801, USA
| | - Maxim Golovkin
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- Current Address: Foundation for Advancement of Science, Technology and Research, Biotechnology Center, PA 18902, USA
| | - Anireddy S. N. Reddy
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
66
|
Silva RDC, Carmo LST, Luis ZG, Silva LP, Scherwinski-Pereira JE, Mehta A. Proteomic identification of differentially expressed proteins during the acquisition of somatic embryogenesis in oil palm (Elaeis guineensis Jacq.). J Proteomics 2014; 104:112-27. [PMID: 24675181 DOI: 10.1016/j.jprot.2014.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/24/2014] [Accepted: 03/12/2014] [Indexed: 01/03/2023]
Abstract
UNLABELLED In the present study we have identified and characterized the proteins expressed during different developmental stages of Elaeis guineensis calli obtained from zygotic embryos. We were interested in the possible proteomic changes that would occur during the acquisition of somatic embryogenesis and therefore samples were collected from zygotic embryos (E1), swollen explants 14days (E2) in induction medium, primary callus (E3), and pro-embryogenic callus (E4). The samples were grinded in liquid nitrogen, followed by total protein extraction using phenol and extraction buffer. Proteins were analyzed by two-dimensional electrophoresis (2-DE) and the differentially expressed protein spots were analyzed by MALDI-TOF mass spectrometry (MS and MS/MS). Interestingly, we have identified proteins, which can be used as potential candidates for future studies aiming at the development of biomarkers for embryogenesis acquisition and for the different stages leading to pro-embryogenic callus formation such as type IIIa membrane protein cp-wap13, fructokinase and PR proteins. The results obtained shed some light on the biochemical events involved in the process of somatic embryogenesis of E. guineensis obtained from zygotic embryos. The use of stage-specific protein markers can help monitor cell differentiation and contribute to improve the protocols for successfully cloning the species. BIOLOGICAL SIGNIFICANCE Understanding the fate and dynamics of cells and tissues during callus formation is essential to understand totipotency and the mechanisms involved during acquisition of somatic embryogenesis (SE). In this study we have investigated the early stages of somatic embryogenesis induction in oil palm and have identified potential markers as well as proteins potentially involved in embryogenic competence acquisition. The use of these proteins can help improve tissue culture protocols in order to increase regeneration rates. This article is part of a Special Issue entitled: Environmental and structural proteomics.
Collapse
Affiliation(s)
- Rafael de Carvalho Silva
- PPGBIOTEC, Departamento de Biologia, Universidade Federal do Amazonas, CEP 69077-000, Manaus, AM, Brazil
| | | | - Zanderluce Gomes Luis
- PPGBOT, Departamento de Botanica, Instituto de Biologia, Universidade de Brasilia, CEP 70910-900, Brasília, DF, Brazil
| | - Luciano Paulino Silva
- Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte Final, CEP 70770-917, Brasília, DF, Brazil
| | - Jonny Everson Scherwinski-Pereira
- Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte Final, CEP 70770-917, Brasília, DF, Brazil; PPGBOT, Departamento de Botanica, Instituto de Biologia, Universidade de Brasilia, CEP 70910-900, Brasília, DF, Brazil.
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Av. W5 Norte Final, CEP 70770-917, Brasília, DF, Brazil.
| |
Collapse
|
67
|
Abbas N, Maurya JP, Senapati D, Gangappa SN, Chattopadhyay S. Arabidopsis CAM7 and HY5 physically interact and directly bind to the HY5 promoter to regulate its expression and thereby promote photomorphogenesis. THE PLANT CELL 2014; 26:1036-52. [PMID: 24610722 PMCID: PMC4001367 DOI: 10.1105/tpc.113.122515] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 12/31/2013] [Accepted: 02/12/2014] [Indexed: 05/19/2023]
Abstract
Arabidopsis thaliana CALMODULIN7 (CAM7), a unique member of the calmodulin gene family, plays a crucial role as a transcriptional regulator in seedling development. The elongated HYPOCOTYL5 (HY5) bZIP protein, an integrator of multiple signaling pathways, also plays an important role in photomorphogenic growth and light-regulated gene expression. CAM7 acts synergistically with HY5 to promote photomorphogenesis at various wavelengths of light. Although the genetic relationships between CAM7 and HY5 in light-mediated seedling development have been demonstrated, the molecular connectivity between CAM7 and HY5 is unknown. Furthermore, whereas HY5-mediated gene regulation has been fairly well investigated, the transcriptional regulation of HY5 is largely unknown. Here, we report that HY5 expression is regulated by HY5 and CAM7 at various wavelengths of light and also at various stages of development. In vitro and in vivo DNA-protein interaction studies suggest that HY5 and CAM7 bind to closely located T/G- and E-box cis-acting elements present in the HY5 promoter, respectively. Furthermore, CAM7 and HY5 physically interact and regulate the expression of HY5 in a concerted manner. Taken together, these results demonstrate that CAM7 and HY5 directly interact with the HY5 promoter to mediate the transcriptional activity of HY5 during Arabidopsis seedling development.
Collapse
Affiliation(s)
- Nazia Abbas
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Jay P. Maurya
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | - Dhirodatta Senapati
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| | | | - Sudip Chattopadhyay
- National Institute of Plant Genome Research, New Delhi 110067, India
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, India
| |
Collapse
|
68
|
Shankar A, Srivastava AK, Yadav AK, Sharma M, Pandey A, Raut VV, Das MK, Suprasanna P, Pandey GK. Whole genome transcriptome analysis of rice seedling reveals alterations in Ca(2+) ion signaling and homeostasis in response to Ca(2+) deficiency. Cell Calcium 2014; 55:155-65. [PMID: 24814644 DOI: 10.1016/j.ceca.2014.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/18/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
Ca(2+) is an essential inorganic macronutrient, involved in regulating major physiological processes in plants. It has been well established as a second messenger and is predominantly stored in the cell wall, endoplasmic reticulum, mitochondria and vacuoles. In the cytosol, the concentration of this ion is maintained at nano-molar range. Upon requirement, Ca(2+) is released from intra-cellular as well as extracellular compartments such as organelles and cell wall. In this study, we report for the first time, a whole genome transcriptome response to short (5 D) and long (14 D) term Ca(2+) starvation and restoration in rice. Our results manifest that short and long term Ca(2+) starvation involves a very different response in gene expression with respect to both the number and function of genes involved. A larger number of genes were up- or down-regulated after 14 D (5588 genes) than after 5 D (798 genes) of Ca(2+) starvation. The functional classification of these genes indicated their connection with various metabolic pathways, ion transport, signal transduction, transcriptional regulation, and other processes related to growth and development. The results obtained here will enable to understand how changes in Ca(2+) concentration or availability are interpreted into adaptive responses in plants.
Collapse
Affiliation(s)
- Alka Shankar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Akhilesh K Yadav
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| | - Manisha Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| | - Amita Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| | - Vaibhavi V Raut
- Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Mirnal K Das
- Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| |
Collapse
|
69
|
Rao SS, El-Habbak MH, Havens WM, Singh A, Zheng D, Vaughn L, Haudenshield JS, Hartman GL, Korban SS, Ghabrial SA. Overexpression of GmCaM4 in soybean enhances resistance to pathogens and tolerance to salt stress. MOLECULAR PLANT PATHOLOGY 2014; 15:145-60. [PMID: 24118726 PMCID: PMC6638926 DOI: 10.1111/mpp.12075] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant diseases inflict heavy losses on soybean yield, necessitating an understanding of the molecular mechanisms underlying biotic/abiotic stress responses. Ca(2) (+) is an important universal messenger, and protein sensors, prominently calmodulins (CaMs), recognize cellular changes in Ca(2) (+) in response to diverse signals. Because the development of stable transgenic soybeans is laborious and time consuming, we used the Bean pod mottle virus (BPMV)-based vector for rapid and efficient protein expression and gene silencing. The present study focuses on the functional roles of the gene encoding the soybean CaM isoform GmCaM4. Overexpression of GmCaM4 in soybean resulted in enhanced resistance to three plant pathogens and increased tolerance to high salt conditions. To gain an understanding of the underlying mechanisms, we examined the potential defence pathways involved. Our studies revealed activation/increased expression levels of pathogenesis-related (PR) genes in GmCaM4-overexpressing plants and the accumulation of jasmonic acid (JA). Silencing of GmCaM4, however, markedly repressed the expression of PR genes. We confirmed the in vivo interaction between GmCaM4 and the CaM binding transcription factor Myb2, which regulates the expression of salt-responsive genes, using the yeast two-hybrid (Y2H) system and bimolecular fluorescence complementation assays. GmCaM4 and Glycine max CaM binding receptor-like kinase (GmCBRLK) did not interact in the Y2H assays, but the interaction between GmCaM2 and GmCBRLK was confirmed. Thus, a GmCaM2-GmCBRLK-mediated salt tolerance mechanism, similar to that reported in Glycine soja, may also be functional in soybean. Confocal microscopy showed subcellular localization of the green fluorescent protein (GFP)-GmCaM4 fusion protein in the nucleus and cytoplasm.
Collapse
Affiliation(s)
- Suryadevara S Rao
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546-0091, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
|
71
|
Huda KMK, Banu MSA, Garg B, Tula S, Tuteja R, Tuteja N. OsACA6, a P-type IIB Ca²⁺ ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:997-1015. [PMID: 24128296 DOI: 10.1111/tpj.12352] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/30/2013] [Accepted: 10/08/2013] [Indexed: 05/19/2023]
Abstract
Calcium (Ca²⁺) regulates several signalling pathways involved in growth, development and stress tolerance. Cellular Ca²⁺ homeostasis is achieved by the combined action of channels, pumps and antiporters, but direct evidence for a role of Ca²⁺ATPase pumps in stress tolerance is lacking. Here we report the characterization of a Ca²⁺ ATPase gene (OsACA6) from Oryza sativa, and elucidate its functions in stress tolerance. OsACA6 transcript levels are enhanced in response to salt, drought, abscisic acid and heat. In vivo localization identified plasma membranes as an integration site for the OsACA6-GFP fusion protein. Using transgenic tobacco lines, we demonstrate that over-expression of OsACA6 is triggered during salinity and drought stresses. The enhanced tolerance to these stresses was confirmed by changes in several physiological indices, including water loss rate, photosynthetic efficiency, cell membrane stability, germination, survival rate, malondialdehyde content, electrolyte leakage and increased proline accumulation. Furthermore, over-expressing lines also showed higher leaf chlorophyll and reduced accumulation of H₂O₂ and Na⁺ ions compared to the wild-type. Reduced accumulation of reactive oxygen species (ROS) was observed in transgenic lines. The increased proline accumulation and ROS scavenging enzyme activities in transgenic plants over-expressing OsACA6 efficiently modulate the ROS machinery and proline biosynthesis through an integrative mechanism. Transcriptional profiling of these plants revealed altered expression of genes encoding many transcription factors, stress- and disease-related proteins, as well as signalling components. These results suggest that Ca²⁺ ATPases have diverse roles as regulators of many stress signalling pathways, leading to plant growth, development and stress tolerance.
Collapse
Affiliation(s)
- Kazi M K Huda
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | | | | | | |
Collapse
|
72
|
Bai X, Liu J, Tang L, Cai H, Chen M, Ji W, Liu Y, Zhu Y. Overexpression of GsCBRLK from Glycine soja enhances tolerance to salt stress in transgenic alfalfa (Medicago sativa). FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:1048-1056. [PMID: 32481172 DOI: 10.1071/fp12377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/24/2013] [Indexed: 05/20/2023]
Abstract
GsCBRLK encodes a novel plant-specific calcium-dependent calmodulin-binding receptor-like kinase from Glycine soja Siebold & Zucc. In our previous study, GsCBRLK was found to be a positive regulator of plant tolerance to salt and abscisic acid (ABA) stress. In this study we transformed alfalfa (Medicago sativa L.) with GsCBRLK to assess whether forage legumes overexpressing GsCBRLK adapt to saline soils. Results showed that transgenic alfalfa plants overexpressing GsCBRLK exhibited enhanced salt tolerance. Transgenic alfalfa grew well in the presence of 300mM NaCl for 15 days, whereas wild-type (WT) plants exhibited severe chlorosis and growth retardation. Although transgenic alfalfa grew slowly and even had yellow leaves under the 400mM NaCl treatment, most of the WT plants exhibited more severe chlorosis and did not survive. In addition, samples from transgenic and WT plants treated with 300mM NaCl for 0, 3, 6, 9, 12, and 15 days were selected for physiological analysis. Lower membrane leakage and malondialdehyde (MDA) content were observed in transgenic alfalfa compared with WT plants during salt treatment. The reduction of chlorophyll content in transgenic alfalfa was less than that in WT plants. Furthermore, the plants that overexpressed GsCBRLK showed enhanced superoxide dismutase (SOD) activity, less of a Na+ increase, and a greater K+ decrease than WT plants. These results indicated that the overexpression of GsCBRLK confers enhanced tolerance to salt stress in transgenic alfalfa.
Collapse
Affiliation(s)
- Xi Bai
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jing Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lili Tang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hua Cai
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Ming Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Wei Ji
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Ying Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanming Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
73
|
Zhong W, Gao Z, Zhuang W, Shi T, Zhang Z, Ni Z. Genome-wide expression profiles of seasonal bud dormancy at four critical stages in Japanese apricot. PLANT MOLECULAR BIOLOGY 2013; 83:247-64. [PMID: 23756818 DOI: 10.1007/s11103-013-0086-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 06/01/2013] [Indexed: 05/08/2023]
Abstract
Dormancy is one of the most important adaptive mechanisms developed by perennial plants. To reveal the comprehensive mechanism of seasonal bud dormancy at four critical stages in Japanese apricot (Prunus persica), we applied Illumina sequencing to study differentially expressed genes (DEGs) at the transcriptional level. As a result, 19,759, 16,375, 19,749 and 20,800 tag-mapped genes were sequenced from libraries of paradormancy (R1), endodormancy (R2), ecodormancy (R3) and dormancy release (R4) stages based on the P. persica genome. Moreover, 6,199, 5,539, and 5,317 genes were differentially expressed in R1 versus R2, R2 versus R3, and R3 versus R4, respectively. Gene Ontology analysis of dormancy-related genes showed that these were mainly related to the cytoplasm, cytoplasmic part metabolism, intracellular metabolism and membrane-bound organelle metabolism. Pathway-enrichment annotation revealed that highly ranked genes were involved in ribosome pathways and protein processing in the endoplasmic reticulum. The results demonstrated that hormone response genes such as auxin, abscisic acid, ethylene and jasmonic acid, as well as zinc finger family protein genes are possibly involved in seasonal bud dormancy in Japanese apricot. The expression patterns of DEGs were verified using real-time quantitative RT-PCR. These results contribute to further understanding of the mechanism of bud dormancy in Japanese apricot.
Collapse
Affiliation(s)
- Wenjun Zhong
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, People's Republic of China
| | | | | | | | | | | |
Collapse
|
74
|
Yang T, Peng H, Whitaker BD, Jurick WM. Differential expression of calcium/calmodulin-regulated SlSRs in response to abiotic and biotic stresses in tomato fruit. PHYSIOLOGIA PLANTARUM 2013; 148:445-55. [PMID: 23368882 DOI: 10.1111/ppl.12027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/10/2013] [Accepted: 01/15/2013] [Indexed: 05/08/2023]
Abstract
Calcium has been shown to enhance stress tolerance, maintain firmness and reduce decay in fruits. Previously we reported that seven tomato SlSRs encode calcium/calmodulin-regulated proteins, and that their expressions are developmentally regulated during fruit development and ripening, and are also responsive to ethylene. To study their expressions in response to stresses encountered during postharvest handling, tomato fruit at the mature-green stage was subjected to chilling and wounding injuries, infected with Botrytis cinerea and treated with salicylic acid or methyl jasmonate. Gene expression studies revealed that the seven SlSRs differentially respond to different stress signals. SlSR2 was the only gene upregulated by all the treatments. SlSR4 acted as a late pathogen-induced gene; it was upregulated by salicylic acid and methyl jasmonate, but downregulated by cold treatment. SlSR3L was cold- and wound-responsive and was also induced by salicylic acid. SlSR1 and SlSR1L were repressed by cold, wounding and pathogen infection, but were upregulated by salicylic acid and methyl jasmonate. Overall, results of these expression studies indicate that individual SlSRs have distinct roles in responses to the specific stress signals, and SlSRs may act as a coordinator(s) connecting calcium-mediated signaling with other stress signal transduction pathways during fruit ripening and storage.
Collapse
Affiliation(s)
- Tianbao Yang
- Food Quality Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Services, Beltsville, MD 20705, USA.
| | | | | | | |
Collapse
|
75
|
Yang N, Peng C, Cheng D, Huang Q, Xu G, Gao F, Chen L. The over-expression of calmodulin from Antarctic notothenioid fish increases cold tolerance in tobacco. Gene 2013; 521:32-7. [PMID: 23528224 DOI: 10.1016/j.gene.2013.03.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 11/17/2022]
Abstract
Genes involved in the calcium signalling pathway have a relationship with cold tolerance in many plants. The primary reaction to many different environmental stresses is an increase in the cytoplasmic Ca(2+) concentration. Such variations in the Ca(2+) concentration could change the activity of Ca(2+)-dependent protein functions, further regulating the expression of stress-related genes; therefore, the Ca(2+) signalling pathway is involved in the biological stress reaction. The expression of the calcium-modulated protein gene, calmodulin, in Antarctic notothenioid fish (Dissostichus mawsoni) accounts for 0.23% of all transcripts, which is a very high level of expression in this cold-water fish. To elucidate the function of calmodulin (CaM) from Antarctic notothenioid fishes, we introduced the calmodulin (CaM) gene into tobacco plants using a viral vector based on pea early browning virus (PEBV). RT-PCR and Western blot results confirmed that the CaM gene was over-expressed in tobacco. Under low-temperature stress, the CaM transgenic plants exhibited faster growth than wild-type plants. The physiological and biochemical effects of the high-level expression of CaM in tobacco were analysed, and the changes in the electrolyte leakage activity and malondialdehyde content showed that CaM over-expression in tobacco increased the cold tolerance of the plants. These results demonstrate that CaM can possibly be used to enhance the low-temperature tolerance of plants.
Collapse
Affiliation(s)
- Na Yang
- College of Life Science, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou 510631, China
| | | | | | | | | | | | | |
Collapse
|
76
|
Secretory Phospholipases A2 in Durum Wheat (Triticum durum Desf.): Gene Expression, Enzymatic Activity, and Relation to Drought Stress Adaptation. Int J Mol Sci 2013; 14:5146-69. [PMID: 23455473 PMCID: PMC3634499 DOI: 10.3390/ijms14035146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/13/2013] [Accepted: 02/18/2013] [Indexed: 01/12/2023] Open
Abstract
Phospholipases A2 (PLA2s) are known to mediate signaling cascades during plant growth and development, as well as biotic and abiotic stress responses. In this context, the present study provides extensive characterization of specific PLA2s in durum wheat, and assesses their involvement in durum wheat response to drought stress. In durum wheat leaves, four full-length expressed sequences encoding putative PLA2s were isolated and characterized as belonging to the class of secretory PLA2s (sPLA2s): TdsPLA2I, TdsPLA2II, TdsPLA2III and TdsPLA2IV. PLA2 activity was also detected, the characteristics of which resemble those of previously characterized plant sPLA2s: strong preference for phospholipids; requirement for millimolar Ca2+ concentrations; optimal activity at basic pH; heat stability; and inhibition by the reducing agent dithiothreitol. With drought stress imposed at both the vegetative and reproductive stages, accumulation of TdsPLA2I and TdsPLA2III transcripts, and to a lesser extent of TdsPLA2IV transcript, paralleled increased PLA2 activity; both transcript levels and enzymatic activity decreased as a consequence of stress recovery. Consistently, free fatty acid analysis of drought-stressed leaves revealed increased linoleate, linolenate and palmitate contents, which were reversed by plant re-watering. Overall, these findings strongly suggest that there are inducible sPLA2 isoforms in durum wheat that have roles in orchestrating the plant response to drought stress.
Collapse
|
77
|
Ma P, Liu J, Yang X, Ma R. Genome-wide identification of the maize calcium-dependent protein kinase gene family. Appl Biochem Biotechnol 2013; 169:2111-25. [PMID: 23397323 DOI: 10.1007/s12010-013-0125-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 01/24/2013] [Indexed: 12/26/2022]
Abstract
In higher plants, calcium is a ubiquitous second messenger in eukaryotic signal transduction cascades. The plant-specific calcium-dependent protein kinases (CDPKs) play important roles regulating downstream components of calcium signaling. We conducted a genome-wide analysis of maize (Zea mays) CDPKs and identified 35 CDPK genes. Maize CDPKs were found to be similar to their counterparts in rice in gene structure, GC content and subgroup classification. Divergence time estimation suggested that maize-rice orthologs were largely consistent with the time when these two species diverged from the last common ancestor. Semiquantitative RT-PCR revealed that the 29 of total 35 maize CDPK genes were expressed in all tissues, including root, stem, leaf, tassel, ear, and kernel. Our genomic and bioinformatics analyses will provide an important foundation for further functional dissection of the maize CDPK gene family.
Collapse
Affiliation(s)
- Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling 712100, People's Republic of China
| | | | | | | |
Collapse
|
78
|
Zuo R, Hu R, Chai G, Xu M, Qi G, Kong Y, Zhou G. Genome-wide identification, classification, and expression analysis of CDPK and its closely related gene families in poplar (Populus trichocarpa). Mol Biol Rep 2012; 40:2645-62. [PMID: 23242656 DOI: 10.1007/s11033-012-2351-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/09/2012] [Indexed: 11/26/2022]
Abstract
Calcium-dependent protein kinases (CDPKs) are Ca(2+)-binding proteins known to play crucial roles in Ca(2+) signal transduction pathways which have been identified throughout plant kingdom and in certain types of protists. Genome-wide analysis of CDPKs have been carried out in Arabidopsis, rice and wheat, and quite a few of CDPKs were proved to play crucial roles in plant stress responsive signature pathways. In this study, a comprehensive analysis of Populus CDPK and its closely related gene families was performed, including phylogeny, chromosome locations, gene structures, and expression profiles. Thirty Populus CDPK genes and twenty closely related kinase genes were identified, which were phylogenetically clustered into eight distinct subfamilies and predominately distributed across fifteen linkage groups (LG). Genomic organization analyses indicated that purifying selection has played a pivotal role in the retention and maintenance of Populus CDPK gene family. Furthermore, microarray analysis showed that a number of Populus CDPK and its closely related genes differentially expressed across disparate tissues and under various stresses. The expression profiles of paralogous pairs were also investigated to reveal their evolution fates. In addition, quantitative real-time RT-PCR was performed on nine selected CDPK genes to confirm their responses to drought stress treatment. These observations may lay the foundation for future functional analysis of Populus CDPK and its closely related gene families to unravel their biological roles.
Collapse
Affiliation(s)
- Ran Zuo
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and BioProcess Technology, Chinese Academy of Sciences, Qingdao, Shandong, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
79
|
Wan D, Li R, Zou B, Zhang X, Cong J, Wang R, Xia Y, Li G. Calmodulin-binding protein CBP60g is a positive regulator of both disease resistance and drought tolerance in Arabidopsis. PLANT CELL REPORTS 2012; 31:1269-81. [PMID: 22466450 DOI: 10.1007/s00299-012-1247-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 03/10/2012] [Accepted: 03/15/2012] [Indexed: 05/19/2023]
Abstract
UNLABELLED Calmodulin-binding proteins (CBPs) have been known to be involved in both biotic and abiotic stress responses. Recently, two closely related CBPs, Arabidopsis SAR Deficient 1 and CBP60g, were found to belong to a new family of transcription factors that regulate salicylic acid (SA) biosynthesis triggered by microbe-associated molecular patterns. In this study, we found that overexpression of CBP60g in Arabidopsis caused elevated SA accumulation, increased expression of the defense genes, and enhanced resistance to Pseudomonas syringae. In addition to the enhanced defense response, the CBP60g overexpression lines showed hypersensitivity to abscisic acid (ABA) and enhanced tolerance to drought stress. We also found that treatment with ABA and drought stress leads to a higher expression level of the ICS1 gene, which encodes isochorismate synthase, in the CBP60g overexpression lines than in the wild-type control plants. Our results suggest that CBP60g serves as a molecular link that positively regulates ABA- and SA-mediated pathways in plants. KEY MESSAGE Overexpression of CBP60g in Arabidopsis enhanced the defense response, hypersensitivity to abscisic acid and tolerance to drought stress.
Collapse
Affiliation(s)
- Dongli Wan
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Kurusu T, Yamanaka T, Nakano M, Takiguchi A, Ogasawara Y, Hayashi T, Iida K, Hanamata S, Shinozaki K, Iida H, Kuchitsu K. Involvement of the putative Ca²⁺-permeable mechanosensitive channels, NtMCA1 and NtMCA2, in Ca²⁺ uptake, Ca²⁺-dependent cell proliferation and mechanical stress-induced gene expression in tobacco (Nicotiana tabacum) BY-2 cells. JOURNAL OF PLANT RESEARCH 2012; 125:555-68. [PMID: 22080252 DOI: 10.1007/s10265-011-0462-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 10/24/2011] [Indexed: 05/18/2023]
Abstract
To gain insight into the cellular functions of the mid1-complementing activity (MCA) family proteins, encoding putative Ca²⁺-permeable mechanosensitive channels, we isolated two MCA homologs of tobacco (Nicotiana tabacum) BY-2 cells, named NtMCA1 and NtMCA2. NtMCA1 and NtMCA2 partially complemented the lethality and Ca²⁺ uptake defects of yeast mutants lacking mechanosensitive Ca²⁺ channel components. Furthermore, in yeast cells overexpressing NtMCA1 and NtMCA2, the hypo-osmotic shock-induced Ca²⁺ influx was enhanced. Overexpression of NtMCA1 or NtMCA2 in BY-2 cells enhanced Ca²⁺ uptake, and significantly alleviated growth inhibition under Ca²⁺ limitation. NtMCA1-overexpressing BY-2 cells showed higher sensitivity to hypo-osmotic shock than control cells, and induced the expression of the touch-inducible gene, NtERF4. We found that both NtMCA1-GFP and NtMCA2-GFP were localized at the plasma membrane and its interface with the cell wall, Hechtian strands, and at the cell plate and perinuclear vesicles of dividing cells. NtMCA2 transcript levels fluctuated during the cell cycle and were highest at the G1 phase. These results suggest that NtMCA1 and NtMCA2 play roles in Ca²⁺-dependent cell proliferation and mechanical stress-induced gene expression in BY-2 cells, by regulating the Ca²⁺ influx through the plasma membrane.
Collapse
Affiliation(s)
- Takamitsu Kurusu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Qiu Y, Xi J, Du L, Suttle JC, Poovaiah BW. Coupling calcium/calmodulin-mediated signaling and herbivore-induced plant response through calmodulin-binding transcription factor AtSR1/CAMTA3. PLANT MOLECULAR BIOLOGY 2012; 79:89-99. [PMID: 22371088 DOI: 10.1007/s11103-012-9896-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 02/13/2012] [Indexed: 05/08/2023]
Abstract
Calcium/calmodulin (Ca(2+)/CaM) has long been considered a crucial component in wound signaling pathway. However, very few Ca(2+)/CaM-binding proteins have been identified which regulate plant responses to herbivore attack/wounding stress. We have reported earlier that a family of Ca(2+)/CaM-binding transcription factors designated as AtSRs (also known as AtCAMTAs) can respond differentially to wounding stress. Further studies revealed that AtSR1/CAMTA3 is a negative regulator of plant defense, and Ca(2+)/CaM-binding to AtSR1 is indispensable for the suppression of salicylic acid (SA) accumulation and disease resistance. Here we report that Ca(2+)/CaM-binding is also critical for AtSR1-mediated herbivore-induced wound response. Interestingly, atsr1 mutant plants are more susceptible to herbivore attack than wild-type plants. Complementation of atsr1 mutant plants by overexpressing wild-type AtSR1 protein can effectively restore plant resistance to herbivore attack. However, when mutants of AtSR1 with impaired CaM-binding ability were overexpressed in atsr1 mutant plants, plant resistance to herbivore attack was not restored, suggesting a key role for Ca(2+)/CaM-binding in wound signaling. Furthermore, it was observed that elevated SA levels in atsr1 mutant plants have a negative impact on both basal and induced biosynthesis of jasmonates (JA). These results revealed that Ca(2+)/CaM-mediated signaling regulates plant response to herbivore attack/wounding by modulating the SA-JA crosstalk through AtSR1.
Collapse
Affiliation(s)
- Yongjian Qiu
- Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | | | | | | | | |
Collapse
|
82
|
Li ZG, Gong M, Xie H, Yang L, Li J. Hydrogen sulfide donor sodium hydrosulfide-induced heat tolerance in tobacco (Nicotiana tabacum L) suspension cultured cells and involvement of Ca(2+) and calmodulin. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:185-9. [PMID: 22325880 DOI: 10.1016/j.plantsci.2011.10.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 09/16/2011] [Accepted: 10/11/2011] [Indexed: 05/03/2023]
Abstract
Hydrogen sulfide (H(2)S) is considered as a new emerging cell signal in higher plants. Hydrogen sulfide donor, sodium hydrosulfide, pretreatment significantly increased survival percentage of tobacco suspension cultured cells under heat stress and regrowth ability after heat stress, and alleviated decrease in vitality of cells, increase in electrolyte leakage and accumulation of malondialdehyde (MDA). In addition, sodium hydrosulfide-induced heat tolerance was markedly strengthened by application of exogenous Ca(2+) and its ionophore A23187, respectively, while this heat tolerance was weakened by addition of Ca(2+) chelator ethylene glycol-bis(b-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), plasma membrane channel blocker La(3+), as well as calmodulin (CaM) antagonists chlorpromazine (CPZ) and trifluoperazine (TFP), respectively, but intracellular channel blocker ruthenium red (RR) did not. These results suggested that sodium hydrosulfide pretreatment could improve heat tolerance in tobacco suspension cultured cells and the acquisition of this heat tolerance requires the entry of extracellular Ca(2+) into cells across the plasma membrane and the mediation of intracellular CaM.
Collapse
Affiliation(s)
- Zhong-Guang Li
- School of Life Sciences, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming 650092, PR China. zhongguang
| | | | | | | | | |
Collapse
|
83
|
Nie H, Zhao C, Wu G, Wu Y, Chen Y, Tang D. SR1, a calmodulin-binding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN3. PLANT PHYSIOLOGY 2012; 158:1847-59. [PMID: 22345509 PMCID: PMC3320190 DOI: 10.1104/pp.111.192310] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/15/2012] [Indexed: 05/18/2023]
Abstract
Plant defense responses are tightly controlled by many positive and negative regulators to cope with attacks from various pathogens. Arabidopsis (Arabidopsis thaliana) ENHANCED DISEASE RESISTANCE2 (EDR2) is a negative regulator of powdery mildew resistance, and edr2 mutants display enhanced resistance to powdery mildew (Golovinomyces cichoracearum). To identify components acting in the EDR2 pathway, we screened for edr2 suppressors and identified a gain-of-function mutation in SIGNAL RESPONSIVE1 (SR1), which encodes a calmodulin-binding transcription activator. The sr1-4D gain-of-function mutation suppresses all edr2-associated phenotypes, including powdery mildew resistance, mildew-induced cell death, and ethylene-induced senescence. The sr1-4D single mutant is more susceptible to a Pseudomonas syringae pv tomato DC3000 virulent strain and to avirulent strains carrying avrRpt2 or avrRPS4 than the wild type. We show that SR1 directly binds to the promoter region of NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1), a key component in RESISTANCE TO PSEUDOMONAS SYRINGAE2-mediated plant immunity. Also, the ndr1 mutation suppresses the sr1-1 null allele, which shows enhanced resistance to both P. syringae pv tomato DC3000 avrRpt2 and G. cichoracearum. In addition, we show that SR1 regulates ethylene-induced senescence by directly binding to the ETHYLENE INSENSITIVE3 (EIN3) promoter region in vivo. Enhanced ethylene-induced senescence in sr1-1 is suppressed by ein3. Our data indicate that SR1 plays an important role in plant immunity and ethylene signaling by directly regulating NDR1 and EIN3.
Collapse
|
84
|
Yang T, Peng H, Whitaker BD, Conway WS. Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening. BMC PLANT BIOLOGY 2012; 12:19. [PMID: 22330838 PMCID: PMC3292969 DOI: 10.1186/1471-2229-12-19] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 02/13/2012] [Indexed: 05/23/2023]
Abstract
BACKGROUND Fruit ripening is a complicated development process affected by a variety of external and internal cues. It is well established that calcium treatment delays fruit ripening and senescence. However, the underlying molecular mechanisms remain unclear. RESULTS Previous studies have shown that calcium/calmodulin-regulated SR/CAMTAs are important for modulation of disease resistance, cold sensitivity and wounding response in vegetative tissues. To study the possible roles of this gene family in fruit development and ripening, we cloned seven SR/CAMTAs, designated as SlSRs, from tomato, a model fruit-bearing crop. All seven genes encode polypeptides with a conserved DNA-binding domain and a calmodulin-binding site. Calmodulin specifically binds to the putative targeting site in a calcium-dependent manner. All SlSRs were highly yet differentially expressed during fruit development and ripening. Most notably, the expression of SlSR2 was scarcely detected at the mature green and breaker stages, two critical stages of fruit development and ripening; and SlSR3L and SlSR4 were expressed exclusively in fruit tissues. During the developmental span from 10 to 50 days post anthesis, the expression profiles of all seven SlSRs were dramatically altered in ripening mutant rin compared with wildtype fruit. By contrast, only minor alterations were noted for ripening mutant nor and Nr fruit. In addition, ethylene treatment of mature green wildtype fruit transiently stimulated expression of all SlSRs within one to two hours. CONCLUSIONS This study indicates that SlSR expression is influenced by both the Rin-mediated developmental network and ethylene signaling. The results suggest that calcium signaling is involved in the regulation of fruit development and ripening through calcium/calmodulin/SlSR interactions.
Collapse
Affiliation(s)
- Tianbao Yang
- Food Quality Laboratory, Plant Science Institute, USDA-ARS, Beltsville 20705, MD, USA
| | - Hui Peng
- Food Quality Laboratory, Plant Science Institute, USDA-ARS, Beltsville 20705, MD, USA
| | - Bruce D Whitaker
- Food Quality Laboratory, Plant Science Institute, USDA-ARS, Beltsville 20705, MD, USA
| | - William S Conway
- Food Quality Laboratory, Plant Science Institute, USDA-ARS, Beltsville 20705, MD, USA
| |
Collapse
|
85
|
Kurusu T, Nishikawa D, Yamazaki Y, Gotoh M, Nakano M, Hamada H, Yamanaka T, Iida K, Nakagawa Y, Saji H, Shinozaki K, Iida H, Kuchitsu K. Plasma membrane protein OsMCA1 is involved in regulation of hypo-osmotic shock-induced Ca2+ influx and modulates generation of reactive oxygen species in cultured rice cells. BMC PLANT BIOLOGY 2012; 12:11. [PMID: 22264357 PMCID: PMC3313898 DOI: 10.1186/1471-2229-12-11] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 01/23/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Mechanosensing and its downstream responses are speculated to involve sensory complexes containing Ca2+-permeable mechanosensitive channels. On recognizing osmotic signals, plant cells initiate activation of a widespread signal transduction network that induces second messengers and triggers inducible defense responses. Characteristic early signaling events include Ca2+ influx, protein phosphorylation and generation of reactive oxygen species (ROS). Pharmacological analyses show Ca2+ influx mediated by mechanosensitive Ca2+ channels to influence induction of osmotic signals, including ROS generation. However, molecular bases and regulatory mechanisms for early osmotic signaling events remain poorly elucidated. RESULTS We here identified and investigated OsMCA1, the sole rice homolog of putative Ca2+-permeable mechanosensitive channels in Arabidopsis (MCAs). OsMCA1 was specifically localized at the plasma membrane. A promoter-reporter assay suggested that OsMCA1 mRNA is widely expressed in seed embryos, proximal and apical regions of shoots, and mesophyll cells of leaves and roots in rice. Ca2+ uptake was enhanced in OsMCA1-overexpressing suspension-cultured cells, suggesting that OsMCA1 is involved in Ca2+ influx across the plasma membrane. Hypo-osmotic shock-induced ROS generation mediated by NADPH oxidases was also enhanced in OsMCA1-overexpressing cells. We also generated and characterized OsMCA1-RNAi transgenic plants and cultured cells; OsMCA1-suppressed plants showed retarded growth and shortened rachises, while OsMCA1-suppressed cells carrying Ca2+-sensitive photoprotein aequorin showed partially impaired changes in cytosolic free Ca2+ concentration ([Ca2+]cyt) induced by hypo-osmotic shock and trinitrophenol, an activator of mechanosensitive channels. CONCLUSIONS We have identified a sole MCA ortholog in the rice genome and developed both overexpression and suppression lines. Analyses of cultured cells with altered levels of this putative Ca2+-permeable mechanosensitive channel indicate that OsMCA1 is involved in regulation of plasma membrane Ca2+ influx and ROS generation induced by hypo-osmotic stress in cultured rice cells. These findings shed light on our understanding of mechanical sensing pathways.
Collapse
Affiliation(s)
- Takamitsu Kurusu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Daisuke Nishikawa
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yukari Yamazaki
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Mariko Gotoh
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masataka Nakano
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Haruyasu Hamada
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takuya Yamanaka
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kazuko Iida
- Biomembrane Laboratory, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Yuko Nakagawa
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
| | - Hikaru Saji
- Environmental Biology Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506, Japan
| | - Kazuo Shinozaki
- RIKEN Plant Science Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Hidetoshi Iida
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
86
|
Shen Q, Zhao J, Du C, Xiang Y, Cao J, Qin X. Genome-scale identification of MLO domain-containing genes in soybean (Glycine max L. Merr.). Genes Genet Syst 2012; 87:89-98. [PMID: 22820382 DOI: 10.1266/ggs.87.89] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In plants, powdery-mildew-resistance locus o (Mlo) genes encode proteins that are calmodulin-binding proteins involved in a variety of cellular processes. However, systematic characterization of this gene family in soybean (Glycine max L. Merr.) has not been yet reported. In this study, we identified MLO domain-contained members in soybean and examined their expression under phytohormone treatment and abiotic stress conditions. A total of 20 soybean Mlo genes were identified (GmMlo1-20), which are distributed on 13 chromosomes, and display diverse exon-intron structures. Phylogenetic analysis indicated that the Mlo family can be classified into four subfamilies. Sequence comparison was used to reveal the conserved calmodulin-binding domain (CaMBD) in GmMLO proteins. The expression of GmMlo genes was influenced by various phytohormone treatments and abiotic stresses, suggesting that these Mlo genes have various roles in the response of soybean to environmental stimuli. Promoter sequence analysis revealed an overabundance of stress and/or phytohormone-related cis-elements in GmMlo genes. These data provide important clues for elucidating the functions of genes of the Mlo gene family.
Collapse
Affiliation(s)
- Qi Shen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, PR China
| | | | | | | | | | | |
Collapse
|
87
|
Volotovski ID. Role of calcium ions in photosignaling processes in a plant cell. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911050253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
88
|
Tozawa Y, Nomura Y. Signalling by the global regulatory molecule ppGpp in bacteria and chloroplasts of land plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:699-709. [PMID: 21815973 DOI: 10.1111/j.1438-8677.2011.00484.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The hyperphosphorylated guanine ribonucleotide ppGpp mediates the stringent response in bacteria. Biochemical and genetic studies of this response in Escherichia coli have shown that the biosynthesis of ppGpp is catalysed by two homologous enzymes, RelA and SpoT. RelA is activated in response to amino acid starvation, and SpoT responds to abiotic physical stress beside nutritional stress. All free-living bacteria, including Gram-positive firmicutes, contain RelA-SpoT homologues (RSH). Further, novel ppGpp biosynthetic enzymes, designated small alarmone synthetases (SASs), were recently identified in a subset of bacteria, including the Gram-positive organism Bacillus subtilis, and were shown to consist only of a ppGpp synthetase domain. Studies suggest that these SAS proteins contribute to ppGpp signalling in response to stressful conditions in a manner distinct from that of RelA-SpoT enzymes. SAS proteins currently appear to always occur in addition to RSH enzymes in various combinations but never alone. RSHs have also been identified in chloroplasts, organelles of photosynthetic eukaryotes that originated from endosymbiotic photosynthetic bacteria. These chloroplast RSHs are exclusively encoded in nuclear DNA and targeted into chloroplasts. The findings suggest that ppGpp may regulate chloroplast functions similar to those regulated in bacteria, including transcription and translation. In addition, a novel ppGpp synthetase that is regulated by Ca²⁺ as a result of the presence of two EF-hand motifs at its COOH terminus was recently identified in chloroplasts of land plants. This finding indicates the existence of a direct connection between eukaryotic Ca²⁺ signalling and prokaryotic ppGpp signalling in chloroplasts. The new observations with regard to ppGpp signalling in land plants suggest that such signalling contributes to the regulation of a wider range of cellular functions than previously anticipated.
Collapse
Affiliation(s)
- Y Tozawa
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Japan.
| | | |
Collapse
|
89
|
Differential gene expression in sugarcane in response to challenge by fungal pathogen Ustilago scitaminea revealed by cDNA-AFLP. J Biomed Biotechnol 2011; 2011:160934. [PMID: 21792273 PMCID: PMC3142712 DOI: 10.1155/2011/160934] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/26/2011] [Accepted: 06/01/2011] [Indexed: 12/04/2022] Open
Abstract
Differential gene expression in sugarcane during sugarcane-Ustilago scitaminea interaction was conducted in a smut-resistant genotype. Using cDNA-AFLP along with silver staining, a total of 136 transcript-derived fragments (TDFs) were found to be differentially expressed in response to challenge by U. scitaminea. Forty TDFs, 34 newly induced plus six with obvious upregulated expression after infection, were sequenced and validated by RT-PCR analysis. These results demonstrated that the expression of 37 out of these TDFs in RT-PCR analysis was consistent with that in cDNA-AFLP analysis. Based on BlastX in NCBI, 28 TDFs were assumed to function in sugarcane under U. scitaminea stress. Analysis of expression profile of three TDFs revealed that they responded differently after infection with U. scitaminea, and the transcription was significantly enhanced. The response of two TDFs, SUC06 and SUC09, occurred before that of SUC10. This study enriches our knowledge of the molecular basis for sugarcane response to U. scitaminea infection.
Collapse
|
90
|
Paul A, Kumar S. Responses to winter dormancy, temperature, and plant hormones share gene networks. Funct Integr Genomics 2011; 11:659-64. [PMID: 21755357 DOI: 10.1007/s10142-011-0233-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/06/2011] [Accepted: 06/26/2011] [Indexed: 11/25/2022]
Abstract
Gene networks modulated in winter dormancy (WD) in relation to temperature and hormone responses were analyzed in tea [Camellia sinensis (L.) O. Kuntze]. Analysis of subtracted cDNA libraries prepared using the RNA isolated from the apical bud and the associated two leaves (two and a bud, TAB) of actively growing (AG) and winter dormant plant showed the downregulation of genes involved in cell cycle/cell division and upregulation of stress-inducible genes including those encoding chaperons during WD. Low temperature (4°C) modulated gene expression in AG cut-shoots in similar fashion as observed in TAB during WD. In tissue harvested during WD, growth temperature (25°C) modulated gene expression in the similar way as observed during the period of active growth (PAG). Abscisic acid (ABA) and gibberellic acid (GA(3)) modulated expression of selected genes, depending upon if the tissue was harvested during PAG or WD. Tissue preparedness was critical for ABA- and GA(3)-mediated response, particularly for stress-responsive genes/chaperons. Data identified the common gene networks for winter dormancy, temperature, and plant hormone responses.
Collapse
Affiliation(s)
- Asosii Paul
- Biotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | | |
Collapse
|
91
|
Reddy ASN, Ben-Hur A, Day IS. Experimental and computational approaches for the study of calmodulin interactions. PHYTOCHEMISTRY 2011; 72:1007-19. [PMID: 21338992 DOI: 10.1016/j.phytochem.2010.12.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 11/10/2010] [Accepted: 12/28/2010] [Indexed: 05/22/2023]
Abstract
Ca(2+), a universal messenger in eukaryotes, plays a major role in signaling pathways that control many growth and developmental processes in plants as well as their responses to various biotic and abiotic stresses. Cellular changes in Ca(2+) in response to diverse signals are recognized by protein sensors that either have their activity modulated or that interact with other proteins and modulate their activity. Calmodulins (CaMs) and CaM-like proteins (CMLs) are Ca(2+) sensors that have no enzymatic activity of their own but upon binding Ca(2+) interact and modulate the activity of other proteins involved in a large number of plant processes. Protein-protein interactions play a key role in Ca(2+)/CaM-mediated in signaling pathways. In this review, using CaM as an example, we discuss various experimental approaches and computational tools to identify protein-protein interactions. During the last two decades hundreds of CaM-binding proteins in plants have been identified using a variety of approaches ranging from simple screening of expression libraries with labeled CaM to high-throughput screens using protein chips. However, the high-throughput methods have not been applied to the entire proteome of any plant system. Nevertheless, the data provided by these screens allows the development of computational tools to predict CaM-interacting proteins. Using all known binding sites of CaM, we developed a computational method that predicted over 700 high confidence CaM interactors in the Arabidopsis proteome. Most (>600) of these are not known to bind calmodulin, suggesting that there are likely many more CaM targets than previously known. Functional analyses of some of the experimentally identified Ca(2+) sensor target proteins have uncovered their precise role in Ca(2+)-mediated processes. Further studies on identifying novel targets of CaM and CMLs and generating their interaction network - "calcium sensor interactome" - will help us in understanding how Ca(2+) regulates a myriad of cellular and physiological processes.
Collapse
Affiliation(s)
- A S N Reddy
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | |
Collapse
|
92
|
Reddy ASN, Ali GS, Celesnik H, Day IS. Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. THE PLANT CELL 2011; 23:2010-32. [PMID: 21642548 PMCID: PMC3159525 DOI: 10.1105/tpc.111.084988] [Citation(s) in RCA: 437] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/02/2011] [Accepted: 05/16/2011] [Indexed: 05/18/2023]
Abstract
Abiotic and biotic stresses are major limiting factors of crop yields and cause billions of dollars of losses annually around the world. It is hoped that understanding at the molecular level how plants respond to adverse conditions and adapt to a changing environment will help in developing plants that can better cope with stresses. Acquisition of stress tolerance requires orchestration of a multitude of biochemical and physiological changes, and most of these depend on changes in gene expression. Research during the last two decades has established that different stresses cause signal-specific changes in cellular Ca(2+) level, which functions as a messenger in modulating diverse physiological processes that are important for stress adaptation. In recent years, many Ca(2+) and Ca(2+)/calmodulin (CaM) binding transcription factors (TFs) have been identified in plants. Functional analyses of some of these TFs indicate that they play key roles in stress signaling pathways. Here, we review recent progress in this area with emphasis on the roles of Ca(2+)- and Ca(2+)/CaM-regulated transcription in stress responses. We will discuss emerging paradigms in the field, highlight the areas that need further investigation, and present some promising novel high-throughput tools to address Ca(2+)-regulated transcriptional networks.
Collapse
Affiliation(s)
- Anireddy S N Reddy
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | |
Collapse
|
93
|
Schlink K. Gene expression profiling in wounded and systemic leaves of Fagus sylvatica reveals up-regulation of ethylene and jasmonic acid signalling. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:445-452. [PMID: 21489095 DOI: 10.1111/j.1438-8677.2010.00397.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Wounding is a crucial threat to plants because of the physical damage caused and the possible entry of pathogens. Little is known about the wound reaction in forest trees. Therefore, leaves of young beech trees were wounded and the transcriptional response of wounded leaves and leaves directly above and below was analysed. A total of 123 genes exhibited significant regulation. The magnitude of regulation was slightly weaker in the downward leaves but the regulation pattern resembles that of the local and upward reactions. Thus, the signal was transduced in both vertical directions. Genes exhibiting major regulation lacked functional assignment or belonged to signalling, transcription and defence categories. Signalling included activation of transcripts in the calcium and ethylene pathways. There was also evidence for activation of jasmonic acid signalling, but no activation of jasmonic acid-responsive PR (pathogenesis-related) genes was observed. Moreover, repression of salicylic acid responsive defence was measured. Metabolic changes included induction of a core gene of the phenylpropanoid pathway, while energy metabolism exhibited down-regulation. These results support the conclusion that young beech trees might give up leaves and/or reduce leaf energy content after an attack so as to deprive a putative herbivore of a nutrient supply, instead of investing much energy in leaf defence.
Collapse
Affiliation(s)
- K Schlink
- Technische Universität München, Center of Life and Food Sciences Weihenstephan, Forest Genetics, Freising, Germany.
| |
Collapse
|
94
|
de Silva K, Laska B, Brown C, Sederoff HW, Khodakovskaya M. Arabidopsis thaliana calcium-dependent lipid-binding protein (AtCLB): a novel repressor of abiotic stress response. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2679-89. [PMID: 21252258 DOI: 10.1093/jxb/erq468] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ca(2+) is an important second messenger in plant signal transduction pathways regulating stress-induced gene expression. Functional analysis of plant proteins containing Ca(2+)-binding domains (C2 domains) will help us understand the mechanisms behind the role of transcriptional regulators in the Ca(2+) signalling pathway and open new perspectives for crop genetic improvement. We identified a novel transcriptional regulator, a Ca(2+)-dependent lipid-binding protein (AtCLB) containing a C2 domain. AtCLB binds specifically to the promoter of the Arabidopsis thalianol synthase gene (AtTHAS1), whose expression is induced by gravity and light. Here we describe the role of the Atclb gene encoding the AtCLB protein. Expression of the Atclb gene was documented in all analysed tissues of Arabidopsis (leaf, root, stem, flower, and silique) by real-time PCR analysis. Immunofluorescence analysis revealed that AtCLB protein is localized in the nucleus of cells in Arabidopsis root tips. We demonstrated that the AtCLB protein was capable of binding to the membrane lipid ceramide. The role of the Atclb gene in negatively regulating responses to abiotic stress in Arabidopsis thaliana was identified. The loss of the Atclb gene function confers an enhanced drought and salt tolerance and a modified gravitropic response in T-DNA insertion knockout mutant lines. Expression of AtTHAS1 in Atclb knockout mutant lines was increased compared with wild type and a 35S-Atclb overexpression line suggesting AtCLB as a transcriptional repressor of AtTHAS1.
Collapse
Affiliation(s)
- Kanishka de Silva
- Department of Applied Science, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | | | | | | | | |
Collapse
|
95
|
Virdi AS, Pareek A, Singh P. Evidence for the possible involvement of calmodulin in regulation of steady state levels of Hsp90 family members (Hsp87 and Hsp85) in response to heat shock in sorghum. PLANT SIGNALING & BEHAVIOR 2011; 6:393-9. [PMID: 21336025 PMCID: PMC3142421 DOI: 10.4161/psb.6.3.13867] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/17/2010] [Accepted: 10/05/2010] [Indexed: 05/09/2023]
Abstract
Pharmacological studies, using Ca(2+) channel blockers (LaCl 3 and verapamil) and calmodulin (CaM) antagonists (CPZ and W7), were carried out to understand the role of Ca(2+)/CaM in the regulation of heat shock-induced expression of Hsp90 (Hsp87 and Hsp85) and Hsp70 (Hsp75 and Hsp73) members in sorghum. It was observed that the expression of both Hsp87 and Hsp85 proteins was decreased in presence of Ca ( 2+) channel blockers and CaM antagonists, under both control and heat stress conditions, as contrary to the steady state levels of Hsp75 and Hsp73, which were not affected significantly under similar conditions. Further, the exposure of sorghum seedlings to geldanamycin, a specific inhibitor of Hsp90, resulted in induction of Hsp87 and Hsp85 in the absence of heat shock also. This study provides the first evidence suggesting that in plants, the in vivo expression of Hsp90 (Hsp87 and Hsp85) is likely to be modulated by Ca(2+)/CaM under normal and thermal stress conditions. The likely implications of these findings are discussed.
Collapse
Affiliation(s)
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory; School of Life Sciences; Jawaharlal Nehru University; New Delhi, India
| | - Prabhjeet Singh
- Department of Biotechnology; Guru Nanak Dev University; Amritsar, Punjab India
| |
Collapse
|
96
|
Application of fluorescent indicators to analyse intracellular calcium and morphology in filamentous fungi. Fungal Biol 2011; 115:326-34. [PMID: 21530914 DOI: 10.1016/j.funbio.2010.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 11/03/2010] [Accepted: 12/21/2010] [Indexed: 12/22/2022]
Abstract
A novel staining and quantification method to investigate changes in intracellular calcium levels [Ca(2+)](i) and morphology in filamentous fungus is presented. Using a simple protocol, two fluorescent dyes, Fluo-4-AM and Cell trace calcein red-orange-AM were loaded into the filamentous fungus Penicillium chrysogenum. The present study investigates the applicability of using Ca(2+)-sensitive dye to quantify and image [Ca(2+)](i) in P. chrysogenum cultures chosen for its potential as an experimental system to study Ca(2+) signalling in elicited cultures. The dye loading was optimised and investigated at different pH loading conditions. It was observed that the fluorophore was taken up throughout the hyphae, retaining cell membrane integrity and no dye compartmentalisation within organelles was observed. From the fluorescent plate-reader studies a significant rise (p<0.001) in the relative fluorescence levels corresponding to [Ca(2+)](i) levels in the hyphae was observed when challenged with an elicitor (mannan oligosaccharide, 150mgL(-1)) which was dependent upon extracellular calcium. Concurrently a novel application of dye-loaded hyphae for morphological analysis was also examined using the imaging software Filament Tracer (Bitplane). Essential quantitative mycelial information including the length and diameter of the segments and number of branch points was obtained using this application based on the three-dimensional data.
Collapse
|
97
|
Palmgren MG, Bækgaard L, López-Marqués RL, Fuglsang AT. Plasma Membrane ATPases. THE PLANT PLASMA MEMBRANE 2011. [DOI: 10.1007/978-3-642-13431-9_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
98
|
Ishida H, Vogel HJ. The solution structure of a plant calmodulin and the CaM-binding domain of the vacuolar calcium-ATPase BCA1 reveals a new binding and activation mechanism. J Biol Chem 2010; 285:38502-10. [PMID: 20880850 PMCID: PMC2992282 DOI: 10.1074/jbc.m110.131201] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 08/09/2010] [Indexed: 11/06/2022] Open
Abstract
The type IIb class of plant Ca(2+)-ATPases contains a unique N-terminal extension that encompasses a calmodulin (CaM) binding domain and an auto-inhibitory domain. Binding of Ca(2+)-CaM to this region can release auto-inhibition and activates the calcium pump. Using multidimensional NMR spectroscopy, we have determined the solution structure of the complex of a plant CaM isoform with the CaM-binding domain of the well characterized Ca(2+)-ATPase BCA1 from cauliflower. The complex has a rather elongated structure in which the two lobes of CaM do not contact each other. The anchor residues Trp-23 and Ile-40 form a 1-8-18 interaction motif. Binding of Ca(2+)-CaM gives rise to the induction of two helical parts in this unique target peptide. The two helical portions are connected by a highly positively charged bend region, which represents a relatively fixed angle and positions the two lobes of CaM in an orientation that has not been seen before in any complex structure of calmodulin. The behavior of the complex was further characterized by heteronuclear NMR dynamics measurements of the isotope-labeled protein and peptide. These data suggest a unique calcium-driven activation mechanism for BCA1 and other plant Ca(2+)-ATPases that may also explain the action of calcium-CaM on some other target enzymes. Moreover, CaM activation of plant Ca(2+)-ATPases seems to occur in an organelle-specific manner.
Collapse
Affiliation(s)
- Hiroaki Ishida
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Hans J. Vogel
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
99
|
Pintus F, Spanò D, Bellelli A, Angelucci F, Scorciapino AM, Anedda R, Medda R, Floris G. Euphorbia Peroxidase Catalyzes Thiocyanate Oxidation in Two Different Ways, the Distal Calcium Ion Playing an Essential Role. Biochemistry 2010; 49:8739-47. [DOI: 10.1021/bi1007854] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Francesca Pintus
- Department of Applied Sciences in Biosystems, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari, Italy
| | - Delia Spanò
- Department of Applied Sciences in Biosystems, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari, Italy
| | - Andrea Bellelli
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, and CNR Institute of Molecular Biology and Pathology, P.le Aldo Moro 5, I-00185 Roma, Italy
| | - Francesco Angelucci
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, and CNR Institute of Molecular Biology and Pathology, P.le Aldo Moro 5, I-00185 Roma, Italy
| | - Andrea M. Scorciapino
- Department of Chemical Science, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari, Italy
| | - Roberto Anedda
- Porto Conte Ricerche srl, Loc. Tramariglio, I-07041 Alghero (SS), Italy
| | - Rosaria Medda
- Department of Applied Sciences in Biosystems, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari, Italy
| | - Giovanni Floris
- Department of Applied Sciences in Biosystems, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari, Italy
| |
Collapse
|
100
|
Xu S. Abscisic acid activates a Ca2+-calmodulin-stimulated protein kinase involved in antioxidant defense in maize leaves. Acta Biochim Biophys Sin (Shanghai) 2010; 42:646-55. [PMID: 20702465 DOI: 10.1093/abbs/gmq064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The role of a calcium-dependent and calmodulin (CaM)-stimulated protein kinase in abscisic acid (ABA)-induced antioxidant defense was determined in leaves of maize (Zea mays). In-gel kinase assays showed that treatments with ABA or H(2)O(2) induced the activation of a 49-kDa protein kinase and a 52-kDa protein kinase significantly. Furthermore, we showed that the 52-kDa protein kinase has the characteristics of CaM-stimulating activity and is sensitive to calcium-CaM-dependent protein kinase II (CaMK II) inhibitor KN-93 or CaM antagonist W-7. Treatments with ABA or H(2)O(2) not only induced the activation of the 52-kDa protein kinase, but also enhanced the total activities of the antioxidant enzymes, including catalase, ascorbate peroxidase, glutathione reductase, and superoxide dismutase. Such enhancements were blocked by pretreatment with a CaMK inhibitor and a reactive oxygen species (ROS) inhibitor or scavenger. Pretreatment with the CaMK inhibitor also substantially arrested the ABA-induced H(2)O(2) production. Kinase activity enhancements induced by ABA were attenuated by pretreatment with an ROS inhibitor or scavenger. These results suggest that the 52-kDa CaMK is involved in ABA-induced antioxidant defense and that cross-talk between CaMK and H(2)O(2) plays a pivotal role in ABA signaling. We infer that CaMK acts both upstream and downstream of H(2)O(2), but mainly acts between ABA and H(2)O(2) in ABA-induced antioxidant-defensive signaling.
Collapse
|