51
|
Liu M, Sims D, Calarco P, Talbot P. Biochemical heterogeneity, migration, and pre-fertilization release of mouse oocyte cortical granules. Reprod Biol Endocrinol 2003; 1:77. [PMID: 14613547 PMCID: PMC305340 DOI: 10.1186/1477-7827-1-77] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2003] [Accepted: 11/07/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oocyte cortical granules are important in the fertilization of numerous species including mammals. Relatively little is known about the composition, migration, and pre-fertilization release of mammalian oocyte cortical granules. RESULTS Results obtained with confocal scanning laser microscopy indicated that mouse oocytes have at least two populations of cortical granules, one that bound both the lectin LCA and the antibody ABL2 and one that bound only LCA. Both types of granules were synthesized at the same time during oocyte maturation suggesting that the ABL2 antigen is targeted to specific granules by a sorting sequence. The distribution of both populations of cortical granules was then studied during the germinal vesicle to metaphase II transition. As the oocytes entered metaphase I, the first cortical granule free domain, which was devoid of both populations of cortical granules, formed over the spindle. During first polar body extrusion, a subpopulation of LCA-binding granules became concentrated in the cleavage furrow and underwent exocytosis prior to fertilization. Granules that bound ABL2 were not exocytosed at this time. Much of the LCA-binding exudate from the release at the cleavage furrow was retained in the perivitelline space near the region of exocytosis and was deduced to contain at least three polypeptides with approximate molecular weights of 90, 62, and 56 kDa. A second cortical granule free domain developed following pre-fertilization exocytosis and subsequently continued to increase in area as both, LCA and LCA/ ABL2-binding granules near the spindle became redistributed toward the equator of the oocyte. The pre-fertilization release of cortical granules did not affect binding of sperm to the overlying zona pellucida. CONCLUSIONS Our data show that mouse oocytes contain at least two populations of cortical granules and that a subset of LCA-binding cortical granules is released at a specific time (during extrusion of the first polar body) and place (around the cleavage furrow) prior to fertilization. The observations indicate that the functions of the cortical granules are more complex than previously realized and include events occurring prior to gamete membrane fusion.
Collapse
Affiliation(s)
- Min Liu
- Department of Cell Biology & Neuroscience, University of California Riverside, California 92521, USA
| | - DeAndrea Sims
- Department of Cell Biology & Neuroscience, University of California Riverside, California 92521, USA
| | - Patricia Calarco
- Department of Anatomy and Medicine, School of Medicine, University of California, San Francisco, California 94143, USA
| | - Prue Talbot
- Department of Cell Biology & Neuroscience, University of California Riverside, California 92521, USA
| |
Collapse
|
52
|
Hosaka M, Suda M, Sakai Y, Izumi T, Watanabe T, Takeuchi T. Secretogranin III binds to cholesterol in the secretory granule membrane as an adapter for chromogranin A. J Biol Chem 2003; 279:3627-34. [PMID: 14597614 DOI: 10.1074/jbc.m310104200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Granin-family proteins, including chromogranin A (CgA) and secretogranin III (SgIII), are transported to secretory granules (SGs) in neuroendocrine cells. We previously showed that SgIII binds strongly to CgA in an intragranular milieu and targets CgA to SGs in pituitary and pancreatic endocrine cells. In this study, we demonstrated that with a sucrose density gradient of rat insulinoma-derived INS-1 cell homogenates, SgIII was localized to the SG fraction and was fractionated to the SG membrane (SGM) despite lacking the transmembrane region. With depletion of cholesterol from the SGM using methyl-beta-cyclodextrin, SgIII was impaired to bind to the SGM. Both SgIII and CgA were solubilized from the SGM by Triton X-100 in contrast to the Triton X-100 insolubility of carboxypeptidase E. SgIII and carboxypeptidase E strongly bound to the SGM-type liposome in intragranular conditions, but CgA did not. Instead, CgA bound to the SGM-type liposome only in the presence of SgIII. Immunocytochemical and pulse-chase experiments revealed that SgIII deleting the N-terminal lipid-binding region missorted to the constitutive pathway in mouse corticotroph-derived AtT-20 cells. Thus, we suggest that SgIII directly binds to cholesterol components of the SGM and targets CgA to SGs in pituitary and pancreatic endocrine cells.
Collapse
Affiliation(s)
- Masahiro Hosaka
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | | | | | | | | | | |
Collapse
|
53
|
Hook VYH, Reisine TD. Cysteine proteases are the major ?-secretase in the regulated secretory pathway that provides most of the ?-amyloid in Alzheimer's disease: Role of BACE 1 in the constitutive secretory pathway. J Neurosci Res 2003; 74:393-405. [PMID: 14598316 DOI: 10.1002/jnr.10784] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This article focuses on beta-amyloid (Abeta) peptide production and secretion in the regulated secretory pathway and how this process relates to accumulation of toxic Abeta in Alzheimer's disease. New findings are presented demonstrating that most of the Abeta is produced and secreted, in an activity-dependent manner, through the regulated secretory pathway in neurons. Only a minor portion of cellular Abeta is secreted via the basal, constitutive secretory pathway. Therefore, regulated secretory vesicles contain the primary beta-secretases that are responsible for producing the majority of secreted Abeta. Investigation of beta-secretase activity in regulated secretory vesicles of neuronal chromaffin cells demonstrated that cysteine proteases account for the majority of the beta-secretase activity. BACE 1 is present in regulated secretory vesicles but provides only a small percentage of the beta-secretase activity. Moreover, the cysteine protease activities prefer to cleave the wild-type beta-secretase site, which is relevant to the majority of AD cases. In contrast, BACE 1 prefers to cleave the Swedish mutant beta-secretase site that is expressed in a minor percentage of the AD population. These new findings lead to a unifying hypothesis in which cysteine proteases are the major beta-secretases for the production of Abeta in the major regulated secretory pathway and BACE 1 is the beta-secretase responsible for Abeta production in the minor constitutive secretory pathway. These results indicate that inhibition of multiple proteases may be needed to decrease Abeta production as a therapeutic strategy for Alzheimer's disease.
Collapse
|
54
|
Bonnard E, Burlet-Schiltz O, Monsarrat B, Girard JP, Zajac JM. Identification of proNeuropeptide FFA peptides processed in neuronal and non-neuronal cells and in nervous tissue. ACTA ACUST UNITED AC 2003; 270:4187-99. [PMID: 14519131 DOI: 10.1046/j.1432-1033.2003.03816.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Peptides which should be generated from the neuropeptide FF (NPFF) precursor were identified in a neuronal (human neuroblastoma SH-SY5Y) cell line and in COS-7 cells after transient transfection of the human proNPFFA cDNA and were compared with those detected in the mouse spinal cord. After reverse-phase high performance liquid chromatography of soluble material, NPFF-related peptides were immunodetected with antisera raised against NPFF and identified by using on-line capillary liquid chromatography/nanospray ion trap tandem mass spectrometry. Neuronal and non-neuronal cells generated different peptides from the same precursor. In addition to NPFF, SQA-NPFF (Ser-Gln-Ala-Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-amide) and NPAF were identified in the human neuroblastoma while only NPFF was clearly identified in COS-7 cells. In mouse, in addition to previously detected NPFF and NPSF, SPA-NPFF (Ser-Pro-Ala-Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-amide), the homologous peptide of SQA-NPFF, were characterized. These data on intracellular processing of proNeuropeptide FFA are discussed in regard to the known enzymatic processing mechanisms.
Collapse
Affiliation(s)
- Elisabeth Bonnard
- Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | | | | | | | | |
Collapse
|
55
|
Feng L, Arvan P. The trafficking of alpha 1-antitrypsin, a post-Golgi secretory pathway marker, in INS-1 pancreatic beta cells. J Biol Chem 2003; 278:31486-94. [PMID: 12796484 DOI: 10.1074/jbc.m305690200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A sulfated alpha1-antitrypsin (AAT), thought to be a default secretory pathway marker, is not stored in secretory granules when expressed in neuroendocrine PC12 cells. In search of a constitutive secretory pathway marker for pancreatic beta cells, we produced INS-1 cells stably expressing wild-type AAT. Because newly synthesized AAT arrives very rapidly in the Golgi complex, kinetics alone cannot resolve AAT release via distinct secretory pathways, although most AAT is secreted within a few hours and virtually none is stored in mature granules. Nevertheless, from pulse-chase analyses, a major fraction of newly synthesized AAT transiently exhibits secretogogue-stimulated exocytosis and localizes within immature secretory granules (ISGs). This trafficking occurs without detectable AAT polymerization or binding to lipid rafts. Remarkably, in a manner not requiring its glycans, all of the newly synthesized AAT is then removed from granules during their maturation, leading mostly to constitutive-like AAT secretion, whereas a smaller fraction (approximately 10%) goes on to lysosomes. Secretogogue-stimulated ISG exocytosis reroutes newly synthesized AAT directly into the medium and prevents its arrival in lysosomes. These data are most consistent with the idea that soluble AAT abundantly enters ISGs and then is efficiently relocated to the endosomal system, from which many molecules undergo constitutive-like secretion while a smaller fraction advances to lysosomes.
Collapse
Affiliation(s)
- Lijun Feng
- Division of Endocrinology and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
56
|
Landry M, Vila-Porcile E, Hökfelt T, Calas A. Differential routing of coexisting neuropeptides in vasopressin neurons. Eur J Neurosci 2003. [DOI: 10.1046/j.1460-9568.2002.00162.x-i1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
57
|
Landry M, Vila-Porcile E, Hökfelt T, Calas A. Differential routing of coexisting neuropeptides in vasopressin neurons. Eur J Neurosci 2003; 17:579-89. [PMID: 12814355 DOI: 10.1046/j.1460-9568.2003.02472.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The functional implications of intraneuronal coexistence of different neuropeptides depend on their respective targeting to release sites. In the rat hypothalamic magnocellular neurons, we investigated a possible differential routing of the coexpressed galanin and vasopressin. The respective location of proteins and messengers was assessed with double immunogold and in situ hybridization combining confocal and electron microscope analysis. The various populations of labelled granules were quantitatively compared in three subcellular compartments: perikarya, local processes and posthypophyseal nerve endings. Three subpopulations of granules were detected in all three compartments, but their respective amount showed significant differences. Galanin alone was immunolocalized in some secretory granules, vasopressin alone in others, and both peptides in a third subpopulation of granules. The major part of the granules containing vasopressin, either alone or in association with galanin, is found in neurohypophyseal nerve endings. In contrast, galanin single-labelled granules represent the most abundant population in dendritic processes, while double-labelled granules are more numerous in perikarya. This indicates a preferential distribution of the two peptides in the different compartments of magnocellular neurons. Furthermore, galanin and vasopressin messenger RNAs were detected at different domains of the endoplasmic reticulum, suggesting that translation might also occur at different locations, thus leading to partial segregation of galanin and vasopressin cargoes between two populations of secretory granules. The present study provides, for the first time in mammals, evidence suggesting that galanin and vasopressin are only partly copackaged and undergo a preferential targeting toward dendrites or neurohypophysis, suggesting different functions, autocrine/paracrine and endocrine, respectively.
Collapse
Affiliation(s)
- Marc Landry
- INSERM EPI 9914, Institut François Magendie, Université Victor Segalen, Bordeaux, France.
| | | | | | | |
Collapse
|
58
|
Bernard N, Kitabgi P, Rovere-Jovene C. The Arg617-Arg618 cleavage site in the C-terminal domain of PC1 plays a major role in the processing and targeting of the enzyme within the regulated secretory pathway. J Neurochem 2003; 85:1592-603. [PMID: 12787078 DOI: 10.1046/j.1471-4159.2003.01823.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The C-terminal domain of the prohormone convertase PC1 is involved in targeting of the enzyme to secretory granules in neuroendocrine cells and is subsequently processed in this compartment at an Arg617-Arg618 site. Three other dibasics are found in the C-terminal domain of mouse PC1. Here, we examined the role of the four dibasics in targeting PC1 to secretory granules. All 15 possible combinations of dibasic mutations were performed. Wild-type (WT) and mutant PC1 were stably expressed in neuroendocrine PC12 cells that lacked endogenous PC1. Processing, secretion and intracellular localization of PC1 and its mutants were analyzed. Leaving intact Arg617-Arg618 and mutating any combination of the three other dibasics yielded proteins that were stored and processed in secretory granules, similarly to WT PC1. Mutating Arg617-Arg618 alone or with any one of the three remaining dibasics generated proteins that were efficiently stored in secretory granules but were not processed further. Mutating Arg617-Arg618 with more than one of the remaining dibasics produced proteins that reached the TGN but were not stored in secretory granules and exited the cells through the constitutive secretory pathway. These data demonstrate that the Arg617-Arg618 plays a prominent role in targeting PC1 to secretory granules.
Collapse
Affiliation(s)
- Natacha Bernard
- Institut de Pharmacologie Molèculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR 6097, Valbonne, France
| | | | | |
Collapse
|
59
|
Abstract
It is widely accepted that neuronal activity plays a pivotal role in synaptic plasticity. Neurotrophins have emerged recently as potent factors for synaptic modulation. The relationship between the activity and neurotrophic regulation of synapse development and plasticity, however, remains unclear. A prevailing hypothesis is that activity-dependent synaptic modulation is mediated by neurotrophins. An important but unresolved issue is how diffusible molecules such as neurotrophins achieve local and synapse-specific modulation. In this review, I discuss several potential mechanisms with which neuronal activity could control the synapse-specificity of neurotrophin regulation, with particular emphasis on BDNF. Data accumulated in recent years suggest that neuronal activity regulates the transcription of BDNF gene, the transport of BDNF mRNA and protein into dendrites, and the secretion of BDNF protein. There is also evidence for activity-dependent regulation of the trafficking of the BDNF receptor, TrkB, including its cell surface expression and ligand-induced endocytosis. Further study of these mechanisms will help us better understand how neurotrophins could mediate activity-dependent plasticity in a local and synapse-specific manner.
Collapse
Affiliation(s)
- Bai Lu
- Section on Neural Development and Plasticity, National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland 20892-4480, USA.
| |
Collapse
|
60
|
Cawley NX, Rodriguez YM, Maldonado A, Loh YP. Trafficking of mutant carboxypeptidase E to secretory granules in a beta-cell line derived from Cpe(fat)/Cpe(fat) mice. Endocrinology 2003; 144:292-8. [PMID: 12488357 DOI: 10.1210/en.2002-220588] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have reinvestigated the stability and intracellular routing of mutant carboxypeptidase E in NIT3 cells, a pancreatic beta-cell line derived from the Cpe(fat)/Cpe(fat) mouse. Pulse-chase experiments demonstrated that this protein has a half-life of approximately 3 h in these cells and that up to 45% of the proCPE(202) can escape degradation by the proteosome. In double-label immunofluorescence microscopy, a portion of the mutant CPE did not colocalize with calnexin, an endoplasmic reticulum marker, but was found in prohormone convertase 2-containing secretory granules, demonstrating that it had escaped degradation and arrived at a post-Golgi compartment. The mutant CPE as well as prohormone convertase 2 were secreted into the medium in a stimulated manner by treatment with the physiological secretagogue, glucagon-like peptide-1, consistent with its presence in granules of the regulated secretory pathway. The presence of mutant carboxypeptidase E in granules supports a potential role for its involvement as a sorting/retention receptor in the trafficking of proinsulin to the regulated secretory pathway.
Collapse
Affiliation(s)
- Niamh X Cawley
- Section on Cellular Neurobiology, Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
61
|
Loh YP, Maldonado A, Zhang C, Tam WH, Cawley N. Mechanism of sorting proopiomelanocortin and proenkephalin to the regulated secretory pathway of neuroendocrine cells. Ann N Y Acad Sci 2002; 971:416-25. [PMID: 12438160 DOI: 10.1111/j.1749-6632.2002.tb04504.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proopiomelanocortin (POMC) and proenkephalin (PE) are synthesized at the endoplasmic reticulum and transported to the trans-Golgi network (TGN) where they are sorted and packaged into dense-core granules of the regulated secretory pathway (RSP). The mechanism of sorting POMC and PE to the RSP in neuroendocrine cells was investigated. Consensus sorting signals comprising two acidic residues and two hydrophobic residues exposed on the surface of N-POMC(1-26) and N-PE(1-32) were identified and shown to be sufficient and necessary for targeting POMC and PE to the RSP in PC12, Neuro2a, and AtT-20 cells. The acidic residues of these sorting signals bind specifically to basic residues on the sorting receptor membrane, carboxypeptidase E (CPE), to effect sorting to the RSP. Analysis of POMC and PE sorting in Neuro2a cells depleted of CPE by CPE antisense RNA, and Cpe(fat/fat) mouse pituitary cells lacking CPE showed missorting of both these molecules to the constitutive pathway in vivo. Thus, POMC and PE are sorted to the RSP at the TGN by a mechanism involving the interaction of a specific sorting signal on these molecules with the sorting receptor, CPE.
Collapse
Affiliation(s)
- Y Peng Loh
- Section on Cellular Neurobiology, Laboratory of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
62
|
Hosaka M, Watanabe T, Sakai Y, Uchiyama Y, Takeuchi T. Identification of a chromogranin A domain that mediates binding to secretogranin III and targeting to secretory granules in pituitary cells and pancreatic beta-cells. Mol Biol Cell 2002; 13:3388-99. [PMID: 12388744 PMCID: PMC129953 DOI: 10.1091/mbc.02-03-0040] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chromogranin A (CgA) is transported restrictedly to secretory granules in neuroendocrine cells. In addition to pH- and Ca(2+)-dependent aggregation, CgA is known to bind to a number of vesicle matrix proteins. Because the binding-prone property of CgA with secretory proteins may be essential for its targeting to secretory granules, we screened its binding partner proteins using a yeast two-hybrid system. We found that CgA bound to secretogranin III (SgIII) by specific interaction both in vitro and in endocrine cells. Localization analysis showed that CgA and SgIII were coexpressed in pituitary and pancreatic endocrine cell lines, whereas SgIII was not expressed in the adrenal glands and PC12 cells. Immunoelectron microscopy demonstrated that CgA and SgIII were specifically colocalized in large secretory granules in male rat gonadotropes, which possess large-type and small-type granules. An immunocytochemical analysis revealed that deletion of the binding domain (CgA 48-111) for SgIII missorted CgA to the constitutive pathway, whereas deletion of the binding domain (SgIII 214-373) for CgA did not affect the sorting of SgIII to the secretory granules in AtT-20 cells. These findings suggest that CgA localizes with SgIII by specific binding in secretory granules in SgIII-expressing pituitary and pancreatic endocrine cells, whereas other mechanisms are likely to be responsible for CgA localization in secretory granules of SgIII-lacking adrenal chromaffin cells and PC12 cells.
Collapse
Affiliation(s)
- Masahiro Hosaka
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan
| | | | | | | | | |
Collapse
|
63
|
Wasmeier C, Bright NA, Hutton JC. The lumenal domain of the integral membrane protein phogrin mediates targeting to secretory granules. Traffic 2002; 3:654-65. [PMID: 12191017 DOI: 10.1034/j.1600-0854.2002.30907.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phogrin, a transmembrane glycoprotein of neuroendocrine cells, is localized to dense-core secretory granules. We have investigated the subcellular targeting of phogrin by analyzing the sorting of a series of deletion mutants to the regulated pathway of secretion in AtT20 cells. The lumenal domain as a soluble protein was efficiently routed to granules, based on a combination of morphological analysis and secretion studies. Sorting was not dependent on a candidate targeting signal consisting of an N-terminal conserved cysteine-rich motif. Both the pro-region and the lumenal domain of mature, post-translationally processed phogrin independently reached the granule, although the pro-region was sorted more efficiently. Once within the regulated secretory pathway, all phogrin lumenal domain proteins were stored in functional granules for extended periods of time. Thus, phogrin possesses several domains contributing to its targeting to the secretory granule. Our findings support a model of granule biogenesis where proteins are sorted on the basis of their biochemical properties rather than via signal-dependent binding to a targeting receptor. Sorting of integral membrane proteins mediated by the lumenal domain may ensure that functionally important transmembrane molecules are included in the forming granule.
Collapse
Affiliation(s)
- Christina Wasmeier
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, 4200 East 9th Avenue, Box B140, Denver, CO 80262, USA
| | | | | |
Collapse
|
64
|
Blagoveshchenskaya AD, Hannah MJ, Allen S, Cutler DF. Selective and signal-dependent recruitment of membrane proteins to secretory granules formed by heterologously expressed von Willebrand factor. Mol Biol Cell 2002; 13:1582-93. [PMID: 12006654 PMCID: PMC111128 DOI: 10.1091/mbc.01-09-0462] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
von Willebrand factor (vWF) is a large, multimeric protein secreted by endothelial cells and involved in hemostasis. When expressed in AtT-20 cells, vWF leads to the de novo formation of cigar-shaped organelles similar in appearance to the Weibel-Palade bodies of endothelial cells in which vWF is normally stored before regulated secretion. The membranes of this vWF-induced organelle, termed the pseudogranule, are uncharacterized. We have examined the ability of these pseudogranules, which we show are secretagogue responsive, to recruit membrane proteins. Coexpression experiments show that the Weibel-Palade body proteins P-selectin and CD63, as well as the secretory organelle membrane proteins vesicle-associated membrane protein-2 and synaptotagmin I are diverted away from the endogenous adrenocorticotropic hormone-containing secretory granules to the vWF-containing pseudogranules. However, transferrin receptor, lysosomal-associated membrane protein 1, and sialyl transferase are not recruited. The recruitment of P-selectin is dependent on a tyrosine-based motif within its cytoplasmic domain. Our data show that vWF pseudogranules specifically recruit a subset of membrane proteins, and that in a process explicitly driven by the pseudogranule content (i.e., vWF), the active recruitment of at least one component of the pseudogranule membrane (i.e., P-selectin) is dependent on residues of P-selectin that are cytosolic and therefore unable to directly interact with vWF.
Collapse
|
65
|
Abstract
The term neuropeptides commonly refers to a relatively large number of biologically active molecules that have been localized to discrete cell populations of central and peripheral neurons. I review here the most important histological and functional findings on neuropeptide distribution in the central nervous system (CNS), in relation to their role in the exchange of information between the nerve cells. Under this perspective, peptide costorage (presence of two or more peptides within the same subcellular compartment) and coexistence (concurrent presence of peptides and other messenger molecules within single nerve cells) are discussed in detail. In particular, the subcellular site(s) of storage and sorting mechanisms within neurons are thoroughly examined in the view of the mode of release and action of neuropeptides as neuronal messengers. Moreover, the relationship of neuropeptides and other molecules implicated in neural transmission is discussed in functional terms, also referring to the interactions with novel unconventional transmitters and trophic factors. Finally, a brief account is given on the presence of neuropeptides in glial cells.
Collapse
Affiliation(s)
- A Merighi
- Department of Veterinary Morphophysiology, Rita Levi-Montalcini Center for Brain Repair, University of Torino, UE, Italy.
| |
Collapse
|
66
|
Féliciangéli S, Kitabgi P. Insertion of dibasic residues directs a constitutive protein to the regulated secretory pathway. Biochem Biophys Res Commun 2002; 290:191-6. [PMID: 11779152 DOI: 10.1006/bbrc.2001.6137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms for sorting proteins to the regulated secretory pathway (RSP) remains poorly understood. We recently reported that dibasic sequences that are cleaved by pro-protein convertases (PCs) in pro-neurotensin also acted as sorting signal for the precursor. Here we addressed two questions regarding the role of dibasics as sorting signal: (i) Are dibasics sufficient to direct proteins to the RSP? (ii) Do they sort proteins by virtue of their interaction with PCs? The first question was studied by inserting dibasics in beta-lactamase, a constitutively secreted protein and comparing the regulated secretion of beta-lactamase to that of its mutant in transfected endocrine cells. The second question was investigated by comparing the regulated release of pro-neurotensin in PC12 cells that are devoid of PCs to that in PC1- and PC2-transfected PC12 cells. The data show that the mutant beta-lactamase was indeed targeted in part to the RSP and that pro-neurotensin was sorted to the RSP without the assistance of the PCs, thus indicating that dibasics can act as sorting signal by themselves independently of their interaction with PCs.
Collapse
Affiliation(s)
- Sylvain Féliciangéli
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR 6097, 660 Route des Lucioles, 06560 Valbonne, France
| | | |
Collapse
|
67
|
Kim T, Tao-Cheng JH, Eiden LE, Loh YP. Chromogranin A, an "on/off" switch controlling dense-core secretory granule biogenesis. Cell 2001; 106:499-509. [PMID: 11525735 DOI: 10.1016/s0092-8674(01)00459-7] [Citation(s) in RCA: 328] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present evidence that regulation of dense-core secretory granule biogenesis and hormone secretion in endocrine cells is dependent on chromogranin A (CGA). Downregulation of CGA expression in a neuroendocrine cell line, PC12, by antisense RNAs led to profound loss of dense-core secretory granules, impairment of regulated secretion of a transfected prohormone, and reduction of secretory granule proteins. Transfection of bovine CGA into a CGA-deficient PC12 clone rescued the regulated secretory phenotype. Stable transfection of CGA into a CGA-deficient pituitary cell line, 6T3, lacking a regulated secretory pathway, restored regulated secretion. Overexpression of CGA induced dense-core granules, immunoreactive for CGA, in nonendocrine fibroblast CV-1 cells. We conclude that CGA is an "on/off" switch that alone is sufficient to drive dense-core secretory granule biogenesis and hormone sequestration in endocrine cells.
Collapse
Affiliation(s)
- T Kim
- Section on Cellular Neurobiology, Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
68
|
Abstract
The trans-Golgi network (TGN) is a major secretory pathway sorting station that directs newly synthesized proteins to different subcellular destinations. The TGN also receives extracellular materials and recycled molecules from endocytic compartments. In this review, we summarize recent progress on understanding TGN structure and the dynamics of trafficking to and from this compartment. Protein sorting into different transport vesicles requires specific interactions between sorting motifs on the cargo molecules and vesicle coat components that recognize these motifs. Current understanding of the various targeting signals and vesicle coat components that are involved in TGN sorting are discussed, as well as the molecules that participate in retrieval to this compartment in both yeast and mammalian cells. Besides proteins, lipids and lipid-modifying enzymes also participate actively in the formation of secretory vesicles. The possible mechanisms of action of these lipid hydrolases and lipid kinases are discussed. Finally, we summarize the fundamentally different apical and basolateral cell surface delivery mechanisms and the current facts and hypotheses on protein sorting from the TGN into the regulated secretory pathway in neuroendocrine cells.
Collapse
Affiliation(s)
- F. Gu
- Vollum Institute, L-474, Oregon Health Science University, 3181 SW Sam Jackson Park Road, Portland (Oregon 97201, USA), Fax: +1 503 494 4534, e-mail: , , , , US
| | - C.M. Crump
- Vollum Institute, L-474, Oregon Health Science University, 3181 SW Sam Jackson Park Road, Portland (Oregon 97201, USA), Fax: +1 503 494 4534, e-mail: , , , , US
| | - G. Thomas
- Vollum Institute, L-474, Oregon Health Science University, 3181 SW Sam Jackson Park Road, Portland (Oregon 97201, USA), Fax: +1 503 494 4534, e-mail: , , , , US
| |
Collapse
|
69
|
Feliciangeli S, Kitabgi P, Bidard JN. The role of dibasic residues in prohormone sorting to the regulated secretory pathway. A study with proneurotensin. J Biol Chem 2001; 276:6140-50. [PMID: 11104773 DOI: 10.1074/jbc.m009613200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanisms by which prohormone precursors are sorted to the regulated secretory pathway in neuroendocrine cells remain poorly understood. Here, we investigated the presence of sorting signal(s) in proneurotensin/neuromedin N. The precursor sequence starts with a long N-terminal domain followed by a Lys-Arg-(neuromedin N)-Lys-Arg-(neurotensin)-Lys-Arg- sequence and a short C-terminal tail. An additional Arg-Arg dibasic is contained within the neurotensin sequence. Mutated precursors were expressed in endocrine insulinoma cells and analyzed for their regulated secretion. Deletion mutants revealed that the N-terminal domain and the Lys-Arg-(C-terminal tail) sequence were not critical for precursor sorting to secretory granules. In contrast, the Lys-Arg-(neuromedin N)-Lys-Arg-(neurotensin) sequence contained essential sorting information. Point mutation of all three dibasic sites within this sequence abolished regulated secretion. However, keeping intact any one of the three dibasic sequences was sufficient to maintain regulated secretion. Finally, fusing the dibasic-containing C-terminal domain of the precursor to the C terminus of beta-lactamase, a bacterial enzyme that is constitutively secreted when expressed in neuroendocrine cells, resulted in efficient sorting of the fusion protein to secretory granules in insulinoma cells. We conclude that dibasic motifs within the neuropeptide domain of proneurotensin/neuromedin N constitute a necessary and sufficient signal for sorting proteins to the regulated secretory pathway.
Collapse
Affiliation(s)
- S Feliciangeli
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, UPR 411, 660 Route des Lucioles, 06560 Valbonne, France
| | | | | |
Collapse
|
70
|
Reiss M, Viebig N, Brecht S, Fourmaux MN, Soete M, Di Cristina M, Dubremetz JF, Soldati D. Identification and characterization of an escorter for two secretory adhesins in Toxoplasma gondii. J Cell Biol 2001; 152:563-78. [PMID: 11157983 PMCID: PMC2196004 DOI: 10.1083/jcb.152.3.563] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The intracellular protozoan parasite Toxoplasma gondii shares with other members of the Apicomplexa a common set of apical structures involved in host cell invasion. Micronemes are apical secretory organelles releasing their contents upon contact with host cells. We have identified a transmembrane micronemal protein MIC6, which functions as an escorter for the accurate targeting of two soluble proteins MIC1 and MIC4 to the micronemes. Disruption of MIC1, MIC4, and MIC6 genes allowed us to precisely dissect their contribution in sorting processes. We have mapped domains on these proteins that determine complex formation and targeting to the organelle. MIC6 carries a sorting signal(s) in its cytoplasmic tail whereas its association with MIC1 involves a lumenal EGF-like domain. MIC4 binds directly to MIC1 and behaves as a passive cargo molecule. In contrast, MIC1 is linked to a quality control system and is absolutely required for the complex to leave the early compartments of the secretory pathway. MIC1 and MIC4 bind to host cells, and the existence of such a complex provides a plausible mechanism explaining how soluble adhesins act. We hypothesize that during invasion, MIC6 along with adhesins establishes a bridge between the host cell and the parasite.
Collapse
Affiliation(s)
- Matthias Reiss
- Center for Molecular Biology, University of Heidelberg, Heidelberg D-63120, Germany
| | - Nicola Viebig
- Center for Molecular Biology, University of Heidelberg, Heidelberg D-63120, Germany
| | - Susan Brecht
- Center for Molecular Biology, University of Heidelberg, Heidelberg D-63120, Germany
| | | | - Martine Soete
- Institute of Biology CNRS, Institut Pasteur de Lille, Lille, 59019 France
| | - Manlio Di Cristina
- Department of Cell Biology, Imperial College of Science, Technology, and Medicine, London, SW7 2AZ United Kingdom
| | | | - Dominique Soldati
- Center for Molecular Biology, University of Heidelberg, Heidelberg D-63120, Germany
| |
Collapse
|