51
|
Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu. Q Rev Biophys 2010; 42:159-200. [PMID: 20025795 DOI: 10.1017/s0033583509990060] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The ribosome is a complex macromolecular machine that translates the message encoded in the messenger RNA and synthesizes polypeptides by linking the individual amino acids carried by the cognate transfer RNAs (tRNAs). The protein elongation cycle, during which the tRNAs traverse the ribosome in a coordinated manner along a path of more than 100 A, is facilitated by large-scale rearrangements of the ribosome. These rearrangements go hand in hand with conformational changes of tRNA as well as elongation factors EF-Tu and EF-G - GTPases that catalyze tRNA delivery and translocation, respectively. This review focuses on the structural data related to the dynamics of the ribosomal machinery, which are the basis, in conjunction with existing biochemical, kinetic, and fluorescence resonance energy transfer data, of our knowledge of the decoding and translocation steps of protein elongation.
Collapse
|
52
|
Intramolecular movements in EF-G, trapped at different stages in its GTP hydrolytic cycle, probed by FRET. J Mol Biol 2010; 397:1245-60. [PMID: 20219471 DOI: 10.1016/j.jmb.2010.02.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 02/19/2010] [Accepted: 02/22/2010] [Indexed: 11/24/2022]
Abstract
Elongation factor G (EF-G) is one of several GTP hydrolytic proteins (GTPases) that cycles repeatedly on and off the ribosome during protein synthesis in bacterial cells. In the functional cycle of EF-G, hydrolysis of guanosine 5'-triphosphate (GTP) is coupled to tRNA-mRNA translocation in ribosomes. GTP hydrolysis induces conformational rearrangements in two switch elements in the G domain of EF-G and other GTPases. These switch elements are thought to initiate the cascade of events that lead to translocation and EF-G cycling between ribosomes. To further define the coupling mechanism, we developed a new fluorescent approach that can detect intramolecular movements in EF-G. We attached a fluorescent probe to the switch I element (sw1) of Escherichia coli EF-G. We monitored the position of the sw1 probe, relative to another fluorescent probe anchored to the GTP substrate or product, by measuring the distance-dependent, Förster resonance energy transfer between the two probes. By analyzing EF-G trapped at five different functional states in its cycle, we could infer the cyclical movements of sw1 within EF-G. Our results provide evidence for conformational changes in sw1, which help to drive the unidirectional EF-G cycle during protein synthesis. More generally, our approach might also serve to define the conformational dynamics of other GTPases with their cellular receptors.
Collapse
|
53
|
Dan A, Ofran Y, Kliger Y. Large-scale analysis of secondary structure changes in proteins suggests a role for disorder-to-order transitions in nucleotide binding proteins. Proteins 2010; 78:236-48. [PMID: 19676113 DOI: 10.1002/prot.22531] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Conformational changes in proteins often involve secondary structure transitions. Such transitions can be divided into two types: disorder-to-order changes, in which a disordered segment acquires an ordered secondary structure (e.g., disorder to alpha-helix, disorder to beta-strand), and order-to-order changes, where a segment switches from one ordered secondary structure to another (e.g., alpha-helix to beta-strand, alpha-helix to turn). In this study, we explore the distribution of these transitions in the proteome. Using a comprehensive, yet highly conservative method, we compared solved three-dimensional structures of identical protein sequences, looking for differences in the secondary structures with which they were assigned. Protein chains in which such secondary structure transitions were detected, were classified into two sets according to the type of transition that is involved (disorder-to-order or order-to-order), allowing us to characterize each set by examining enrichment of gene ontology terms. The results reveal that the disorder-to-order set is significantly enriched with nucleotide binding proteins, whereas the order-to-order set is more diverse. Remarkably, further examination reveals that >22% of the purine nucleotide binding proteins include segments which undergo disorder-to-order transitions, suggesting that such transitions play an important role in this process.
Collapse
Affiliation(s)
- Adi Dan
- Compugen Ltd., Tel Aviv, 69512, Israel
| | | | | |
Collapse
|
54
|
Belyi Y, Aktories K. Bacterial toxin and effector glycosyltransferases. Biochim Biophys Acta Gen Subj 2010; 1800:134-43. [DOI: 10.1016/j.bbagen.2009.07.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 07/14/2009] [Accepted: 07/18/2009] [Indexed: 02/08/2023]
|
55
|
Zhang J, King CA, Dalby K, Ren P. Conformational preference of ChaK1 binding peptides: a molecular dynamics study. PMC BIOPHYSICS 2010; 3:2. [PMID: 20180991 PMCID: PMC2831825 DOI: 10.1186/1757-5036-3-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 01/21/2010] [Indexed: 11/10/2022]
Abstract
TRPM7/ChaK1 is a recently discovered atypical protein kinase that has been suggested to selectively phosphorylate the substrate residues located in alpha-helices. However, the actual structure of kinase-substrate complex has not been determined experimentally and the recognition mechanism remains unknown. In this work we explored possible kinase-substrate binding modes and the likelihood of an alpha-helix docking interaction, within a kinase active site, using molecular modeling. Specifically kinase ChaK1 and its two peptide substrates were examined; one was an 11-residue segment from the N-terminal domain of annexin-1, a putative endogenous substrate for ChaK1, and the other was an engineered 16-mer peptide substrate determined via peptide library screening. Simulated annealing (SA), replica-exchange molecular dynamics (REMD) and steered molecular dynamics (SMD) simulations were performed on the two peptide substrates and the ChaK1-substrate complex in solution. The simulations indicate that the two substrate peptides are unlikely to bind and react with the ChaK1 kinase in a stable alpha-helical conformation overall. The key structural elements, sequence motifs, and amino acid residues in the ChaK1 and their possible functions involved in the substrate recognition are discussed.PACS Codes: 87.15.A-
Collapse
Affiliation(s)
- Jiajing Zhang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Christopher A King
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kevin Dalby
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
56
|
Futernyk PV, Negrutskii BS, El'skaya AV. Interaction of different tRNAs with translation elongation factors 1A from lower and higher eukaryotes. ACTA ACUST UNITED AC 2009. [DOI: 10.7124/bc.0007f8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- P. V. Futernyk
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - B. S. Negrutskii
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - A. V. El'skaya
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|
57
|
Sanderová H, Tiserová H, Barvík I, Sojka L, Jonák J, Krásný L. The N-terminal region is crucial for the thermostability of the G-domain of Bacillus stearothermophilus EF-Tu. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:147-55. [PMID: 19800034 DOI: 10.1016/j.bbapap.2009.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 09/17/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
Abstract
Bacterial elongation factor Tu (EF-Tu) is a model monomeric G protein composed of three covalently linked domains. Previously, we evaluated the contributions of individual domains to the thermostability of EF-Tu from the thermophilic bacterium Bacillus stearothermophilus. We showed that domain 1 (G-domain) sets up the basal level of thermostability for the whole protein. Here we chose to locate the thermostability determinants distinguishing the thermophilic domain 1 from a mesophilic domain 1. By an approach of systematically swapping protein regions differing between G-domains from mesophilic Bacillus subtilis and thermophilic B. stearothermophilus, we demonstrate that a small portion of the protein, the N-terminal 12 amino acid residues, plays a key role in the thermostability of this domain. We suggest that the thermostabilizing effect of the N-terminal region could be mediated by stabilizing the functionally important effector region. Finally, we demonstrate that the effect of the N-terminal region is significant also for the thermostability of the full-length EF-Tu.
Collapse
Affiliation(s)
- Hana Sanderová
- Laboratory of Molecular Genetics of Bacteria, Institute of Microbiology Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | | | | | | | | | | |
Collapse
|
58
|
Affiliation(s)
- Alexander S Spirin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| |
Collapse
|
59
|
Köster S, Wehner M, Herrmann C, Kühlbrandt W, Yildiz O. Structure and function of the FeoB G-domain from Methanococcus jannaschii. J Mol Biol 2009; 392:405-19. [PMID: 19615379 DOI: 10.1016/j.jmb.2009.07.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 06/26/2009] [Accepted: 07/03/2009] [Indexed: 01/09/2023]
Abstract
FeoB in bacteria and archaea is involved in the uptake of ferrous iron (Fe(2+)), an important cofactor in biological electron transfer and catalysis. Unlike any other known prokaryotic membrane protein, FeoB contains a GTP-binding domain at its N-terminus. We determined high-resolution X-ray structures of the FeoB G-domain from Methanococcus jannaschii with and without bound GDP or Mg(2+)-GppNHp. The G-domain forms the same dimer in all three structures, with the nucleotide-binding pockets at the dimer interface, as in the ATP-binding domain of ABC transporters. The G-domain follows the typical fold of nucleotide-binding proteins, with a beta-strand inserted in switch I that becomes partially disordered upon GTP binding. Switch II does not contact the nucleotide directly and does not change its conformation in response to the bound nucleotide. Release of the nucleotide causes a rearrangement of loop L6, which we identified as the G5 region of FeoB. Together with the C-terminal helix, this loop may transmit the information about the nucleotide-bound state from the G-domain to the transmembrane region of FeoB.
Collapse
Affiliation(s)
- Stefan Köster
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
60
|
Ticu C, Nechifor R, Nguyen B, Desrosiers M, Wilson KS. Conformational changes in switch I of EF-G drive its directional cycling on and off the ribosome. EMBO J 2009; 28:2053-65. [PMID: 19536129 DOI: 10.1038/emboj.2009.169] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 05/26/2009] [Indexed: 11/09/2022] Open
Abstract
We have trapped elongation factor G (EF-G) from Escherichia coli in six, functionally defined states, representing intermediates in its unidirectional catalytic cycle, which couples GTP hydrolysis to tRNA-mRNA translocation in the ribosome. By probing EF-G with trypsin in each state, we identified a substantial conformational change involving its conserved switch I (sw1) element, which contacts the GTP substrate. By attaching FeBABE (a hydroxyl radical generating probe) to sw1, we could monitor sw1 movement (by approximately 20 A), relative to the 70S ribosome, during the EF-G cycle. In free EF-G, sw1 is disordered, particularly in GDP-bound and nucleotide-free states. On EF-G*GTP binding to the ribosome, sw1 becomes structured and tucked inside the ribosome, thereby locking GTP onto EF-G. After hydrolysis and translocation, sw1 flips out from the ribosome, greatly accelerating release of GDP and EF-G from the ribosome. Collectively, our results support a central role of sw1 in driving the EF-G cycle during protein synthesis.
Collapse
Affiliation(s)
- Cristina Ticu
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | |
Collapse
|
61
|
Schuette JC, Murphy FV, Kelley AC, Weir JR, Giesebrecht J, Connell SR, Loerke J, Mielke T, Zhang W, Penczek PA, Ramakrishnan V, Spahn CMT. GTPase activation of elongation factor EF-Tu by the ribosome during decoding. EMBO J 2009; 28:755-65. [PMID: 19229291 PMCID: PMC2666022 DOI: 10.1038/emboj.2009.26] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 01/14/2009] [Indexed: 11/09/2022] Open
Abstract
We have used single-particle reconstruction in cryo-electron microscopy to determine a structure of the Thermus thermophilus ribosome in which the ternary complex of elongation factor Tu (EF-Tu), tRNA and guanine nucleotide has been trapped on the ribosome using the antibiotic kirromycin. This represents the state in the decoding process just after codon recognition by tRNA and the resulting GTP hydrolysis by EF-Tu, but before the release of EF-Tu from the ribosome. Progress in sample purification and image processing made it possible to reach a resolution of 6.4 A. Secondary structure elements in tRNA, EF-Tu and the ribosome, and even GDP and kirromycin, could all be visualized directly. The structure reveals a complex conformational rearrangement of the tRNA in the A/T state and the interactions with the functionally important switch regions of EF-Tu crucial to GTP hydrolysis. Thus, the structure provides insights into the molecular mechanism of signalling codon recognition from the decoding centre of the 30S subunit to the GTPase centre of EF-Tu.
Collapse
Affiliation(s)
- Jan-Christian Schuette
- Institut für Medizinische Physik und Biophysik, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Frank V Murphy
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ann C Kelley
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - John R Weir
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jan Giesebrecht
- Institut für Medizinische Physik und Biophysik, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Sean R Connell
- Institut für Medizinische Physik und Biophysik, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Justus Loerke
- UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Thorsten Mielke
- UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas—Houston Medical School, Houston, TX, USA
| | - Pawel A Penczek
- Department of Biochemistry and Molecular Biology, The University of Texas—Houston Medical School, Houston, TX, USA
| | - V Ramakrishnan
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charite-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
62
|
Aleksandrov A, Simonson T. Binding of tetracyclines to elongation factor Tu, the Tet repressor, and the ribosome: a molecular dynamics simulation study. Biochemistry 2009; 47:13594-603. [PMID: 19032078 DOI: 10.1021/bi801726q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tetracycline (Tc) is a broad-spectrum antibiotic that kills bacteria by interrupting protein biosynthesis. It is thought that the bacteriostatic action of Tc is associated with its binding to the acceptor site (or A site) in the bacterial ribosome, interfering with the attachment of aminoacyl-tRNA. Recently, however, the crystal structure of a complex between Tc and trypsin-modified elongation factor Tu (tm-EF-Tu) was determined, raising the question of whether Tc binding to EF-Tu has a role in its inhibition of protein synthesis. We address this question using computer simulations. As controls, we first compute relative ribosome binding free energies for seven Tc variants for which experimental data are available, obtaining good agreement. We then consider the binding of Tc to both the trypsin-modified and unmodified EF-Tu-GDP complexes. We show that the direct contribution of EF-Tu to the binding free energy is negligible; rather, the binding can be solely attributed to interactions of Tc with a bridging Mg(2+) ion and the GDP phosphate groups. The effects of trypsin modification are modest. Further, our calculations show that EF-Tu does not exhibit any binding preference for Tc over the nonantibiotic, 4-dedimethyl-Tc, and EF-Tu does not bind the Tc analogue tigecycline, which is a potent antibiotic. In contrast, both the ribosome and the Tet Repressor protein (involved in Tc resistance) do show a binding preference for Tc over 4-dedimethyl-Tc, and the ribosome prefers to bind tigecycline over Tc. Overall, our results provide insights into the binding properties of tetracyclines and support the idea that EF-Tu is not their primary target.
Collapse
Affiliation(s)
- Alexey Aleksandrov
- Laboratoire de Biochimie (CNRS UMR7654), Department of Biology, Ecole Polytechnique, 91128 Palaiseau, France
| | | |
Collapse
|
63
|
Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. Proc Natl Acad Sci U S A 2009; 106:1063-8. [PMID: 19122150 DOI: 10.1073/pnas.0811370106] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In translation, elongation factor Tu (EF-Tu) molecules deliver aminoacyl-tRNAs to the mRNA-programmed ribosome. The GTPase activity of EF-Tu is triggered by ribosome-induced conformational changes of the factor that play a pivotal role in the selection of the cognate aminoacyl-tRNAs. We present a 6.7-A cryo-electron microscopy map of the aminoacyl-tRNA x EF-Tu x GDP x kirromycin-bound Escherichia coli ribosome, together with an atomic model of the complex obtained through molecular dynamics flexible fitting. The model reveals the conformational changes in the conserved GTPase switch regions of EF-Tu that trigger hydrolysis of GTP, along with key interactions, including those between the sarcin-ricin loop and the P loop of EF-Tu, and between the effector loop of EF-Tu and a conserved region of the 16S rRNA. Our data suggest that GTP hydrolysis on EF-Tu is controlled through a hydrophobic gate mechanism.
Collapse
|
64
|
Agirrezabala X, Lei J, Brunelle JL, Ortiz-Meoz RF, Green R, Frank J. Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome. Mol Cell 2008; 32:190-7. [PMID: 18951087 PMCID: PMC2614368 DOI: 10.1016/j.molcel.2008.10.001] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/12/2008] [Accepted: 10/01/2008] [Indexed: 10/21/2022]
Abstract
A crucial step in translation is the translocation of tRNAs through the ribosome. In the transition from one canonical site to the other, the tRNAs acquire intermediate configurations, so-called hybrid states. At this stage, the small subunit is rotated with respect to the large subunit, and the anticodon stem loops reside in the A and P sites of the small subunit, while the acceptor ends interact with the P and E sites of the large subunit. In this work, by means of cryo-EM and particle classification procedures, we visualize the hybrid state of both A/P and P/E tRNAs in an authentic factor-free ribosome complex during translocation. In addition, we show how the repositioning of the tRNAs goes hand in hand with the change in the interplay between S13, L1 stalk, L5, H68, H69, and H38 that is caused by the ratcheting of the small subunit.
Collapse
MESH Headings
- Binding Sites
- Cryoelectron Microscopy
- Models, Molecular
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational
- Protein Biosynthesis
- Protein Subunits/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer/ultrastructure
- Ribosome Subunits, Large, Bacterial/chemistry
- Ribosome Subunits, Large, Bacterial/physiology
- Ribosome Subunits, Large, Bacterial/ultrastructure
- Ribosome Subunits, Small, Bacterial/chemistry
- Ribosome Subunits, Small, Bacterial/physiology
- Ribosome Subunits, Small, Bacterial/ultrastructure
Collapse
Affiliation(s)
- Xabier Agirrezabala
- HHMI, Department of Biochemistry and Molecular Biophysics, Columbia University, 630 168 Street, P&S BB 2-221, New York, NY, USA
| | - Jianlin Lei
- HHMI, Department of Biochemistry and Molecular Biophysics, Columbia University, 630 168 Street, P&S BB 2-221, New York, NY, USA
| | - Julie L. Brunelle
- HHMI, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Rodrigo F. Ortiz-Meoz
- HHMI, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Rachel Green
- HHMI, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Joachim Frank
- HHMI, Department of Biochemistry and Molecular Biophysics, Columbia University, 630 168 Street, P&S BB 2-221, New York, NY, USA
- Department of Biological Sciences, Columbia University
| |
Collapse
|
65
|
Sengupta J, Nilsson J, Gursky R, Kjeldgaard M, Nissen P, Frank J. Visualization of the eEF2-80S ribosome transition-state complex by cryo-electron microscopy. J Mol Biol 2008; 382:179-87. [PMID: 18644383 PMCID: PMC2990977 DOI: 10.1016/j.jmb.2008.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/12/2008] [Accepted: 07/03/2008] [Indexed: 11/18/2022]
Abstract
In an attempt to understand ribosome-induced GTP hydrolysis on eEF2, we determined a 12.6-A cryo-electron microscopy reconstruction of the eEF2-bound 80S ribosome in the presence of aluminum tetrafluoride and GDP, with aluminum tetrafluoride mimicking the gamma-phosphate during hydrolysis. This is the first visualization of a structure representing a transition-state complex on the ribosome. Tight interactions are observed between the factor's G domain and the large ribosomal subunit, as well as between domain IV and an intersubunit bridge. In contrast, some of the domains of eEF2 implicated in small subunit binding display a large degree of flexibility. Furthermore, we find support for a transition-state model conformation of the switch I region in this complex where the reoriented switch I region interacts with a conserved rRNA region of the 40S subunit formed by loops of the 18S RNA helices 8 and 14. This complex is structurally distinct from the eEF2-bound 80S ribosome complexes previously reported, and analysis of this map sheds light on the GTPase-coupled translocation mechanism.
Collapse
Affiliation(s)
- Jayati Sengupta
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201-0509, USA
| | - Jakob Nilsson
- Department of Molecular Biology, University of Aarhus, Gustav Wieds vej 10C, DK-8000 Aarhus, Denmark
| | - Richard Gursky
- Howard Hughes Medical Institute, Health Research, Inc., Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201-0509, USA
| | - Morten Kjeldgaard
- Department of Molecular Biology, University of Aarhus, Gustav Wieds vej 10C, DK-8000 Aarhus, Denmark
| | - Poul Nissen
- Department of Molecular Biology, University of Aarhus, Gustav Wieds vej 10C, DK-8000 Aarhus, Denmark
| | - Joachim Frank
- Howard Hughes Medical Institute, Health Research, Inc., Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201-0509, USA
- Department of Biomedical Sciences, State University of New York at Albany, Empire State Plaza, Albany, New York 12201-0509, USA
| |
Collapse
|
66
|
Granata V, Graziano G, Ruggiero A, Raimo G, Masullo M, Arcari P, Vitagliano L, Zagari A. Stability against temperature of Sulfolobus solfataricus elongation factor 1 alpha, a multi-domain protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:573-81. [PMID: 18267133 DOI: 10.1016/j.bbapap.2007.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 12/06/2007] [Accepted: 12/26/2007] [Indexed: 11/18/2022]
Abstract
The elongation factors (EF-Tu/EF-1 alpha) are universal proteins, involved in protein biosynthesis. A detailed characterization of the stability against temperature of SsEF-1 alpha, a three-domain protein isolated from the hyperthermophilic archaeon Sulfolobus solfataricus is presented. Thermal denaturation of both the GDP-bound (SsEF-1 alpha*.GDP) and the ligand-free (nfSsEF-1 alpha) forms was investigated by means of circular dichroism and fluorescence measurements, over the 4.0-7.5 pH interval. Data indicate that the unfolding process is cooperative with no intermediate species and that the few inter-domain contacts identified in the crystal structure of SsEF-1 alpha play a role also at high temperatures. Finally, it is shown that the enzyme exhibits two different interchangeable thermally denatured states, depending on pH.
Collapse
Affiliation(s)
- Vincenzo Granata
- Dip. delle Scienze Biologiche, Sez. di Biostrutture, Università degli Studi di Napoli Federico II, Napoli, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Gromadski KB, Schümmer T, Strømgaard A, Knudsen CR, Kinzy TG, Rodnina MV. Kinetics of the interactions between yeast elongation factors 1A and 1Balpha, guanine nucleotides, and aminoacyl-tRNA. J Biol Chem 2007; 282:35629-37. [PMID: 17925388 PMCID: PMC3269240 DOI: 10.1074/jbc.m707245200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interactions of elongation factor 1A (eEF1A) from Saccharomyces cerevisiae with elongation factor 1Balpha (eEF1Balpha), guanine nucleotides, and aminoacyl-tRNA were studied kinetically by fluorescence stopped-flow. eEF1A has similar affinities for GDP and GTP, 0.4 and 1.1 microm, respectively. Dissociation of nucleotides from eEF1A in the absence of the guanine nucleotide exchange factor is slow (about 0.1 s(-1)) and is accelerated by eEF1Balpha by 320-fold and 250-fold for GDP and GTP, respectively. The rate constant of eEF1Balpha binding to eEF1A (10(7)-10(8) M (-1) s(-1)) is independent of guanine nucleotides. At the concentrations of nucleotides and factors prevailing in the cell, the overall exchange rate is expected to be in the range of 6 s(-1), which is compatible with the rate of protein synthesis in the cell. eEF1A.GTP binds Phe-tRNA(Phe) with a K(d) of 3 nm, whereas eEF1A.GDP shows no significant binding, indicating that eEF1A has similar tRNA binding properties as its prokaryotic homolog, EF-Tu.
Collapse
Affiliation(s)
- Kirill B. Gromadski
- Institute of Physical Biochemistry, University of Witten/Herdecke, Stockumer Strasse 10, D-58448 Witten, Germany
| | - Tobias Schümmer
- Institute of Physical Biochemistry, University of Witten/Herdecke, Stockumer Strasse 10, D-58448 Witten, Germany
| | - Anne Strømgaard
- Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Århus C, Denmark
| | - Charlotte R. Knudsen
- Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Århus C, Denmark
| | - Terri Goss Kinzy
- Department of Molecular Genetics, Microbiology and Immunology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Marina V. Rodnina
- Institute of Physical Biochemistry, University of Witten/Herdecke, Stockumer Strasse 10, D-58448 Witten, Germany
| |
Collapse
|
68
|
Takano K, Katagiri Y, Mukaiyama A, Chon H, Matsumura H, Koga Y, Kanaya S. Conformational contagion in a protein: structural properties of a chameleon sequence. Proteins 2007; 68:617-25. [PMID: 17510955 DOI: 10.1002/prot.21451] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Certain sequences, known as chameleon sequences, take both alpha- and beta-conformations in natural proteins. We demonstrate that a wild chameleon sequence fused to the C-terminal alpha-helix or beta-sheet in foreign stable proteins from hyperthermophiles forms the same conformation as the host secondary structure. However, no secondary structural formation is observed when the sequence is attached to the outside of the secondary structure. These results indicate that this sequence inherently possesses an ability to make either alpha- or beta-conformation, depending on the sequentially neighboring secondary structure if little other nonlocal interaction occurs. Thus, chameleon sequences take on a satellite state through contagion by the power of a secondary structure. We propose this "conformational contagion" as a new nonlocal determinant factor in protein structure and misfolding related to protein conformational diseases.
Collapse
Affiliation(s)
- Kazufumi Takano
- Department of Material and Life Science, Osaka University, Suita, Japan.
| | | | | | | | | | | | | |
Collapse
|
69
|
Guo JT, Jaromczyk JW, Xu Y. Analysis of chameleon sequences and their implications in biological processes. Proteins 2007; 67:548-58. [PMID: 17299764 DOI: 10.1002/prot.21285] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chameleon sequences have been implicated in amyloid related diseases. Here we report an analysis of two types of chameleon sequences, chameleon-HS (Helix vs. Strand) and chameleon-HE (Helix vs. Sheet), based on known structures in Protein Data Bank. Our survey shows that the longest chameleon-HS is eight residues while the longest chameleon-HE is seven residues. We have done a detailed analysis on the local and global environment that might contribute to the unique conformation of a chameleon sequence. We found that the existence of chameleon sequences does not present a problem for secondary structure prediction programs, including the first generation prediction programs, such as Chou-Fasman algorithm, and the third generation prediction programs that utilize evolution information. We have also investigated the possible implication of chameleon sequences in structural conservation and functional diversity of alternatively spliced protein isoforms.
Collapse
Affiliation(s)
- Jun-Tao Guo
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
70
|
Olsthoorn-Tieleman LN, Palstra RJTS, van Wezel GP, Bibb MJ, Pleij CWA. Elongation factor Tu3 (EF-Tu3) from the kirromycin producer Streptomyces ramocissimus Is resistant to three classes of EF-Tu-specific inhibitors. J Bacteriol 2007; 189:3581-90. [PMID: 17337575 PMCID: PMC1855904 DOI: 10.1128/jb.01810-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 02/21/2007] [Indexed: 11/20/2022] Open
Abstract
The antibiotic kirromycin inhibits prokaryotic protein synthesis by immobilizing elongation factor Tu (EF-Tu) on the elongating ribosome. Streptomyces ramocissimus, the producer of kirromycin, contains three tuf genes. While tuf1 and tuf2 encode kirromycin-sensitive EF-Tu species, the function of tuf3 is unknown. Here we demonstrate that EF-Tu3, in contrast to EF-Tu1 and EF-Tu2, is resistant to three classes of EF-Tu-targeted antibiotics: kirromycin, pulvomycin, and GE2270A. A mixture of EF-Tu1 and EF-Tu3 was sensitive to kirromycin and resistant to GE2270A, in agreement with the described modes of action of these antibiotics. Transcription of tuf3 was observed during exponential growth and ceased upon entry into stationary phase and therefore did not correlate with the appearance of kirromycin in stationary phase; thus, it is unlikely that EF-Tu3 functions as a resistant alternative for EF-Tu1. EF-Tu3 from Streptomyces coelicolor A3(2) was also resistant to kirromycin and GE2270A, suggesting that multiple antibiotic resistance is an intrinsic feature of EF-Tu3 species. The GE2270A-resistant character of EF-Tu3 demonstrated that this divergent elongation factor is capable of substituting for EF-Tu1 in vivo.
Collapse
|
71
|
Connell SR, Takemoto C, Wilson DN, Wang H, Murayama K, Terada T, Shirouzu M, Rost M, Schüler M, Giesebrecht J, Dabrowski M, Mielke T, Fucini P, Yokoyama S, Spahn CMT. Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. Mol Cell 2007; 25:751-64. [PMID: 17349960 DOI: 10.1016/j.molcel.2007.01.027] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 12/24/2006] [Accepted: 01/23/2007] [Indexed: 10/23/2022]
Abstract
Elongation factor G (EF-G) catalyzes tRNA translocation on the ribosome. Here a cryo-EM reconstruction of the 70S*EF-G ribosomal complex at 7.3 A resolution and the crystal structure of EF-G-2*GTP, an EF-G homolog, at 2.2 A resolution are presented. EF-G-2*GTP is structurally distinct from previous EF-G structures, and in the context of the cryo-EM structure, the conformational changes are associated with ribosome binding and activation of the GTP binding pocket. The P loop and switch II approach A2660-A2662 in helix 95 of the 23S rRNA, indicating an important role for these conserved bases. Furthermore, the ordering of the functionally important switch I and II regions, which interact with the bound GTP, is dependent on interactions with the ribosome in the ratcheted conformation. Therefore, a network of interaction with the ribosome establishes the active GTP conformation of EF-G and thus facilitates GTP hydrolysis and tRNA translocation.
Collapse
Affiliation(s)
- Sean R Connell
- Institut für Medizinische Physik und Biophysik, Charite-Universitätsmedizin Berlin, Ziegelstrasse 5-9, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Jonák J. Bacterial elongation factors EF-Tu, their mutants, chimeric forms, and domains: isolation and purification. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 849:141-53. [PMID: 17197255 DOI: 10.1016/j.jchromb.2006.11.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 11/14/2006] [Accepted: 11/20/2006] [Indexed: 11/24/2022]
Abstract
Prokaryotic elongation factors EF-Tu form a family of homologous, three-domain molecular switches catalyzing the binding of aminoacyl-tRNAs to ribosomes during the process of mRNA translation. They are GTP-binding proteins, or GTPases. Binding of GTP or GDP regulates their conformation and thus their activity. Because of their particular structure and regulation, various activities (also outside of the translation system) and a relative abundance they represent attractive tools for studies of many basic but still not fully understood mechanisms both of the translation process, the structure-function relationships in EF-Tu molecules themselves and proteins and energy transduction mechanisms in general. The review critically summarizes procedures for the isolation and purification of native and engineered eubacterial elongation factors EF-Tu and their mutants on a large as well as small scale. Current protocols for the purification of both native and polyHis-tagged or glutathione-S-transferase (GST)-tagged EF-Tu proteins and their variants using conventional procedures and the Ni-NTA-Agarose or Glutathione Sepharose are presented.
Collapse
Affiliation(s)
- J Jonák
- Department of Gene Expression, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 37 Prague 6, Czech Republic.
| |
Collapse
|
73
|
Belyi Y, Niggeweg R, Opitz B, Vogelsgesang M, Hippenstiel S, Wilm M, Aktories K. Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A. Proc Natl Acad Sci U S A 2006; 103:16953-8. [PMID: 17068130 PMCID: PMC1636560 DOI: 10.1073/pnas.0601562103] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila, the causal agent of Legionnaires' disease, is an intracellular parasite and invades and proliferates within different eukaryotic cells, including human alveolar macrophages. After several 100-fold multiplication within host cells, the pathogens are released for new invasion by induction of apoptosis or necrosis. Here we report that L. pneumophila produces a glucosyltransferase, which selectively modifies an approximately 50-kDa mammalian protein by using UDP-glucose as a cosubstrate. MS analysis identified the protein substrate as the mammalian elongation factor (EF)1A. Legionella glucosyltransferase modifies its eukaryotic protein substrate at serine-53, which is located in the GTPase domain of the EF. Glucosylation of EF1A results in inhibition of eukaryotic protein synthesis and death of target cells. Our findings show a mode of inhibition of protein synthesis by microbial pathogens and offer a perspective for understanding of the host-pathogen interaction of L. pneumophila.
Collapse
Affiliation(s)
- Yury Belyi
- Gamaleya Research Institute, Ulitsa Gamalei 18, Moscow 123098, Russia
| | - Ricarda Niggeweg
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Bastian Opitz
- Department of Internal Medicine/Infectious and Pulmonary Diseases, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; and
| | - Martin Vogelsgesang
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, D-79104 Freiburg, Germany
| | - Stefan Hippenstiel
- Department of Internal Medicine/Infectious and Pulmonary Diseases, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; and
| | - Matthias Wilm
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, D-79104 Freiburg, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
74
|
Parmeggiani A, Nissen P. Elongation factor Tu-targeted antibiotics: four different structures, two mechanisms of action. FEBS Lett 2006; 580:4576-81. [PMID: 16876786 DOI: 10.1016/j.febslet.2006.07.039] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2006] [Revised: 07/07/2006] [Accepted: 07/11/2006] [Indexed: 10/24/2022]
Abstract
Elongation factor Tu (EF-Tu), the carrier of aa-tRNA to the mRNA-programmed ribosome, is the target of four families of antibiotics of unrelated structure, of which the action is supported by two basic mechanisms. Kirromycin and enacyloxin block EF-Tu.GDP on the ribosome; pulvomycin and GE2270 A inhibit the interaction of EF-Tu.GTP with aa-tRNA. The crystallographic analysis has unveiled the structural background of their actions, explaining how antibiotics of unrelated structures and binding modes and sites can employ similar mechanism of action. The selective similarities and differences of their binding sites and the induced EF-Tu conformations make understand how nature can affect the activities of a complex regulatory enzyme by means of low-molecular compounds, and have proposed a suitable approach for drug design.
Collapse
Affiliation(s)
- Andrea Parmeggiani
- Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark.
| | | |
Collapse
|
75
|
Yatime L, Mechulam Y, Blanquet S, Schmitt E. Structural switch of the gamma subunit in an archaeal aIF2 alpha gamma heterodimer. Structure 2006; 14:119-28. [PMID: 16407071 DOI: 10.1016/j.str.2005.09.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 09/23/2005] [Accepted: 09/23/2005] [Indexed: 11/25/2022]
Abstract
Eukaryotic and archaeal initiation factors 2 (e/aIF2) are heterotrimeric proteins (alphabetagamma) supplying the small subunit of the ribosome with methionylated initiator tRNA. This study reports the crystallographic structure of an aIF2alphagamma heterodimer from Sulfolobus solfataricus bound to Gpp(NH)p-Mg(2+). aIF2gamma is in a closed conformation with the G domain packed on domains II and III. The C-terminal domain of aIF2alpha interacts with domain II of aIF2gamma. Conformations of the two switch regions involved in GTP binding are similar to those encountered in an EF1A:GTP:Phe-tRNA(Phe) complex. Comparison with the EF1A structure suggests that only the gamma subunit of the aIF2alphagamma heterodimer contacts tRNA. Because the alpha subunit markedly reinforces the affinity of tRNA for the gamma subunit, a contribution of the alpha subunit to the switch movements observed in the gamma structure is considered.
Collapse
Affiliation(s)
- Laure Yatime
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654, CNRS-Ecole Polytechnique, F-91128 Palaiseau cedex, France
| | | | | | | |
Collapse
|
76
|
Abdi NM, Fredrick K. Contribution of 16S rRNA nucleotides forming the 30S subunit A and P sites to translation in Escherichia coli. RNA (NEW YORK, N.Y.) 2005; 11:1624-32. [PMID: 16177132 PMCID: PMC1370848 DOI: 10.1261/rna.2118105] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 07/20/2005] [Indexed: 05/04/2023]
Abstract
Many contacts between the ribosome and its principal substrates, tRNA and mRNA, involve universally conserved rRNA nucleotides, implying their functional importance in translation. Here, we measure the in vivo translation activity conferred by substitution of each 16S rRNA base believed to contribute to the A or P site. We find that the 30S P site is generally more tolerant of mutation than the 30S A site. In the A site, A1493C or any substitution of G530 or A1492 results in complete loss of translation activity, while A1493U and A1493G decrease translation activity by >20-fold. Among the P-site nucleotides, A1339 is most critical; any mutation of A1339 confers a >18-fold decrease in translation activity. Regarding all other P-site bases, ribosomes harboring at least one substitution retain considerable activity, >10% that of control ribosomes. Moreover, several sets of multiple substitutions within the 30S P site fail to inactivate the ribosome. The robust nature of the 30S P site indicates that its interaction with the codon-anticodon helix is less stringent than that of the 30S A site. In addition, we show that G1338A suppresses phenotypes conferred by m(2)G966A and several multiple P-site substitutions, suggesting that adenine at position 1338 can stabilize tRNA interaction in the P site.
Collapse
Affiliation(s)
- Nimo M Abdi
- Department of Microbiology, The Ohio State University, Columbus, 43210, USA
| | | |
Collapse
|
77
|
Affiliation(s)
- Rodney K Tweten
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA.
| |
Collapse
|
78
|
|
79
|
Sanderová H, Jonák J. Opposite roles of domains 2+3 of Escherichia coli EF-Tu and Bacillus stearothermophilus EF-Tu in the regulation of EF-Tu GTPase activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1752:11-7. [PMID: 16081328 DOI: 10.1016/j.bbapap.2005.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 06/29/2005] [Accepted: 06/30/2005] [Indexed: 10/25/2022]
Abstract
The effect of noncatalytic domains 2+3 on the intrinsic activity and thermostability of the EF-Tu GTPase center was evaluated in experiments with isolated domains 1 and six chimeric variants of mesophilic Escherichia coli (Ec) and thermophilic Bacillus stearothermophilus (Bst) EF-Tus. The isolated catalytic domains 1 of both EF-Tus displayed similar GTPase activities at their optimal temperatures. However, noncatalytic domains 2+3 of the EF-Tus influenced the GTPase activity of domains 1 differently, depending on the domain origin. Ecdomains 2+3 suppressed the GTPase activity of the Ecdomain 1, whereas those of BstEF-Tu stimulated the Bstdomain 1 GTPase. Domain 1 and domains 2+3 of both EF-Tus positively cooperated to heat-stabilize their GTPase centers to attain optimal activity at a temperature close to the optimal growth temperature of either organism. This can be explained by a stabilization effect of domains 2+3 on alpha-helical regions of the G-domain as revealed by CD spectroscopy.
Collapse
Affiliation(s)
- Hana Sanderová
- Department of Gene Expression, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 37 Prague 6, Czech Republic
| | | |
Collapse
|
80
|
Hansson S, Singh R, Gudkov AT, Liljas A, Logan DT. Structural insights into fusidic acid resistance and sensitivity in EF-G. J Mol Biol 2005; 348:939-49. [PMID: 15843024 DOI: 10.1016/j.jmb.2005.02.066] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 02/25/2005] [Accepted: 02/27/2005] [Indexed: 11/26/2022]
Abstract
Fusidic acid (FA) is a steroid antibiotic commonly used against Gram positive bacterial infections. It inhibits protein synthesis by stalling elongation factor G (EF-G) on the ribosome after translocation. A significant number of the mutations conferring strong FA resistance have been mapped at the interfaces between domains G, III and V of EF-G. However, direct information on how such mutations affect the structure has hitherto not been available. Here we present the crystal structures of two mutants of Thermus thermophilus EF-G, G16V and T84A, which exhibit FA hypersensitivity and resistance in vitro, respectively. These mutants also have higher and lower affinity for GTP respectively than wild-type EF-G. The mutations cause significant conformational changes in the switch II loop that have opposite effects on the position of a key residue, Phe90, which undergoes large conformational changes. This correlates with the importance of Phe90 in FA sensitivity reported in previous studies. These structures substantiate the importance of the domain G/domain III/domain V interfaces as a key component of the FA binding site. The mutations also cause subtle changes in the environment of the "P-loop lysine", Lys25. This led us to examine the conformation of the equivalent residue in all structures of translational GTPases, which revealed that EF-G and eEF2 form a group separate from the others and suggested that the role of Lys25 may be different in the two groups.
Collapse
Affiliation(s)
- Sebastian Hansson
- Department of Molecular Biophysics, Lund University, Box 124, S-221 00 Lund, Sweden
| | | | | | | | | |
Collapse
|
81
|
Jayasekera MMK, Onheiber K, Keith J, Venkatesan H, Santillan A, Stocking EM, Tang L, Miller J, Gomez L, Rhead B, Delcamp T, Huang S, Wolin R, Bobkova EV, Shaw KJ. Identification of novel inhibitors of bacterial translation elongation factors. Antimicrob Agents Chemother 2005; 49:131-6. [PMID: 15616286 PMCID: PMC538871 DOI: 10.1128/aac.49.1.131-136.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial elongation factor Tu (EF-Tu) and EF-Ts are interacting proteins involved in polypeptide chain elongation in protein biosynthesis. A novel scintillation proximity assay for the detection of inhibitors of EF-Tu and EF-Ts, as well as the interaction between them, was developed and used in a high-throughput screen of a chemical library. Several compounds from a variety of chemical series with inhibitory properties were identified, including certain indole dipeptides, benzimidazole amidines, 2-arylbenzimidazoles, N-substituted imidazoles, and N-substituted guanidines. The in vitro activities of these compounds were confirmed in a coupled bacterial transcription-translation assay. Several indole dipeptides were identified as inhibitors of bacterial translation, with compound 2 exhibiting a 50% inhibitory concentration of 14 microM and an MIC for S. aureus ATCC 29213 of 5.6 microg/ml. Structure-activity relationship studies around the dipeptidic indoles generated additional analogs with low micromolar MICs for both gram-negative and gram-positive bacteria. To assess the specificity of antibacterial action, these compounds were evaluated in a metabolic labeling assay with Staphylococcus aureus. Inhibition of translation, as well as limited effects on other macromolecular pathways for some of the analogs studied, indicated a possible contribution from a non-target-based antibacterial mechanism of action.
Collapse
Affiliation(s)
- Maithri M K Jayasekera
- Johnson and Johnson Pharmaceutical Research and Development, 3210 Merryfield Row, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Leibundgut M, Frick C, Thanbichler M, Böck A, Ban N. Selenocysteine tRNA-specific elongation factor SelB is a structural chimaera of elongation and initiation factors. EMBO J 2004; 24:11-22. [PMID: 15616587 PMCID: PMC544917 DOI: 10.1038/sj.emboj.7600505] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 11/12/2004] [Indexed: 11/08/2022] Open
Abstract
In all three kingdoms of life, SelB is a specialized translation elongation factor responsible for the cotranslational incorporation of selenocysteine into proteins by recoding of a UGA stop codon in the presence of a downstream mRNA hairpin loop. Here, we present the X-ray structures of SelB from the archaeon Methanococcus maripaludis in the apo-, GDP- and GppNHp-bound form and use mutational analysis to investigate the role of individual amino acids in its aminoacyl-binding pocket. All three SelB structures reveal an EF-Tu:GTP-like domain arrangement. Upon binding of the GTP analogue GppNHp, a conformational change of the Switch 2 region in the GTPase domain leads to the exposure of SelB residues involved in clamping the 5' phosphate of the tRNA. A conserved extended loop in domain III of SelB may be responsible for specific interactions with tRNA(Sec) and act as a ruler for measuring the extra long acceptor arm. Domain IV of SelB adopts a beta barrel fold and is flexibly tethered to domain III. The overall domain arrangement of SelB resembles a 'chalice' observed so far only for initiation factor IF2/eIF5B. In our model of SelB bound to the ribosome, domain IV points towards the 3' mRNA entrance cleft ready to interact with the downstream secondary structure element.
Collapse
Affiliation(s)
- Marc Leibundgut
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Christian Frick
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | | | - August Böck
- Departement Biologie I der Universität München, München, Germany
| | - Nenad Ban
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
- Institute for Molecular Biology and Biophyiscs, Swiss Federal Institute of Technology, ETH Hönggerberg, HPK Building, Zurich, Switzerland. Tel.: +41 1 633 2785; Fax: +41 1 633 1246; E-mail:
| |
Collapse
|
83
|
Ikeda K, Higo J. Free-energy landscape of a chameleon sequence in explicit water and its inherent alpha/beta bifacial property. Protein Sci 2004; 12:2542-8. [PMID: 14573865 PMCID: PMC2366969 DOI: 10.1110/ps.03143803] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A sequence in yeast MATalpha2/MCM1/DNA complex that folds into alpha-helix or beta-hairpin depending on the surroundings has been known as "chameleon" sequence. We obtained the free-energy landscape of this sequence by using a generalized-ensemble method, multicanonical molecular dynamics simulation, to sample the conformational space. The system was expressed with an all-atom model in explicit water, and the initial conformation for the simulation was a random one. The free-energy landscape demonstrated that this sequence inherently has an ability to form either alpha or beta structure: The conformational distribution in the landscape consisted of two alpha-helical clusters with different packing patterns of hydrophobic residues, and four beta-hairpin clusters with different strand-strand interaction patterns. Narrow pathways connecting the clusters were found, and analysis on the pathways showed that a compact structure formed at the N-terminal root of the chameleon sequence controls the cluster-cluster transitions. The free-energy landscape indicates that a small conditional change induces alpha-beta transitions. Additional unfolding simulations done with replacing amino acids showed that the chameleon sequence has an advantage to form an alpha-helix. Current study may be useful to understand the mechanism of diseases resulting from abnormal chain folding, such as amyloid disease.
Collapse
Affiliation(s)
- Kazuyoshi Ikeda
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo 135-0064, Japan
| | | |
Collapse
|
84
|
Ma CH, Hui J, Tang JTY, Leung DTM, Chui YL, Fok TF, Lim PL. Antibodies to guanosine triphosphate misidentified as anti-double-stranded DNA antibodies in a patient with antinuclear antibody-negative lupus, due to buckling of insolubilized assay DNA. ACTA ACUST UNITED AC 2004; 50:1533-8. [PMID: 15146423 DOI: 10.1002/art.20188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To investigate why the serum of a pediatric patient with systemic lupus erythematosus was persistently (>30 months) and strongly positive for antibodies to double-stranded DNA (dsDNA) as revealed by enzyme-linked immunosorbent assay (ELISA), but yielded negative results on the antinuclear antibody test (HEp-2 immunofluorescence [IF]). METHODS The patient's antibodies were isolated on dsDNA and single-stranded DNA (ssDNA) supports, which were then examined by dsDNA ELISA and HEp-2 IF. Tests included the use of various inhibitors to determine the fine specificity of the antibodies. Other tests performed included immunoblotting, immunoprecipitation, Crithidia luciliae IF, and neutrophil IF. RESULTS The antibodies isolated from the dsDNA and ssDNA supports were similar, in that they were of the IgG type, bound well in the dsDNA ELISA, and recognized a normally hidden nucleolar RNA antigen in HEp-2 cells. With both the dsDNA ELISA and nucleolar antigens, inhibition studies revealed that the epitope recognized was guanosine 5'-triphosphate (GTP). Binding of the antibodies was better to GTP than to guanosine 5'-monophosphate or cytidylyl (3'-5') guanosine, and, in turn, was better than to guanosine, while N7-methylated GTP was unreactive. The antibodies did not bind to dsDNA present in solution or in HEp-2 or Crithidia cells, but bound transfer RNA well and recognized a cytoplasmic RNA antigen in neutrophils. CONCLUSION A new problem in dsDNA ELISA is revealed in the occurrence of a hitherto-unknown and unusual buckling of the insolubilized DNA molecule, which, absent in dsDNA found in solution or in whole cells, presumably creates gaps of single-strandedness in the molecule. A new antibody specific for GTP is described in this patient, which may be clinically important.
Collapse
Affiliation(s)
- Chun Hung Ma
- Clinical Immunology Unit, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
85
|
Newlove T, Konieczka JH, Cordes MHJ. Secondary Structure Switching in Cro Protein Evolution. Structure 2004; 12:569-81. [PMID: 15062080 DOI: 10.1016/j.str.2004.02.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 01/05/2004] [Accepted: 01/05/2004] [Indexed: 11/28/2022]
Abstract
We report the solution structure of the Cro protein from bacteriophage P22. Comparisons of its sequence and structure to those of lambda Cro strongly suggest an alpha-to-beta secondary structure switching event during Cro evolution. The folds of P22 Cro and lambda Cro share a three alpha helix fragment comprising the N-terminal half of the domain. However, P22 Cro's C terminus folds as two helices, while lambda Cro's folds as a beta hairpin. The all-alpha fold found for P22 Cro appears to be ancestral, since it also occurs in cI proteins, which are anciently duplicated paralogues of Cro. PSI-BLAST and transitive homology analyses strongly suggest that the sequences of P22 Cro and lambda Cro are globally homologous despite encoding different folds. The alpha+beta fold of lambda Cro therefore likely evolved from its all-alpha ancestor by homologous secondary structure switching, rather than by nonhomologous replacement of both sequence and structure.
Collapse
Affiliation(s)
- Tracey Newlove
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85701 USA
| | | | | |
Collapse
|
86
|
Valle M, Zavialov A, Li W, Stagg SM, Sengupta J, Nielsen RC, Nissen P, Harvey SC, Ehrenberg M, Frank J. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat Struct Mol Biol 2003; 10:899-906. [PMID: 14566331 DOI: 10.1038/nsb1003] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 09/05/2003] [Indexed: 11/08/2022]
Abstract
Aminoacyl-tRNAs (aa-tRNAs) are delivered to the ribosome as part of the ternary complex of aa-tRNA, elongation factor Tu (EF-Tu) and GTP. Here, we present a cryo-electron microscopy (cryo-EM) study, at a resolution of approximately 9 A, showing that during the incorporation of the aa-tRNA into the 70S ribosome of Escherichia coli, the flexibility of aa-tRNA allows the initial codon recognition and its accommodation into the ribosomal A site. In addition, a conformational change observed in the GTPase-associated center (GAC) of the ribosomal 50S subunit may provide the mechanism by which the ribosome promotes a relative movement of the aa-tRNA with respect to EF-Tu. This relative rearrangement seems to facilitate codon recognition by the incoming aa-tRNA, and to provide the codon-anticodon recognition-dependent signal for the GTPase activity of EF-Tu. From these new findings we propose a mechanism that can explain the sequence of events during the decoding of mRNA on the ribosome.
Collapse
Affiliation(s)
- Mikel Valle
- Howard Hughes Medical Institute, Health Research, Inc. at the Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
Translation elongation factors are the workhorses of protein synthesis on the ribosome. They assist in elongating the nascent polypeptide chain by one amino acid at a time. The general biochemical outline of the translation elongation cycle is well preserved in all biological kingdoms. Recently, there has been structural insight into the effects of antibiotics on elongation. These structures provide a scaffold for understanding the biological function of elongation factors before high-resolution structures of such factors in complex with ribosomes are obtained. Very recent structures of the yeast translocation factor and its complex with the antifungal drug sordarin reveal an unexpected conformational flexibility that might be crucial to the mechanism of translocation.
Collapse
Affiliation(s)
- Gregers R Andersen
- Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
88
|
Marzi S, Knight W, Brandi L, Caserta E, Soboleva N, Hill WE, Gualerzi CO, Lodmell JS. Ribosomal localization of translation initiation factor IF2. RNA (NEW YORK, N.Y.) 2003; 9:958-69. [PMID: 12869707 PMCID: PMC1370462 DOI: 10.1261/rna.2116303] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Accepted: 05/15/2003] [Indexed: 05/22/2023]
Abstract
Bacterial translation initiation factor IF2 is a GTP-binding protein that catalyzes binding of initiator fMet-tRNA in the ribosomal P site. The topographical localization of IF2 on the ribosomal subunits, a prerequisite for understanding the mechanism of initiation complex formation, has remained elusive. Here, we present a model for the positioning of IF2 in the 70S initiation complex as determined by cleavage of rRNA by the chemical nucleases Cu(II):1,10-orthophenanthroline and Fe(II):EDTA tethered to cysteine residues introduced into IF2. Two specific amino acids in the GII domain of IF2 are in proximity to helices H3, H4, H17, and H18 of 16S rRNA. Furthermore, the junction of the C-1 and C-2 domains is in proximity to H89 and the thiostrepton region of 23S rRNA. The docking is further constrained by the requisite proximity of the C-2 domain with P-site-bound tRNA and by the conserved GI domain of the IF2 with the large subunit's factor-binding center. Comparison of our present findings with previous data further suggests that the IF2 orientation on the 30S subunit changes during the transition from the 30S to 70S initiation complex.
Collapse
Affiliation(s)
- Stefano Marzi
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC) Italy
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Andersen GR, Nyborg J. Structural studies of eukaryotic elongation factors. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:425-37. [PMID: 12762045 DOI: 10.1101/sqb.2001.66.425] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- G R Andersen
- Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | |
Collapse
|
90
|
Simonson AB, Lake JA. Codon recognition and decoding: the transorientation hypothesis. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:127-34. [PMID: 12762015 DOI: 10.1101/sqb.2001.66.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- A B Simonson
- Molecular Biology Institute and MCD Biology, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
91
|
Chao JA, Prasad GS, White SA, Stout CD, Williamson JR. Inherent protein structural flexibility at the RNA-binding interface of L30e. J Mol Biol 2003; 326:999-1004. [PMID: 12589748 DOI: 10.1016/s0022-2836(02)01476-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Saccharomyces cerevisiae ribosomal protein L30 autoregulates its own expression by binding to a purine-rich internal loop in its pre-mRNA and mRNA. NMR studies of L30 and its RNA complex showed that both the internal loop of the RNA as well as a region of the protein become substantially more ordered upon binding. A crystal structure of a maltose binding protein (MBP)-L30 fusion protein with two copies in the asymmetric unit has been determined. The flexible RNA-binding region in the L30 copies has two distinct conformations, one resembles the RNA bound form solved by NMR and the other is unique. Structure prediction algorithms also had difficulty accurately predicting this region, which is consistent with conformational flexibility seen in the NMR and X-ray crystallography studies. Inherent conformational flexibility may be a hallmark of regions involved in intermolecular interactions.
Collapse
Affiliation(s)
- Jeffrey A Chao
- Department of Molecular Biology, Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
92
|
Murase K, Morrison KL, Tam PY, Stafford RL, Jurnak F, Weiss GA. EF-Tu binding peptides identified, dissected, and affinity optimized by phage display. CHEMISTRY & BIOLOGY 2003; 10:161-8. [PMID: 12618188 DOI: 10.1016/s1074-5521(03)00025-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The highly abundant GTP binding protein elongation factor Tu (EF-Tu) fulfills multiple roles in bacterial protein biosynthesis. Phage-displayed peptides with high affinity for EF-Tu were selected from a library of approximately 4.7 x 10(11) different peptides. The lack of sequence homology among the identified EF-Tu ligands demonstrates promiscuous peptide binding by EF-Tu. Homolog shotgun scanning of an EF-Tu ligand was used to dissect peptide molecular recognition by EF-Tu. All homolog shotgun scanning selectants bound to EF-Tu with higher affinity than the starting ligand. Thus, homolog shotgun scanning can simultaneously optimize binding affinity and rapidly provide detailed structure activity relationships for multiple side chains of a polypeptide ligand. The reported peptide ligands do not compete for binding to EF-Tu with various antibiotic EF-Tu inhibitors, and could identify an EF-Tu peptide binding site distinct from the antibiotic inhibitory sites.
Collapse
Affiliation(s)
- Katsuyuki Murase
- Department of Chemistry, 346-D Med Sci I, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
93
|
Krab IM, Parmeggiani A. Mechanisms of EF-Tu, a pioneer GTPase. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:513-51. [PMID: 12102560 DOI: 10.1016/s0079-6603(02)71050-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review considers several aspects of the function of EF-Tu, a protein that has greatly contributed to the advancement of our knowledge of both protein biosynthesis and GTP-binding proteins in general. A number of topics are described with emphasis on the function-structure relationships, in particular of EF-Tu's domains, the nucleotide-binding site, and the magnesium-binding network. Aspects related to the interaction with macromolecular ligands and antibiotics and to folding and GTPase activity are also presented and discussed. Comments and criticism are offered to draw attention to remaining discrepancies and problems.
Collapse
Affiliation(s)
- Ivo M Krab
- Laboratory of Biophysics, Ecole Polytechnique, Palaiseau, France
| | | |
Collapse
|
94
|
Valle M, Sengupta J, Swami NK, Grassucci RA, Burkhardt N, Nierhaus KH, Agrawal RK, Frank J. Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBO J 2002; 21:3557-67. [PMID: 12093756 PMCID: PMC126079 DOI: 10.1093/emboj/cdf326] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During the elongation cycle of protein biosynthesis, the specific amino acid coded for by the mRNA is delivered by a complex that is comprised of the cognate aminoacyl-tRNA, elongation factor Tu and GTP. As this ternary complex binds to the ribosome, the anticodon end of the tRNA reaches the decoding center in the 30S subunit. Here we present the cryo- electron microscopy (EM) study of an Escherichia coli 70S ribosome-bound ternary complex stalled with an antibiotic, kirromycin. In the cryo-EM map the anticodon arm of the tRNA presents a new conformation that appears to facilitate the initial codon-anticodon interaction. Furthermore, the elbow region of the tRNA is seen to contact the GTPase-associated center on the 50S subunit of the ribosome, suggesting an active role of the tRNA in the transmission of the signal prompting the GTP hydrolysis upon codon recognition.
Collapse
MESH Headings
- Anticodon/genetics
- Codon/genetics
- Cryoelectron Microscopy
- Escherichia coli/chemistry
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/ultrastructure
- Guanosine Diphosphate/chemistry
- Guanosine Triphosphate/metabolism
- Image Processing, Computer-Assisted
- Macromolecular Substances
- Models, Molecular
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational
- Peptide Elongation Factor Tu/chemistry
- Peptide Elongation Factor Tu/ultrastructure
- Protein Conformation
- Pyridones/pharmacology
- RNA, Transfer/chemistry
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Amino Acyl/physiology
- RNA, Transfer, Amino Acyl/ultrastructure
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/metabolism
- Ribosomes/chemistry
- Ribosomes/drug effects
- Ribosomes/ultrastructure
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Mikel Valle
- Howard Hughes Medical Institute, Health Research, Inc., at the Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, Columbia High School, 962 Luther Road, East Greenbush, NY 12061, Department of Biomedical Sciences, State University of New York at Albany, Empire State Plaza, Albany, NY 12201-0509, USA and Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany Corresponding author e-mail:
| | - Jayati Sengupta
- Howard Hughes Medical Institute, Health Research, Inc., at the Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, Columbia High School, 962 Luther Road, East Greenbush, NY 12061, Department of Biomedical Sciences, State University of New York at Albany, Empire State Plaza, Albany, NY 12201-0509, USA and Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany Corresponding author e-mail:
| | - Neil K. Swami
- Howard Hughes Medical Institute, Health Research, Inc., at the Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, Columbia High School, 962 Luther Road, East Greenbush, NY 12061, Department of Biomedical Sciences, State University of New York at Albany, Empire State Plaza, Albany, NY 12201-0509, USA and Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany Corresponding author e-mail:
| | - Robert A. Grassucci
- Howard Hughes Medical Institute, Health Research, Inc., at the Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, Columbia High School, 962 Luther Road, East Greenbush, NY 12061, Department of Biomedical Sciences, State University of New York at Albany, Empire State Plaza, Albany, NY 12201-0509, USA and Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany Corresponding author e-mail:
| | - Nils Burkhardt
- Howard Hughes Medical Institute, Health Research, Inc., at the Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, Columbia High School, 962 Luther Road, East Greenbush, NY 12061, Department of Biomedical Sciences, State University of New York at Albany, Empire State Plaza, Albany, NY 12201-0509, USA and Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany Corresponding author e-mail:
| | - Knud H. Nierhaus
- Howard Hughes Medical Institute, Health Research, Inc., at the Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, Columbia High School, 962 Luther Road, East Greenbush, NY 12061, Department of Biomedical Sciences, State University of New York at Albany, Empire State Plaza, Albany, NY 12201-0509, USA and Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany Corresponding author e-mail:
| | - Rajendra K. Agrawal
- Howard Hughes Medical Institute, Health Research, Inc., at the Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, Columbia High School, 962 Luther Road, East Greenbush, NY 12061, Department of Biomedical Sciences, State University of New York at Albany, Empire State Plaza, Albany, NY 12201-0509, USA and Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany Corresponding author e-mail:
| | - Joachim Frank
- Howard Hughes Medical Institute, Health Research, Inc., at the Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, Columbia High School, 962 Luther Road, East Greenbush, NY 12061, Department of Biomedical Sciences, State University of New York at Albany, Empire State Plaza, Albany, NY 12201-0509, USA and Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany Corresponding author e-mail:
| |
Collapse
|
95
|
Simonson AB, Lake JA. The transorientation hypothesis for codon recognition during protein synthesis. Nature 2002; 416:281-5. [PMID: 11907568 DOI: 10.1038/416281a] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During decoding, a codon of messenger RNA is matched with its cognate aminoacyl-transfer RNA and the amino acid carried by the tRNA is added to the growing protein chain. Here we propose a molecular mechanism for the decoding phase of translation: the transorientation hypothesis. The model incorporates a newly identified tRNA binding site and utilizes a flip between two tRNA anticodon loop structures, the 5'-stacked and the 3'-stacked conformations. The anticodon loop acts as a three-dimensional hinge permitting rotation of the tRNA about a relatively fixed codon-anticodon pair. This rotation, driven by a conformational change in elongation factor Tu involving GTP hydrolysis, transorients the incoming tRNA into the A site from the D site of initial binding and decoding, where it can be proofread and accommodated. The proposed mechanisms are compatible with the known structures, conformations and functions of the ribosome and its component parts including tRNAs and EF-Tu, in both the GTP and GDP states.
Collapse
Affiliation(s)
- Anne B Simonson
- Molecular Biology Institute, University of California, Los Angeles 90095, USA
| | | |
Collapse
|
96
|
Abstract
General principles of structure and function of the ribosome are surveyed, and the translating ribosome is regarded as a molecular conveying machine. Two coupled conveying processes, the passing of compact tRNA globules and the drawing of linear mRNA chain through intraribosomal channel, are considered driven by discrete acts of translocation during translation. Instead of mechanical transmission mechanisms and power-stroke 'motors', thermal motion and chemically induced changes in affinities of ribosomal binding sites for their ligands (tRNAs, mRNA, elongation factors) are proposed to underlie all the directional movements within the ribosomal complex. The GTP-dependent catalysis of conformational transitions by elongation factors during translation is also discussed.
Collapse
Affiliation(s)
- Alexander S Spirin
- Institute of Protein Research, Russian Academy of Sciences, 142290, Moscow Region, Pushchino, Russia.
| |
Collapse
|
97
|
Vitagliano L, Masullo M, Sica F, Zagari A, Bocchini V. The crystal structure of Sulfolobus solfataricus elongation factor 1alpha in complex with GDP reveals novel features in nucleotide binding and exchange. EMBO J 2001; 20:5305-11. [PMID: 11574461 PMCID: PMC125647 DOI: 10.1093/emboj/20.19.5305] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The crystal structure of elongation factor 1alpha from the archaeon Sulfolobus solfataricus in complex with GDP (SsEF-1alpha.GDP) at 1.8 A resolution is reported. As already known for the eubacterial elongation factor Tu, the SsEF-1alpha.GDP structure consists of three different structural domains. Surprisingly, the analysis of the GDP-binding site reveals that the nucleotide- protein interactions are not mediated by Mg(2+). Furthermore, the residues that usually co-ordinate Mg(2+) through water molecules in the GTP-binding proteins, though conserved in SsEF-1alpha, are located quite far from the binding site. [(3)H]GDP binding experiments confirm that Mg(2+) has only a marginal effect on the nucleotide exchange reaction of SsEF-1alpha, although essential to GTPase activity elicited by SsEF-1alpha. Finally, structural comparisons of SsEF- 1alpha.GDP with yeast EF-1alpha in complex with the nucleotide exchange factor EF-1beta shows that a dramatic rearrangement of the overall structure of EF-1alpha occurs during the nucleotide exchange.
Collapse
Affiliation(s)
- Luigi Vitagliano
- Centro di Biocristallografia, CNR, via Mezzocannone 6, I-80134 Napoli, Dipartimento di Biochimica e Biotecnologie Mediche Via Pansini 5, I-80131 Napoli and Dipartimento di Chimica, Università degli studi di Napoli ‘Federico II’, Dipartimento di Scienze Farmacobiologiche, Università degli Studi di Catanzaro ‘Magna Graecia’, Catanzaro and CEINGE, Biotecnologie avanzate Scarl, Napoli, Italy Corresponding author e-mail: Deceased June 28, 2001
| | - Mariorosario Masullo
- Centro di Biocristallografia, CNR, via Mezzocannone 6, I-80134 Napoli, Dipartimento di Biochimica e Biotecnologie Mediche Via Pansini 5, I-80131 Napoli and Dipartimento di Chimica, Università degli studi di Napoli ‘Federico II’, Dipartimento di Scienze Farmacobiologiche, Università degli Studi di Catanzaro ‘Magna Graecia’, Catanzaro and CEINGE, Biotecnologie avanzate Scarl, Napoli, Italy Corresponding author e-mail: Deceased June 28, 2001
| | - Filomena Sica
- Centro di Biocristallografia, CNR, via Mezzocannone 6, I-80134 Napoli, Dipartimento di Biochimica e Biotecnologie Mediche Via Pansini 5, I-80131 Napoli and Dipartimento di Chimica, Università degli studi di Napoli ‘Federico II’, Dipartimento di Scienze Farmacobiologiche, Università degli Studi di Catanzaro ‘Magna Graecia’, Catanzaro and CEINGE, Biotecnologie avanzate Scarl, Napoli, Italy Corresponding author e-mail: Deceased June 28, 2001
| | - Adriana Zagari
- Centro di Biocristallografia, CNR, via Mezzocannone 6, I-80134 Napoli, Dipartimento di Biochimica e Biotecnologie Mediche Via Pansini 5, I-80131 Napoli and Dipartimento di Chimica, Università degli studi di Napoli ‘Federico II’, Dipartimento di Scienze Farmacobiologiche, Università degli Studi di Catanzaro ‘Magna Graecia’, Catanzaro and CEINGE, Biotecnologie avanzate Scarl, Napoli, Italy Corresponding author e-mail: Deceased June 28, 2001
| | - Vincenzo Bocchini
- Centro di Biocristallografia, CNR, via Mezzocannone 6, I-80134 Napoli, Dipartimento di Biochimica e Biotecnologie Mediche Via Pansini 5, I-80131 Napoli and Dipartimento di Chimica, Università degli studi di Napoli ‘Federico II’, Dipartimento di Scienze Farmacobiologiche, Università degli Studi di Catanzaro ‘Magna Graecia’, Catanzaro and CEINGE, Biotecnologie avanzate Scarl, Napoli, Italy Corresponding author e-mail: Deceased June 28, 2001
| |
Collapse
|
98
|
Olsthoorn-Tieleman LN, Plooster LJ, Kraal B. The variant tuf3 gene of Streptomyces coelicolor A3(2) encodes a real elongation factor Tu, as shown in a novel Streptomyces in vitro translation system. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3807-15. [PMID: 11432749 DOI: 10.1046/j.1432-1327.2001.02291.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Streptomyces coelicolor, the regular and abundant elongation factor (EF)-Tu1 is encoded by tuf1, while the actual function of the highly divergent tuf3 gene product is not yet known. Expression of the latter could so far only be detected on the transcriptional level under stress conditions. In this paper we demonstrate the presence of low levels of EF-Tu3 in strains of the J1501 lineage. Enhanced expression was observed for J1501 glkA and relA deletion mutants, which lack glucose kinase and ribosome-bound ppGpp synthetase, respectively. To assess the putative translational capacities of EF-Tu3, a novel Streptomyces in vitro translation assay was designed, based on the full elimination by Ni2+ affinity adsorption of chromosomally encoded (His)6-tagged EF-Tu1 from a S. coelicolor cell-free extract. Translational activity of this system is totally dependent on the addition of purified EF-Tu species or on the presence of an additional elongation factor Tu in the extract, e.g. encoded by a plasmid-borne tuf gene. Using this EF-Tu-dependent translation system, we have established that S. coelicolor EF-Tu3 has translational capacities despite its striking deviation from the common prokaryotic EF-Tu sequence at positions involved in either aminoacyl-tRNA binding or interaction with the guanine-nucleotide exchange factor EF-Ts.
Collapse
Affiliation(s)
- L N Olsthoorn-Tieleman
- Department of Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | | |
Collapse
|
99
|
Knudsen C, Wieden HJ, Rodnina MV. The importance of structural transitions of the switch II region for the functions of elongation factor Tu on the ribosome. J Biol Chem 2001; 276:22183-90. [PMID: 11304547 DOI: 10.1074/jbc.m102186200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elongation factor Tu (EF-Tu) undergoes a large conformational transition when switching from the GTP to GDP forms. Structural changes in the switch I and II regions in the G domain are particularly important for this rearrangement. In the switch II region, helix alpha2 is flanked by two glycine residues: Gly(83) in the consensus element DXXG at the N terminus and Gly(94) at the C terminus. The role of helix alpha2 was studied by pre-steady-state kinetic experiments using Escherichia coli EF-Tu mutants where either Gly(83), Gly(94), or both were replaced with alanine. The G83A mutation slows down the association of the ternary complex EF-Tu.GTP.aminoacyl-tRNA with the ribosome and abolishes the ribosome-induced GTPase activity of EF-Tu. The G94A mutation strongly impairs the conformational change of EF-Tu from the GTP- to the GDP-bound form and decelerates the dissociation of EF-Tu.GDP from the ribosome. The behavior of the double mutant is dominated by the G83A mutation. The results directly relate structural transitions in the switch II region to specific functions of EF-Tu on the ribosome.
Collapse
Affiliation(s)
- C Knudsen
- Institute of Molecular and Structural Biology, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
100
|
Martemyanov KA, Liljas A, Yarunin AS, Gudkov AT. Mutations in the G-domain of elongation factor G from Thermus thermophilus affect both its interaction with GTP and fusidic acid. J Biol Chem 2001; 276:28774-8. [PMID: 11371559 DOI: 10.1074/jbc.m102023200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two hypersensitive and two resistant variants of elongation factor-G (EF-G) toward fusidic acid are studied in comparison with the wild type factor. All mutated proteins are active in a cell-free translation system and ribosome-dependent GTP hydrolysis. The EF-G variants with the Thr-84-->Ala or Asp-109-->Lys mutations bring about a strong resistance of EF-G to the antibiotic, whereas the EF-Gs with substitutions Gly-16-->Val or Glu-119-->Lys are the first examples of fusidic acid-hypersensitive factors. A correlation between fusidic acid resistance of EF-G mutants and their affinity to GTP are revealed in this study, although their interactions with GDP are not changed. Thus, fusidic acid-hypersensitive mutants have the high affinity to an uncleavable GTP analog, but the association of resistant mutants with GTP is decreased. The effects of either fusidic acid-sensitive or resistant mutations can be explained by the conformational changes in the EF-G molecule, which influence its GTP-binding center. The results presented in this paper indicate that fusidic acid-sensitive mutant factors have a conformation favorable for GTP binding and subsequent interaction with the ribosomes.
Collapse
Affiliation(s)
- K A Martemyanov
- Institute of Protein Research, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia
| | | | | | | |
Collapse
|