51
|
Song JH, Johansen K, Prentice P. Covert cavitation: Spectral peak suppression in the acoustic emissions from spatially configured nucleations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:EL216. [PMID: 28372105 DOI: 10.1121/1.4977236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dual laser-nucleation is used to precisely configure two cavitation bubbles within a focused ultrasound field of f0 = 692 kHz, in proximity to the tip of a needle hydrophone. With both bubbles responding in the f0/2 sub-harmonic regime, confirmed via ultra-high speed shadowgraphic imaging, an emission spectrum with no sub-harmonic content is demonstrated, for an inter-bubble spacing ≈λ0. A spectral model for periodic shock waves from multiple nucleations demonstrates peak suppressions at nf0/2 when applied to the experiment, via a windowing effect in the frequency domain. Implications for single-element passive detection of cavitation are discussed.
Collapse
Affiliation(s)
- Jae Hee Song
- Cavitation Laboratory (CavLab), Medical and Industrial Ultrasonics, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, United Kingdom , ,
| | - Kristoffer Johansen
- Cavitation Laboratory (CavLab), Medical and Industrial Ultrasonics, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, United Kingdom , ,
| | - Paul Prentice
- Cavitation Laboratory (CavLab), Medical and Industrial Ultrasonics, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, United Kingdom , ,
| |
Collapse
|
52
|
Maciulevičius M, Tamošiūnas M, Jakštys B, Jurkonis R, Venslauskas MS, Šatkauskas S. Investigation of Microbubble Cavitation-Induced Calcein Release from Cells In Vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2990-3000. [PMID: 27637933 DOI: 10.1016/j.ultrasmedbio.2016.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 07/13/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
In the present study, microbubble (MB) cavitation signal analysis was performed together with calcein release evaluation in both pressure and exposure duration domains of the acoustic field. A passive cavitation detection system was used to simultaneously measure MB scattering and attenuation signals for subsequent extraction efficiency relative to MB cavitation activity. The results indicate that the decrease in the efficiency of extraction of calcein molecules from Chinese hamster ovary cells, as well as cell viability, is associated with MB cavitation activity and can be accurately predicted using inertial cavitation doses up to 0.18 V × s (R2 > 0.9, p < 0.0001). No decrease in additional calcein release or cell viability was observed after complete MB sonodestruction was achieved. This indicates that the optimal exposure duration within which maximal sono-extraction efficiency is obtained coincides with the time necessary to achieve complete MB destruction. These results illustrate the importance of MB inertial cavitation in the sono-extraction process. To our knowledge, this study is the first to (i) investigate small molecule extraction from cells via sonoporation and (ii) relate the extraction process to the quantitative characteristics of MB cavitation acoustic spectra.
Collapse
Affiliation(s)
| | | | | | - Rytis Jurkonis
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | | | - Saulius Šatkauskas
- Biophysical Research Group, Vytautas Magnus University, Kaunas, Lithuania.
| |
Collapse
|
53
|
Roos ST, Yu FT, Kamp O, Chen X, Villanueva FS, Pacella JJ. Sonoreperfusion Therapy Kinetics in Whole Blood Using Ultrasound, Microbubbles and Tissue Plasminogen Activator. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:3001-3009. [PMID: 27687734 PMCID: PMC5328593 DOI: 10.1016/j.ultrasmedbio.2016.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 05/11/2023]
Abstract
Coronary intervention for myocardial infarction often results in microvascular embolization of thrombus. Sonoreperfusion therapy (SRP) using ultrasound and microbubbles restored perfusion in our in vitro flow model of microvascular obstruction. In this study, we assessed SRP efficacy using whole blood as the perfusate with and without tissue plasminogen activator (tPA). In a phantom vessel bearing a 40-μm-pore mesh to simulate the microvasculature, microthrombi were injected to cause microvascular obstruction and were treated using SRP. Without tPA, the lytic rate increased from 2.6 ± 1.5 mmHg/min with 1000-cycle pulses to 7.3 ± 3.2 mmHg/min with 5000-cycle ultrasound pulses (p < 0.01). The lytic index was similar for tPA-only ([2.0 ± 0.5] × 10-3 mmHg-1 min-1) and 5000 cycles without tPA ([2.3 ± 0.5] × 10-3 mmHg-1 min-1) (p = 0.5) but increased ([3.6 ± 0.8] × 10-3 mmHg-1 min-1) with tPA in conjunction with 5000-cycles ultrasound (p < 0.01). In conclusion, SRP restored microvascular perfusion in whole blood, SRP lytic rate in experiments without tPA increased with ultrasound pulse length and efficacy increased with the addition of tPA.
Collapse
Affiliation(s)
- Sebastiaan T Roos
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania, USA; Department of Cardiology and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, The Netherlands
| | - François T Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania, USA
| | - Otto Kamp
- Department of Cardiology and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, The Netherlands
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania, USA
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
54
|
Top CB, White PJ, McDannold NJ. Nonthermal ablation of deep brain targets: A simulation study on a large animal model. Med Phys 2016; 43:870-82. [PMID: 26843248 PMCID: PMC4723413 DOI: 10.1118/1.4939809] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Thermal ablation with transcranial MRI-guided focused ultrasound (FUS) is currently limited to central brain targets because of heating and other beam effects caused by the presence of the skull. Recently, it was shown that it is possible to ablate tissues without depositing thermal energy by driving intravenously administered microbubbles to inertial cavitation using low-duty-cycle burst sonications. A recent study demonstrated that this ablation method could ablate tissue volumes near the skull base in nonhuman primates without thermally damaging the nearby bone. However, blood-brain disruption was observed in the prefocal region, and in some cases, this region contained small areas of tissue damage. The objective of this study was to analyze the experimental model with simulations and to interpret the cause of these effects. METHODS The authors simulated prior experiments where nonthermal ablation was performed in the brain in anesthetized rhesus macaques using a 220 kHz clinical prototype transcranial MRI-guided FUS system. Low-duty-cycle sonications were applied at deep brain targets with the ultrasound contrast agent Definity. For simulations, a 3D pseudospectral finite difference time domain tool was used. The effects of shear mode conversion, focal steering, skull aberrations, nonlinear propagation, and the presence of skull base on the pressure field were investigated using acoustic and elastic wave propagation models. RESULTS The simulation results were in agreement with the experimental findings in the prefocal region. In the postfocal region, however, side lobes were predicted by the simulations, but no effects were evident in the experiments. The main beam was not affected by the different simulated scenarios except for a shift of about 1 mm in peak position due to skull aberrations. However, the authors observed differences in the volume, amplitude, and distribution of the side lobes. In the experiments, a single element passive cavitation detector was used to measure the inertial cavitation threshold and to determine the pressure amplitude to use for ablation. Simulations of the detector's acoustic field suggest that its maximum sensitivity was in the lower part of the main beam, which may have led to excessive exposure levels in the experiments that may have contributed to damage in the prefocal area. CONCLUSIONS Overall, these results suggest that case-specific full wave simulations before the procedure can be useful to predict the focal and the prefocal side lobes and the extent of the resulting bioeffects produced by nonthermal ablation. Such simulations can also be used to optimally position passive cavitation detectors. The disagreement between the simulations and the experiments in the postfocal region may have been due to shielding of the ultrasound field due to microbubble activity in the focal region. Future efforts should include the effects of microbubble activity and vascularization on the pressure field.
Collapse
Affiliation(s)
- Can Barış Top
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115
| | - P Jason White
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115
| | - Nathan J McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115
| |
Collapse
|
55
|
Pouliopoulos AN, Li C, Tinguely M, Garbin V, Tang MX, Choi JJ. Rapid short-pulse sequences enhance the spatiotemporal uniformity of acoustically driven microbubble activity during flow conditions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:2469. [PMID: 27794288 DOI: 10.1121/1.4964271] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Despite the promise of microbubble-mediated focused ultrasound therapies, in vivo findings have revealed over-treated and under-treated regions distributed throughout the focal volume. This poor distribution cannot be improved by conventional pulse shapes and sequences, due to their limited ability to control acoustic cavitation dynamics within the ultrasonic focus. This paper describes the design of a rapid short-pulse (RaSP) sequence which is comprised of short pulses separated by μs off-time intervals. Improved acoustic cavitation distribution was based on the hypothesis that microbubbles can freely move during the pulse off-times. Flowing SonoVue® microbubbles (flow velocity: 10 mm/s) were sonicated with a 0.5 MHz focused ultrasound transducer using RaSP sequences (peak-rarefactional pressures: 146-900 kPa, pulse repetition frequency: 1.25 kHz, and pulse lengths: 5-50 cycles). The distribution of cavitation activity was evaluated using passive acoustic mapping. RaSP sequences generated uniform distributions within the focus in contrast to long pulses (50 000 cycles) that produced non-uniform distributions. Fast microbubble destruction occurred for long pulses, whereas microbubble activity was sustained for longer durations for shorter pulses. High-speed microscopy revealed increased mobility in the direction of flow during RaSP sonication. In conclusion, RaSP sequences produced spatiotemporally uniform cavitation distributions and could result in efficient therapies by spreading cavitation throughout the treatment area.
Collapse
Affiliation(s)
| | - Caiqin Li
- Bioengineering Department, Imperial College London, London, SW7 2BP, United Kingdom
| | - Marc Tinguely
- Chemical Engineering Department, Imperial College London, London SW7 2AZ, United Kingdom
| | - Valeria Garbin
- Chemical Engineering Department, Imperial College London, London SW7 2AZ, United Kingdom
| | - Meng-Xing Tang
- Bioengineering Department, Imperial College London, London SW7 2BP, United Kingdom
| | - James J Choi
- Bioengineering Department, Imperial College London, London SW7 2BP, United Kingdom
| |
Collapse
|
56
|
Jin Q, Kang ST, Chang YC, Zheng H, Yeh CK. Inertial cavitation initiated by polytetrafluoroethylene nanoparticles under pulsed ultrasound stimulation. ULTRASONICS SONOCHEMISTRY 2016; 32:1-7. [PMID: 27150739 DOI: 10.1016/j.ultsonch.2016.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 05/07/2023]
Abstract
Nanoscale gas bubbles residing on a macroscale hydrophobic surface have a surprising long lifetime (on the order of days) and can serve as cavitation nuclei for initiating inertial cavitation (IC). Whether interfacial nanobubbles (NBs) reside on the infinite surface of a hydrophobic nanoparticle (NP) and could serve as cavitation nuclei is unknown, but this would be very meaningful for the development of sonosensitive NPs. To address this problem, we investigated the IC activity of polytetrafluoroethylene (PTFE) NPs, which are regarded as benchmark superhydrophobic NPs due to their low surface energy caused by the presence of fluorocarbon. Both a passive cavitation detection system and terephthalic dosimetry was applied to quantify the intensity of IC. The IC intensities of the suspension with PTFE NPs were 10.30 and 48.41 times stronger than those of deionized water for peak negative pressures of 2 and 5MPa, respectively. However, the IC activities were nearly completely inhibited when the suspension was degassed or ethanol was used to suspend PTFE NPs, and they were recovered when suspended in saturated water, which may indicates the presence of interfacial NBs on PTFE NPs surfaces. Importantly, these PTFE NPs could sustainably initiate IC for excitation by a sequence of at least 6000 pulses, whereas lipid microbubbles were completely depleted after the application of no more than 50 pulses under the same conditions. The terephthalic dosimetry has shown that much higher hydroxyl yields were achieved when PTFE NPs were present as cavitation nuclei when using ultrasound parameters that otherwise did not produce significant amounts of free radicals. These results show that superhydrophobic NPs may be an outstanding candidate for use in IC-related applications.
Collapse
Affiliation(s)
- Qiaofeng Jin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Shih-Tsung Kang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yuan-Chih Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
57
|
Guan Y, Lu M, Li Y, Liu F, Gao Y, Dong T, Wan M. Histotripsy Produced by Hundred-Microsecond-Long Focused Ultrasonic Pulses: A Preliminary Study. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2232-2244. [PMID: 27318864 DOI: 10.1016/j.ultrasmedbio.2016.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 01/09/2016] [Accepted: 01/27/2016] [Indexed: 06/06/2023]
Abstract
A new strategy is proposed in this study to rapidly generate mechanical homogenized lesions using hundred-microsecond-long pulses. The pulsing scheme was divided into two stages: generating sufficient bubble seed nuclei via acceleration by boiling bubbles and efficiently forming a mechanically homogenized and regularly shaped lesion with a homogenate inside via inertial cavitation. The duty cycle was set at 4.9%/3.9% in stage 1 and 1%/0.88% in stage 2 by changing the pulse duration (PD) and off-time independently. The pulse sequence was 500-μs/400-μs PD with a 100-Hz pulse repetition frequency (PRF) in stage 1, followed by 500-μs/400-μs PD with a 100-Hz PRF and 200-μs PD with a 200-Hz PRF in stage 2. Experiments were conducted on polyacrylamide phantoms with bovine serum albumin and on ex vivo porcine kidney tissues using a single-element 1.06-MHz transducer at an 8-MPa peak negative pressure with shock waves. The lesion evolution and dynamic elastic modulus variation in the phantoms and the histology in the tissue samples were investigated. The results indicate that the two-stage treatment using hundred-microsecond-long pulses can efficiently produce mechanically homogenized lesions with smooth borders, long tear shapes and the total homogenate inside. The time to generate a single mechanically homogenized lesion is shortened from >50 s to 17.1 s.
Collapse
Affiliation(s)
- Yubo Guan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mingzhu Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Yujiao Li
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fenfen Liu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Ya Gao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Tengju Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mingxi Wan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
58
|
Lu S, Xu S, Liu R, Hu H, Wan M. High-contrast active cavitation imaging technique based on multiple bubble wavelet transform. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:1000. [PMID: 27586732 DOI: 10.1121/1.4960589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, a unique method that combines the ultrafast active cavitation imaging technique with multiple bubble wavelet transform (MBWT) for improving cavitation detection contrast was presented. The bubble wavelet was constructed by the modified Keller-Miksis equation that considered the mutual effect among bubbles. A three-dimensional spatial model was applied to simulate the spatial distribution of multiple bubbles. The effects of four parameters on the signal-to-noise ratio (SNR) of cavitation images were evaluated, including the following: initial radii of bubbles, scale factor in the wavelet transform, number of bubbles, and the minimum inter-bubble distance. And the other two spatial models and cavitation bubble size distributions were introduced in the MBWT method. The results suggested that in the free-field experiments, the averaged SNR of images acquired by the MBWT method was improved by 7.16 ± 0.09 dB and 3.14 ± 0.14 dB compared with the values of images acquired by the B-mode and single bubble wavelet transform (SBWT) methods. In addition, in the tissue experiments, the averaged cavitation-to-tissue ratio of cavitation images acquired by the MBWT method was improved by 4.69 ± 0.25 dB and 1.74± 0.29 dB compared with that of images acquired by B-mode and SBWT methods.
Collapse
Affiliation(s)
- Shukuan Lu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shanshan Xu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Runna Liu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hong Hu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
59
|
Tamošiūnas M, Mir LM, Chen WS, Lihachev A, Venslauskas M, Šatkauskas S. Intracellular Delivery of Bleomycin by Combined Application of Electroporation and Sonoporation in Vitro. J Membr Biol 2016; 249:677-689. [PMID: 27317391 DOI: 10.1007/s00232-016-9911-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/08/2016] [Indexed: 01/19/2023]
Abstract
In this study, we aimed to determine whether the combination of electroporation (EP) and ultrasound (US) waves (sonoporation) can result in an increased intracellular delivery of anticancer drug bleomycin. CHO cells were treated with electric pulses (1 or 8 high voltage pulses of 800 or 1200 V/cm, 100 μs or 1 low voltage pulse of 100 or 250 V/cm, 100 ms) and with 880 kHz US of 320 or 500 kPa peak negative pressure, 100 % duty cycle, applied for 2 s in the presence or absence of exogenously added contrast agent microbubbles. Various sequential or simultaneous combinations of EP and sonoporation were used. The results of the study showed that i) sequential treatment of cells by EP and sonoporation enhanced bleomycin electrosonotransfer at the reduced energy of electric field and US; ii) sequential combination of EP and sonoporation induced a summation effect which at some conditions was more prominent when the cells were treated first by EP and then by sonoporation; iii) the most efficient intracellular delivery of bleomycin was achieved by the simultaneous application of cell EP and sonoporation resulting in percentage of reversibly porated cells above the summation level; and iv) compared with sequential application of EP and sonoporation, simultaneous use of electric pulses and US increased cell viability in the absence of bleomycin.
Collapse
Affiliation(s)
- Mindaugas Tamošiūnas
- Biophysical research group, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, 44404, Kaunas, Lithuania
| | - Lluis M Mir
- Vectorology and Anticancer Therapeutics, UMR 8203, Univ. Paris-Sud Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Wen-Shiang Chen
- Department of Physical Medicine & Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| | - Alexey Lihachev
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Rīga, Latvia
| | - Mindaugas Venslauskas
- Biophysical research group, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, 44404, Kaunas, Lithuania
| | - Saulius Šatkauskas
- Biophysical research group, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, 44404, Kaunas, Lithuania.
| |
Collapse
|
60
|
Tsai CH, Zhang JW, Liao YY, Liu HL. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers. Phys Med Biol 2016; 61:2926-46. [PMID: 26988240 DOI: 10.1088/0031-9155/61/7/2926] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a surrogate to on/off control the FUS exposure in stage-2 experiments, we demonstrated both excellent sensitivity (92%) and specificity (92.3%) in discriminating BBB-opening occurrence can be obtained in animal treatments, while concurrently achieving a high positive predicted value (95.8%). Wideband ESD was also highly correlated with the occurrence and level of erythrocyte extravasations (r (2) = 0.81). The proposed system configuration and corresponding analysis based on subharmonic acoustic emissions has the potential to be implemented as a real-time feedback control structure for reliable indication of intact FUS-BBB opening for CNS brain drug delivery.
Collapse
Affiliation(s)
- Chih-Hung Tsai
- Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan
| | | | | | | |
Collapse
|
61
|
Chen X, Wang J, Pacella JJ, Villanueva FS. Dynamic Behavior of Microbubbles during Long Ultrasound Tone-Burst Excitation: Mechanistic Insights into Ultrasound-Microbubble Mediated Therapeutics Using High-Speed Imaging and Cavitation Detection. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:528-538. [PMID: 26603628 PMCID: PMC4698009 DOI: 10.1016/j.ultrasmedbio.2015.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 05/24/2023]
Abstract
Ultrasound (US)-microbubble (MB)-mediated therapies have been found to restore perfusion and enhance drug/gene delivery. On the presumption that MBs do not persist during long US exposure under high acoustic pressures, most schemes use short US pulses when a high US pressure is employed. However, we recently observed an enhanced thrombolytic effect using long US pulses at high acoustic pressures. Therefore, we explored the fate of MBs during long tone-burst exposures (5 ms) at various acoustic pressures and MB concentrations via direct high-speed optical observation and passive cavitation detection. MBs first underwent stable or inertial cavitation depending on the acoustic pressure and then formed gas-filled clusters that continued to oscillate, break up and form new clusters. Cavitation detection confirmed continued, albeit diminishing, acoustic activity throughout the 5-ms US excitation. These data suggest that persisting cavitation activity during long tone bursts may confer additional therapeutic effects.
Collapse
Affiliation(s)
- Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Jianjun Wang
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
62
|
Abstract
High intensity focused ultrasound (HIFU) is rapidly gaining clinical acceptance as a technique capable of providing non-invasive heating and ablation for a wide range of applications. Usually requiring only a single session, treatments are often conducted as day case procedures, with the patient either fully conscious, lightly sedated or under light general anesthesia. HIFU scores over other thermal ablation techniques because of the lack of necessity for the transcutaneous insertion of probes into the target tissue. Sources placed either outside the body (for treatment of tumors or abnormalities of the liver, kidney, breast, uterus, pancreas brain and bone), or in the rectum (for treatment of the prostate), provide rapid heating of a target tissue volume, the highly focused nature of the field leaving tissue in the ultrasound propagation path relatively unaffected. Numerous extra-corporeal, transrectal and interstitial devices have been designed to optimize application-specific treatment delivery for the wide-ranging areas of application that are now being explored with HIFU. Their principle of operation is described here, and an overview of their design principles is given.
Collapse
Affiliation(s)
- Gail Ter Haar
- Joint Department of Physics, The Institute of Cancer Research, Sutton, London, UK.
| |
Collapse
|
63
|
Peng HH, Wu CH, Kang ST, Zhang JW, Liu HL, Chen WS, Wang CH, Yeh CK. Real-time monitoring of inertial cavitation effects of microbubbles by using MRI: In vitro experiments. Magn Reson Med 2015; 77:102-111. [PMID: 26714923 DOI: 10.1002/mrm.26082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/16/2015] [Accepted: 11/19/2015] [Indexed: 12/23/2022]
Abstract
PURPOSE To investigate the feasibility of half-Fourier acquisition single-shot turbo spin-echo (HASTE) for real-time monitoring of signal changes because of water flow induced by inertial cavitation (IC) during microbubbles (MBs)-present focused ultrasound (FUS) exposure. THEORY AND METHODS Strong turbulence produced in MB solution at the onset of IC results in the difficulty to refocus signal echoes and thus the decrease in signal intensity (SI). Fundamental investigations were conducted using an agar phantom containing MB dilutions exposed to 1.85-MHz FUS. The effects of various experimental conditions including MB concentrations, imaging slice thicknesses, chamber diameters, acoustic pressures, duty cycles, and pulse repetition frequencies (PRFs) were discussed. RESULTS Continuous 2.8 MPa FUS exposure resulted in SI changed from 11% to 55% when MBs concentrations increased from 0.025% to 0.1%. When slice thickness increased from 3 mm to 6 or 8 mm, smaller SI changes were observed (84%, 59%, and 46%). Images acquired with chamber diameter of 6 and 3 mm showed SI changes of 84% and 35%, respectively. In burst modes, higher duty cycles exhibited higher SI changes, and lower PRFs exhibited smaller and longer SI decrease. CONCLUSION Under various conditions, substantial signal changes were observable, suggesting the feasibility of applying HASTE to real-time monitor IC effect under FUS exposure. Magn Reson Med 77:102-111, 2017. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hsu-Hsia Peng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chen-Hua Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Shih-Tsung Kang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Jia-Wei Zhang
- Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Division of Medical Engineering Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chung-Hsin Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
64
|
Suo D, Guo S, Lin W, Jiang X, Jing Y. Thrombolysis using multi-frequency high intensity focused ultrasound at MHz range: anin vitrostudy. Phys Med Biol 2015; 60:7403-18. [DOI: 10.1088/0031-9155/60/18/7403] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
65
|
Maciulevicius M, Tamosiunas M, Jurkonis R, Venslauskas MS, Satkauskas S. Analysis of Metrics for Molecular Sonotransfer in Vitro. Mol Pharm 2015; 12:3620-7. [PMID: 26312556 DOI: 10.1021/acs.molpharmaceut.5b00347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ultrasound induced microbubble (MB) cavitation is used to significantly enhance cell membrane permeabilization, thereby allowing delivery of various therapeutic agents into cells. In order to monitor and quantitatively control the extent of cavitation the uniform dosimetry model is needed. In present study we have simultaneously performed quantitative evaluation of three main sonoporation factors: (1) MB concentration, (2) MB cavitation extent, and (3) doxorubicin (DOX) sonotransfer into Chinese hamster ovary cells. MB concentration measurement results and passively recorded MB cavitation signals were used for MB sonodestruction rate and spectral root-mean-square (RMS) calculations, respectively. Subsequently, time to maximum value of RMS and inertial cavitation dose (ICD) quantifications were performed for every acoustic pressure value. This comprehensive research has led not only to explanation of relation of ICD and MB sonodestruction rate but also to the development of a new sonoporation metric: the inverse of time to maximum value of RMS (1/time to maximum value of RMS). ICD and MB sonodestruction rate intercorrelation and correlation with DOX sonotransfer suggest inertial cavitation to be the key mechanism for cell sonoporation. All these metrics were successfully used for doxorubicin sonotransfer prediction (R(2) > 0.9, p < 0.01) and therefore shows feasibility to be applied for future dosimetric applications for ultrasound-mediated drug and gene delivery.
Collapse
Affiliation(s)
| | - Mindaugas Tamosiunas
- Biophysical Research Group, Vytautas Magnus University , Kaunas 44248, Lithuania
| | - Rytis Jurkonis
- Biomedical Engineering Institute, Kaunas University of Technology , Kaunas 44249, Lithuania
| | | | - Saulius Satkauskas
- Biophysical Research Group, Vytautas Magnus University , Kaunas 44248, Lithuania
| |
Collapse
|
66
|
Desjouy C, Fouqueray M, Lo CW, Muleki Seya P, Lee JL, Bera JC, Chen WS, Inserra C. Counterbalancing the use of ultrasound contrast agents by a cavitation-regulated system. ULTRASONICS SONOCHEMISTRY 2015; 26:163-168. [PMID: 25682465 DOI: 10.1016/j.ultsonch.2014.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/24/2014] [Accepted: 12/26/2014] [Indexed: 06/04/2023]
Abstract
The stochastic behavior of cavitation can lead to major problems of initiation and maintenance of cavitation during sonication, responsible of poor reproducibility of US-induced bioeffects in the context of sonoporation for instance. To overcome these disadvantages, the injection of ultrasound contrast agents as cavitation nuclei ensures fast initiation and lower acoustic intensities required for cavitation activity. More recently, regulated-cavitation devices based on the real-time modulation of the applied acoustic intensity have shown their potential to maintain a stable cavitation state during an ultrasonic shot, in continuous or pulsed wave conditions. In this paper is investigated the interest, in terms of cavitation activity, of using such regulated-cavitation device or injecting ultrasound contrast agents in the sonicated medium. When using fixed applied acoustic intensity, results showed that introducing ultrasound contrast agents increases reproducibility of cavitation activity (coefficient of variation 62% and 22% without and with UCA, respectively). Moreover, the use of the regulated-cavitation device ensures a given cavitation activity (coefficient of variation less 0.4% in presence of UCAs or not). This highlights the interest of controlling cavitation over time to free cavitation-based application from the use of UCAs. Interestingly, during a one minute sonication, while ultrasound contrast agents progressively disappear, the regulated-cavitation device counterbalance their destruction to sustain a stable inertial cavitation activity.
Collapse
Affiliation(s)
- C Desjouy
- INSERM, U1032, LabTAU, Universit Claude Bernard Lyon 1, 151 Cours Albert Thomas, 69003 Lyon, France
| | - M Fouqueray
- INSERM, U1032, LabTAU, Universit Claude Bernard Lyon 1, 151 Cours Albert Thomas, 69003 Lyon, France
| | - C W Lo
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, No.7, Zhongshan S. Rd., Taipei 100, Taiwan
| | - P Muleki Seya
- INSERM, U1032, LabTAU, Universit Claude Bernard Lyon 1, 151 Cours Albert Thomas, 69003 Lyon, France
| | - J L Lee
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, No.7, Zhongshan S. Rd., Taipei 100, Taiwan
| | - J C Bera
- INSERM, U1032, LabTAU, Universit Claude Bernard Lyon 1, 151 Cours Albert Thomas, 69003 Lyon, France
| | - W S Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, No.7, Zhongshan S. Rd., Taipei 100, Taiwan
| | - C Inserra
- INSERM, U1032, LabTAU, Universit Claude Bernard Lyon 1, 151 Cours Albert Thomas, 69003 Lyon, France
| |
Collapse
|
67
|
Burgess MT, Porter TM. Acoustic Cavitation-Mediated Delivery of Small Interfering Ribonucleic Acids with Phase-Shift Nano-Emulsions. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:2191-201. [PMID: 25979417 PMCID: PMC4466208 DOI: 10.1016/j.ultrasmedbio.2015.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 05/11/2023]
Abstract
Localized, targeted delivery of small interfering ribonucleic acid (siRNA) has been the foremost hurdle in the use of siRNA for the treatment of various diseases. Major advances have been achieved in the synthesis of siRNA, which have led to greater target messenger RNA (mRNA) silencing and stability under physiologic conditions. Although numerous delivery strategies have shown promise, there are still limited options for targeted delivery and release of siRNA administered systemically. In this in vitro study, phase-shift nano-emulsions (PSNE) were explored as cavitation nuclei to facilitate free siRNA delivery to cancer cells via sonoporation. A cell suspension containing varying amounts of PSNE and siRNA was exposed to 5-MHz pulsed ultrasound at fixed settings (6.2-MPa peak negative pressure, 5-cycle pulses, 250-Hz pulse repetition frequency (PRF) and total exposure duration of 100 s). Inertial cavitation emissions were detected throughout the exposure using a passive cavitation detector. Successful siRNA delivery was achieved (i.e., >50% cell uptake) with high (>80%) viability. The percentage of cells with siRNA uptake was correlated with the amount of inertial cavitation activity generated from vaporized PSNE. The siRNA remained functional after delivery, significantly reducing expression of green fluorescent protein in a stably transfected cell line. These results indicate that vaporized PSNE can facilitate siRNA entry into the cytosol of a majority of sonicated cells and may provide a non-endosomal route for siRNA delivery.
Collapse
Affiliation(s)
- Mark T Burgess
- Department of Mechanical Engineering and Center for Nanoscience and Nanobiotechnology, Boston University, Boston, Massachusetts, USA.
| | - Tyrone M Porter
- Department of Mechanical Engineering and Center for Nanoscience and Nanobiotechnology, Boston University, Boston, Massachusetts, USA; Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
68
|
Gourevich D, Volovick A, Dogadkin O, Wang L, Mulvana H, Medan Y, Melzer A, Cochran S. In Vitro Investigation of the Individual Contributions of Ultrasound-Induced Stable and Inertial Cavitation in Targeted Drug Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:1853-64. [PMID: 25887690 DOI: 10.1016/j.ultrasmedbio.2015.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 03/01/2015] [Accepted: 03/11/2015] [Indexed: 05/23/2023]
Abstract
Ultrasound-mediated targeted drug delivery is a therapeutic modality under development with the potential to treat cancer. Its ability to produce local hyperthermia and cell poration through cavitation non-invasively makes it a candidate to trigger drug delivery. Hyperthermia offers greater potential for control, particularly with magnetic resonance imaging temperature measurement. However, cavitation may offer reduced treatment times, with real-time measurement of ultrasonic spectra indicating drug dose and treatment success. Here, a clinical magnetic resonance imaging-guided focused ultrasound surgery system was used to study ultrasound-mediated targeted drug delivery in vitro. Drug uptake into breast cancer cells in the vicinity of ultrasound contrast agent was correlated with occurrence and quantity of stable and inertial cavitation, classified according to subharmonic spectra. During stable cavitation, intracellular drug uptake increased by a factor up to 3.2 compared with the control. Reported here are the value of cavitation monitoring with a clinical system and its subsequent employment for dose optimization.
Collapse
Affiliation(s)
- Dana Gourevich
- Institute for Medical Science and Technology, School of Medicine, University of Dundee, Dundee, United Kingdom; Capsutech Ltd., Nazareth, Israel
| | - Alexander Volovick
- Institute for Medical Science and Technology, School of Medicine, University of Dundee, Dundee, United Kingdom; InSightec Ltd., Haifa, Israel
| | - Osnat Dogadkin
- Institute for Medical Science and Technology, School of Medicine, University of Dundee, Dundee, United Kingdom; InSightec Ltd., Haifa, Israel
| | - Lijun Wang
- Institute for Medical Science and Technology, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Helen Mulvana
- School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Yoav Medan
- Department of Biomedical Engineering, Technion, Haifa, Israel
| | - Andreas Melzer
- Institute for Medical Science and Technology, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Sandy Cochran
- Institute for Medical Science and Technology, School of Medicine, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
69
|
Petit B, Bohren Y, Gaud E, Bussat P, Arditi M, Yan F, Tranquart F, Allémann E. Sonothrombolysis: the contribution of stable and inertial cavitation to clot lysis. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:1402-1410. [PMID: 25601463 DOI: 10.1016/j.ultrasmedbio.2014.12.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 06/04/2023]
Abstract
Microbubble-mediated sonothrombolysis (STL) is a remarkable approach to vascular occlusion therapy. However, STL remains a complex process with multiple interactions between clot, ultrasound (US), microbubbles (MB) and thrombolytic drug. The aim of this study was to evaluate the ability of combining US and MB to degrade fibrin and, more specifically, to assess the roles of both stable (SC) and inertial (IC) cavitation. Human blood clots containing radiolabeled fibrin were exposed to different combinations of recombinant tissue plasminogen activator (rtPA), US (1 MHz) and phospholipid MB. Three acoustic pressures were tested: 200, 350 and 1,300 kPa (peak-negative pressure). Clot lysis was assessed by diameter loss and release of radioactive fibrin degradation products. The combination rtPA + US + MB clearly revealed that IC (1,300 kPa) was able to enhance fibrin degradation significantly (66.3 ± 1.8%) compared with rtPA alone (51.7 ± 2.0%, p < 0.001). However, SC failed to enhance fibrin degradation at an acoustic pressure of 200 kPa. At 350 kPa, a synergistic effect between rtPA and US + MB was observed with an absolute increase of 6% compared to rtPA alone (p < 0.001). Conversely, without rtPA, the combination of US + MB was unable to degrade the fibrin network (0.3 ± 0.1%, p > 0.05 vs. control), but induced a distinct loss of red blood cells throughout the entire thickness of the clot, implying that MB were able to penetrate and cavitate inside the clot.
Collapse
Affiliation(s)
- B Petit
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Y Bohren
- Bracco Suisse S.A., Plan-les-Ouates, Geneva, Switzerland
| | - E Gaud
- Bracco Suisse S.A., Plan-les-Ouates, Geneva, Switzerland
| | - P Bussat
- Bracco Suisse S.A., Plan-les-Ouates, Geneva, Switzerland
| | - M Arditi
- Bracco Suisse S.A., Plan-les-Ouates, Geneva, Switzerland
| | - F Yan
- Bracco Suisse S.A., Plan-les-Ouates, Geneva, Switzerland
| | - F Tranquart
- Bracco Suisse S.A., Plan-les-Ouates, Geneva, Switzerland
| | - E Allémann
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.
| |
Collapse
|
70
|
Shaw A, ter Haar G, Haller J, Wilkens V. Towards a dosimetric framework for therapeutic ultrasound. Int J Hyperthermia 2015; 31:182-92. [PMID: 25774889 DOI: 10.3109/02656736.2014.997311] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There is a need for a coherent set of exposure and dose quantities to describe ultrasound fields in media other than water (including tissue and tissue-simulating materials). This paper proposes an outline dosimetry scheme, with quantities for free field exposure, in situ exposure, dose (both instantaneous and cumulative) and effect, to act as a structure for organising a more complete set of definitions. It also presents findings from a survey of the views of the therapeutic ultrasound community which generally supports the principle of using modified free field quantities to describe the in situ field, and the prioritising of dose quantities which are related to heating and thermal mechanisms. Although there is no one-to-one relationship between any known ultrasound dose quantity and a specific biological effect, this can also be said of radiotherapy and other modalities where weighting factors have been developed to calculate the degree of equivalence between different tissues and radiation types. This same separation is recommended for ultrasound, provided that an appropriate set of recognised 'engineering' quantities can be established for exposure and dose quantities.
Collapse
Affiliation(s)
- Adam Shaw
- National Physical Laboratory, Acoustics and Ionising Radiation Division , Teddington , UK
| | | | | | | |
Collapse
|
71
|
Xu S, Hu H, Jiang H, Xu Z, Wan M. Ultrafast 2-dimensional image monitoring and array-based passive cavitation detection for ultrasound contrast agent destruction in a variably sized region. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2014; 33:1957-1970. [PMID: 25336483 DOI: 10.7863/ultra.33.11.1957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
OBJECTIVES A combined approach was proposed, based on programmable ultrasound equipment, to simultaneously monitor surviving microbubbles and detect cavitation activity during microbubble destruction in a variably sized region for use in ultrasound contrast agent (UCA)-enhanced therapeutic ultrasound applications. METHODS A variably sized focal region wherein the acoustic pressure was above the UCA fragmentation threshold was synthesized at frequencies of 3, 4, 5, and 6 MHz with a linear broadband imaging probe. The UCAs' temporal and spatial distribution during the microbubbles' destruction was monitored in a 2-dimensional imaging plane at 5 MHz and a frame rate of 400 Hz, and simultaneously, broadband noise emissions during the microbubbles' fragmentation were extracted by using the backscattered signals produced by the focused release bursts (ie, destruction pulses) themselves. Afterward, the temporal evolution of broadband noise emission, the surviving microbubbles in a region of interest (ROI), and the destruction area in a static UCA suspension were computed. Then the inertial cavitation dose, destruction rate of microbubbles in the ROI, and area of the destruction region were determined. RESULTS It was found that an increasing pulse length and a decreasing transmit aperture and excitation frequency were correlated with an increased inertial cavitation dose, microbubble destruction rate, and destruction area. Furthermore, it was obvious that the microbubble destruction rate was significantly correlated with the inertial cavitation dose (P < .05). In addition, the intensity decrease in the ROI was significantly correlated with the destruction area (P < .05). CONCLUSIONS By the proposed strategy, microbubbles could be destroyed in a variably sized region, and destruction efficiency as well as the corresponding inertial cavitation dose could be regulated by manipulating the transmission parameters.
Collapse
Affiliation(s)
- Shanshan Xu
- Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Hong Hu
- Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Hujie Jiang
- Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhi'an Xu
- Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mingxi Wan
- Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
72
|
Pouliopoulos AN, Bonaccorsi S, Choi JJ. Exploiting flow to control the in vitro spatiotemporal distribution of microbubble-seeded acoustic cavitation activity in ultrasound therapy. Phys Med Biol 2014; 59:6941-57. [PMID: 25350470 DOI: 10.1088/0031-9155/59/22/6941] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Focused ultrasound and microbubbles have been extensively used to generate therapeutic bioeffects. Despite encouraging in vivo results, there remains poor control of the magnitude and spatial distribution of these bioeffects due to the limited ability of conventional pulse shapes and sequences to control cavitation dynamics. Thus current techniques are restricted by an efficacy-safety trade-off. The primary aim of the present study was to incorporate the presence of flow in the design of new short pulse sequences, which can more uniformly distribute the cavitation activity. Microbubbles flowing (fluid velocity: 10 mm s(-1)) through a 300 μm tube were sonicated with a focused 0.5 MHz transducer while acoustic emissions were captured with an inserted focused 7.5 MHz passive cavitation detector. The two foci were co-axially aligned and their focal points were overlapped. Whereas conventional sequences are composed of a long burst (>10,000 cycles) emitted at a low burst repetition frequency (<10 Hz), we decomposed this burst into short pulses by adding intervals to facilitate inter-pulse microbubble movement. To evaluate how this sequence influenced cavitation distribution, we emitted short pulses (peak-rarefactional pressure (PRP): 40-366 kPa, pulse length (PL): 5-25 cycles) at high pulse repetition frequencies (PRF: 0.625-10 kHz) for a burst length of 100 ms. Increased cavitation persistence, implied by the duration of the microbubble acoustic emissions, was a measure of improved distribution due to the presence of flow. Sonication at lower acoustic pressures, longer pulse intervals and lower PLs improved the spatial distribution of cavitation. Furthermore, spectral analysis of the microbubble emissions revealed that the improvement at low pressures is due to persisting stable cavitation. In conclusion, new short-pulse sequences were shown to improve spatiotemporal control of acoustic cavitation dynamics during physiologically relevant flow. This could lead to adjustable distribution of the generated in vivo bioeffect and therefore efficient and safe treatment of a wide range of pathologies.
Collapse
Affiliation(s)
- Antonios N Pouliopoulos
- Noninvasive Surgery and Biopsy Laboratory, Bioengineering Department, Imperial College London, London, SW7 2AZ, UK
| | | | | |
Collapse
|
73
|
Wu SY, Tung YS, Marquet F, Downs M, Sanchez C, Chen C, Ferrera V, Konofagou E. Transcranial cavitation detection in primates during blood-brain barrier opening--a performance assessment study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:966-78. [PMID: 24859660 PMCID: PMC4034133 DOI: 10.1109/tuffc.2014.2992] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Focused ultrasound (FUS) has been shown promise in treating the brain locally and noninvasively. Transcranial passive cavitation detection (PCD) provides methodology for monitoring the treatment in real time, but the skull effects remain a major challenge for its translation to the clinic. In this study, we investigated the sensitivity, reliability, and limitations of PCD through primate (macaque and human) skulls in vitro. The results were further correlated with the in vivo macaque studies including the transcranial PCD calibration and real-time monitoring of blood-brain barrier (BBB) opening, with magnetic resonance imaging assessing the opening and safety. The stable cavitation doses using harmonics (SCDh) and ultraharmonics (SCDu), the inertial cavitation dose (ICD), and the cavitation SNR were quantified based on the PCD signals. Results showed that through the macaque skull, the pressure threshold for detecting the SCDh remained the same as without the skull in place, whereas it increased for the SCDu and ICD; through the human skull, it increased for all cavitation doses. The transcranial PCD was found to be reliable both in vitro and in vivo when the transcranial cavitation SNR exceeded the 1-dB detection limit through the in vitro macaque (attenuation: 4.92 dB/mm) and human (attenuation: 7.33 dB/ mm) skull. In addition, using long pulses enabled reliable PCD monitoring and facilitate BBB opening at low pressures. The in vivo results showed that the SCDh became detectable at pressures as low as 100 kPa; the ICD became detectable at 250 kPa, although it could occur at lower pressures; and the SCDu became detectable at 700 kPa and was less reliable at lower pressures. Real-time monitoring of PCD was further implemented during BBB opening, with successful and safe opening achieved at 250 to 600 kPa in both the thalamus and the putamen. In conclusion, this study shows that transcranial PCD in macaques in vitro and in vivo, and in humans in vitro, is reliable by improving the cavitation SNR beyond the 1-dB detection limit.
Collapse
|
74
|
Lo CW, Desjouy C, Chen SR, Lee JL, Inserra C, Béra JC, Chen WS. Stabilizing in vitro ultrasound-mediated gene transfection by regulating cavitation. ULTRASONICS SONOCHEMISTRY 2014; 21:833-839. [PMID: 24216067 DOI: 10.1016/j.ultsonch.2013.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/11/2013] [Accepted: 10/17/2013] [Indexed: 06/02/2023]
Abstract
It is well known that acoustic cavitation can facilitate the inward transport of genetic materials across cell membranes (sonoporation). However, partially due to the unstationary behavior of the initiation and leveling of cavitation, the sonoporation effect is usually unstable, especially in low intensity conditions. A system which is able to regulate the cavitation level during sonication by modulating the applied acoustic intensity with a feedback loop is implemented and its effect on in vitro gene transfection is tested. The regulated system provided better time stability and reproducibility of the cavitation levels than the unregulated conditions. Cultured hepatoma cells (BNL) mixed with 10 μg luciferase plasmids are exposed to 1-MHz pulsed ultrasound with or without cavitation regulation, and the gene transfection efficiency and cell viability are subsequently assessed. Experimental results show that for all exposure intensities (low, medium, and high), stable and intensity dependent, although not higher, gene expression could be achieved in the regulated cavitation system than the unregulated conditions. The cavitation regulation system provides a better control of cavitation and its bioeffect which are crucial important for clinical applications of ultrasound-mediated gene transfection.
Collapse
Affiliation(s)
- Chia-Wen Lo
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, No. 7, Zhongshan S. Rd., Taipei 100, Taiwan
| | | | | | | | | | | | | |
Collapse
|
75
|
de Saint Victor M, Crake C, Coussios CC, Stride E. Properties, characteristics and applications of microbubbles for sonothrombolysis. Expert Opin Drug Deliv 2014; 11:187-209. [DOI: 10.1517/17425247.2014.868434] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
76
|
ter Haar G. Safety first: progress in calibrating high-intensity focused ultrasound treatments. IMAGING IN MEDICINE 2013; 5:567-575. [DOI: 10.2217/iim.13.61] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
77
|
Bull V, Civale J, Rivens I, Ter Haar G. A comparison of acoustic cavitation detection thresholds measured with piezo-electric and fiber-optic hydrophone sensors. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:2406-21. [PMID: 24035410 DOI: 10.1016/j.ultrasmedbio.2013.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/03/2013] [Accepted: 06/19/2013] [Indexed: 06/02/2023]
Abstract
A Fabry-Perot interferometer fiber-optic hydrophone (FOH) was investigated for use as an acoustic cavitation detector and compared with a piezo-ceramic passive cavitation detector (PCD). Both detectors were used to measure negative pressure thresholds for broadband emissions in 3% agar and ex vivo bovine liver simultaneously. FOH-detected half- and fourth-harmonic emissions were also studied. Three thresholds were defined and investigated: (i) onset of cavitation; (ii) 100% probability of cavitation; and (iii) a time-integrated threshold where broadband signals integrated over a 3-s exposure duration, averaged over 5-10 repeat exposures, become statistically significantly greater than noise. The statistical sensitiviy of FOH broadband detection was low compared with that of the PCD (0.43/0.31 in agar/liver). FOH-detected fourth-harmonic data agreed best with PCD broadband (sensitivity: 0.95/0.94, specificity: 0.89/0.76 in agar/liver). The FOH has potential as a cavitation detector, particularly in applications where space is limited or during magnetic resonance-guided studies.
Collapse
Affiliation(s)
- Victoria Bull
- Division of Radiotherapy and Imaging, Institute of Cancer Research, Sutton, Surrey, United Kingdom; and Royal Marsden Hospital NHS Foundation Trust.
| | | | | | | |
Collapse
|
78
|
Radhakrishnan K, Bader KB, Haworth KJ, Kopechek JA, Raymond JL, Huang SL, McPherson DD, Holland CK. Relationship between cavitation and loss of echogenicity from ultrasound contrast agents. Phys Med Biol 2013; 58:6541-63. [PMID: 24002637 PMCID: PMC4170692 DOI: 10.1088/0031-9155/58/18/6541] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ultrasound contrast agents (UCAs) have the potential to nucleate cavitation and promote both beneficial and deleterious bioeffects in vivo. Previous studies have elucidated the pulse-duration-dependent pressure amplitude threshold for rapid loss of echogenicity due to UCA fragmentation. Previous studies have demonstrated that UCA fragmentation was concomitant with inertial cavitation. The purpose of this study was to evaluate the relationship between stable and inertial cavitation thresholds and loss of echogenicity of UCAs as a function of pulse duration. Determining the relationship between cavitation thresholds and loss of echogenicity of UCAs would enable monitoring of cavitation based upon the onscreen echogenicity in clinical applications. Two lipid-shelled UCAs, echogenic liposomes (ELIP) and Definity®, were insonified by a clinical ultrasound scanner in duplex spectral Doppler mode at four pulse durations ('sample volumes') in both a static system and a flow system. Cavitation emissions from the UCAs insonified by Doppler pulses were recorded using a passive cavitation detection system and stable and inertial cavitation thresholds ascertained. Loss of echogenicity from ELIP and Definity® was assessed within regions of interest on B-mode images. A numerical model based on UCA rupture predicted the functional form of the loss of echogenicity from ELIP and Definity®. Stable and inertial cavitation thresholds were found to have a weak dependence on pulse duration. Stable cavitation thresholds were lower than inertial cavitation thresholds. The power of cavitation emissions was an exponential function of the loss of echogenicity over the investigated range of acoustic pressures. Both ELIP and Definity® lost more than 80% echogenicity before the onset of stable or inertial cavitation. Once this level of echogenicity loss occurred, both stable and inertial cavitation were detected in the physiologic flow phantom. These results imply that stable and inertial cavitation are necessary in order to trigger complete loss of echogenicity acoustically from UCAs and this finding can be used when planning diagnostic and therapeutic applications.
Collapse
|
79
|
Barlinn K, Tsivgoulis G, Molina CA, Alexandrov DA, Schafer ME, Alleman J, Alexandrov AV. Exploratory analysis of estimated acoustic peak rarefaction pressure, recanalization, and outcome in the transcranial ultrasound in clinical sonothrombolysis trial. JOURNAL OF CLINICAL ULTRASOUND : JCU 2013; 41:354-360. [PMID: 22927038 DOI: 10.1002/jcu.21978] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 08/02/2012] [Indexed: 06/01/2023]
Abstract
PURPOSE Acoustic peak rarefaction pressure (APRP) is the main factor that influences ultrasound-enhanced thrombolysis. We sought to determine whether recanalization rate and functional outcomes in the Transcranial Ultrasound in Clinical SONothrombolysis (TUCSON) trial could be predicted by estimated in vivo APRP. METHODS We developed an acoustic attenuation model to estimate the in vivo APRP at the arterial occlusion site in each subject of the TUCSON trial with CT scans eligible for measurements. Variables included temporal bone thickness, depth of arterial occlusion site, and average attenuation of skin and brain tissues. Recanalization was defined as partial or complete using the Thrombolysis in Brain Infarction flow grades. Functional independence was assessed at 3 months using the modified Rankin Scale score (mRS, 0-1). RESULTS APRP was calculated in 20 acute ischemic stroke patients treated with sonothrombolysis (mean age, 64 ± 15 years, 65% men; median NIHSS score, 13; IQR, 6-17). The mean APRP was 30.2 ± 15.5 kPa (range, 8-68 kPa). Patients with persisting occlusion had nonsignificantly lower APRP than patients with partial or complete recanalization (25.2 ± 8.0 versus 32.3 ± 17.7 kPa; p = 0.228). Patients who were functionally independent at 3 months had nonsignificantly higher APRP than patients with worse outcome (35.1 ± 19.5 versus 25.9 ± 11.2 kPa; p = 0.217). CONCLUSIONS Our exploratory analysis suggests a potentially important role of successful energy delivery to augment thrombolysis with 2-MHz ultrasound in acute ischemic stroke patients.
Collapse
Affiliation(s)
- Kristian Barlinn
- Comprehensive Stroke Center, University of Alabama Hospital, Birmingham, AL, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Zhao YZ, Du LN, Lu CT, Jin YG, Ge SP. Potential and problems in ultrasound-responsive drug delivery systems. Int J Nanomedicine 2013; 8:1621-33. [PMID: 23637531 PMCID: PMC3635663 DOI: 10.2147/ijn.s43589] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ultrasound is an important local stimulus for triggering drug release at the target tissue. Ultrasound-responsive drug delivery systems (URDDS) have become an important research focus in targeted therapy. URDDS include many different formulations, such as microbubbles, nanobubbles, nanodroplets, liposomes, emulsions, and micelles. Drugs that can be loaded into URDDS include small molecules, biomacromolecules, and inorganic substances. Fields of clinical application include anticancer therapy, treatment of ischemic myocardium, induction of an immune response, cartilage tissue engineering, transdermal drug delivery, treatment of Huntington’s disease, thrombolysis, and disruption of the blood–brain barrier. This review focuses on recent advances in URDDS, and discusses their formulations, clinical application, and problems, as well as a perspective on their potential use in the future.
Collapse
Affiliation(s)
- Ying-Zheng Zhao
- Wenzhou Medical College, Wenzhou City, Zhejiang Province, People's Republic of China
| | | | | | | | | |
Collapse
|
81
|
Maxwell AD, Cain CA, Hall TL, Fowlkes JB, Xu Z. Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:449-65. [PMID: 23380152 PMCID: PMC3570716 DOI: 10.1016/j.ultrasmedbio.2012.09.004] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 06/12/2012] [Accepted: 09/05/2012] [Indexed: 05/04/2023]
Abstract
In this study, the negative pressure values at which inertial cavitation consistently occurs in response to a single, two-cycle, focused ultrasound pulse were measured in several media relevant to cavitation-based ultrasound therapy. The pulse was focused into a chamber containing one of the media, which included liquids, tissue-mimicking materials, and ex vivo canine tissue. Focal waveforms were measured by two separate techniques using a fiber-optic hydrophone. Inertial cavitation was identified by high-speed photography in optically transparent media and an acoustic passive cavitation detector. The probability of cavitation (P(cav)) for a single pulse as a function of peak negative pressure (p(-)) followed a sigmoid curve, with the probability approaching one when the pressure amplitude was sufficient. The statistical threshold (defined as P(cav) = 0.5) was between p(-) = 26 and 30 MPa in all samples with high water content but varied between p(-) = 13.7 and >36 MPa in other media. A model for radial cavitation bubble dynamics was employed to evaluate the behavior of cavitation nuclei at these pressure levels. A single bubble nucleus with an inertial cavitation threshold of p(-) = 28.2 megapascals was estimated to have a 2.5 nm radius in distilled water. These data may be valuable for cavitation-based ultrasound therapy to predict the likelihood of cavitation at various pressure levels and dimensions of cavitation-induced lesions in tissue.
Collapse
Affiliation(s)
- Adam D Maxwell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | |
Collapse
|
82
|
Soltani A. Application of cavitation promoting surfaces in management of acute ischemic stroke. ULTRASONICS 2013; 53:580-587. [PMID: 23141666 PMCID: PMC3510343 DOI: 10.1016/j.ultras.2012.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/27/2012] [Accepted: 10/04/2012] [Indexed: 06/01/2023]
Abstract
High frequency, low intensity ultrasound has the potential to accelerate the clearance of thrombotic occlusion in the absence of cavitation. At high frequency ultrasound, high acoustic pressures, >5.2MPa, are required to generate cavitation in thrombus. The focus of this study was to reduce the cavitation threshold by applying materials with appropriate nucleation sites at the transducer-thrombus boundary to further augment sonothrombolysis. Heterogeneous and homogenous nucleation sites were generated on the outer surface of a polyimide tube (PI) using microfringed (MPI) and laser induced (LPI) microcavities. The cavitation threshold of these materials was determined using a passive cavitation detection system. Furthermore, the biological impact of both materials was investigated in vitro. The results revealed that both MPI and LPI have the potential to induce cavitation at acoustic pressure levels as low as 2.3MPa. In the presence of cavitation, thrombolysis rate could be enhanced by up to two times without any evidence of hemolysis that is generally associated with cavitation activities in blood. A prototype ultrasonic catheter operating at 1.7MHz frequency and acoustic pressure of 2.3MPa with either of MPI or LPI could be considered as a viable option for treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Azita Soltani
- R&D Department, EKOS Corporation, 11911 N Creek Parkway S, Bothell, WA 98011, USA.
| |
Collapse
|
83
|
Chen H, Brayman AA, Evan AP, Matula TJ. Preliminary observations on the spatial correlation between short-burst microbubble oscillations and vascular bioeffects. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:2151-62. [PMID: 23069136 PMCID: PMC3511595 DOI: 10.1016/j.ultrasmedbio.2012.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 08/14/2012] [Accepted: 08/19/2012] [Indexed: 05/09/2023]
Abstract
The objective of this preliminary study was to examine the spatial correlation between microbubble (MB)-induced vessel wall displacements and resultant microvascular bioeffects. MBs were injected into venules in ex vivo rat mesenteries and insonated by a single short ultrasound pulse with a center frequency of 1 MHz and peak negative pressures spanning the range of 1.5-5.6 MPa. MB and vessel dynamics were observed under ultra-high speed photomicrography. The tissue was examined by histology or transmission electron microscopy for vascular bioeffects. Image registration allowed for spatial correlation of MB-induced vessel wall motion to corresponding vascular bioeffects, if any. In cases in which damage was observed, the vessel wall had been pulled inward by more than 50% of the its initial radius. The observed damage was characterized by the separation of the endothelium from the vessel wall. Although the study is limited to a small number of observations, analytic statistical results suggest that vessel invagination comprises a principal mechanism for bioeffects in venules by microbubbles.
Collapse
Affiliation(s)
- Hong Chen
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Andrew A. Brayman
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Andrew P. Evan
- Department of Anatomy and Cell Biology and Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Thomas J. Matula
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| |
Collapse
|
84
|
Qin P, Xu L, Zhong W, Yu ACH. Ultrasound-microbubble mediated cavitation of plant cells: effects on morphology and viability. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:1085-96. [PMID: 22502880 DOI: 10.1016/j.ultrasmedbio.2012.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 02/13/2012] [Accepted: 02/20/2012] [Indexed: 05/13/2023]
Abstract
The interaction between ultrasound pulses and microbubbles is known to generate acoustic cavitation that may puncture biological cells. This work presents new experimental findings on the bioeffects of ultrasound-microbubble mediated cavitation in plant cells with emphasis on direct observations of morphological impact and analysis of viability trends in tobacco BY-2 cells that are widely studied in higher plant physiology. The tobacco cell suspensions were exposed to 1 MHz ultrasound pulses in the presence of 1% v/v microbubbles (10% duty cycle; 1 kHz pulse repetition frequency; 70 mm between probe and cells; 1-min exposure time). Few bioeffects were observed at low peak negative pressures (<0.4 MPa) where stable cavitation presumably occurred. In contrast, at 0.9 MPa peak negative pressure (with more inertial cavitation activities according to our passive cavitation detection results), random pores were found on tobacco cell wall (observed via scanning electron microscopy) and enhanced exogenous uptake into the cytoplasm was evident (noted in our fluorescein isothiocyanate dextran uptake analysis). Also, instant lysis was observed in 23.4% of cells (found using trypan blue staining) and programmed cell death was seen in 23.3% of population after 12 h (determined by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling [TUNEL]). These bioeffects generally correspond in trend with those for mammalian cells. This raises the possibility of developing ultrasound-microbubble mediated cavitation into a targeted gene transfection paradigm for plant cells and, conversely, adopting plant cells as experimental test-beds for sonoporation-based gene therapy in mammalian cells.
Collapse
Affiliation(s)
- Peng Qin
- Medical Engineering Program, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | | | | | | |
Collapse
|
85
|
Kenis AM, Grinfeld J, Zadicario E, Vitek S. Impact of propagating and standing waves on cavitation appearance. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:99-108. [PMID: 22104538 DOI: 10.1016/j.ultrasmedbio.2011.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/20/2011] [Accepted: 08/02/2011] [Indexed: 05/31/2023]
Abstract
Standing waves play a significant role in the appearance of cavitation phenomena. The goal of this study was to investigate the effect that the relation between standing and propagating waves in a focused field has on acoustic bubble cloud formation. Measurements of the cavitation signals were performed on five different configurations of a hemispheric phased array transducer (230 kHz) representing a wide range of relations between propagating and standing waves. The results show that configurations with a larger propagating component induce bubble clouds at lower pressures than configurations with a larger standing component.
Collapse
|
86
|
Carugo D, Ankrett DN, Glynne-Jones P, Capretto L, Boltryk RJ, Zhang X, Townsend PA, Hill M. Contrast agent-free sonoporation: The use of an ultrasonic standing wave microfluidic system for the delivery of pharmaceutical agents. BIOMICROFLUIDICS 2011; 5:44108-4410815. [PMID: 22662060 PMCID: PMC3364807 DOI: 10.1063/1.3660352] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/25/2011] [Indexed: 05/02/2023]
Abstract
Sonoporation is a useful biophysical mechanism for facilitating the transmembrane delivery of therapeutic agents from the extracellular to the intracellular milieu. Conventionally, sonoporation is carried out in the presence of ultrasound contrast agents, which are known to greatly enhance transient poration of biological cell membranes. However, in vivo contrast agents have been observed to induce capillary rupture and haemorrhage due to endothelial cell damage and to greatly increase the potential for cell lysis in vitro. Here, we demonstrate sonoporation of cardiac myoblasts in the absence of contrast agent (CA-free sonoporation) using a low-cost ultrasound-microfluidic device. Within this device an ultrasonic standing wave was generated, allowing control over the position of the cells and the strength of the acoustic radiation forces. Real-time single-cell analysis and retrospective post-sonication analysis of insonated cardiac myoblasts showed that CA-free sonoporation induced transmembrane transfer of fluorescent probes (CMFDA and FITC-dextran) and that different mechanisms potentially contribute to membrane poration in the presence of an ultrasonic wave. Additionally, to the best of our knowledge, we have shown for the first time that sonoporation induces increased cell cytotoxicity as a consequence of CA-free ultrasound-facilitated uptake of pharmaceutical agents (doxorubicin, luteolin, and apigenin). The US-microfluidic device designed here provides an in vitro alternative to expensive and controversial in vivo models used for early stage drug discovery, and drug delivery programs and toxicity measurements.
Collapse
|
87
|
|
88
|
Somaglino L, Bouchoux G, Mestas JL, Lafon C. Validation of an acoustic cavitation dose with hydroxyl radical production generated by inertial cavitation in pulsed mode: application to in vitro drug release from liposomes. ULTRASONICS SONOCHEMISTRY 2011; 18:577-88. [PMID: 20801704 DOI: 10.1016/j.ultsonch.2010.07.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 07/15/2010] [Accepted: 07/19/2010] [Indexed: 05/19/2023]
Abstract
The purpose of this study was to define and validate an inertial cavitation dose (CD) based on the detection of broadband noise, designed to monitor ultrasound-mediated drug release from liposomes. The validation consists of using the terephthalate dosimeter to quantify by fluorescence measurements the extent of hydroxyl radical (()OH) production during inertial cavitation. Sonication of samples was performed using tone bursts (pulse repetition frequency (PRF): 10 Hz(-1) kHz, duty cycle (dc): 5-25%, Isppa: 4100-12,200 W/cm(2)) generated by a 1 MHz focused transducer. Three sets of ultrasound parameters with different PRF and dc were selected to be more precisely compared. Results demonstrated an excellent correlation between *OH radical production and CD for each set of parameters, but significant differences in hydroxyl radical levels were observed among the sets of parameters. The results were compared with other studies, and the same tendency of variation with pulse duration was demonstrated. Results also showed that the CD was not distorted by peak intensity variations and was a much more reliable indicator than sonication time. Consequently, one validated parameter was selected to monitor drug release from two liposome formulations, and compare their ultrasound sensitivity.
Collapse
|
89
|
Ho VHB, Smith MJ, Slater NKH. Effect of magnetite nanoparticle agglomerates on the destruction of tumor spheroids using high intensity focused ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:169-75. [PMID: 21084159 DOI: 10.1016/j.ultrasmedbio.2010.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 08/11/2010] [Accepted: 09/22/2010] [Indexed: 05/08/2023]
Abstract
Magnetite (Fe(3)O(4)) nanoparticle agglomerates have been shown to enhance the degree of inertial cavitation induced by high-intensity focused ultrasound (HIFU). To investigate the effect of these particles on the destruction of tumor spheroids using HIFU, HeLa spheroids were insonated in the presence and absence of magnetite nanoparticle agglomerates. The HIFU transducer was operated with a frequency of 1.1 MHz, pulse repetition frequency of 1.67 kHz, 5% and 50% duty cycles and peak negative focal pressure of 7.2 MPa for 10 s. The significant increase in the HIFU-induced inertial cavitation caused by the presence of magnetite particles at 50% duty cycle was sufficient to cause cell lysis and disintegrate the whole spheroid (p ≤ 0.001). This suggests that magnetite nanoparticle agglomerates can enhance the efficacy of HIFU in tumor ablation and other related therapies.
Collapse
Affiliation(s)
- Vincent H B Ho
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke St, Cambridge, UK
| | | | | |
Collapse
|
90
|
Zhang P, Porter T. An in vitro study of a phase-shift nanoemulsion: a potential nucleation agent for bubble-enhanced HIFU tumor ablation. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:1856-66. [PMID: 20888685 DOI: 10.1016/j.ultrasmedbio.2010.07.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 06/29/2010] [Accepted: 07/01/2010] [Indexed: 05/03/2023]
Abstract
Phase-shift nanoemulsions have the potential to nucleate bubbles and enhance high-intensity focused ultrasound (HIFU) cancer therapy. This emulsion consists of albumin-coated dodecafluoropentane (DDFP) droplets with a mean diameter of approximately 260 nm at 37°C. It is known that superheated perfluorocarbon droplets can be vaporized with microsecond long ultrasound pulses if the acoustic pressure exceeds a specific threshold. In addition, it is well documented that particles smaller than 400 nm can extravasate through leaky tumor vessels and accumulate in the tumor interstitial space. Thus, nanoemulsions may passively target solid tumors, thus localizing cavitation nuclei for bubble-enhanced HIFU-mediated heating. In this study, we investigate the acoustic droplet vaporization of a DDFP nanoemulsion in tissue-mimicking gels and demonstrate the ability to nucleate inertial cavitation (IC) and enhance HIFU-mediated heating. The nanoemulsion was dispersed throughout albumin-acrylamide gel phantoms and sonicated with microsecond-length HIFU pulses (f = 2 MHz). The pressure threshold needed to vaporize the nanoemulsion was measured as a function of degree of superheat, pulse length and nanoemulsion concentration. It was determined that the vaporization threshold was inversely proportional with degree of superheat and independent of pulse length and concentration within the range of values tested. It was also shown that the bubbles formed from vaporized nanoemulsions reduced the IC threshold in the gel phantoms. Finally, it was demonstrated that cavitation from vaporized nanoemulsions accelerated HIFU-mediated heating. The results from this study demonstrate that phase-shift nanoemulsions can be combined with HIFU to provide a high degree of spatial and temporal control of bubble-enhanced heating.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | | |
Collapse
|
91
|
McLaughlan J, Rivens I, Leighton T, Ter Haar G. A study of bubble activity generated in ex vivo tissue by high intensity focused ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:1327-44. [PMID: 20691922 DOI: 10.1016/j.ultrasmedbio.2010.05.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 04/15/2010] [Accepted: 05/14/2010] [Indexed: 05/13/2023]
Abstract
Cancer treatment by extracorporeal high-intensity focused ultrasound (HIFU) is constrained by the time required to ablate clinically relevant tumour volumes. Although cavitation may be used to optimize HIFU treatments, its role during lesion formation is ambiguous. Clear differentiation is required between acoustic cavitation (noninertial and inertial) effects and bubble formation arising from two thermally-driven effects (the vapourization of liquid into vapour, and the exsolution of formerly dissolved permanent gas out of the liquid and into gas spaces). This study uses clinically relevant HIFU exposures in degassed water and ex vivo bovine liver to test a suite of cavitation detection techniques that exploit passive and active acoustics, audible emissions and the electrical drive power fluctuations. Exposure regimes for different cavitation activities (none, acoustic cavitation and, for ex vivo tissue only, acoustic cavitation plus thermally-driven gas space formation) were identified both in degassed water and in ex vivo liver using the detectable characteristic acoustic emissions. The detection system proved effective in both degassed water and tissue, but requires optimization for future clinical application.
Collapse
Affiliation(s)
- James McLaughlan
- The Institute of Cancer Research, Joint Department of Physics, Royal Marsden NHS trust, Sutton, Surrey, UK.
| | | | | | | |
Collapse
|
92
|
Tung YS, Choi JJ, Baseri B, Konofagou EE. Identifying the inertial cavitation threshold and skull effects in a vessel phantom using focused ultrasound and microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:840-52. [PMID: 20420973 PMCID: PMC3968802 DOI: 10.1016/j.ultrasmedbio.2010.02.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 02/17/2010] [Accepted: 02/22/2010] [Indexed: 05/07/2023]
Abstract
Focused ultrasound (FUS) in combination with microbubbles has been shown capable of delivering large molecules to the brain parenchyma through opening of the blood-brain barrier (BBB). However, the mechanism behind the opening remains unknown. To investigate the pressure threshold for inertial cavitation of preformed microbubbles during sonication, passive cavitation detection in conjunction with B-mode imaging was used. A cerebral vessel was simulated by generating a cylindrical hole of 610 microm in diameter inside a polyacrylamide gel and saturating its volume with microbubbles. Definity microbubbles (Mean diameter range: 1.1-3.3 microm, Lantheus Medical Imaging, N. Billerica, MA, USA) were injected prior to sonication (frequency: 1.525 MHz; pulse length: 100 cycles; PRF: 10 Hz; sonication duration: 2 s) through an excised mouse skull. The acoustic emissions due to the cavitation response were passively detected using a cylindrically focused hydrophone, confocal with the FUS transducer and a linear-array transducer with the field of view perpendicular to the FUS beam. The broadband spectral response acquired at the passive cavitation detector (PCD) and the B-mode images identified the occurrence and location of the inertial cavitation, respectively. Findings indicated that the peak-rarefactional pressure threshold was approximately equal to 0.45 MPa, with or without the skull present. Mouse skulls did not affect the threshold of inertial cavitation but resulted in a lower inertial cavitation dose. The broadband response could be captured through the murine skull, so the same PCD set-up can be used in future in vivo applications.
Collapse
Affiliation(s)
- Yao-Sheng Tung
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - James J. Choi
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Babak Baseri
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
- Department of Radiology, Columbia University, New York, New York, USA
| |
Collapse
|
93
|
Chuang YH, Cheng PW, Chen SC, Ruan JL, Li PC. Effects of ultrasound-induced inertial cavitation on enzymatic thrombolysis. ULTRASONIC IMAGING 2010; 32:81-90. [PMID: 20687276 DOI: 10.1177/016173461003200202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cavitation induced by ultrasound enhances enzymatic fibrinolysis by increasing the transport of reactants. However, the effects of cavitation need to be fully understood before sonothrombolysis can be applied clinically. In order to understand the underlying mechanisms, we examined the effects of combining ultrasound, microbubbles and thrombolytic enzymes on thrombolysis. First, we evaluated the relations between inertial cavitation and the reduction in the weight of a blood clot. Inertial cavitation was varied by changing the amplitude and duration of the transmitted acoustic wave as well as the concentration of microbubbles used to induce cavitation. Second, we studied the combined effects of streptokinase and inertial cavitation on thrombolysis. The results show that inertial cavitation increases the weight reduction of a blood clot by up to 33.9%. With linear regression fitting, the measured differential inertial cavitation dose and the weight reduction had a correlation coefficient of 0.66. Microscopically, enzymatic thrombolysis effects manifest as multiple large cavities within the clot that are uniformly distributed on the side exposed to ultrasound. This suggests that inertial cavitation plays an important role in producing cavities, while microjetting of the microbubbles induces pits on the clot surface. These observations preliminarily demonstrate the clinical potential of sonothrombolysis. The use of the differential inertial cavitation dose as an indicator of blood clot weight loss for controlled sonothrombolysis is also possible and will be further explored.
Collapse
Affiliation(s)
- Yueh-Hsun Chuang
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
94
|
Rapoport N, Christensen DA, Kennedy AM, Nam KH. Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:419-29. [PMID: 20133040 PMCID: PMC2826577 DOI: 10.1016/j.ultrasmedbio.2009.11.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 11/17/2009] [Accepted: 11/20/2009] [Indexed: 05/05/2023]
Abstract
Cavitation properties of block copolymer stabilized perfluoropentane nanoemulsions have been investigated. The nanoemulsions were stabilized by two biodegradable amphiphilic block copolymers differing in the structure of the hydrophobic block, poly(ethylene oxide)-co-poly(L-lactide) (PEG-PLLA) and poly(ethylene oxide)-co-polycaprolactone (PEG-PCL). Cavitation parameters were measured in liquid emulsions and gels as a function of ultrasound pressure for unfocused or focused 1-MHz ultrasound. Acoustic droplet vaporization preceded generation of acoustic cavitation in liquid matrices and gels. Both stable and inertial cavitation was observed for focused ultrasound while only stable cavitation was observed for unfocused ultrasound.
Collapse
Affiliation(s)
- Natalya Rapoport
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | | | |
Collapse
|
95
|
Duck F. Acoustic dose and acoustic dose-rate. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:1679-1685. [PMID: 19647925 DOI: 10.1016/j.ultrasmedbio.2009.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 05/01/2009] [Accepted: 05/04/2009] [Indexed: 05/28/2023]
Abstract
Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Expressions for acoustic dose and acoustic dose-rate are given for plane-wave conditions, including temporal and frequency dependencies of energy deposition. The relationship between the acoustic dose-rate and the resulting temperature increase is explored, as is the relationship between acoustic dose-rate and radiation force. Energy transfer from the wave to the medium by means of acoustic cavitation is considered, and an approach is proposed in principle that could allow cavitation to be included within the proposed definitions of acoustic dose and acoustic dose-rate.
Collapse
Affiliation(s)
- Francis Duck
- Medical Physics and Bioengineering Department, Royal United Hospital, Bath and University of Bath, Bath, United Kingdom.
| |
Collapse
|
96
|
Samuel S, Cooper MA, Bull JL, Fowlkes JB, Miller DL. An ex vivo study of the correlation between acoustic emission and microvascular damage. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:1574-86. [PMID: 19560856 PMCID: PMC2731820 DOI: 10.1016/j.ultrasmedbio.2009.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 04/15/2009] [Accepted: 04/18/2009] [Indexed: 05/11/2023]
Abstract
The objective of this study was to conduct an ex vivo examination of correlation between acoustic emission and tissue damage. Intravital microscopy was employed in conjunction with ultrasound exposure in cremaster muscle of male Wistar rats. Definity microbubbles were administered intravenously through the tail vein (80microL.kg(-1).min(-1)infusion rate) with the aid of a syringe pump. For the pulse repetition frequency (PRF) study, exposures were performed at four locations of the cremaster at a PRF of 1000, 500, 100 and 10Hz (one location per PRF per rat). The 100-pulse exposures were implemented at a peak rarefactional pressure (P(r)) of 2MPa, frequency of 2.25MHz with 46 cycle pulses. For the pressure amplitude threshold study, 100-pulse exposures (46 cycle pulses) were conducted at various peak rarefactional pressures from 0.5MPa to 2MPa at a frequency of 2.25MHz and PRF of 100Hz. Photomicrographs were captured before and 2-min postexposure. On a pulse-to-pulse basis, the 10Hz acoustic emission was considerably higher and more sustained than those at other PRFs (1000, 500, and 100Hz) (p<0.05). Damage, measured as area of extravasation of red blood cells (RBCs), was also significantly higher at 10Hz PRF than at 1000, 500 and 100Hz (p<0.01). The correlation of acoustic emission to tissue damage showed a trend of increasing damage with increasing cumulative function of the relative integrated power spectrum (CRIPS; R(2)=0.75). No visible damage was present at P(r)< or =0.85MPa. Damage, however, was observed at P(r)> or =1.0MPa and it increased with increasing acoustic pressure.
Collapse
Affiliation(s)
- Stanley Samuel
- Department of Radiology, University of Michigan Medical Center, University of Michigan, Ann Arbor, 48109, USA.
| | | | | | | | | |
Collapse
|
97
|
Farny CH, Glynn Holt R, Roy RA. The correlation between bubble-enhanced HIFU heating and cavitation power. IEEE Trans Biomed Eng 2009; 57:175-84. [PMID: 19651548 DOI: 10.1109/tbme.2009.2028133] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has been established that while the inherent presence of bubbles increases heat generation due to scattering and absorption, inertial cavitation is responsible for elevated heating during high-intensity focused ultrasound (HIFU) application. The contribution of bubble-induced heating can be an important factor to consider, as it can be several times greater than the expected heat deposition from absorption of energy from the primary ultrasound field. The temperature and cavitation signal near the focus were measured for 5.5-s continuous-wave 1.1-MHz HIFU sonications in tissue mimicking phantoms. The measured temperature was corrected for heating predicted from the primary ultrasound absorption to isolate the temperature rise from the bubble activity. The temperature rise induced from cavitation correlates well with a measurement of the instantaneous "cavitation power" as indicated by the mean square voltage output of a 15-MHz passive cavitation detector. The results suggest that careful processing of the cavitation signals can serve as a proxy for measuring the heating contribution from inertial cavitation.
Collapse
|
98
|
Abstract
The main mechanisms by which ultrasound can induce biological effects as it passes through the body are thermal and mechanical in nature. The mechanical effects are primarily related to the presence of gas, whether drawn out of solution by the negative going ultrasound pressure wave (acoustic cavitation), a naturally occurring gas body (such as lung alveoli), or deliberately introduced into the blood stream to increase imaging contrast (microbubble contrast agents). Observed biological effects are discussed in the context of these mechanisms and their relevance to ultrasound safety is discussed.
Collapse
Affiliation(s)
- G ter Haar
- Joint Department of Physics, Institute of Cancer Research, Royal Marsden Hospital, Sutton, Surrey SM2 5PT, UK,
| |
Collapse
|
99
|
Farny CH, Holt RG, Roy RA. Temporal and spatial detection of HIFU-induced inertial and hot-vapor cavitation with a diagnostic ultrasound system. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:603-15. [PMID: 19110368 DOI: 10.1016/j.ultrasmedbio.2008.09.025] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 09/15/2008] [Accepted: 09/30/2008] [Indexed: 05/08/2023]
Abstract
The onset and presence of inertial cavitation and near-boiling temperatures in high-intensity focused ultrasound (HIFU) therapy have been identified as important indicators of energy deposition for therapy guidance. Passive cavitation detection is commonly used to detect bubble emissions, where a fixed-focus single-element acoustic transducer is typically used as a passive cavitation detector (PCD). This technique is suboptimal for clinical applications, because most PCD transducers are tightly focused and afford limited spatial coverage of the HIFU focal region. A Terason 2000 Ultrasound System was used as a PCD array to expand the spatial detection region for cavitation by operating in passive mode, obtaining the radiofrequency signals corresponding to each scan line and filtering the contribution from scattering of the HIFU signal harmonics. This approach allows for spatially resolved detection of both inertial and stable cavitation throughout the focal region. Measurements with the PCD array during sonication with a 1.1-MHz HIFU source in tissue phantoms were compared with single-element PCD and thermocouple sensing. Stable cavitation signals at the harmonics and superharmonics increased in a threshold fashion for temperatures >90 degrees C, an effect attributed to high vapor pressure in the cavities. Incorporation of these detection techniques in a diagnostic ultrasound platform could result in a powerful tool for improving HIFU guidance and treatment.
Collapse
Affiliation(s)
- Caleb H Farny
- Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, 221 Longwood Ave., Boston, MA 02115, USA.
| | | | | |
Collapse
|
100
|
Soltani A, Volz KR, Hansmann DR. Effect of modulated ultrasound parameters on ultrasound-induced thrombolysis. Phys Med Biol 2008; 53:6837-47. [PMID: 19001697 DOI: 10.1088/0031-9155/53/23/012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The potential of ultrasound to enhance enzyme-mediated thrombolysis by application of constant operating parameters (COP) has been widely demonstrated. In this study, the effect of ultrasound with modulated operating parameters (MOP) on enzyme-mediated thrombolysis was investigated. The MOP protocol was applied to an in vitro model of thrombolysis. The results were compared to a COP with the equivalent soft tissue thermal index (TIS) over the duration of ultrasound exposure of 30 min (p < 0.14). To explore potential differences in the mechanism responsible for ultrasound-induced thrombolysis, a perfusion model was used to measure changes in average fibrin pore size of clot before, after and during exposure to MOP and COP protocols and cavitational activity was monitored in real time for both protocols using a passive cavitation detection system. The relative lysis enhancement by each COP and MOP protocol compared to alteplase alone yielded values of 33.69 +/- 12.09% and 63.89 +/- 15.02% in a thrombolysis model, respectively (p < 0.007). Both COP and MOP protocols caused an equivalent significant increase in average clot pore size of 2.09 x 10(-2) +/- 0.01 microm and 1.99 x 10(-2) +/- 0.004 microm, respectively (p < 0.74). No signatures of inertial or stable cavitation were observed for either acoustic protocol. In conclusion, due to mechanisms other than cavitation, application of ultrasound with modulated operating parameters has the potential to significantly enhance the relative lysis enhancement compared to application of ultrasound with constant operating parameters.
Collapse
Affiliation(s)
- Azita Soltani
- Research and Development Department, EKOS Corporation, 11911 N Creek Parkway S, Bothell, WA 98011, USA.
| | | | | |
Collapse
|