51
|
Carlton SM, Du J, Tan HY, Nesic O, Hargett GL, Bopp AC, Yamani A, Lin Q, Willis WD, Hulsebosch CE. Peripheral and central sensitization in remote spinal cord regions contribute to central neuropathic pain after spinal cord injury. Pain 2009; 147:265-76. [PMID: 19853381 DOI: 10.1016/j.pain.2009.09.030] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 12/13/2022]
Abstract
Central neuropathic pain (CNP) developing after spinal cord injury (SCI) is described by the region affected: above-level, at-level and below-level pain occurs in dermatomes rostral, at/near, or below the SCI level, respectively. People with SCI and rodent models of SCI develop above-level pain characterized by mechanical allodynia and thermal hyperalgesia. Mechanisms underlying this pain are unknown and the goals of this study were to elucidate components contributing to the generation of above-level CNP. Following a thoracic (T10) contusion, forelimb nociceptors had enhanced spontaneous activity and were sensitized to mechanical and thermal stimulation of the forepaws 35 days post-injury. Cervical dorsal horn neurons showed enhanced responses to non-noxious and noxious mechanical stimulation as well as thermal stimulation of receptive fields. Immunostaining dorsal root ganglion (DRG) cells and cord segments with activating transcription factor 3 (ATF3, a marker for neuronal injury) ruled out neuronal damage as a cause for above-level sensitization since few C8 DRG cells expressed AFT3 and cervical cord segments had few to no ATF3-labeled cells. Finally, activated microglia and astrocytes were present in thoracic and cervical cord at 35 days post-SCI, indicating a rostral spread of glial activation from the injury site. Based on these data, we conclude that peripheral and central sensitization as well as reactive glia in the uninjured cervical cord contribute to CNP. We hypothesize that reactive glia in the cervical cord release pro-inflammatory substances which drive chronic CNP. Thus a complex cascade of events spanning many cord segments underlies above-level CNP.
Collapse
Affiliation(s)
- Susan M Carlton
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Hulsebosch CE, Hains BC, Crown ED, Carlton SM. Mechanisms of chronic central neuropathic pain after spinal cord injury. ACTA ACUST UNITED AC 2008; 60:202-13. [PMID: 19154757 DOI: 10.1016/j.brainresrev.2008.12.010] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 12/25/2022]
Abstract
Not all spinal contusions result in mechanical allodynia, in which non-noxious stimuli become noxious. The studies presented use the NYU impactor at 12.5 mm drop or the Infinite Horizons Impactor (150 kdyn, 1 s dwell) devices to model spinal cord injury (SCI). Both of these devices and injury parameters, if done correctly, will result in animals with above level (forelimb), at level (trunk) and below level (hindlimb) mechanical allodynia that model the changes in evoked somatosensation experienced by the majority of people with SCI. The sections are as follows: 1) Mechanisms of remote microglial activation and pain signaling in "below-level" central pain 2) Intracellular signaling mechanisms in central sensitization in "at-level" pain 3) Peripheral sensitization contributes to "above level" injury pain following spinal cord injury and 4) Role of reactive oxygen species in central sensitization in regional neuropathic pain following SCI. To summarize, differential regional mechanisms contribute to the regional chronic pain states. We propose the importance of understanding the mechanisms in the differential regional pain syndromes after SCI in the chronic condition. Targeting regional mechanisms will be of enormous benefit to the SCI population that suffer chronic pain, and will contribute to better treatment strategies for other chronic pain syndromes.
Collapse
Affiliation(s)
- Claire E Hulsebosch
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1043, USA.
| | | | | | | |
Collapse
|
53
|
Hoschouer EL, Yin FQ, Jakeman LB. L1 cell adhesion molecule is essential for the maintenance of hyperalgesia after spinal cord injury. Exp Neurol 2008; 216:22-34. [PMID: 19059398 DOI: 10.1016/j.expneurol.2008.10.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/21/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022]
Abstract
Spinal cord injury (SCI) results in a loss of normal motor and sensory function, leading to severe disability and reduced quality of life. A large proportion of individuals with SCI also suffer from neuropathic pain symptoms. The causes of abnormal pain sensations are not well understood, but can include aberrant sprouting and reorganization of injured or spared sensory afferent fibers. L1 is a cell adhesion molecule that contributes to axonal outgrowth, guidance and fasciculation in development as well as synapse formation and plasticity throughout life. In the present study, we used L1 knockout (KO) mice to determine whether this adhesion molecule contributes to sensory dysfunction after SCI. Both wild-type (WT) and KO mice developed heat hyperalgesia following contusion injury, but the KO mice recovered normal response latencies beginning at 4 weeks post-injury. Histological analyses confirmed increased sprouting of sensory fibers containing calcitonin-gene related peptide (CGRP) in the deep dorsal horn of the lumbar spinal cord and increased numbers of interneurons expressing protein kinase C gamma (PKCgamma) in WT mice 6 weeks after injury. In contrast, L1 KO mice had less CGRP(+) fiber sprouting, but even greater numbers of PKCgamma(+) interneurons at the 6 week time point. These data demonstrate that L1 plays a role in maintenance of thermal hyperalgesia after SCI in mice, and implicate CGRP(+) fiber sprouting and the upregulation of PKCgamma expression as potential contributors to this response.
Collapse
Affiliation(s)
- Emily L Hoschouer
- Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, OH, USA
| | | | | |
Collapse
|
54
|
Lee JW, Furmanski O, Castellanos DA, Daniels LA, Hama AT, Sagen J. Prolonged nociceptive responses to hind paw formalin injection in rats with a spinal cord injury. Neurosci Lett 2008; 439:212-5. [PMID: 18524486 DOI: 10.1016/j.neulet.2008.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 05/06/2008] [Accepted: 05/07/2008] [Indexed: 11/29/2022]
Abstract
Unilateral lesioning of the spinal dorsal horn with the excitotoxin quisqualic acid (QUIS) leads to robust degeneration of dorsal horn grey matter, and robust pain-related symptoms, such as cutaneous hypersensitivity, persist long after injury. A possible mechanism that underlies the pain-related symptoms is the disruption of dorsal horn inhibitory neuron function, leading to decreased inhibition of nociceptive neurons. Five percent formalin was injected into the hind paw of rats with either a QUIS lesion or sham lesion. Both QUIS- and sham-lesioned rats displayed bi-phasic hind paw flinches following formalin injection, but a prolonged response was observed in QUIS-lesioned rats. The expression of the immediate-early gene product Fos in the dorsal horn ipsilateral to formalin injection was similar between QUIS- and sham-lesioned rats. In QUIS-lesioned rats, however, there was a marked absence of dorsal horn neurons, particularly GABAergic neurons, compared to sham-lesioned rats. The prolonged nociceptive response observed with a unilateral QUIS lesion may be due to generalized changes in dorsal horn neuron function including a loss of inhibitory neuron function.
Collapse
Affiliation(s)
- Jeung Woon Lee
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, 1095 NW 14th Terrace (R-48), Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
55
|
Deumens R, Joosten EAJ, Waxman SG, Hains BC. Locomotor dysfunction and pain: the scylla and charybdis of fiber sprouting after spinal cord injury. Mol Neurobiol 2008; 37:52-63. [PMID: 18415034 DOI: 10.1007/s12035-008-8016-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 03/19/2008] [Indexed: 10/22/2022]
Abstract
Injury to the spinal cord (SCI) can produce a constellation of problems including chronic pain, autonomic dysreflexia, and motor dysfunction. Neuroplasticity in the form of fiber sprouting or the lack thereof is an important phenomenon that can contribute to the deleterious effects of SCI. Aberrant sprouting of primary afferent fibers and synaptogenesis within incorrect dorsal horn laminae leads to the development and maintenance of chronic pain as well as autonomic dysreflexia. At the same time, interruption of connections between supraspinal motor control centers and spinal cord output cells, due to lack of successful regenerative sprouting of injured descending fiber tracts, contributes to motor deficits. Similarities in the molecular control of axonal growth of motor and sensory fibers have made the development of cogent therapies difficult. In this study, we discuss recent findings related to the degradation of inhibitory barriers and promotion of sprouting of motor fibers as a strategy for the restoration of motor function and note that this may induce primary afferent fiber sprouting that can contribute to chronic pain. We highlight the importance of careful attentiveness to off-target molecular- and circuit-level modulation of nociceptive processing while moving forward with the development of therapies that will restore motor function after SCI.
Collapse
Affiliation(s)
- Ronald Deumens
- Pain Management and Research Center, Department of Anesthesiology, Maastricht University Hospital, P. Debyelaan 25, P.O. Box 5800, 6200 AZ, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
56
|
Saab CY, Waxman SG, Hains BC. Alarm or curse? The pain of neuroinflammation. ACTA ACUST UNITED AC 2008; 58:226-35. [PMID: 18486228 DOI: 10.1016/j.brainresrev.2008.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 04/03/2008] [Accepted: 04/04/2008] [Indexed: 02/07/2023]
Abstract
The nociceptive nervous system and the immune system serve to defend and alarm the host of imminent or actual damage. However, persistent or recurring exposure of neurons to activated immune cells is associated with an increase in painful behavior following experimental neuropathic injuries. Our understanding of the functional consequences of immune cell-neuron interaction is still incomplete. The purpose of this review is to focus on a seriously detrimental consequence of chronic activation of these two systems, by discussing the contributions of microglia and polymorphonuclear neutrophils to neuropathic pain following experimental spinal cord injury or peripheral nerve injury. Identification of molecules mediating pro-nociceptive signaling between immune cells and neurons, as well as the distinction between neuroprotective versus neuroexcitatory effects of activated immune cells, may be useful in the development of pharmacotherapy for the management of chronic pain and restoration of the beneficial alarm function of pain.
Collapse
Affiliation(s)
- Carl Y Saab
- Department of Surgery, Rhode Island Hospital, Brown Medical School and Department of Neuroscience, Brown University, 593 Eddy St, NAB 210, Providence, RI 02903, USA.
| | | | | |
Collapse
|
57
|
Xing GG, Liu FY, Qu XX, Han JS, Wan Y. Long-term synaptic plasticity in the spinal dorsal horn and its modulation by electroacupuncture in rats with neuropathic pain. Exp Neurol 2007; 208:323-332. [PMID: 17936754 DOI: 10.1016/j.expneurol.2007.09.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Revised: 08/31/2007] [Accepted: 09/04/2007] [Indexed: 02/01/2023]
Abstract
Our previous study has reported that electroacupuncture (EA) at low frequency of 2 Hz had greater and more prolonged analgesic effects on mechanical allodynia and thermal hyperalgesia than that EA at high frequency of 100 Hz in rats with neuropathic pain. However, how EA at different frequencies produces distinct analgesic effects on neuropathic pain is unclear. Neuronal plastic changes in spinal cord might contribute to the development and maintenance of neuropathic pain. In the present study, we investigated changes of spinal synaptic plasticity in the development of neuropathic pain and its modulation by EA in rats with neuropathic pain. Field potentials of spinal dorsal horn neurons were recorded extracellularly in sham-operated rats and in rats with spinal nerve ligation (SNL). We found for the first time that the threshold for inducing long-term potentiation (LTP) of C-fiber-evoked potentials in dorsal horn was significantly lower in SNL rats than that in sham-operated rats. The threshold for evoking the C-fiber-evoked field potentials was also significantly lower, and the amplitude of the field potentials was higher in SNL rats as compared with those in the control rats. EA at low frequency of 2 Hz applied on acupoints ST 36 and SP 6, which was effective in treatment of neuropathic pain, induced long-term depression (LTD) of the C-fiber-evoked potentials in SNL rats. This effect could be blocked by N-methyl-d-aspartic acid (NMDA) receptor antagonist MK-801 and by opioid receptor antagonist naloxone. In contrast, EA at high frequency of 100 Hz, which was not effective in treatment of neuropathic pain, induced LTP in SNL rats but LTD in sham-operated rats. Unlike the 2 Hz EA-induced LTD in SNL rats, the 100 Hz EA-induced LTD in sham-operated rats was dependent on the endogenous GABAergic and serotonergic inhibitory system. Results from our present study suggest that (1) hyperexcitability in the spinal nociceptive synaptic transmission may occur after nerve injury, which may contribute to the development of neuropathic pain; (2) EA at low or high frequency has a different effect on modulating spinal synaptic plasticities in rats with neuropathic pain. The different modulation on spinal LTD or LTP by low- or high-frequency EA may be a potential mechanism of different analgesic effects of EA on neuropathic pain. LTD of synaptic strength in the spinal dorsal horn in SNL rats may contribute to the long-lasting analgesic effects of EA at 2 Hz.
Collapse
Affiliation(s)
- Guo-Gang Xing
- Department of Neurobiology, Key Laboratory for Neuroscience of the Ministry of Education and Public Health, Peking University, 38 Xue-Yuan Road, Beijing 100083, People's Republic of China.
| | | | | | | | | |
Collapse
|
58
|
Mukhida K, Mendez I, McLeod M, Kobayashi N, Haughn C, Milne B, Baghbaderani B, Sen A, Behie LA, Hong M. Spinal GABAergic Transplants Attenuate Mechanical Allodynia in a Rat Model of Neuropathic Pain. Stem Cells 2007; 25:2874-85. [PMID: 17702982 DOI: 10.1634/stemcells.2007-0326] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Injury to the spinal cord or peripheral nerves can lead to the development of allodynia due to the loss of inhibitory tone involved in spinal sensory function. The potential of intraspinal transplants of GABAergic cells to restore inhibitory tone and thus decrease pain behaviors in a rat model of neuropathic pain was investigated. Allodynia of the left hind paw was induced in rats by unilateral L5- 6 spinal nerve root ligation. Mechanical sensitivity was assessed using von Frey filaments. Postinjury, transgenic fetal green fluorescent protein mouse GABAergic cells or human neural precursor cells (HNPCs) expanded in suspension bioreactors and differentiated into a GABAergic phenotype were transplanted into the spinal cord. Control rats received undifferentiated HNPCs or cell suspension medium only. Animals that received either fetal mouse GABAergic cell or differentiated GABAergic HNPC intraspinal transplants demonstrated a significant increase in paw withdrawal thresholds at 1 week post-transplantation that was sustained for 6 weeks. Transplanted fetal mouse GABAergic cells demonstrated immunoreactivity for glutamic acid decarboxylase and GABA that colocalized with green fluorescent protein. Intraspinally transplanted differentiated GABAergic HNPCs demonstrated immunoreactivity for GABA and beta-III tubulin. In contrast, intraspinal transplantation of undifferentiated HNPCs, which predominantly differentiated into astrocytes, or cell suspension medium did not affect any behavioral recovery. Intraspinally transplanted GABAergic cells can reduce allodynia in a rat model of neuropathic pain. In addition, HNPCs expanded in a standardized fashion in suspension bioreactors and differentiated into a GABAergic phenotype may be an alternative to fetal cells for cell-based therapies to treat chronic pain syndromes.
Collapse
Affiliation(s)
- Karim Mukhida
- Cell Restoration Laboratory, Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Zhao P, Waxman SG, Hains BC. Extracellular signal-regulated kinase-regulated microglia-neuron signaling by prostaglandin E2 contributes to pain after spinal cord injury. J Neurosci 2007; 27:2357-68. [PMID: 17329433 PMCID: PMC6673468 DOI: 10.1523/jneurosci.0138-07.2007] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Many patients with traumatic spinal cord injury (SCI) report pain that persists indefinitely and is resistant to available therapeutic approaches. We recently showed that microglia become activated after experimental SCI and dynamically maintain hyperresponsiveness of spinal cord nociceptive neurons and pain-related behaviors. Mechanisms of signaling between microglia and neurons that help to maintain abnormal pain processing are unknown. In this study, adult male Sprague Dawley rats underwent T9 spinal cord contusion injury. Four weeks after injury when lumbar dorsal horn multireceptive neurons became hyperresponsive and when behavioral nociceptive thresholds to mechanical and thermal stimuli were decreased, we tested the hypothesis that prostaglandin E2 (PGE2) contributes to signaling between microglia and neurons. Immunohistochemical data showed specific localization of phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2), an upstream regulator of PGE2 release, to microglial cells and a neuronal localization of the PGE2 receptor E-prostanoid 2 (EP2). Enzyme immunoassay analysis showed that PGE2 release was dependent on microglial activation and ERK1/2 phosphorylation. Pharmacological antagonism of PGE2 release was achieved with the mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor PD98059 [2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one] and the microglial inhibitor minocycline. Cyclooxygenase-2 expression in microglia was similarly reduced by MEK1/2 inhibition. PD98059 and EP2 receptor blockade with AH6809 (6-isopropoxy-9-oxoxanthene-2-carboxylic acid) resulted in a decrease in hyperresponsiveness of dorsal horn neurons and partial restoration of behavioral nociceptive thresholds. Selective targeting of dorsal horn microglia with the Mac-1-SAP immunotoxin, a chemical conjugate of mouse monoclonal antibody to CD11b and the ribosome-inactivating protein saporin, resulted in reduced microglia staining, reduction in PGE2 levels, and reversed pain-related behaviors [corrected]. On the basis of these observations, we propose a PGE2-dependent, ERK1/2-regulated microglia-neuron signaling pathway that mediates the microglial component of pain maintenance after injury to the spinal cord.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, and Rehabilitation Research Center, Virginia Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Stephen G. Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, and Rehabilitation Research Center, Virginia Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Bryan C. Hains
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, and Rehabilitation Research Center, Virginia Connecticut Healthcare System, West Haven, Connecticut 06516
| |
Collapse
|
60
|
Gwak YS, Kang J, Leem JW, Hulsebosch CE. Spinal AMPA receptor inhibition attenuates mechanical allodynia and neuronal hyperexcitability following spinal cord injury in rats. J Neurosci Res 2007; 85:2352-9. [PMID: 17549753 DOI: 10.1002/jnr.21379] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, we examined whether a competitive AMPA receptor antagonist, NBQX, attenuates mechanical allodynia and hyperexcitability of spinal neurons in remote, caudal regions in persistent central neuropathic pain following spinal cord injury in rats. Spinal cord injury was produced by unilateral T13 transverse spinal hemisection, from dorsal to ventral, in male Sprague Dawley rats (200-250 g). Mechanical thresholds were measured behaviorally, and the excitability of wide-dynamic-range (WDR) dorsal horn neurons in the lumbar cord (L4-L5) was measured to assess central neuropathicpain. On postoperation day (POD) 28 after spinalhemisection, mechanical thresholds were significantly decreased in both injured (ipsilateral) and noninjured (contralateral) hindpaws compared with preinjury and sham control, respectively (P < 0.05). Intrathecal administration of NBQX (0.25, 0.5, 1 mM) significantly reversed the decreased mechanical thresholds in both hindpaws, dose dependently (P < 0.05). The excitability of WDR neurons was significantly enhanced on both sides of the lumbar dorsal horn 28 days following spinal hemisection (P < 0.05). The hyperexcitability of WDR neurons was attenuated by topical administration of NBQX (0.125, 0.25, 0.5, 1 mM), dose dependently (P < 0.05). Regression analysis indicated that at least three molecules of NBQX bond per receptor complex, and are needed to achieve inhibition of WDR hyperexcitability. In conclusion, our study demonstrates that the AMPA receptor plays an important role in behaviors related to the maintenance of central neuropathic pain below the level of spinal cord injury.
Collapse
Affiliation(s)
- Young Seob Gwak
- Department of Physiology, Brain Research Institute, and BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| | | | | | | |
Collapse
|
61
|
Hains BC, Saab CY, Waxman SG. Alterations in Burst Firing of Thalamic VPL Neurons and Reversal by Nav1.3 Antisense After Spinal Cord Injury. J Neurophysiol 2006; 95:3343-52. [PMID: 16481457 DOI: 10.1152/jn.01009.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recently showed that spinal cord contusion injury (SCI) at the thoracic level induces pain-related behaviors and increased spontaneous discharges, hyperresponsiveness to innocuous and noxious peripheral stimuli, and enlarged receptive fields in neurons in the ventral posterolateral (VPL) nucleus of the thalamus. These changes are linked to the abnormal expression of Nav1.3, a rapidly repriming voltage-gated sodium channel. In this study, we examined the burst firing properties of VPL neurons after SCI. Adult male Sprague–Dawley rats underwent contusion SCI at the T9 level. Four weeks later, when Nav1.3 protein was upregulated within VPL neurons, extracellular unit recordings were made from VPL neurons in intact animals, those with SCI, and in SCI animals after receiving lumbar intrathecal injections of Nav1.3 antisense or mismatch oligodeoxynucleotides for 4 days. After SCI, VPL neurons with identifiable peripheral receptive fields showed rhythmic oscillatory burst firing with changes in discrete burst properties, and alternated among single-spike, burst, silent, and spindle wave firing modes. Nav1.3 antisense, but not mismatch, partially reversed alterations in burst firing after SCI. These results demonstrate several newly characterized changes in spontaneous burst firing properties of VPL neurons after SCI and suggest that abnormal expression of Nav1.3 contributes to these phenomena.
Collapse
Affiliation(s)
- Bryan C Hains
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
62
|
Lampert A, Hains BC, Waxman SG. Upregulation of persistent and ramp sodium current in dorsal horn neurons after spinal cord injury. Exp Brain Res 2006; 174:660-6. [PMID: 16718433 DOI: 10.1007/s00221-006-0511-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 04/11/2006] [Indexed: 11/30/2022]
Abstract
Traumatic spinal cord injury (SCI) results not only in motor impairment, but also in chronic central neuropathic pain, which often is refractory to conventional treatment approaches. Upregulated expression of sodium channel Nav1.3 has been observed within the spinal dorsal horn neurons after SCI, and appears to contribute to neuronal hyperresponsiveness and pain-related behaviors. In this study we characterized the changes in sodium current properties within dorsal horn neurons after contusive SCI. Four weeks after adult male Sprague-Dawley rats underwent T9 spinal cord contusion injury, when behavioral nociceptive thresholds were decreased to both mechanical and thermal stimuli, whole-cell patch-clamp recordings were performed on acutely dissociated lumbar dorsal horn neurons. The cells demonstrated characteristic fast-activating and fast-inactivating sodium currents. SCI led to a shift of the steady-state activation and inactivation of the sodium current towards more depolarized potentials. The shifted steady-state inactivation shows similarities to that obtained from axotomized dorsal root ganglions, which were shown to upregulate Nav1.3. Small slow depolarizations below action potential threshold produced ramp currents, which were markedly enhanced by SCI (from 182 +/- 41 to 338 +/- 55 pA). The density of the noninactivating persistent sodium current was also significantly enhanced in neurons from SCI animals (from 17.4 +/- 3.2 to 27.7 +/- 4.4 pA/pF at 50-70 ms of depolarization). The increased persistent sodium current and ramp current, which are consistent with upregulation of Nav1.3 within dorsal horn neurons, suggest a basis for the hyperresponsiveness of these neurons following SCI.
Collapse
Affiliation(s)
- Angelika Lampert
- Department of Neurology, Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
63
|
Hains BC, Waxman SG. Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J Neurosci 2006; 26:4308-17. [PMID: 16624951 PMCID: PMC6674010 DOI: 10.1523/jneurosci.0003-06.2006] [Citation(s) in RCA: 495] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Traumatic spinal cord injury (SCI) results not only in motor impairment but also in chronic central pain, which can be refractory to conventional treatment approaches. It has been shown recently that in models of peripheral nerve injury, spinal cord microglia can become activated and contribute to development of pain. Considering their role in pain after peripheral injury, and because microglia are known to become activated after SCI, we tested the hypothesis that activated microglia contribute to chronic pain after SCI. In this study, adult male Sprague Dawley rats underwent T9 spinal cord contusion injury. Four weeks after injury, when lumbar dorsal horn multireceptive neurons became hyperresponsive and when behavioral nociceptive thresholds were decreased to both mechanical and thermal stimuli, intrathecal infusions of the microglial inhibitor minocycline were initiated. Electrophysiological experiments showed that minocycline rapidly attenuated hyperresponsiveness of lumbar dorsal horn neurons. Behavioral data showed that minocycline restored nociceptive thresholds, at which time spinal microglial cells assumed a quiescent morphological phenotype. Levels of phosphorylated-p38 were decreased in SCI animals receiving minocycline. Cessation of delivery of minocycline resulted in an immediate return of pain-related phenomena. These results suggest an important role for activated microglia in the maintenance of chronic central below-level pain after SCI and support the newly emerging role of non-neuronal immune cells as a contributing factor in post-SCI pain.
Collapse
|
64
|
Eaton MJ. Cell and Molecular Approaches to the Attenuation of Pain after Spinal Cord Injury. J Neurotrauma 2006; 23:549-59. [PMID: 16629636 DOI: 10.1089/neu.2006.23.549] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent experimental research to treat spinal cord injury (SCI) pain has greatly increased our understanding of how such chronic pain might be modulated in the human population. Neuropathic pain is caused by the structural and biochemical changes associated with the peripheral and central nervous system damage associated with nervous system trauma, often leading to an imbalance in endogenous excitatory and inhibitory spinal systems that modulate sensory processing. But current pharmacological therapies are often ineffective over time for the greater number of patients. Although there are a variety of useful surgical and pharmacologic interventions (including electric stimulation, implantable mechanical pumps and a myriad of drugs for pain relief) cell and molecular technologies are a new frontier in pain medicine. These other potential therapeutic agents of pain are based on current and developing treatment strategies elucidated from recent research, especially concerning central spinal sensitization, and the spinal mechanisms that are thought to be the origin and ongoing cause of chronic pain, even when the injury is peripheral in location. Newly developing translational strategies such as molecular agents, viral-mediated gene transfer or cellular transplants to treat chronic pain are being evaluated in a variety of peripheral and central injury models. They seek to address both the causes of neuropathic pain, to interfere with its development and maintenance over time, and give the injured person with pain an improved quality-of-life that allows them to better deal with the larger tasks of daily life and the strenuous rehabilitation that might also improve motor function after SCI.
Collapse
Affiliation(s)
- Mary J Eaton
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, Florida 33136, USA.
| |
Collapse
|
65
|
Abstract
Neural stem cells are a self-renewing population that generates the neurons and glia of the developing brain. They can be isolated, proliferated, genetically manipulated and differentiated in vitro and reintroduced into a developing, adult or pathologically altered CNS. Neural stem cells have been considered for use in cell replacement therapies in various neurodegenerative diseases, and an unexpected and potentially valuable characteristic of these cells has recently been revealed--they are highly migratory and seem to be attracted to areas of brain pathology such as ischaemic and neoplastic lesions. Here, we speculate on the ways in which neural stem cells might be exploited as delivery vehicles for gene therapy in the CNS.
Collapse
|
66
|
Mitsui T, Shumsky JS, Lepore AC, Murray M, Fischer I. Transplantation of neuronal and glial restricted precursors into contused spinal cord improves bladder and motor functions, decreases thermal hypersensitivity, and modifies intraspinal circuitry. J Neurosci 2006; 25:9624-36. [PMID: 16237167 PMCID: PMC6725721 DOI: 10.1523/jneurosci.2175-05.2005] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transplanting neuronal and glial restricted precursors (NRP/GRP) into a midthoracic injury 9 d after contusion improved bladder and motor function, diminished thermal hypersensitivity, and modified lumbosacral circuitry compared with operated controls (OP-controls). Histological analysis showed that NRP/GRP survived, filled the lesion site, differentiated into neurons and glia, and migrated selectively. Volume of spinal cord spared was increased in NRP/GRP recipients, suggesting local protection. Bladder areflexia developed in both operated groups, but NRP/GRP recipients exhibited an accelerated recovery, with decreased micturition pressure and fewer episodes of detrusor hyperreflexia. Because noradrenergic receptors proliferate after spinal injury and descending noradrenergic pathways contribute to regulation of bladder control, we examined the effects of administering an alpha-1A-adrenergic antagonist, Tamsulosin, on urodynamics. This improved all cystometric parameters in both operated groups, and micturition pressure in NRP/GRP rats recovered to normal levels. Both operated groups initially showed increased sensitivity to a thermal stimulus applied to the tail; the NRP/GRP rats showed significant improvement over time. NRP/GRP grafts also produced greater recovery of hindlimb function in several tests, although both groups showed persistent and similar deficits in locomotion on a grid. Because bladder, hindlimb, and tail sensory and motor functions are organized through lumbosacral cord, we examined descending and primary afferent projections at L6-S1. The density of serotonergic, noradrenergic, and corticotrophin releasing factor-positive fibers increased in the NRP/GRP group compared with OP-controls, suggesting some sparing and/or sprouting of these modulatory pathways. Immunocytochemical staining density of dorsal root axons in the dorsal horn increased in the OP-controls but appeared normal in the NRP/GRP group. Synaptophysin immunoreactivity in the lumbosacral dorsal horn was similar among groups, consistent with restoration of synaptic density in both groups of operated animals but by different pathways. We suggest that local protection provided by NRP/GRP resulted in increased sparing/sprouting of descending pathways, which prevented sprouting by dorsal root axons, and that this modification in lumbosacral circuitry contributes to the recovery of function.
Collapse
Affiliation(s)
- Takahiko Mitsui
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | |
Collapse
|
67
|
Waxman SG, Hains BC. Fire and phantoms after spinal cord injury: Na+ channels and central pain. Trends Neurosci 2006; 29:207-15. [PMID: 16494954 DOI: 10.1016/j.tins.2006.02.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 01/10/2006] [Accepted: 02/09/2006] [Indexed: 10/25/2022]
Abstract
Neuropathic pain and phantom phenomena occur commonly after spinal cord injury (SCI) but their molecular basis is not yet fully understood. Recent findings demonstrate abnormal expression of the Nav1.3 Na(+) channel within second-order spinal cord dorsal horn neurons and third-order thalamic neurons along the pain pathway after SCI, and suggest that this change makes these neurons hyperexcitable so that they act as pain amplifiers and generators. Delineation of molecular changes that contribute to hyperexcitability of pain-signaling neurons might lead to identification of molecular targets that will be useful in the treatment of neuropathic pain after SCI and related nervous system injuries.
Collapse
Affiliation(s)
- Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | |
Collapse
|
68
|
Zhang H, Xie W, Xie Y. Spinal cord injury triggers sensitization of wide dynamic range dorsal horn neurons in segments rostral to the injury. Brain Res 2006; 1055:103-10. [PMID: 16083864 DOI: 10.1016/j.brainres.2005.06.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 06/28/2005] [Accepted: 06/29/2005] [Indexed: 11/16/2022]
Abstract
A spinal cord injury (SCI) was produced in adult rats by complete spinal cord transection at L6-S1. Neuropathic pain behaviors similar to the chronic central pain (CCP) syndrome in human, such as thermal hyperalgesia, mechanical allodynia and autotomy, were present in these rats after spinal cord injury. Meanwhile, wide dynamic range (WDR) neurons recorded in the spinal dorsal horn rostral to the lesion responded as high frequency of spontaneous activities, long duration of after-discharges to noxious electrical stimuli and an augmented wind-up to 0.5 Hz stimuli. By using bupivacaine powder, a sodium channel blocker, at the locus of transection immediate after nerve injury, the chronic pain behaviors were prevented; the hyperexcitability of WDR neurons was also substantially reduced. It is suggested that spinal cord transection induces the CCP syndromes, which may be evoked and maintained by the hyperexcitability in WDR neurons rostrally. Reducing the neuronal activity at the site of lesion following injury may prevent the development of CCP after SCI.
Collapse
Affiliation(s)
- Haijun Zhang
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | | | | |
Collapse
|
69
|
Mitsui T, Fischer I, Shumsky JS, Murray M. Transplants of fibroblasts expressing BDNF and NT-3 promote recovery of bladder and hindlimb function following spinal contusion injury in rats. Exp Neurol 2005; 194:410-31. [PMID: 16022868 DOI: 10.1016/j.expneurol.2005.02.022] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 02/11/2005] [Accepted: 02/20/2005] [Indexed: 11/19/2022]
Abstract
We examined whether fibroblasts, genetically modified to express BDNF and NT-3 (Fb-BDNF/NT3) and transplanted into a thoracic spinal injury site, would enhance recovery of bladder function and whether this treatment would be associated with reorganization of lumbosacral spinal circuits implicated in bladder function. Rats received modified-moderate contusion injuries at T8/9, and 9 days later, Fb-BDNF/NT3 or unmodified fibroblasts (OP-controls) were delivered into the cord. Fb-BDNF/NT3 rats recovered from areflexic bladder earlier, showed decreased micturition pressure and fewer episodes of detrusor hyperreflexia, compared to OP-controls. There were also improvements in hindlimb function in the Fb-BDNF/NT3 group although locomotion on a more challenging substrate (grid) and tail withdrawal latency in response to a thermal stimulus showed persisting deficits, little recovery, and no differences between the groups. Immunocytochemistry at L6-S1 revealed changes in density of afferent and descending projections to L6-S1 cord. The density of small dorsal root axons increased in the superficial layers of the dorsal horn in OP-controls but not in Fb-BDNF/NT3, suggesting sprouting of primary afferents following injury that was inhibited by Fb-BDNF/NT-3. In contrast, the trophic factor secreting transplants stimulated sprouting and/or sparing of descending modulatory pathways projecting to the lumbosacral spinal cord. No differences in synaptophysin immunoreactivity were seen in the dorsal horn which suggested that synaptic density was similar but achieved by sprouting of different systems in the two operated groups. Fb-BDNF/NT3 transplanted into injured spinal cord thus improved both bladder and hindlimb function, and this was associated with reorganization of spinal circuitry.
Collapse
Affiliation(s)
- Takahiko Mitsui
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | | | | | | |
Collapse
|
70
|
Hains BC, Saab CY, Waxman SG. Changes in electrophysiological properties and sodium channel Nav1.3 expression in thalamic neurons after spinal cord injury. ACTA ACUST UNITED AC 2005; 128:2359-71. [PMID: 16109750 DOI: 10.1093/brain/awh623] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Spinal cord contusion injury (SCI) is known to induce pain-related behaviour, as well as hyperresponsiveness in lumbar dorsal horn nociceptive neurons associated with the aberrant expression of Na(v)1.3, a rapidly repriming voltage-gated sodium channel. Many of these second-order dorsal horn neurons project to third-order neurons in the ventrobasal complex of the thalamus. In this study we hypothesized that, following SCI, neurons in the thalamus undergo electrophysiological changes linked to aberrant expression of Na(v)1.3. Adult male Sprague-Dawley rats underwent contusion SCI at the T9 thoracic level. Four weeks post-SCI, Na(v)1.3 protein was upregulated within thalamic neurons in ventroposterior lateral (VPL) and ventroposterior medial nuclei, where extracellular unit recordings revealed increased spontaneous discharge, afterdischarge, hyperresponsiveness to innocuous and noxious peripheral stimuli, and expansion of peripheral receptive fields. Altered electrophysiological properties of VPL neurons persisted after interruption of ascending spinal barrage by spinal cord transection above the level of the injury. Lumbar intrathecal administration of specific antisense oligodeoxynucleotides generated against Na(v)1.3 caused a significant reduction in Na(v)1.3 expression in thalamic neurons and reversed electrophysiological alterations. These results show, for the first time, a change in sodium channel expression within neurons in the thalamus after injury to the spinal cord, and suggest that these changes contribute to altered processing of somatosensory information after SCI.
Collapse
Affiliation(s)
- Bryan C Hains
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
71
|
Abstract
Cell therapy to treat neuropathic pain after spinal cord injury (SCI) is in its infancy. However, the development of cellular strategies that would replace or be used as an adjunct to existing pharmacological treatments for neuropathic pain have progressed tremendously over the past 20 years. The earliest cell therapy studies for pain relief tested adrenal chromaffin cells from rat or bovine sources, placed in the subarachnoid space, near the spinal cord pain- processing pathways. These grafts functioned as cellular minipumps, secreting a cocktail of antinociceptive agents around the spinal cord for peripheral nerve injury, inflammatory or arthritic pain. These initial animal, and later clinical, studies suggested that the spinal intrathecal space was a safe and accessible location for the placement of cell grafts. However, one major problem was the lack of a homogeneous, expandable cell source to supply the antinociceptive agents. Cell lines that can be reversibly immortalised are the next phase for the development of a practical, homogenous cell source. These technologies have been modelled with a variety of murine cell lines, derived from embryonic adrenal medulla or CNS brainstem, in which cells are transplanted, which downregulate their proliferative, oncogenic phenotype either before or after transplant. An alternative approach for existing human cell lines is the use of neural or adrenal precursors, in which the antinociceptive properties are induced by in vitro treatment with molecules that move the cells to an irreversible neural or chromaffin, and non-oncogenic, phenotype. Although such human cell lines are at an early stage of investigation, their clinical antinociceptive potential is significant given the daunting problem of difficult-to-treat neuropathic SCI pain.
Collapse
Affiliation(s)
- Mary Eaton
- University of Miami School of Medicine, The Miami Project to Cure Paralysis, 1095 NW 14th Terrace (R-48), Miami, FL 33136, USA.
| |
Collapse
|
72
|
Hains BC, Saab CY, Klein JP, Craner MJ, Waxman SG. Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci 2004; 24:4832-9. [PMID: 15152043 PMCID: PMC6729453 DOI: 10.1523/jneurosci.0300-04.2004] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Peripheral nerve injury is known to upregulate the rapidly repriming Na(v)1.3 sodium channel within first-order spinal sensory neurons. In this study, we hypothesized that (1) after peripheral nerve injury, second-order dorsal horn neurons abnormally express Na(v)1.3, which (2) contributes to the responsiveness of these dorsal horn neurons and to pain-related behaviors. To test these hypotheses, adult rats underwent chronic constriction injury (CCI) of the sciatic nerve. Ten days after CCI, allodynia and hyperalgesia were evident. In situ hybridization, quantitative reverse transcription-PCR, and immunocytochemical analysis revealed upregulation of Na(v)1.3 in dorsal horn nociceptive neurons but not in astrocytes or microglia, and unit recordings demonstrated hyperresponsiveness of dorsal horn sensory neurons. Intrathecal antisense oligodeoxynucleotides targeting Na(v)1.3 decreased the expression of Na(v)1.3 mRNA and protein, reduced the hyperresponsiveness of dorsal horn neurons, and attenuated pain-related behaviors after CCI, all of which returned after cessation of antisense delivery. These results demonstrate for the first time that sodium channel expression is altered within higher-order spinal sensory neurons after peripheral nerve injury and suggest a link between misexpression of the Na(v)1.3 sodium channel and central mechanisms that contribute to neuropathic pain after peripheral nerve injury.
Collapse
Affiliation(s)
- Bryan C Hains
- Department of Neurology and the Paralyzed Veterans of America-Eastern Paralyzed Veterans Association Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
73
|
Abstract
Traditionally neural transplantation has had as its central tenet the replacement of missing neurons that have been lost because of neurodegenerative processes, as exemplified by diseases such as Parkinson disease (PD). However, the effectiveness and widespread application of this approach clinically has been limited, primarily because of the poor donor supply of human fetal neural tissue and the incomplete neurobiological understanding of the circuit reconstruction required to normalize function in these diseases. So, in PD the progress from promising neural transplantation in animal models to proof-of-principle, open-labeled clinical transplants, to randomized, placebo-controlled studies of neural transplantation has not been straightforward. The emergence of previously undescribed adverse effects and lack of significant functional advantage in recent clinical studies has been disappointing and has served to cast a new, and perhaps more realistic, perspective on this treatment approach. In fact, there have been calls by some involved in neural transplantation to return to the drawing board before pressing on with further clinical trials, and the return to basic experimentation. This therefore precipitates the question - is there a future for neural transplantation? It is important to remember that there are a number of possible explanations for the disappointing results from the recent clinical trials in PD, ranging from the mode of transplantation to patient selection. Nevertheless, almost irrespective of these reasons for the current trial results, there have always been significant practical and ethical problems with using human fetal tissue, and so a number of alternative cell sources have been investigated. These alternative sources include stem cells, which are attractive for cell-based therapies because of their potential ease of isolation, propagation and manipulation, and their ability in some cases to migrate to areas of pathology and differentiate into specific and appropriate cell types. Furthermore, the availability of stem cells derived from non-embryonic sources (e.g. adult stem cells derived from the sub-ventricular zone) has removed some of the ethical limitations associated with the use of embryonic human tissue. These potentially beneficial aspects of stem cells means that there is a future for neural transplantation as a means of treating patients with a range of neurological disorders, although whether this will ever translate into a truly effective, widely available therapy remains unknown.
Collapse
|
74
|
Rosenzweig ES, McDonald JW. Rodent models for treatment of spinal cord injury: research trends and progress toward useful repair. Curr Opin Neurol 2004; 17:121-31. [PMID: 15021237 DOI: 10.1097/00019052-200404000-00007] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE OF REVIEW In this review, we have documented some current research trends in rodent models of spinal cord injury. We have also catalogued the treatments used in studies published between October 2002 and November 2003, with special attention given to studies in which treatments were delayed for at least 4 days after injury. RECENT FINDINGS Most spinal cord injury studies are performed with one of three general injury models: transection, compression, or contusion. Although most treatments are begun immediately after injury, a growing number of studies have used delayed interventions. Mice and the genetic tools they offer are gaining in popularity. Some researchers are setting their sights beyond locomotion, to issues more pressing for people with spinal cord injury (especially bladder function and pain). SUMMARY Delayed treatment protocols may extend the window of opportunity for treatment of spinal cord injury, whereas continued progress in the prevention of secondary cell death will reduce the severity of new cases. The use of mice will hopefully accelerate progress towards useful regeneration in humans. Researchers must improve cross-study comparability to allow balanced decisions about potentially useful treatments.
Collapse
Affiliation(s)
- Ephron S Rosenzweig
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA.
| | | |
Collapse
|
75
|
Abstract
In spinal cord injury (SCI), pain is a major cause of disability. A review of experimental and human studies, which provide insight into the mechanisms and treatment of SCI neuropathic pain are presented. Each of a series of pathophysiologic changes after SCI may be relevant for the development of SCI neuropathic pain. These changes are discussed in relation to neuropathic pain at and below the level of SCI. SCI neuropathic pain is difficult to treat. Experimental and human randomized, double-blind, placebo-controlled, clinical trials on pharmacologic treatment of SCI pain are summarized.
Collapse
Affiliation(s)
- N B Finnerup
- Danish Pain Research Center and Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.
| | | |
Collapse
|
76
|
Upregulation of sodium channel Nav1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. J Neurosci 2003. [PMID: 14523090 DOI: 10.1523/jneurosci.23-26-08881.2003] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spinal cord injury (SCI) can result in hyperexcitability of dorsal horn neurons and central neuropathic pain. We hypothesized that these phenomena are consequences, in part, of dysregulated expression of voltage-gated sodium channels. Because the rapidly repriming TTX-sensitive sodium channel Nav1.3 has been implicated in peripheral neuropathic pain, we investigated its role in central neuropathic pain after SCI. In this study, adult male Sprague Dawley rats underwent T9 spinal contusion injury. Four weeks after injury when extracellular recordings demonstrated hyperexcitability of L3-L5 dorsal horn multireceptive nociceptive neurons, and when pain-related behaviors were evident, quantitative RT-PCR, in situ hybridization, and immunocytochemistry revealed an upregulation of Nav1.3 in dorsal horn nociceptive neurons. Intrathecal administration of antisense oligodeoxynucleotides (ODNs) targeting Nav1.3 resulted in decreased expression of Nav1.3 mRNA and protein, reduced hyperexcitability of multireceptive dorsal horn neurons, and attenuated mechanical allodynia and thermal hyperalgesia after SCI. Expression of Nav1.3 protein and hyperexcitability in dorsal horn neurons as well as pain-related behaviors returned after cessation of antisense delivery. Responses to normally noxious stimuli and motor function were unchanged in SCI animals administered Nav1.3 antisense, and administration of mismatch ODNs had no effect. These results demonstrate for the first time that Nav1.3 is upregulated in second-order dorsal horn sensory neurons after nervous system injury, showing that SCI can trigger changes in sodium channel expression, and suggest a functional link between Nav1.3 expression and neuronal hyperexcitability associated with central neuropathic pain.
Collapse
|
77
|
|
78
|
Hains BC, Willis WD, Hulsebosch CE. Temporal plasticity of dorsal horn somatosensory neurons after acute and chronic spinal cord hemisection in rat. Brain Res 2003; 970:238-41. [PMID: 12706267 DOI: 10.1016/s0006-8993(03)02347-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Unilateral T13 hemisection of the rat spinal cord produces a model of chronic spinal cord injury (SCI) that is characterized by bilateral hyperexcitability of lumbar dorsal horn neurons, and behavioral signs of central pain. While we have demonstrated that responsiveness of multireceptive (MR) dorsal horn neurons is dramatically increased at 28 days after injury, the effects of acute hemisection are unknown and predicted to be different than observed chronically. In the present study, the consequences of T13 hemisection are examined acutely at 45 min in MR neurons both ipsilateral and contralateral to the site of injury, and compared to the same class of cells at 28 days after injury (n=20 cells total per group: 2-3 cells/side of the cord from n=5 animals). Acutely, ipsilateral to the hemisection, both spontaneous and evoked activity of MR neurons were significantly increased, whereas contralaterally, only evoked activity was significantly increased. In animals 28 days after hemisection, spontaneous activity of MR neurons was comparable to intact levels ipsilaterally, and cells exhibited hyperexcitability to evoked stimuli bilaterally. Expansion of cutaneous receptive fields was observed only in hindpaws ipsilateral to the lesion, acutely. These results demonstrate dynamic plasticity in properties of dorsal horn somatosensory neurons after SCI.
Collapse
Affiliation(s)
- Bryan C Hains
- Department of Anatomy and Neurosciences, University of Texas Medical Branch, 301 University Boulevard, Galveston 77555-1043, USA
| | | | | |
Collapse
|
79
|
Hains BC, Willis WD, Hulsebosch CE. Serotonin receptors 5-HT1A and 5-HT3 reduce hyperexcitability of dorsal horn neurons after chronic spinal cord hemisection injury in rat. Exp Brain Res 2003; 149:174-86. [PMID: 12610685 DOI: 10.1007/s00221-002-1352-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2002] [Accepted: 11/21/2002] [Indexed: 01/21/2023]
Abstract
Spinal cord injury (SCI) results in abnormal pain syndromes in humans. In a rodent model of SCI, T13 spinal hemisection results in allodynia and hyperalgesia due in part to interruption of descending pathways, including serotonergic (5-HT) systems, that leads to hyperexcitability of dorsal horn neurons. To characterize further the role of 5-HT and 5-HT receptor subtypes 5-HT(1A) and 5-HT(3) in neuronal activation after hemisection, we have examined the responsiveness of dorsal horn neurons to a variety of innocuous and noxious peripheral stimuli. Male Sprague-Dawley rats, 150-175 g, were spinally hemisected (n=40) at T13 and allowed 4 weeks for development of mechanical allodynia and thermal hyperalgesia. Animals then underwent electrophysiologic recording and the results were compared with those from sham controls (n=15). Evoked responses of convergent dorsal horn neurons (n=224 total) at L3-L5 to innocuous and noxious peripheral stimuli were characterized after administration of vehicle, 5-HT (25, 50, 100, and 200 microg), 5-HT (100 microg) in conjunction with the selective 5-HT(1A) antagonist WAY 100135 (100 microg), the 5-HT(3) antagonist MDL 72222 (100 microg), the selective 5-HT(1A) agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 150 microg), or the 5-HT(3) agonist 2-Me-5HT (75 microg), with or without pretreatment with antagonists; all treatments were delivered topically onto the cord adjacent to the recording electrode. In hemisected animals, increased responsiveness of convergent cells to all peripheral stimuli was observed bilaterally when compared to controls. No changes in ongoing background activity were present. In control animals, only the highest dose of 5-HT (200 microg) was sufficient to reduce evoked activity, whereas in hemisected animals a concentration-dependent decrease in response was observed. In hemisected animals, both 5-HT(1A) and 5-HT(3) receptor antagonism reduced the effectiveness of 5-HT, restoring elevated evoked activity by up to 70% at the doses tested. Administration of 5-HT(1A) and 5-HT(3) receptor agonists also decreased hyperexcitability, effects prevented by pretreatment with corresponding antagonists. These results demonstrate the development of denervation supersensitivity to 5-HT following SCI, corroborate behavioral studies showing the effectiveness of 5-HT in reducing allodynia and hyperalgesia after SCI, and contribute to a mechanistic understanding of the role of 5-HT receptor subtypes in chronic central pain.
Collapse
Affiliation(s)
- Bryan C Hains
- Department of Anatomy and Neurosciences, and Marine Biomedical Institute, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-043, USA
| | | | | |
Collapse
|
80
|
Hains BC, Yucra JA, Eaton MJ, Hulsebosch CE. Intralesion transplantation of serotonergic precursors enhances locomotor recovery but has no effect on development of chronic central pain following hemisection injury in rats. Neurosci Lett 2002; 324:222-6. [PMID: 12009528 DOI: 10.1016/s0304-3940(02)00194-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effects of intralesion grafts of serotonergic precursors on locomotor recovery and development of chronic pain were assessed after chronic spinal cord hemisection injury (SCI) in rats. Serotonin- and brain-derived neurotrophic factor-secreting (RN46A-B14) and RN46A-vector-only cells were transplanted into the site of T13 lateral hemisection 10 days following injury in immunosuppressed animals, and locomotor and pain related behaviors were assessed weekly for 28 days. There were significant improvements in the degree of spontaneous locomotor recovery, but no significant difference was found in the magnitude of development of mechanical allodynia or thermal hyperalgesia in any transplant group. From these results, we conclude that intraparenchymal engraftment of RN46A-B14 cells is largely ineffective in influencing somatosensory outcomes after SCI, in contrast with the efficacy of dorsal intrathecal placement.
Collapse
Affiliation(s)
- Bryan C Hains
- Department of Anatomy and Neurosciences, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1043, USA
| | | | | | | |
Collapse
|