51
|
Spiegelhauer O, Dickert F, Mende S, Niks D, Hille R, Ullmann M, Dobbek H. Kinetic characterization of xenobiotic reductase A from Pseudomonas putida 86. Biochemistry 2009; 48:11412-20. [PMID: 19839648 DOI: 10.1021/bi901370u] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Xenobiotic reductase A (XenA) from Pseudomonas putida is a member of the old-yellow-enzyme family of flavin-containing enzymes and catalyzes the NADH/NADPH-dependent reduction of various substrates, including 8-hydroxycoumarin and 2-cyclohexenone. Here we present a kinetic and thermodynamic analysis of XenA. In the reductive half-reaction, complexes of oxidized XenA with NADH or NADPH form charge-transfer (CT) intermediates with increased absorption around 520-560 nm, which occurs with a second-order rate constant of 9.4 x 10(5) M(-1) s(-1) with NADH and 6.4 x 10(5) M(-1) s(-1) with NADPH, while its disappearance is controlled by a rate constant of 210-250 s(-1) with both substrates. Transfer of hydride from NADPH proceeds 24 times more rapidly than from NADH. This modest kinetic preference of XenA for NADPH is unlike the typical discrimination between NADH and NADPH by binding affinity. Docking studies combined with electrostatic energy calculations indicate that the 2'-phosphate group attached to the adenine moiety of NADPH is responsible for this difference. The reductions of 2-cyclohexenone and coumarin in the oxidative half-reaction are both concentration-dependent under the assay conditions and reveal a more than 50-fold larger limiting rate constant for the reduction of 2-cyclohexenone compared to that of coumarin. Our work corroborates the link between XenA and other members of the old-yellow-enzyme family but demonstrates several differences in the reactivity of these enzymes.
Collapse
|
52
|
Schaller A, Stintzi A. Enzymes in jasmonate biosynthesis - structure, function, regulation. PHYTOCHEMISTRY 2009; 70:1532-8. [PMID: 19703696 DOI: 10.1016/j.phytochem.2009.07.032] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 05/20/2023]
Abstract
Jasmonates are a growing class of lipid-derived signaling molecules with diverse functions ranging from the initiation of biotic and abiotic stress responses to the regulation of plant growth and development. Jasmonate biosynthesis originates from polyunsaturated fatty acids in chloroplast membranes. In a first lipoxygenase-catalyzed reaction molecular oxygen is introduced to yield their 13-hydroperoxy derivatives. These fatty acid hydroperoxides are converted by allene oxide synthase and allene oxide cyclase to 12-oxophytodienoic acid (OPDA) and dinor-OPDA, i.e. the first cyclic intermediates of the pathway. In the subsequent step, the characteristic cyclopentanone ring structure of jasmonates is established by OPDA reductase. Until recently, jasmonic acid has been viewed as the end product of the pathway and as the bioactive hormone. It becomes increasingly clear, however, that biological activity extends to and may even differ between the various jasmonic acid metabolites and conjugates as well as its biosynthetic precursors. It has also become clear that oxygenated fatty acids give rise to a vast variety of bioactive compounds including but not limited to jasmonates. Recent insights into the structure, function, and regulation of the enzymes involved in jasmonate biosynthesis help to explain how this variety is generated while specificity is maintained.
Collapse
Affiliation(s)
- Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, D-70599 Stuttgart, Germany.
| | | |
Collapse
|
53
|
Structural basis of substrate specificity of plant 12-oxophytodienoate reductases. J Mol Biol 2009; 392:1266-77. [PMID: 19660473 DOI: 10.1016/j.jmb.2009.07.087] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/27/2009] [Accepted: 07/29/2009] [Indexed: 11/24/2022]
Abstract
12-Oxophytodienoate reductase 3 (OPR3) is a FMN-dependent oxidoreductase that catalyzes the reduction of the cyclopentenone (9S,13S)-12-oxophytodienoate [(9S,13S)-OPDA] to the corresponding cyclopentanone in the biosynthesis of the plant hormone jasmonic acid. In vitro, however, OPR3 reduces the jasmonic acid precursor (9S,13S)-OPDA as well as the enantiomeric (9R,13R)-OPDA, while its isozyme OPR1 is highly selective, accepting only (9R,13R)-OPDA as a substrate. To uncover the molecular determinants of this remarkable enantioselectivity, we determined the crystal structures of OPR1 and OPR3 in complex with the ligand p-hydroxybenzaldehyde. Structural comparison with the OPR1:(9R,13R)-OPDA complex and further biochemical and mutational analyses revealed that two active-site residues, Tyr78 and Tyr246 in OPR1 and Phe74 and His244 in OPR3, are critical for substrate filtering. The relatively smaller OPR3 residues allow formation of a wider substrate binding pocket that is less enantio-restrictive. Substitution of Phe74 and His244 by the corresponding OPR1 tyrosines resulted in an OPR3 mutant showing enhanced, OPR1-like substrate selectivity. Moreover, sequence analysis of the OPR family supports the filtering function of Tyr78 and Tyr246 and allows predictions with respect to substrate specificity and biological function of thus far uncharacterized OPR isozymes. The discovered structural features may also be relevant for other stereoselective proteins and guide the rational design of stereospecific enzymes for biotechnological applications.
Collapse
|
54
|
Nyanhongo GS, Schroeder M, Steiner W, Gübitz GM. Biodegradation of 2,4,6-trinitrotoluene (TNT): An enzymatic perspective. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420500090169] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
55
|
Steinkellner G, Rader R, Thallinger GG, Kratky C, Gruber K. VASCo: computation and visualization of annotated protein surface contacts. BMC Bioinformatics 2009; 10:32. [PMID: 19166624 PMCID: PMC2649047 DOI: 10.1186/1471-2105-10-32] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 01/24/2009] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Structural data from crystallographic analyses contain a vast amount of information on protein-protein contacts. Knowledge on protein-protein interactions is essential for understanding many processes in living cells. The methods to investigate these interactions range from genetics to biophysics, crystallography, bioinformatics and computer modeling. Also crystal contact information can be useful to understand biologically relevant protein oligomerisation as they rely in principle on the same physico-chemical interaction forces. Visualization of crystal and biological contact data including different surface properties can help to analyse protein-protein interactions. RESULTS VASCo is a program package for the calculation of protein surface properties and the visualization of annotated surfaces. Special emphasis is laid on protein-protein interactions, which are calculated based on surface point distances. The same approach is used to compare surfaces of two aligned molecules. Molecular properties such as electrostatic potential or hydrophobicity are mapped onto these surface points. Molecular surfaces and the corresponding properties are calculated using well established programs integrated into the package, as well as using custom developed programs. The modular package can easily be extended to include new properties for annotation. The output of the program is most conveniently displayed in PyMOL using a custom-made plug-in. CONCLUSION VASCo supplements other available protein contact visualisation tools and provides additional information on biological interactions as well as on crystal contacts. The tool provides a unique feature to compare surfaces of two aligned molecules based on point distances and thereby facilitates the visualization and analysis of surface differences.
Collapse
Affiliation(s)
- Georg Steinkellner
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010 Graz, Austria
- Research Centre Applied Biocatalysis, Petersgasse 14, 8010 Graz, Austria
| | - Robert Rader
- Institute for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
- Christian Doppler Laboratory for Genomics and Bioinformatics, Petersgasse 14, 8010 Graz, Austria
| | - Gerhard G Thallinger
- Institute for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Christoph Kratky
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010 Graz, Austria
| | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010 Graz, Austria
- Research Centre Applied Biocatalysis, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
56
|
|
57
|
Roldán MD, Pérez-Reinado E, Castillo F, Moreno-Vivián C. Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol Rev 2008; 32:474-500. [PMID: 18355273 DOI: 10.1111/j.1574-6976.2008.00107.x] [Citation(s) in RCA: 303] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Most nitroaromatic compounds are toxic and mutagenic for living organisms, but some microorganisms have developed oxidative or reductive pathways to degrade or transform these compounds. Reductive pathways are based either on the reduction of the aromatic ring by hydride additions or on the reduction of the nitro groups to hydroxylamino and/or amino derivatives. Bacterial nitroreductases are flavoenzymes that catalyze the NAD(P)H-dependent reduction of the nitro groups on nitroaromatic and nitroheterocyclic compounds. Nitroreductases have raised a great interest due to their potential applications in bioremediation, biocatalysis, and biomedicine, especially in prodrug activation for chemotherapeutic cancer treatments. Different bacterial nitroreductases have been purified and their biochemical and kinetic parameters have been determined. The crystal structure of some nitroreductases have also been solved. However, the physiological role(s) of these enzymes remains unclear. Nitroreductase genes are widely spread within bacterial genomes, but are also found in archaea and some eukaryotic species. Although studies on regulation of nitroreductase gene expression are scarce, it seems that nitroreductase genes may be controlled by the MarRA and SoxRS regulatory systems that are involved in responses to several antibiotics and environmental chemical hazards and to specific oxidative stress conditions. This review covers the microbial distribution, types, biochemical properties, structure and regulation of the bacterial nitroreductases. The possible physiological functions and the biotechnological applications of these enzymes are also discussed.
Collapse
Affiliation(s)
- María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain.
| | | | | | | |
Collapse
|
58
|
Hall M, Stueckler C, Ehammer H, Pointner E, Oberdorfer G, Gruber K, Hauer B, Stuermer R, Kroutil W, Macheroux P, Faber K. Asymmetric Bioreduction of CC Bonds using Enoate Reductases OPR1, OPR3 and YqjM: Enzyme-Based Stereocontrol. Adv Synth Catal 2008. [DOI: 10.1002/adsc.200700458] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
59
|
Tani T, Sobajima H, Okada K, Chujo T, Arimura SI, Tsutsumi N, Nishimura M, Seto H, Nojiri H, Yamane H. Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice. PLANTA 2008; 227:517-26. [PMID: 17938955 DOI: 10.1007/s00425-007-0635-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 09/17/2007] [Indexed: 05/19/2023]
Abstract
Enzyme 12-oxophytodienoate (OPDA) reductase (EC1.3.1.42), which is involved in the biosynthesis of jasmonic acid (JA), catalyses the reduction of 10, 11-double bonds of OPDA to yield 3-oxo-2-(2'-pentenyl)-cyclopentane-1-octanoic acid (OPC-8:0). The rice OsOPR1 gene encodes OPDA reductase (OPR) converting (-)-cis-OPDA preferentially, rather than (+)-cis-OPDA, a natural precursor of JA. Here, we provide evidence that an OPR family gene in rice chromosome 8, designated OsOPR7, encodes the enzyme involved in the JA biosynthesis. Recombinant OsOPR7-His protein efficiently catalysed the reduction of both enantiomers of cis-OPDA, similar to the OPR3 protein in Arabidopsis thaliana (L.) Heynh. The expression of OsOPR7 mRNA was induced and reached maximum levels within 0.5 h of mechanical wounding and drought stress, and the endogenous JA level started to increase in accordance with the increase in OsOPR7 expression. The GFP-OsOPR7 fusion protein was detected exclusively in peroxisomes in onion epidermal cells. Furthermore, complementation analysis using an Arabidopsis opr3 mutant indicated that the OsOPR7 gene, but not OsOPR1, was able to complement the phenotypes of male sterility in the mutant caused by JA deficiency, and that JA production in the opr3 mutant was also restored by the expression of the OsOPR7 gene. We conclude that the OsOPR7 gene encodes the enzyme catalysing the reduction of natural (+)-cis-OPDA for the JA biosynthesis in rice.
Collapse
Affiliation(s)
- Tomoyuki Tani
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Farmer EE, Davoine C. Reactive electrophile species. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:380-6. [PMID: 17646124 DOI: 10.1016/j.pbi.2007.04.019] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 04/17/2007] [Accepted: 04/20/2007] [Indexed: 05/16/2023]
Abstract
The interest in reactive electrophile species (RES) stems largely from the fact that they can have powerful biological activities. RES stimulate the expression of cell survival genes as well many other genes commonly upregulated in environmental stress and pathogenesis. RES levels must be carefully controlled in healthy cells but their formation and destruction during stress is of great interest. Unlike many 'classical' signals and hormones, RES can potentially affect gene expression at all levels by chemically reacting with nucleic acids, proteins and small molecules as well as by indirectly lowering pools of cellular reductants. Recent works involving genetic approaches have begun to provide compelling evidence that, although excess RES production can lead to cell damage, lower levels of RES may modulate the expression of cell survival genes and may actually contribute to survival during severe stress.
Collapse
Affiliation(s)
- Edward E Farmer
- Gene Expression Laboratory, Department of Plant Molecular Biology, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
| | | |
Collapse
|
61
|
Delker C, Zolman BK, Miersch O, Wasternack C. Jasmonate biosynthesis in Arabidopsis thaliana requires peroxisomal beta-oxidation enzymes--additional proof by properties of pex6 and aim1. PHYTOCHEMISTRY 2007; 68:1642-50. [PMID: 17544464 DOI: 10.1016/j.phytochem.2007.04.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 04/17/2007] [Accepted: 04/17/2007] [Indexed: 05/15/2023]
Abstract
Jasmonic acid (JA) is an important regulator of plant development and stress responses. Several enzymes involved in the biosynthesis of JA from alpha-linolenic acid have been characterized. The final biosynthesis steps are the beta-oxidation of 12-oxo-phytoenoic acid. We analyzed JA biosynthesis in the Arabidopsis mutants pex6, affected in peroxisome biogenesis, and aim1, disrupted in fatty acid beta-oxidation. Upon wounding, these mutants exhibit reduced JA levels compared to wild type. pex6 accumulated the precursor OPDA. Feeding experiments with deuterated OPDA substantiate this accumulation pattern, suggesting the mutants are impaired in the beta-oxidation of JA biosynthesis at different steps. Decreased expression of JA-responsive genes, such as VSP1, VSP2, AtJRG21 and LOX2, following wounding in the mutants compared to the wild type reflects the reduced JA levels of the mutants. By use of these additional mutants in combination with feeding experiments, the necessity of functional peroxisomes for JA-biosynthesis is confirmed. Furthermore an essential function of one of the two multifunctional proteins of fatty acid beta-oxidation (AIM1) for wound-induced JA formation is demonstrated for the first time. These data confirm that JA biosynthesis occurs via peroxisomal fatty acid beta-oxidation machinery.
Collapse
Affiliation(s)
- Carolin Delker
- Leibniz Institute of Plant Biochemistry, Department of Natural Product Biotechnology, Weinberg 3, D-06120 Halle/S., Germany
| | | | | | | |
Collapse
|
62
|
Engelberth J, Seidl-Adams I, Schultz JC, Tumlinson JH. Insect elicitors and exposure to green leafy volatiles differentially upregulate major octadecanoids and transcripts of 12-oxo phytodienoic acid reductases in Zea mays. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:707-16. [PMID: 17555278 DOI: 10.1094/mpmi-20-6-0707] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The induction of jasmonic acid (JA) is one of the major signaling events in plants in response to insect herbivore damage and leads to the activation of direct and indirect defensive measures. Green leafy volatiles, which constitute a major portion of volatile organic compounds, often are released in response to insect herbivore attack and have been shown to significantly activate JA production in exposed corn (Zea mays) seedlings, thereby priming these plants specifically against subsequent herbivore attack. To explore the factors determining the specificity of the octadecanoid signaling pathway in corn, we analyzed qualitative and quantitative changes in major octadecanoids. The time course and the amount of induced JA and 12-oxophytodienoic acid levels in corn seedlings were strikingly different after wounding, application of caterpillar regurgitant, or treatment with cis-3-hexenyl acetate (Z-3-6:AC). Exposure to Z-3-6:AC induced accumulation of transcripts encoded by three putative 12-oxophytodienoate10,11-reductase genes (ZmOPR1/2, ZmOPR5, and ZmOPR8). Although changes in ZmOPR5 RNAs were detected only after exposure to Z-3-6:AC, ZmOPR1/2 RNAs and ZmOPR8 RNAs also were abundant after treatment with crude regurgitant elicitor or mechanical damage. The physiological implications of these findings in the context of plant-insect interactions are discussed.
Collapse
Affiliation(s)
- Jürgen Engelberth
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
63
|
Hall M, Stueckler C, Kroutil W, Macheroux P, Faber K. Asymmetric Bioreduction of Activated Alkenes Using Cloned 12-Oxophytodienoate Reductase Isoenzymes OPR-1 and OPR-3 fromLycopersicon esculentum (Tomato): A Striking Change of Stereoselectivity. Angew Chem Int Ed Engl 2007; 46:3934-7. [PMID: 17431865 DOI: 10.1002/anie.200605168] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mélanie Hall
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | | | | | | | | |
Collapse
|
64
|
Hall M, Stueckler C, Kroutil W, Macheroux P, Faber K. Asymmetric Bioreduction of Activated Alkenes Using Cloned 12-Oxophytodienoate Reductase Isoenzymes OPR-1 and OPR-3 fromLycopersicon esculentum (Tomato): A Striking Change of Stereoselectivity. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200605168] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
65
|
Müller A, Hauer B, Rosche B. Asymmetric alkene reduction by yeast old yellow enzymes and by a novelZymomonas mobilis reductase. Biotechnol Bioeng 2007; 98:22-9. [PMID: 17657768 DOI: 10.1002/bit.21415] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The genes encoding yeast old yellow enzymes (OYE 1, 2, and 3) and NAD(P)H-dependent 2-cyclohexen-1-one reductase from Zymomonas mobilis (NCR) were expressed separately in Escherichia coli. All four recombinant strains reduced the carbon double bond in alpha,beta-unsaturated alkenals and alkenones, however rates and enantio-specificities differed. Which of the two possible enantiomers was predominantly formed, was not only dependent on the choice of enzyme but also on the substrate: In addition to a dependency on methylation in alpha- or beta-position, the data of this study illustrate that firstly the E- or Z-configuration (cis- or trans-) of the carbon double-bond and secondly the remainder of the substrate molecule play roles in determining enantio-specificity. Based on the currently accepted mechanism of flavin mediated anti-hydrogenation of the carbon double bond, the data in this study may be explained by a flipped orientation of some of the substrates in the active center of OYE.
Collapse
Affiliation(s)
- André Müller
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | |
Collapse
|
66
|
Kusnierczyk A, Winge P, Midelfart H, Armbruster WS, Rossiter JT, Bones AM. Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:2537-52. [PMID: 17545220 DOI: 10.1093/jxb/erm043] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Plants are equipped with a range of defence mechanisms against herbivorous insects. In cruciferous species, jasmonic acid, salicylic acid, and ethylene along with glucosinolates and their hydrolysis products play important roles in plant protection and plant-insect communication. In turn, a number of herbivores have adapted to plants that contain glucosinolates. As a result of adaptation to their host plants, specialized insects may elicit different plant-inducible responses than generalists. Oligonucleotide microarrays and qRT-PCR analysis were used to characterize transcriptional profiles of Arabidopsis thaliana plants in response to infestation with a generalist aphid, Myzus persicae, or a cruciferous plant specialist, Brevicoryne brassicae. To find possible differences and similarities in molecular responses between plants differing in predominant glucosinolate hydrolysis products, three ecotypes of A. thaliana were chosen: Wassilewskija (Ws), Cape Verde Islands (Cvi), and Landsberg erecta (Ler), which, respectively, produce mainly isothiocyanates, epithionitriles, and nitriles. In all three ecotypes, general stress-responsive genes, genes belonging to octadecanoid and indole glucosinolate synthesis pathways were induced upon both generalist and specialist attack. By contrast, transcription of myrosinases, enzymes hydrolysing glucosinolates, was suppressed. The induction of the jasmonic acid synthesis pathway was strongest in Cvi, while the up-regulation of the indole glucosinolate synthesis pathway was highest in Ler, suggesting a slightly different defence strategy in these two ecotypes. Specialist and generalist infestations caused statistically significant differential regulation of 60 genes in Ws and 21 in Cvi. Among these were jasmonic acid and tryptophan synthesis pathway enzymes, and pathogenesis related protein (PR1). Insect no-choice experiments revealed lowered fitness of B. brassicae on Ler and Cvi in comparison to Ws, but no ecotype-dependent change in fecundity of M. persicae. Targeted studies employing constructs of GUS reporter gene under the control of promoters from CYP79B2 and CYP79B3 genes showed insect-specific induction of the indole glucosinolates synthesis pathway.
Collapse
Affiliation(s)
- Anna Kusnierczyk
- Department of Biology, The Norwegian University of Science and Technology, Realfagbygget, 7491, Trondheim, Norway
| | | | | | | | | | | |
Collapse
|
67
|
Breithaupt C, Kurzbauer R, Lilie H, Schaller A, Strassner J, Huber R, Macheroux P, Clausen T. Crystal structure of 12-oxophytodienoate reductase 3 from tomato: self-inhibition by dimerization. Proc Natl Acad Sci U S A 2006; 103:14337-42. [PMID: 16983071 PMCID: PMC1586121 DOI: 10.1073/pnas.0606603103] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
12-Oxophytodienoate reductase (OPR) 3, a homologue of old yellow enzyme (OYE), catalyzes the reduction of 9S,13S-12-oxophytodienoate to the corresponding cyclopentanone, which is subsequently converted to the plant hormone jasmonic acid (JA). JA and JA derivatives, as well as 12-oxophytodienoate and related cyclopentenones, are known to regulate gene expression in plant development and defense. Together with other oxygenated fatty acid derivatives, they form the oxylipin signature in plants, which resembles the pool of prostaglandins in animals. Here, we report the crystal structure of OPR3 from tomato and of two OPR3 mutants. Although the catalytic residues of OPR3 and related OYEs are highly conserved, several characteristic differences can be discerned in the substrate-binding regions, explaining the remarkable substrate stereoselectivity of OPR isozymes. Interestingly, OPR3 crystallized as an extraordinary self-inhibited dimer. Mutagenesis studies and biochemical analysis confirmed a weak dimerization of OPR3 in vitro, which correlated with a loss of enzymatic activity. Based on structural data of OPR3, a putative mechanism for a strong and reversible dimerization of OPR3 in vivo that involves phosphorylation of OPR3 is suggested. This mechanism could contribute to the shaping of the oxylipin signature, which is critical for fine-tuning gene expression in plants.
Collapse
Affiliation(s)
- Constanze Breithaupt
- *Abteilung Strukturforschung, Max-Planck-Institut für Biochemie, 82152 Martinsried, Germany
| | | | - Hauke Lilie
- Institute of Biotechnology, University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Andreas Schaller
- Institute of Plant Physiology and Biotechnology (260), University of Hohenheim, 70593 Stuttgart, Germany
| | | | - Robert Huber
- *Abteilung Strukturforschung, Max-Planck-Institut für Biochemie, 82152 Martinsried, Germany
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria
| | - Tim Clausen
- Research Institute of Molecular Pathology, 1030 Vienna, Austria
| |
Collapse
|
68
|
van den Hemel D, Brigé A, Savvides SN, Van Beeumen J. Ligand-induced conformational changes in the capping subdomain of a bacterial old yellow enzyme homologue and conserved sequence fingerprints provide new insights into substrate binding. J Biol Chem 2006; 281:28152-61. [PMID: 16857682 DOI: 10.1074/jbc.m603946200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently reported that Shewanella oneidensis, a Gram-negative gamma-proteobacterium with a rich arsenal of redox proteins, possesses four old yellow enzyme (OYE) homologues. Here, we report a series of high resolution crystal structures for one of these OYEs, Shewanella yellow enzyme 1 (SYE1), in its oxidized form at 1.4A resolution, which binds a molecule of PEG 400 in the active site, and in its NADH-reduced and p-hydroxybenzaldehyde- and p-hydroxyacetophenone-bound forms at 1.7A resolution. Although the overall structure of SYE1 reveals a monomeric enzyme based on the alpha(8)beta(8) barrel scaffold observed for other OYEs, the active site exhibits a unique combination of features: a strongly butterfly-bent FMN cofactor both in the oxidized and NADH-reduced forms, a collapsed and narrow active site tunnel, and a novel combination of conserved residues involved in the binding of phenolic ligands. Furthermore, we identify a second p-hydroxybenzaldehyde-binding site in a hydrophobic cleft next to the entry of the active site tunnel in the capping subdomain, formed by a restructuring of Loop 3 to an "open" conformation. This constitutes the first evidence to date for the entire family of OYEs that Loop 3 may indeed play a dynamic role in ligand binding and thus provides insights into the elusive NADH complex and into substrate binding in general. Structure-based sequence alignments indicate that the novelties we observe in SYE1 are supported by conserved residues in a number of structurally uncharacterized OYEs from the beta- and gamma-proteobacteria, suggesting that SYE1 represents a new subfamily of bacterial OYEs.
Collapse
Affiliation(s)
- Debbie van den Hemel
- Department of Biochemistry, Physiology and Microbiology, Laboratory for Protein Biochemistry and Protein Engineering, K.L. Ledeganckstraat 35, Ghent University, 9000 Ghent, Belgium
| | | | | | | |
Collapse
|
69
|
Brigé A, Van Den Hemel D, Carpentier W, De Smet L, Van Beeumen J. Comparative characterization and expression analysis of the four Old Yellow Enzyme homologues from Shewanella oneidensis indicate differences in physiological function. Biochem J 2006; 394:335-44. [PMID: 16293111 PMCID: PMC1386032 DOI: 10.1042/bj20050979] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 11/17/2005] [Accepted: 11/18/2005] [Indexed: 11/17/2022]
Abstract
Shewanella oneidensis contains four genes that encode proteins that have high sequence identity with yeast OYE (Old Yellow Enzyme, an NADPH oxidoreductase), the well-studied archetype of the OYE protein family. The present paper describes the first comparative study of OYEs that are present in a single bacterial species, performed to gain insight into their biochemical properties and physiological importance. The four proteins [named SYE1-SYE4 (Shewanella Yellow Enzyme 1-4)] were expressed as glutathione S-transferase fusion proteins in Escherichia coli. The yield of SYE2, however, was too low for further characterization, even after expression attempts in S. oneidensis. The SYE1, SYE3 and SYE4 proteins were found to have characteristics similar to those of other OYE family members. They were identified as flavoproteins that catalyse the reduction of different alpha,beta-unsaturated carbonyl compounds and form charge transfer complexes with a range of phenolic compounds. Whereas the properties of SYE1 and SYE3 were very similar, those of SYE4 were clearly different in terms of ligand binding, catalytic efficiency and substrate specificity. Also, the activity of SYE4 was found to be NADPH-dependent, whereas SYE1 and SYE3 had a preference for NADH. It has been suggested that yeast OYE protects the actin cytoskeleton from oxidative stress. There are indications that bacterial OYEs are also involved in the oxidative stress response, but their exact role is unclear. Induction studies in S. oneidensis revealed that yeast and bacterial OYEs may share a common physiological role, i.e. the protection of cellular components against oxidative damage. As only SYE4 was induced under oxidative stress conditions, however, a functional divergence between bacterial OYEs is likely to exist.
Collapse
Key Words
- acrolein
- flavoprotein
- nadph oxidoreductase
- old yellow enzyme (oye)
- oxidative stress response
- shewanella oneidensis
- chp, cumene hydroperoxide
- ct, charge transfer
- gst, glutathione s-transferase
- gtn, glycerol trinitrate
- iptg, isopropyl β-d-thiogalactoside
- lb, luria–bertani
- (le)opr, (lycopersicon esculentum) 12-oxophytodienoate reductase
- mr, morphinone reductase
- nem, n-ethylmaleimide
- ng, nitroglycerin
- oye, old yellow enzyme
- petn, pentaerythritol tetranitrate
- seldi, surface-enhanced laser-desorption–ionization
- sye, shewanella yellow enzyme
- t-booh, t-butylhydroperoxide
- tnt, 2,4,6,-trinitrotoluene
- vis, visible
Collapse
Affiliation(s)
- Ann Brigé
- Laboratory of Protein Biochemistry and Protein Engineering, Gent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - Debbie Van Den Hemel
- Laboratory of Protein Biochemistry and Protein Engineering, Gent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - Wesley Carpentier
- Laboratory of Protein Biochemistry and Protein Engineering, Gent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - Lina De Smet
- Laboratory of Protein Biochemistry and Protein Engineering, Gent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - Jozef J. Van Beeumen
- Laboratory of Protein Biochemistry and Protein Engineering, Gent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| |
Collapse
|
70
|
Glaser F, Morris RJ, Najmanovich RJ, Laskowski RA, Thornton JM. A method for localizing ligand binding pockets in protein structures. Proteins 2005; 62:479-88. [PMID: 16304646 DOI: 10.1002/prot.20769] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The accurate identification of ligand binding sites in protein structures can be valuable in determining protein function. Once the binding site is known, it becomes easier to perform in silico and experimental procedures that may allow the ligand type and the protein function to be determined. For example, binding pocket shape analysis relies heavily on the correct localization of the ligand binding site. We have developed SURFNET-ConSurf, a modular, two-stage method for identifying the location and shape of potential ligand binding pockets in protein structures. In the first stage, the SURFNET program identifies clefts in the protein surface that are potential binding sites. In the second stage, these clefts are trimmed in size by cutting away regions distant from highly conserved residues, as defined by the ConSurf-HSSP database. The largest clefts that remain tend to be those where ligands bind. To test the approach, we analyzed a nonredundant set of 244 protein structures from the PDB and found that SURFNET-ConSurf identifies a ligand binding pocket in 75% of them. The trimming procedure reduces the original cleft volumes by 30% on average, while still encompassing an average 87% of the ligand volume. From the analysis of the results we conclude that for those cases in which the ligands are found in large, highly conserved clefts, the combined SURFNET-ConSurf method gives pockets that are a better match to the ligand shape and location. We also show that this approach works better for enzymes than for nonenzyme proteins.
Collapse
Affiliation(s)
- Fabian Glaser
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|
71
|
Khan H, Barna T, Bruce NC, Munro AW, Leys D, Scrutton NS. Proton transfer in the oxidative half-reaction of pentaerythritol tetranitrate reductase. Structure of the reduced enzyme-progesterone complex and the roles of residues Tyr186, His181 and His184. FEBS J 2005; 272:4660-71. [PMID: 16156787 DOI: 10.1111/j.1742-4658.2005.04875.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The roles of His181, His184 and Tyr186 in PETN reductase have been examined by mutagenesis, spectroscopic and stopped-flow kinetics, and by determination of crystallographic structures for the Y186F PETN reductase and reduced wild-type enzyme-progesterone complex. Residues His181 and His184 are important in the binding of coenzyme, steroids, nitroaromatic ligands and the substrate 2-cyclohexen-1-one. The H181A and H184A enzymes retain activity in reductive and oxidative half-reactions, and thus do not play an essential role in catalysis. Ligand binding and catalysis is not substantially impaired in Y186F PETN reductase, which contrasts with data for the equivalent mutation (Y196F) in Old Yellow Enzyme. The structure of Y186F PETN reductase is identical to wild-type enzyme, with the obvious exception of the mutation. We show in PETN reductase that Tyr186 is not a key proton donor in the reduction of alpha/beta unsaturated carbonyl compounds. The structure of two electron-reduced PETN reductase bound to the inhibitor progesterone mimics the catalytic enzyme-steroid substrate complex and is similar to the structure of the oxidized enzyme-inhibitor complex. The reactive C1-C2 unsaturated bond of the steroid is inappropriately orientated with the flavin N5 atom for hydride transfer. With steroid substrates, the productive conformation is achieved by orientating the steroid through flipping by 180 degrees , consistent with known geometries for hydride transfer in flavoenzymes. Our data highlight mechanistic differences between Old Yellow Enzyme and PETN reductase and indicate that catalysis requires a metastable enzyme-steroid complex and not the most stable complex observed in crystallographic studies.
Collapse
Affiliation(s)
- Huma Khan
- Department of Biochemistry, University of Leicester, UK
| | | | | | | | | | | |
Collapse
|
72
|
Fox BG, Malone TE, Johnson KA, Madson SE, Aceti D, Bingman CA, Blommel PG, Buchan B, Burns B, Cao J, Cornilescu C, Doreleijers J, Ellefson J, Frederick R, Geetha H, Hruby D, Jeon WB, Kimball T, Kunert J, Markley JL, Newman C, Olson A, Peterson FC, Phillips GN, Primm J, Ramirez B, Rosenberg NS, Runnels M, Seder K, Shaw J, Smith DW, Sreenath H, Song J, Sussman MR, Thao S, Troestler D, Tyler E, Tyler R, Ulrich E, Vinarov D, Vojtik F, Volkman BF, Wesenberg G, Wrobel RL, Zhang J, Zhao Q, Zolnai Z. X-ray structure of Arabidopsis At1g77680, 12-oxophytodienoate reductase isoform 1. Proteins 2005; 61:206-8. [PMID: 16080145 DOI: 10.1002/prot.20533] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Brian G Fox
- University of Wisconsin Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, 53706, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Messiha HL, Bruce NC, Sattelle BM, Sutcliffe MJ, Munro AW, Scrutton NS. Role of active site residues and solvent in proton transfer and the modulation of flavin reduction potential in bacterial morphinone reductase. J Biol Chem 2005; 280:27103-10. [PMID: 15905167 DOI: 10.1074/jbc.m502293200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The reactions of several active site mutant forms of bacterial morphinone reductase (MR) with NADH and 2-cyclohexen-1-one as substrates have been studied by stopped-flow and steady-state kinetic methods and redox potentiometry. The enzymes were designed to (i) probe a role for potential proton donors (Tyr-72 and Tyr-356) in the oxidative half-reaction of MR; (ii) assess the function of a highly conserved tryptophan residue (Trp-106) in catalysis; (iii) investigate the role of Thr-32 in modulating the FMN reduction potential and catalysis. The Y72F and Y356F enzymes retained activity in both steady-state and stopped-flow kinetic studies, indicating they do not serve as key proton donors in the oxidative reaction of MR. Taken together with our recently published data (Messiha, H. L., Munro, A. W., Bruce, N. C., Barsukov, I., and Scrutton, N. S. (2005) J. Biol. Chem. 280, 4627-4631) that rule out roles for Cys-191 (corresponding with the proton donor, Tyr-196, in the structurally related OYE1 enzyme) and His-186 as proton donors, we infer solvent is the source of the proton in the oxidative half-reaction of MR. We demonstrate a key role for Thr-32 in modulating the reduction potential of the FMN, which is decreased approximately 50 mV in the T32A mutant MR. This effects a change in rate-limiting step in the catalytic cycle of the T32A enzyme with the oxidizing substrate 2-cyclohexenone. Despite the conservation of Trp-106 throughout the OYE family, we show this residue does not play a major role in catalysis, although affects on substrate and coenzyme binding are observed in a W106F enzyme. Our studies show some similarities, but also major differences, in the catalytic mechanism of MR and OYE1, and emphasize the need for caution in inferring mechanism by structural comparison of highly related enzymes in the absence of solution studies.
Collapse
Affiliation(s)
- Hanan L Messiha
- Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH
| | | | | | | | | | | |
Collapse
|
74
|
Kitzing K, Fitzpatrick TB, Wilken C, Sawa J, Bourenkov GP, Macheroux P, Clausen T. The 1.3 A crystal structure of the flavoprotein YqjM reveals a novel class of Old Yellow Enzymes. J Biol Chem 2005; 280:27904-13. [PMID: 15890652 DOI: 10.1074/jbc.m502587200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we report the crystal structure of YqjM, a homolog of Old Yellow Enzyme (OYE) that is involved in the oxidative stress response of Bacillus subtilis. In addition to the oxidized and reduced enzyme form, the structures of complexes with p-hydroxybenzaldehyde and p-nitrophenol, respectively, were solved. As for other OYE family members, YqjM folds into a (alpha/beta)8-barrel and has one molecule of flavin mononucleotide bound non-covalently at the COOH termini of the beta-sheet. Most of the interactions that control the electronic properties of the flavin mononucleotide cofactor are conserved within the OYE family. However, in contrast to all members of the OYE family characterized to date, YqjM exhibits several unique structural features. For example, the enzyme exists as a homotetramer that is assembled as a dimer of catalytically dependent dimers. Moreover, the protein displays a shared active site architecture where an arginine finger (Arg336) at the COOH terminus of one monomer extends into the active site of the adjacent monomer and is directly involved in substrate recognition. Another remarkable difference in the binding of the ligand in YqjM is represented by the contribution of the NH2-terminal Tyr28 instead of a COOH-terminal tyrosine in OYE and its homologs. The structural information led to a specific data base search from which a new class of OYE oxidoreductases was identified that exhibits a strict conservation of active site residues, which are critical for this subfamily, most notably Cys26, Tyr28, Lys109, and Arg336. Therefore, YqjM is the first representative of a new bacterial subfamily of OYE homologs.
Collapse
Affiliation(s)
- Karina Kitzing
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
75
|
Malone TE, Madson SE, Wrobel RL, Jeon WB, Rosenberg NS, Johnson KA, Bingman CA, Smith DW, Phillips GN, Markley JL, Fox BG. X-ray structure of Arabidopsis At2g06050, 12-oxophytodienoate reductase isoform 3. Proteins 2004; 58:243-5. [PMID: 15468319 DOI: 10.1002/prot.20162] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Thomas E Malone
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, 53706, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Fitzpatrick TB, Auweter S, Kitzing K, Clausen T, Amrhein N, Macheroux P. Structural and functional impairment of an Old Yellow Enzyme homologue upon affinity tag incorporation. Protein Expr Purif 2004; 36:280-91. [PMID: 15249051 DOI: 10.1016/j.pep.2004.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Indexed: 11/29/2022]
Abstract
Recently, it has been reported that the previously uncharacterized YqjM protein from Bacillus subtilis is a true homologue of the physiologically enigmatic yeast Old Yellow Enzyme (OYE). In this study, it was also demonstrated that YqjM is involved in the oxidative stress response of B. subtilis, thus highlighting a novel direction to pursue the role of the OYE family of proteins in the cell. As part of an attempt to pin down the exact physiological role of these enzymes, both a N-terminal glutathione S-transferase and a C-terminal histidine-tagged form of the protein were created to enable "pull-down" assays and identify interacting partners which could aid in the functional definition. However, here we report on a comparison of the biochemical properties of the tagged forms with the native/untagged YqjM, revealing critical differences in the catalytic activities and quaternary structure of the protein forms. UV-visible spectrophotometric features as well as steady state and individual half-reaction kinetic parameters show that the affinity tagged forms are severely impaired both in ligand binding and catalysis. Gel filtration and dynamic light scattering studies show that incorporation of a tag also has major effects on the quaternary structure of the protein by disrupting the native tetrameric conformation which may help to explain the observed differences. The study thus highlights important considerations for expression construct design when isolating members of the OYE family of proteins.
Collapse
Affiliation(s)
- Teresa B Fitzpatrick
- ETH-Zürich, Institut für Pflanzenwissenschaften, Universitätstr. 2, CH-8092 Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
77
|
Matsui H, Nakamura G, Ishiga Y, Toshima H, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y. Structure and expression of 12-oxophytodienoate reductase (subgroup I) genes in pea, and characterization of the oxidoreductase activities of their recombinant products. Mol Genet Genomics 2004; 271:1-10. [PMID: 14727182 DOI: 10.1007/s00438-003-0948-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2003] [Accepted: 10/24/2003] [Indexed: 10/26/2022]
Abstract
Recently, we observed that expression of a pea gene (S64) encoding an oxophytodienoic acid reductase (OPR) was induced by a suppressor of pea defense responses, secreted by the pea pathogen Mycosphaerella pinodes. Because it is known that OPRs are usually encoded by families of homologous genes, we screened for genomic and cDNA clones encoding members of this putative OPR family in pea. We isolated five members of the OPR gene family from a pea genomic DNA library, and amplified six cDNA clones, including S64, by RT-PCR (reverse transcriptase-PCR). Sequencing analysis revealed that S64 corresponds to PsOPR2, and the amino acid sequences of the predicted products of the six OPR-like genes shared more than 80% identity with each other. Based on their sequence similarity, all these OPR-like genes code for OPRs of subgroup I, i.e., enzymes which are not required for jasmonic acid biosynthesis. However, the genes varied in their exon/intron organization and in their promoter sequences. To investigate the expression of each individual OPR-like gene, RT-PCR was performed using gene-specific primers. The results indicated that the OPR-like gene most strongly induced by the inoculation of pea plants with a compatible pathogen and by treatment with the suppressor from M. pinodes was PsOPR2. Furthermore, the ability of the six recombinant OPR-like proteins to reduce a model substrate, 2-cyclohexen-1-one (2-CyHE), was investigated. The results indicated that PsOPR1, 4 and 6 display robust activity, and PsOPR2 has a most remarkable ability to reduce 2-CyHE, whereas PsOPR3 has little and PsOPR5 does not reduce this compound. Thus, the six OPR-like proteins can be classified into four types. Interestingly, the gene structures, expression profiles, and enzymatic activities used to classify each member of the pea OPR-like gene family are clearly correlated, indicating that each member of this OPR-like family has a distinct function.
Collapse
Affiliation(s)
- H Matsui
- Laboratory of Plant Pathology and Genetic Engineering, Faculty of Agriculture, Okayama University, Tsushima-naka 1-1-1, 700-8530 Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Fitzpatrick TB, Amrhein N, Macheroux P. Characterization of YqjM, an Old Yellow Enzyme homolog from Bacillus subtilis involved in the oxidative stress response. J Biol Chem 2003; 278:19891-7. [PMID: 12660247 DOI: 10.1074/jbc.m211778200] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this paper, we demonstrate that a protein from Bacillus subtilis (YqjM) shares many characteristic biochemical properties with the homologous yeast Old Yellow Enzyme (OYE); the enzyme binds FMN tightly but noncovalently, preferentially uses NADPH as a source of reducing equivalents, and forms charge transfer complexes with phenolic compounds such as p-hydroxybenzaldehyde. Like yeast OYE and other members of the family, YqjM catalyzes the reduction of the double bond of an array of alpha,beta-unsaturated aldehydes and ketones including nitroester and nitroaromatic compounds. Although yeast OYE was the first member of this family to be discovered in 1933 and was the first flavoenzyme ever to be isolated, the physiological role of the family still remains obscure. The finding that alpha,beta-unsaturated compounds are substrates provoked speculation that the OYE family might be involved in reductive degradation of xenobiotics or lipid peroxidation products. Here, for the first time, we demonstrate on the protein level that whereas YqjM shows a basal level of expression in B. subtilis, the addition of the toxic xenobiotic, trinitrotoluene, leads to a rapid induction of the protein in vivo denoting a role in detoxification. Moreover, we show that YqjM is rapidly induced in response to oxidative stress as exerted by hydrogen peroxide, demonstrating a potential physiological role for this enigmatic class of proteins.
Collapse
Affiliation(s)
- Teresa B Fitzpatrick
- ETH-Zürich, Institut für Pflanzenwissenschaften, Universitätstrasse 2, Switzerland.
| | | | | |
Collapse
|
79
|
Strassner J, Schaller F, Frick UB, Howe GA, Weiler EW, Amrhein N, Macheroux P, Schaller A. Characterization and cDNA-microarray expression analysis of 12-oxophytodienoate reductases reveals differential roles for octadecanoid biosynthesis in the local versus the systemic wound response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:585-601. [PMID: 12445129 DOI: 10.1046/j.1365-313x.2002.01449.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
12-Oxophytodienoate reductases (OPRs) belong to a family of flavin-dependent oxidoreductases. With two new tomato isoforms reported here, three OPRs have now been characterized in both tomato and Arabidopsis. Only one of these isoforms (OPR3) participates directly in the octadecanoid pathway for jasmonic acid biosynthesis, as only OPR3 reduces the 9S,13S-stereoisomer of 12-oxophytodienoic acid, the biological precursor of jasmonic acid. The subcellular localization of OPRs was analyzed in tomato and Arabidopsis. The OPR3 protein and activity were consistently found in peroxisomes where they co-localize with the enzymes of beta-oxidation which catalyze the final steps in the formation of jasmonic acid. The octadecanoid pathway is thus confined to plastids and peroxisomes and, in contrast to previous assumptions, does not involve the cytosolic compartment. The expression of tomato (Lycopersicon esculentum,Le) OPR3 was analyzed in the context of defense-related genes using a microarray comprising 233 cDNA probes. LeOPR3 was found to be up-regulated after wounding with induction kinetics resembling those of other octadecanoid pathway enzymes. In contrast to the induction of genes for wound response proteins (e.g. proteinase inhibitors), the accumulation of octadecanoid pathway transcripts was found to be more rapid and transient in wounded leaves, but hardly detectable in unwounded, systemic leaves. Consistent with the expression data, OPDA and JA were found to accumulate locally but not systemically in the leaves of wounded tomato plants. The transcriptional activation of the octadecanoid pathway and the accumulation of JA to high levels are, thus not required for the activation of defense gene expression in systemic tissues.
Collapse
Affiliation(s)
- Jochen Strassner
- Plant Biochemistry and Physiology Group, Institute of Plant Sciences, ETH-Zürich, Universitätstrasse 2, CH-8092 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Wasternack C, Hause B. Jasmonates and octadecanoids: signals in plant stress responses and development. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:165-221. [PMID: 12206452 DOI: 10.1016/s0079-6603(02)72070-9] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Plants are sessile organisms. Consequently they have to adapt constantly to fluctuations in the environment. Some of these changes involve essential factors such as nutrients, light, and water. Plants have evolved independent systems to sense nutrients such as phosphate and nitrogen. However, many of the environmental factors may reach levels which represent stress for the plant. The fluctuations can range between moderate and unfavorable, and the factors can be of biotic or abiotic origin. Among the biotic factors influencing plant life are pathogens and herbivores. In case of bacteria and fungi, symbiotic interactions such as nitrogen-fixating nodules and mycorrhiza, respectively, may be established. In case of insects, a tritrophic interaction of herbivores, carnivores, and plants may occur mutualistically or parasitically. Among the numerous abiotic factors are low temperature, frost, heat, high light conditions, ultraviolet light, darkness, oxidation stress, hypoxia, wind, touch, nutrient imbalance, salt stress, osmotic adjustment, water deficit, and desiccation. In the last decade jasmonates were recognized as being signals in plant responses to most of these biotic and abiotic factors. Signaling via jasmonates was found to occur intracellularly, intercellularly, and systemically as well as interorganismically. Jasmonates are a group of ubiquitously occurring plant growth regulators originally found as the major constituents in the etheric oil of jasmine, and were first suggested to play a role in senescence due to a strong senescence-promoting effect. Subsequently, numerous developmental processes were described in which jasmonates exhibited hormone-like properties. Recent knowledge is reviewed here on jasmonates and their precursors, the octadecanoids. After discussing occurrence and biosynthesis, emphasis is placed upon the signal transduction pathways in plant stress responses in which jasmonates act as a signal. Finally, examples are described on the role of jasmonates in developmental processes.
Collapse
|
81
|
Abstract
Oxylipins comprise a group of biologically active compounds whose structural diversity is generated by the coordinate action of lipases, lipoxygenases, and a group of cytochromes P450 that are specialized for the metabolism of hydroperoxy fatty acids. Research on oxylipins has focused mainly on the biosynthesis of the plant signaling molecule jasmonic acid, and its role in the regulation of developmental and defense-related processes. Recent genetic studies indicate that metabolic precursors of jasmonate are active as signals in their own right, and that the synthesis and perception of jasmonates is critical for wound-induced systemic defense responses. Increasing evidence indicates that the collective biological importance of oxylipins in plants is comparable to that of the eicosanoid family of lipid mediators in animals.
Collapse
Affiliation(s)
- Gregg A Howe
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
82
|
Williams RE, Bruce NC. 'New uses for an Old Enzyme'--the Old Yellow Enzyme family of flavoenzymes. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1607-1614. [PMID: 12055282 DOI: 10.1099/00221287-148-6-1607] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Richard E Williams
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK1
| | - Neil C Bruce
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK1
| |
Collapse
|