51
|
Akyurek S, Senturk V, Oncu B, Ozyigit G, Yilmaz S, Gokce SC. The effect of tianeptine in the prevention of radiation-induced neurocognitive impairment. Med Hypotheses 2008; 71:930-932. [PMID: 18851901 DOI: 10.1016/j.mehy.2008.06.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 06/20/2008] [Accepted: 06/21/2008] [Indexed: 11/25/2022]
Abstract
Radiation-induced neurocognitive impairment is an undesirable radiation-induced toxicity and a common health problem in patients with primary or metastatic brain tumor. It greatly impairs quality of life for long-term brain tumor survivors. Hippocampus is the most important brain structure for neurocognitive functions. It has been shown that radiation affects the hippocampal neurogenesis due to either induce the apoptosis or reduce the precursor cell proliferation in the hippocampus. Radiation-induced microglial inflammatory response is also negative regulator of neurogenesis. Tianeptine is a clinically effective antidepressant that induces neurogenesis. It has also been shown that tianeptine is able to reduce apoptosis and cytoprotective against the effects of proinflammatory cytokines in the hippocampus. Given the putative role of impaired hippocampal neurogenesis in radiation-induced neurocognitive impairment we think that tianeptine can be effective for preventing radiation-induced neurocognitive impairment by increasing hippocampal neurogenesis.
Collapse
Affiliation(s)
- Serap Akyurek
- Department of Radiation Oncology, School of Medicine, Ankara University, Dikimevi, Ankara 06100, Turkey.
| | | | | | | | | | | |
Collapse
|
52
|
Minagar A, Steven Alexander J, Kelley RE, Harper M, Jennings MH. Proteomic Analysis of Human Cerebral Endothelial Cells Activated by Glutamate/MK-801: Significance in Ischemic Stroke Injury. J Mol Neurosci 2008; 38:182-92. [DOI: 10.1007/s12031-008-9149-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 08/29/2008] [Indexed: 01/28/2023]
|
53
|
Fatma N, Kubo E, Sen M, Agarwal N, Thoreson WB, Camras CB, Singh DP. Peroxiredoxin 6 delivery attenuates TNF-alpha-and glutamate-induced retinal ganglion cell death by limiting ROS levels and maintaining Ca2+ homeostasis. Brain Res 2008; 1233:63-78. [PMID: 18694738 DOI: 10.1016/j.brainres.2008.07.076] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 07/11/2008] [Accepted: 07/14/2008] [Indexed: 01/01/2023]
Abstract
Higher expression of reactive oxygen species (ROS) is implicated in neurological disorders. A major event in glaucoma, the death of retinal ganglion cells (RGCs), has been associated with elevated levels of glutamate and TNF-alpha in the RGCs' local microenvironment. Herein we show that the transduction of Peroxiredoxin 6 (PRDX6) attenuates TNF-alpha- and glutamate-induced RGC death, by limiting ROS and maintaining Ca2+ homeostasis. Immunohistochemical staining of rat retina disclosed the presence of PRDX6 in RGCs, and Western and real-time PCR analysis revealed an abundance of PRDX6 protein and mRNA. RGCs treated with glutamate and/or TNF-alpha displayed elevated levels of ROS and reduced expression of PRDX6, and underwent apoptosis. A supply of PRDX6 protected RGCs from glutamate and TNF-alpha induced cytotoxicity by reducing ROS level and NF-kappaB activation, and limiting increased intracellular Ca2+ influx. Results provide a rationale for use of PRDX6 for blocking ROS-mediated pathophysiology in glaucoma and other neuronal disorders.
Collapse
Affiliation(s)
- Nigar Fatma
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Degos V, Loron G, Mantz J, Gressens P. Neuroprotective Strategies for the Neonatal Brain. Anesth Analg 2008; 106:1670-80. [DOI: 10.1213/ane.0b013e3181733f6f] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
55
|
Gressens P, Schwendimann L, Husson I, Sarkozy G, Mocaer E, Vamecq J, Spedding M. Agomelatine, a melatonin receptor agonist with 5-HT(2C) receptor antagonist properties, protects the developing murine white matter against excitotoxicity. Eur J Pharmacol 2008; 588:58-63. [PMID: 18466899 DOI: 10.1016/j.ejphar.2008.04.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 03/17/2008] [Accepted: 04/03/2008] [Indexed: 01/31/2023]
Abstract
Periventricular leukomalacia is a major cause of cerebral palsy. Perinatal white matter lesions associated with cerebral palsy appears to involve glutamate excitotoxicity. When injected intracerebrally into newborn mice, the glutamatergic analog, ibotenate, induces white matter cysts mimicking human periventricular leukomalacia. Intraperitoneal injection of melatonin was previously shown to be neuroprotective in this mouse model. The goal of the present study was to compare in this model the protective effects of agomelatine (S 20098), a melatonin derivative, with melatonin. Mice that received intraperitoneal S 20098 or melatonin had significant reductions in size of ibotenate-induced white matter cysts when compared with controls. Although agomelatine and melatonin did not prevent the initial appearance of white matter lesions, they did promote secondary lesion repair. Interestingly, while melatonin effects were only observed when given within the first two hours following the excitotoxic insult, agomelatine was still significantly neuroprotective when administered eight hours after the insult. The protective effects of agomelatine and melatonin were counter-acted by co-administration of luzindole or S 20928, two melatonin receptor antagonists. Agomelatine, acting through melatonin receptors, could represent a promising new drug for treating human periventricular leukomalacia and have beneficial effects on neuroplasticity.
Collapse
|
56
|
Lee YM, Park SH, Shin DI, Hwang JY, Park B, Park YJ, Lee TH, Chae HZ, Jin BK, Oh TH, Oh YJ. Oxidative Modification of Peroxiredoxin Is Associated with Drug-induced Apoptotic Signaling in Experimental Models of Parkinson Disease. J Biol Chem 2008; 283:9986-98. [DOI: 10.1074/jbc.m800426200] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
57
|
Keller M, Griesmaier E, Auer M, Schlager G, Urbanek M, Simbruner G, Gressens P, Sárközy G. Dextromethorphan is protective against sensitized N-methyl-d-aspartate receptor-mediated excitotoxic brain damage in the developing mouse brain. Eur J Neurosci 2008; 27:874-83. [DOI: 10.1111/j.1460-9568.2008.06062.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
58
|
Kubo E, Fatma N, Akagi Y, Beier DR, Singh SP, Singh DP. TAT-mediated PRDX6 protein transduction protects against eye lens epithelial cell death and delays lens opacity. Am J Physiol Cell Physiol 2008; 294:C842-55. [PMID: 18184874 DOI: 10.1152/ajpcell.00540.2007] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A diminished level of endogenous antioxidant in cells/tissues is associated with reduced resistance to oxidative stress. Peroxiredoxin 6 (PRDX6), a protective molecule, regulates gene expression/function by controlling reactive oxygen species (ROS) levels. Using PRDX6 protein linked to TAT, the transduction domain from human immunodeficiency virus type 1 TAT protein, we demonstrated that PRDX6 was transduced into lens epithelial cells derived from rat or mouse lenses. The protein was biologically active, negatively regulating apoptosis and delaying progression of cataractogenesis by attenuating deleterious signaling. Lens epithelial cells from cataractous lenses bore elevated levels of ROS and were susceptible to oxidative stress. These cells harbored increased levels of active transforming growth factor (TGF)-beta 1 and of alpha-smooth muscle actin and beta ig-h3, markers for cataractogenesis. Importantly, cataractous lenses showed a 10-fold reduction in PRDX6 expression, whereas TGF-beta1 mRNA and protein levels were elevated. The changes were reversed, and cataractogenesis was delayed when PRDX6 was supplied. Results suggest that delivery of PRDX6 can postpone cataractogenesis, and this should be an effective approach to delaying cataracts and other degenerative diseases that are associated with increased ROS.
Collapse
Affiliation(s)
- Eri Kubo
- Department of Ophthalmology, University of Fukui, Fukui, Japan
| | | | | | | | | | | |
Collapse
|
59
|
Trujillo M, Clippe A, Manta B, Ferrer-Sueta G, Smeets A, Declercq JP, Knoops B, Radi R. Pre-steady state kinetic characterization of human peroxiredoxin 5: Taking advantage of Trp84 fluorescence increase upon oxidation. Arch Biochem Biophys 2007; 467:95-106. [PMID: 17892856 DOI: 10.1016/j.abb.2007.08.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 07/30/2007] [Accepted: 08/01/2007] [Indexed: 11/22/2022]
Abstract
Human peroxiredoxin 5 (PRDX5) catalyzes different peroxides reduction by enzymatic substitution mechanisms. Enzyme oxidation caused an increase in Trp84 fluorescence, allowing performing pre-steady state kinetic measurements. The technique was validated by comparing with data available from the literature or obtained herein by alternative approaches. PRDX5 reacted with organic hydroperoxides with rate constants in the 10(6)-10(7)M(-1)s(-1) range, similar to peroxynitrite-mediated PRDX5 oxidation, whereas its reaction with hydrogen peroxide was slower (10(5)M(-1)s(-1)). The method allowed determining the kinetics of intramolecular disulfide formation as well as thioredoxin 2-mediated reduction. The reactivities of PRDXs with peroxides were surprisingly high considering thiol pK(a), indicating that other protein determinants are involved in PRDXs specialization. The order of reactivities between PRDX5 towards oxidizing substrates differ from other PRDXs studied, pointing to a selective action of PRDXs with respect to peroxide detoxification, helping to rationalize the multiple enzyme isoforms present even in the same cellular compartment.
Collapse
Affiliation(s)
- Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay.
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Holley JE, Newcombe J, Winyard PG, Gutowski NJ. Peroxiredoxin V in multiple sclerosis lesions: predominant expression by astrocytes. Mult Scler 2007; 13:955-61. [PMID: 17623739 DOI: 10.1177/1352458507078064] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oxidative stress is implicated in the pathogenesis of multiple sclerosis (MS). Defence against oxidative damage is mediated by antioxidants. Peroxiredoxin V (PRDX V) is an intracellular anti-oxidant enzyme with peroxynitrite reductase activity. It is increased during inflammation, when free radical production intensifies, and is protective in an animal model of brain injury. However, little is known about PRDX V expression in the human brain. We investigated PRDX V expression in white matter from normal human brain (n = 5) and MS patients (n = 18), using immunohistochemistry and immunoblotting. A global increase in PRDX V was evident in MS normal-appearing white matter (NAWM) but the most striking increase was in astrocytes in MS lesions. PRDX V- positive hypertrophic reactive astrocytes were seen in acute lesions where inflammation was present. Yet surprisingly, in chronic lesions (CL), where inflammation has abated and a glial scar formed, there was strong PRDX V staining of post-reactive, scar astrocytes. Furthermore, immunoblotting analysis of tissue from two MS cases confirmed a substantial increase in PRDX V expression in CL compared with NAWM from the same individual. This might indicate ongoing oxidative stress despite the absence of histologically defined inflammation. Further investigations of this phenomenon will be of interest for therapeutic targeting.
Collapse
Affiliation(s)
- J E Holley
- Institute of Biomedical and Clinical Science, Peninsula Medical School (Exeter), and Royal Devon and Exeter Hospital, Devon, UK.
| | | | | | | |
Collapse
|
61
|
Kaindl AM, Zabel C, Stefovska V, Lehnert R, Sifringer M, Klose J, Ikonomidou C. Subacute proteome changes following traumatic injury of the developing brain: Implications for a dysregulation of neuronal migration and neurite arborization. Proteomics Clin Appl 2007; 1:640-9. [PMID: 21136719 DOI: 10.1002/prca.200600696] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Indexed: 11/09/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality among children and adolescents. To gain insight into developmental events influenced by TBI, we analyzed subacute mouse brain proteome changes in a percussion head trauma model at P7 ipsi- and contralateral to the site of injury. The comparison of brain proteomes of trauma mice and controls revealed reproducible changes in the intensity of 28 proteins (30 protein spots) in response to trauma. The changes detected suggest that TBI leads to apoptosis, inflammation, and oxidative stress. These changes were consistent with our results of histological and biochemical evaluation of the brains which revealed widespread apoptotic neurodegeneration, microglia activation, and increased levels of protein carbonyls. Furthermore, we detected changes in proteins involved in neuronal migration as well as axonal and dendritic growth and guidance, suggesting interference of trauma with these developmental events.
Collapse
Affiliation(s)
- Angela M Kaindl
- Department of Pediatric Neurology, Charité, University Medicine Berlin, Campus Virchow-Klinikum, Berlin, Germany; Institute of Human Genetics, Charité, University Medicine Berlin, Campus Virchow-Klinikum, Berlin, Germany; Department of Pediatric Neurology, University Childrens' Hospital, Technical University Dresden, Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
62
|
Yoo JH, Shin SW, Kim JS, Kim CB, Kim JS, Koh SC. Identification of potential biomarkers for diazinon exposure to Japanese Medaka (Oryzias latipes) using annealing control primers. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2007; 42:373-9. [PMID: 17474016 DOI: 10.1080/03601230701310526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A new differential display-polymerase chain reaction (PCR) method based on annealing control primers was used to screen and identify potential biomarkers from differentially expressed genes (DEGs) in medaka exposed to sub-lethal concentration of diazinon (100 ppb). Among the differentially expressed genes identified, the majority were in functional categories of protein biosynthesis, transport and metabolism according to the gene ontology classification. The differential expression of ribosomal protein genes was quantified by real time PCR. The genes encoding ribosomal proteins including L3 and S17 were selected as potential biomarkers for diazinon exposure in medaka fish.
Collapse
Affiliation(s)
- Jeong-Ha Yoo
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | | | | | | | | | | |
Collapse
|
63
|
Abstract
Oxidative stress is considered one of the causative pathomechanisms of nervous system diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, stroke and excitotoxicity. The basal expression of six different peroxiredoxin (Prx) isozymes show distinct distribution profiles in different brain regions and different cell types. PrxI and VI are expressed in glial cells but not in neurons; while PrxII, III, IV and V are expressed in neurons. Various diseases or models show altered expression levels of these isozymes, such as by upregulation of PrxI, II and VI and downregulation of PrxIII. Thioredoxin (Trx)I mRNA is distributed widely in the rat brain. This distribution pattern may reflect the specific functions of these isozymes. Recently, the neuroprotective roles of Prx III and V against ibotenate-induced-excitotoxicity were reported by two independent groups. Adenovirus transduction of PrxIII eliminated protein nitration and prevented gliosis caused by direct infusion of ibotenate. Systemic administration of recombinant PrxV diminished brain lesions in animals treated with ibotenate. In this chapter, we review the causative mechanisms of oxidative stress in neurodegenerative diseases, as well as describe the basal and disease-induced changes in Prxs/Trxs/Trx reductases expression levels and neuroprotective roles of Trxs and Prxs as demonstrated in overexpression models.
Collapse
Affiliation(s)
- Fumiyuki Hattori
- Asubio Pharma Co. Ltd. Research park, Institute of Integrated Medical Research Keio University, School of Medicine, Tokyo, Japan
| | | |
Collapse
|
64
|
Northington FJ. Brief update on animal models of hypoxic-ischemic encephalopathy and neonatal stroke. ILAR J 2006; 47:32-8. [PMID: 16391429 DOI: 10.1093/ilar.47.1.32] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The discovery of safe and effective therapies for perinatal hypoxia ischemia (HI) and stroke remains an unmet goal of neonatal-perinatal medicine. Because of the many developmental and functional differences between the neonatal brain and the adult brain, the ability to extrapolate adult data to the neonatal condition is very limited. For this reason, it is incumbent on scientists in the field of neonatal brain injury to address the questions of therapeutic efficacy of an array of potential therapies in a developmentally appropriate model. Toward that end, a number of new models of neonatal HI and stroke have been introduced recently. Additionally, some of the established models have been adapted to different species and different ages, giving scientists a greater choice of models for the study of neonatal HI and stroke. Many of these models are now also being used for functional and behavioral testing, an absolute necessity for preclinical therapeutic trials. This review focuses primarily on the newly developed models, recent adaptations to established models, and the studies of functional outcome that have been published since 2000.
Collapse
Affiliation(s)
- Frances J Northington
- Department of Pediatrics, Eudowood Neonatal Pulmonary Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
65
|
Abstract
We and others have shown that foam cell formation initiated by exposing macrophages to oxidized low density lipoprotein (oxLDL) triggers the differential expression of a number of proteins. Specifically, our experiments have identified peroxiredoxin I (Prx I) as one of these up-regulated proteins. The peroxiredoxins, a family of peroxidases initially described for their antioxidant capability, have generated recent interest for their potential to regulate signaling pathways. Those studies, however, have not examined peroxiredoxin for a potential dual functionality as both cytoprotective antioxidant and signal modulator in a single, oxidant-stressed system. In this report, we examine the up-regulation of Prx I in macrophages in response to oxLDL exposure and its ability to function as both antioxidant enzyme and regulator of p38 MAPK activation. As an antioxidant, induction of Prx I expression led to improved cell survival following treatment with oxLDL or tert-butyl hydroperoxide. The improved survival coincided with a decrease in measurable reactive oxygen species (ROS), and both the increased survival and reduced ROS were reversed by Prx I small interfering RNA transfection. Additionally, our data show that activation of p38 MAPK in oxLDL-treated macrophages was dependent on the up-regulation of Prx I. Reduction of Prx I expression by small interfering RNA transfection resulted in a significant decrease in p38 MAPK activation, whereas the up-regulation of Prx I expression with either oxLDL or ethoxyquin led to increased p38 MAPK activation. These results are consistent with multiple roles for Prx I in macrophage-derived foam cells that include functionality as both an antioxidant and a regulator of oxidant-sensitive signal transduction.
Collapse
Affiliation(s)
- James P Conway
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
66
|
Kropotov A, Gogvadze V, Shupliakov O, Tomilin N, Serikov VB, Tomilin NV, Zhivotovsky B. Peroxiredoxin V is essential for protection against apoptosis in human lung carcinoma cells. Exp Cell Res 2006; 312:2806-15. [PMID: 16781710 DOI: 10.1016/j.yexcr.2006.05.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 05/06/2006] [Accepted: 05/12/2006] [Indexed: 10/24/2022]
Abstract
Sensitivity of tumor cells to treatment with anticancer drugs depends on expression and function of antiapoptotic and antioxidant proteins. The goal of our study was to determine the functional role of the novel antioxidant protein Peroxiredoxin V (PrxV), in protection of human lung carcinoma cell lines against apoptosis. Analysis of expression of PrxV in multiple lung carcinoma cell lines revealed a positive correlation between the expression of PrxV and radioresistance in vitro. Clones of the lung carcinoma cells U1810 with down-regulated expression of PrxV, or with its impaired enzymatic function (expression of redox-negative PrxV), demonstrated increased sensitivity to treatment with anticancer drugs etoposide and adriamycin. Pre-treatment of these clones with antioxidant N-acetyl-cysteine did not change their sensitivity to adriamycin, suggesting the involvement of a non-redox activity of PrxV. Expression of the redox-negative PrxV mainly affected the mitochondrial pathway of apoptosis, as assessed by cytochrome c release assay. Impairment of the PrxV enzymatic function also affected transmembrane potential and calcium loading capacity of mitochondria, as well as mitochondrial morphology. Altogether, these findings suggest that PrxV is a multifunctional protein, which is essential for protection against apoptosis induced by anticancer drugs.
Collapse
Affiliation(s)
- Andrey Kropotov
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA.
| | | | | | | | | | | | | |
Collapse
|
67
|
Demasi APD, Pereira GAG, Netto LES. Yeast oxidative stress response. Influences of cytosolic thioredoxin peroxidase I and of the mitochondrial functional state. FEBS J 2006; 273:805-16. [PMID: 16441666 DOI: 10.1111/j.1742-4658.2006.05116.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We investigated the changes in the oxidative stress response of yeast cells suffering mitochondrial dysfunction that could impair their viability. First, we demonstrated that cells with this dysfunction rely exclusively on cytosolic thioredoxin peroxidase I (cTPxI) and its reductant sulfiredoxin, among other antioxidant enzymes tested, to protect them against H2O2-induced death. This cTPxI-dependent protection could be related to its dual functions, as peroxidase and as molecular chaperone, suggested by mixtures of low and high molecular weight oligomeric structures of cTPxI observed in cells challenged with H2O2. We found that cTPxI deficiency leads to increased basal sulfhydryl levels and transcriptional activation of most of the H2O2-responsive genes, interpreted as an attempt by the cells to improve their antioxidant defense. On the other hand, mitochondrial dysfunction, specifically the electron transport blockage, provoked a huge depletion of sulfhydryl groups after H2O2 treatment and reduced the H2O2-mediated activation of some genes otherwise observed, impairing cell defense and viability. The transcription factors Yap1 and Skn7 are crucial for the antioxidant response of cells under inhibited electron flow condition and probably act in the same pathway of cTPxI to protect cells affected by this disorder. Yap1 cellular distribution was not affected by cTpxI deficiency and by mitochondrial dysfunction, in spite of the observed expression alterations of several Yap1-target genes, indicating alternative mechanisms of Yap1 activation/deactivation. Therefore, we propose that cTPxI is specifically important in the protection of yeast with mitochondrial dysfunction due to its functional versatility as an antioxidant, chaperone and modulator of gene expression.
Collapse
Affiliation(s)
- Ana P D Demasi
- Departamento de Genética e Evolução - IB - UNICAMP, Campinas, Brazil
| | | | | |
Collapse
|
68
|
Kang SW, Rhee SG, Chang TS, Jeong W, Choi MH. 2-Cys peroxiredoxin function in intracellular signal transduction: therapeutic implications. Trends Mol Med 2005; 11:571-8. [PMID: 16290020 PMCID: PMC7185838 DOI: 10.1016/j.molmed.2005.10.006] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 10/06/2005] [Accepted: 10/24/2005] [Indexed: 01/24/2023]
Abstract
H(2)O(2) is a reactive oxygen species that has drawn much interest because of its role as a second messenger in receptor-mediated signaling. Mammalian 2-Cys peroxiredoxins have been shown to eliminate efficiently the H(2)O(2) generated in response to receptor stimulation. 2-Cys peroxiredoxins are members of a novel peroxidase family that catalyze the H(2)O(2) reduction reaction in the presence of thioredoxin, thioredoxin reductase and NADPH. Several lines of evidence suggest that 2-Cys peroxiredoxins have dual roles as regulators of the H(2)O(2) signal and as defenders of oxidative stress. In particular, 2-Cys peroxiredoxin appears to provide selective, specific and localized control of receptor-mediated signal transduction. Thus, the therapeutic potential of 2-Cys peroxiredoxins is clear for diseases, such as cancer and cardiovascular diseases, that involve reactive oxygen species.
Collapse
Affiliation(s)
- Sang Won Kang
- Center for Cell Signaling Research and Division of Molecular Life Science, Ewha Womans University, Seoul 120-750, Korea.
| | | | | | | | | |
Collapse
|
69
|
Jin MH, Lee YH, Kim JM, Sun HN, Moon EY, Shong MH, Kim SU, Lee SH, Lee TH, Yu DY, Lee DS. Characterization of neural cell types expressing peroxiredoxins in mouse brain. Neurosci Lett 2005; 381:252-7. [PMID: 15896479 DOI: 10.1016/j.neulet.2005.02.048] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 02/14/2005] [Accepted: 02/20/2005] [Indexed: 11/17/2022]
Abstract
The differential expression patterns of antioxidant enzymes observed in the brains of patients with neurodegenerative diseases suggest an important role for reactive oxygen species and antioxidant enzymes in neurodegeneration. The six mammalian peroxiredoxins (Prxs) comprise a novel family of anti-oxidative proteins that are widely distributed in most tissues, but few studies of Prx in brain tissue have been reported. The specific histology of the neural cell types in which Prxs are expressed is an important issue related to biological function and defense against oxidative stress in the brain. This study analyzed mouse brain neural cell types expressing Prx isoforms using single- or double-label immunohistochemical techniques. In neurons, immunoreactivity for Prx II-V was observed in the cytoplasm. In particular, Prx II was found in the habenular nuclei, and Prx III and V were found in the stratum lucidum of the hippocampus. Astrocytes and microglia were immunoreactive only for Prx VI and Prx I, respectively. Prx I and IV immunoreactivity was apparent in oligodendrocytes, where it was principally localized in the nuclei. The observed distribution of Prx isoforms in the mammalian brain may be indicative of their specific roles in their preferred neural cell types and subcellular locales. The results of this study will help in unraveling the physiological and pathophysiological roles of the different Prx isoforms in neural function.
Collapse
Affiliation(s)
- Mei-Hua Jin
- Laboratory of Human Genomics, Korea Research Institute of Bioscience and Biotechnology, 52, Oun-dong, Yusong-gu, Daejeon 305-333, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Banmeyer I, Marchand C, Clippe A, Knoops B. Human mitochondrial peroxiredoxin 5 protects from mitochondrial DNA damages induced by hydrogen peroxide. FEBS Lett 2005; 579:2327-33. [PMID: 15848167 DOI: 10.1016/j.febslet.2005.03.027] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 03/10/2005] [Accepted: 03/10/2005] [Indexed: 02/02/2023]
Abstract
Peroxiredoxin 5 is a thioredoxin peroxidase ubiquitously expressed in mammalian tissues. Peroxiredoxin 5 can be addressed intracellularly to mitochondria, peroxisomes, the cytosol and the nucleus. Here, we show that mitochondrial human peroxiredoxin 5 protects mitochondrial DNA (mtDNA) from oxidative attacks. In an acellular assay, recombinant peroxiredoxin 5 was shown to protect plasmid DNA from damages induced by metal-catalyzed generation of reactive oxygen species. In Chinese hamster ovary cells, overexpression of mitochondrial peroxiredoxin 5 significantly decreased mtDNA damages caused by exogenously added hydrogen peroxide. Altogether our results suggest that mitochondrial peroxiredoxin 5 may play an important role in mitochondrial genome stability.
Collapse
Affiliation(s)
- Ingrid Banmeyer
- Laboratory of Cell Biology, Institut des Sciences de la Vie, Université catholique de Louvain, Belgium
| | | | | | | |
Collapse
|
71
|
Kropotov AV, Grudinkin PS, Pleskach NM, Gavrilov BA, Tomilin NV, Zhivotovsky B. Downregulation of peroxiredoxin V stimulates formation of etoposide-induced double-strand DNA breaks. FEBS Lett 2004; 572:75-9. [PMID: 15304327 DOI: 10.1016/j.febslet.2004.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 07/08/2004] [Accepted: 07/08/2004] [Indexed: 01/17/2023]
Abstract
Antioxidant protein Peroxiredoxin V (PrxV) is located in mitochondria and peroxisomes but is also present in the nucleus. Here, we show that nuclear PrxV associates with coilin-containing bodies suggesting possible interaction of this protein with transcription complexes. We also studied etoposide-induced phosphorylation of histone H2AX (gamma-H2AX) in human cells in which PrxV activity was downregulated (knockdown, KD-clones) or compromised by overexpression of redox-negative (RD) protein. In KD clones, but not in RD-clones, formation of etoposide-induced gamma-H2AX was increased, indicating that PrxV inhibits conversion of topoisomerase II cleavage complexes into double-strand DNA breaks but this inhibition is not caused by its antioxidant activity.
Collapse
Affiliation(s)
- Andrei V Kropotov
- Institute of Cytology, Russian Academy of Sciences, Tikchoretskii Av.4, 194064 St. Petersburg, Russia
| | | | | | | | | | | |
Collapse
|
72
|
Abstract
Thioredoxin-2 (Trx2) is a mitochondrial protein-disulfide oxidoreductase essential for control of cell survival during mammalian embryonic development. This suggests that mitochondrial thioredoxin reductase-2 (TrxR2), responsible for reducing oxidized Trx2, may also be a key player in the regulation of mitochondria-dependent apoptosis. With this in mind, we investigated the effects of overexpression of TrxR2, Trx2, or both on mammalian cell responses to various apoptotic inducers. Stable transfectants of mouse Neuro2A cells were generated that overexpressed TrxR2 or an EGFP-TrxR2 fusion protein. EGFP-TrxR2 was enzymatically active and was localized in mitochondria. TrxR2 protein level and TrxR activity could be increased up to 6-fold in mitochondria. TrxR2 and EGFP-TrxR2 transfectants showed reduced growth rates as compared with control cells. This growth alteration was not due to cytotoxic effects nor related to changes in basal mitochondrial transmembrane potential (DeltaPsi(m)), reactive oxygen species production, or to other mitochondrial antioxidant components such as Trx2, peroxyredoxin-3, MnSOD, GPx1, and glutathione whose levels were not affected by increased TrxR2 activity. In response to various apoptotic inducers, the extent of DeltaPsi(m) dissipation, reactive oxygen species induction, caspase activation, and loss of viability were remarkably similar in TrxR2 and control transfectants. Excess TrxR2 did not prevent trichostatin A-mediated neuronal differentiation of Neuro2A cells nor did it protect them against beta-amyloid neurotoxicity. Neither massive glutathione depletion nor co-transfection of Trx2 and TrxR2 in Neuro2A (mouse), COS-7 (monkey), or HeLa (human) cells revealed any differential cellular resistance to prooxidant or non-oxidant apoptotic stimuli. Our results suggest that neither Trx2 nor TrxR2 gain of function modified the redox regulation of mitochondria-dependent apoptosis in these mammalian cells.
Collapse
Affiliation(s)
- Alexandre Patenaude
- Department of Medicine, Faculty of Medicine, Laval University, and CHUL/CHUQ Medical Research Center, Quebec City, Quebec G1V 4G2, Canada
| | | | | |
Collapse
|
73
|
Abstract
Indicators of coagulation activation are sometimes increased in the blood of newborns and adults who have a systemic inflammatory response. These coagulation factors have the ability to exacerbate inflammation, which in turn can promote coagulation. Therapies directed solely at coagulation factors and therapies directed solely at inflammation factors have not proved effective in reducing mortality in adults with a systemic inflammatory response syndrome and multi-organ dysfunction (SIRS/MOD). On the other hand, the only therapy that has reduced mortality in SIRS/MOD is activated protein C, which has both anti-coagulation and anti-inflammatory effects. This and other observations support the view that activated coagulation factors enhance inflammation. Since newborns at risk of cerebral white matter damage and cerebral palsy are more likely than their peers to have a systemic inflammatory response, which is sometimes accompanied by elevated blood levels of coagulation factors, we suggest that activated coagulation factors contribute to the occurrence of cerebral white matter damage by exacerbating inflammatory phenomena, rather than by occluding cerebral blood vessels.
Collapse
Affiliation(s)
- Alan Leviton
- Neuroepidemiology Unit, Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
74
|
Banmeyer I, Marchand C, Verhaeghe C, Vucic B, Rees JF, Knoops B. Overexpression of human peroxiredoxin 5 in subcellular compartments of Chinese hamster ovary cells: effects on cytotoxicity and DNA damage caused by peroxides. Free Radic Biol Med 2004; 36:65-77. [PMID: 14732291 DOI: 10.1016/j.freeradbiomed.2003.10.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 10/22/2003] [Accepted: 10/27/2003] [Indexed: 11/24/2022]
Abstract
Peroxiredoxin 5 is a mammalian thioredoxin peroxidase ubiquitously expressed in tissues. Peroxiredoxin 5 can be intracellularly localized to mitochondria, peroxisomes, the cytosol, and, to a lesser extent, the nucleus. This remarkably wide subcellular distribution compared with the five other mammalian peroxiredoxins prompted us to further investigate the antioxidant protective function of peroxiredoxin 5 in mammalian cells according to its subcellular localization. Chinese hamster ovary cells overexpressing human peroxiredoxin 5 in the cytosol, in mitochondria, or in the nucleus were established by stable transfection. Cells overexpressing peroxiredoxin 5 were exposed for 1 h to low or acute oxidative stress with exogenously added hydrogen peroxide or tert-butylhydroperoxide. Cell protection conferred by peroxiredoxin 5 was evaluated by clonogenicity and lactate dehydrogenase assays. Overexpressing peroxiredoxin 5 in either the cytosolic, mitochondrial, or nuclear compartment significantly reduced cell death, with more effective protection with overexpression of peroxiredoxin 5 in mitochondria, confirming that this organelle is a major target of peroxides. Moreover, we evaluated, with the comet assay, nuclear DNA damage induced by hydrogen peroxide or tert-butylhydroperoxide. Overexpression of peroxiredoxin 5 in the nucleus significantly decreased DNA damage induced by both peroxides. In conclusion, the present study suggests that multiple subcellular targeting of peroxiredoxin 5 in mammalian cells can be implicated in antioxidant protective mechanisms under nonpathological conditions but also during acute oxidative stress caused by peroxides occurring in pathophysiological situations.
Collapse
Affiliation(s)
- Ingrid Banmeyer
- Laboratory of Cell Biology, Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-La-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|