51
|
Reduced AMPK-ACC and mTOR signaling in muscle from older men, and effect of resistance exercise. Mech Ageing Dev 2012; 133:655-64. [PMID: 23000302 DOI: 10.1016/j.mad.2012.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/20/2012] [Accepted: 09/07/2012] [Indexed: 11/20/2022]
Abstract
AMP-activated protein kinase (AMPK) is a key energy-sensitive enzyme that controls numerous metabolic and cellular processes. Mammalian target of rapamycin (mTOR) is another energy/nutrient-sensitive kinase that controls protein synthesis and cell growth. In this study we determined whether older versus younger men have alterations in the AMPK and mTOR pathways in skeletal muscle, and examined the effect of a long term resistance type exercise training program on these signaling intermediaries. Older men had decreased AMPKα2 activity and lower phosphorylation of AMPK and its downstream signaling substrate acetyl-CoA carboxylase (ACC). mTOR phosphylation also was reduced in muscle from older men. Exercise training increased AMPKα1 activity in older men, however, AMPKα2 activity, and the phosphorylation of AMPK, ACC and mTOR, were not affected. In conclusion, older men have alterations in the AMPK-ACC and mTOR pathways in muscle. In addition, prolonged resistance type exercise training induces an isoform-selective up regulation of AMPK activity.
Collapse
|
52
|
Abstract
Deregulation of protein synthesis is a common event in human cancer and a key player in translational control is eIF4E. Elevated expression levels of eIF4E promote cancer development and progression. Recent findings suggest that eIF4E activity is a key determinant of the PI3K/Akt/mTOR and Ras/Raf/MEK/ERK mediated tumorigenic activity and targeting eIF4E should have a major impact on these pathways in human cancer. The function of eIF4E is modulated through phosphorylation of a conserved serine (Ser209) by Mnk1 and Mnk2 downstream of ERK. While the phosphorylation event is necessary for oncogenic transformation, it seems to be dispensable for normal development. Hence, pharmacologic Mnk inhibitors may provide non-toxic and effective anti-cancer strategy. Strong circumstantial evidence indicates that Mnk inhibition presents attractive therapeutic potential, but the lack of selective Mnk inhibitors has so far confounded pharmacological target validation and clinical development.
Collapse
Affiliation(s)
- Jinqiang Hou
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | | | | | | |
Collapse
|
53
|
Cawley A, Warwicker J. eIF4E-binding protein regulation of mRNAs with differential 5'-UTR secondary structure: a polyelectrostatic model for a component of protein-mRNA interactions. Nucleic Acids Res 2012; 40:7666-75. [PMID: 22718971 PMCID: PMC3439904 DOI: 10.1093/nar/gks511] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Control of translation in eukaryotes is complex, depending on the binding of various factors to mRNAs. Available data for subsets of mRNAs that are translationally up- and down-regulated in yeast eIF4E-binding protein (4E-BP) deletion mutants are coupled with reported mRNA secondary structure measurements to investigate whether 5′-UTR secondary structure varies between the subsets. Genes with up-regulated translational efficiencies in the caf20Δ mutant have relatively high averaged 5′-UTR secondary structure. There is no apparent wide-scale correlation of RNA-binding protein preferences with the increased 5′-UTR secondary structure, leading us to speculate that the secondary structure itself may play a role in differential partitioning of mRNAs between eIF4E/4E-BP repression and eIF4E/eIF4G translation initiation. Both Caf20p and Eap1p contain stretches of positive charge in regions of predicted disorder. Such regions are also present in eIF4G and have been reported to associate with mRNA binding. The pattern of these segments, around the canonical eIF4E-binding motif, varies between each 4E-BP and eIF4G. Analysis of gene ontology shows that yeast proteins containing predicted disordered segments, with positive charge runs, are enriched for nucleic acid binding. We propose that the 4E-BPs act, in part, as differential, flexible, polyelectrostatic scaffolds for mRNAs.
Collapse
Affiliation(s)
- Andrew Cawley
- Faculty of Life Sciences, University of Manchester, Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN, UK
| | | |
Collapse
|
54
|
Chen YT, Tan KA, Pang LY, Argyle DJ. The class I PI3K/Akt pathway is critical for cancer cell survival in dogs and offers an opportunity for therapeutic intervention. BMC Vet Res 2012; 8:73. [PMID: 22647622 PMCID: PMC3515332 DOI: 10.1186/1746-6148-8-73] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/02/2012] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Using novel small-molecular inhibitors, we explored the feasibility of the class I PI3K/Akt/mTORC1 signaling pathway as a therapeutic target in canine oncology either by using pathway inhibitors alone, in combination or combined with conventional chemotherapeutic drugs in vitro. RESULTS We demonstrate that growth and survival of the cell lines tested are predominantly dependent on class I PI3K/Akt signaling rather than mTORC1 signaling. In addition, the newly developed inhibitors ZSTK474 and KP372-1 which selectively target pan-class I PI3K and Akt, respectively, and Rapamycin which has been well-established as highly specific mTOR inhibitor, decrease viability of canine cancer cell lines. All inhibitors demonstrated inhibition of phosphorylation of pathway members. Annexin V staining demonstrated that KP372-1 is a potent inducer of apoptosis whereas ZSTK474 and Rapamycin are weaker inducers of apoptosis. Simultaneous inhibition of class I PI3K and mTORC1 by ZSTK474 combined with Rapamycin additively or synergistically reduced cell viability whereas responses to the PI3K pathway inhibitors in combination with conventional drug Doxorubicin were cell line-dependent. CONCLUSION This study highlighted the importance of class I PI3K/Akt axis signaling in canine tumour cells and identifies it as a promising therapeutic target.
Collapse
Affiliation(s)
- Yu-Ting Chen
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, UK, EH25 9RG
| | | | | | | |
Collapse
|
55
|
Kume A, Boldbaatar D, Takazawa Y, Umemiya-Shirafuji R, Tanaka T, Fujisaki K. RNAi of the translation inhibition gene 4E-BP identified from the hard tick, Haemaphysalis longicornis, affects lipid storage during the off-host starvation period of ticks. Parasitol Res 2012; 111:889-96. [PMID: 22618568 DOI: 10.1007/s00436-012-2915-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
Abstract
4E-BP, an eIF4E-binding protein, is well known as a cap-dependent translation inhibitor. Here, the 4E-BP homolog, Hl4E-BP, was isolated and identified from the hard tick Haemaphysalis longicornis. Hl4E-BP transcripts were ubiquitously expressed in the active stages, including the larvae, nymphs, and female adults, and the transcription levels were found to be higher in unfed than engorged ticks. In contrast, the expression levels of non-phosphorylated Hl4E-BP, which is a 13.4-kDa protein detected by the anti-recombinant Hl4E-BP antibody, were the highest in engorged ticks and significantly decreased progressively during the unfed starvation period of ticks. The functional role of Hl4E-BP as a metabolic brake was verified by histochemical observations on the lipid storage in midguts and fat bodies during the starvation period using ticks injected with dsHl4E-BP. The results indicate that Hl4E-BP is highly relevant to the lipid storage of ticks during the non-feeding starvation period. Our results suggest, for the first time, that Hl4E-BP may have a crucial role in the starvation resistance of ticks in an off-host condition via lipid metabolism control, although it was unclear whether Hl4E-BP might be involved in lipid synthesis regulation and/or lipid consumption inhibition.
Collapse
Affiliation(s)
- Aiko Kume
- Department of Frontier Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | | | | | | | | | | |
Collapse
|
56
|
Jia Y, Polunovsky V, Bitterman PB, Wagner CR. Cap-dependent translation initiation factor eIF4E: an emerging anticancer drug target. Med Res Rev 2012; 32:786-814. [PMID: 22495651 PMCID: PMC7168506 DOI: 10.1002/med.21260] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer cells tend to be more highly dependent on cap‐dependent translation than normal tissues. Thus, proteins involved in the initiation of cap‐dependent translation have emerged as potential anti‐cancer drug targets. Cap‐dependent translation is initiated by the binding of the factor eIF4E to the cap domain of mRNA. Detailed x‐ray crystal and NMR structures are available for eIF4E in association with cap‐analogs, as well as domains of other initiation factors. This review will summarize efforts to design potential antagonist of eIF4E that could be used as new pharmacological tools and anti‐cancer agents and. Insights drawn from these studies should aid in the design of future inhibitors of eIF4E dependent translation initiation. © 2012 Wiley Periodicals, Inc. Med Res Rev., 32, No. 4, 786‐814, 2012
Collapse
Affiliation(s)
- Yan Jia
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
57
|
Abstract
Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle's plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles.
Collapse
Affiliation(s)
- Heather M Gransee
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
58
|
Musnier A, León K, Morales J, Reiter E, Boulo T, Costache V, Vourc'h P, Heitzler D, Oulhen N, Poupon A, Boulben S, Cormier P, Crépieux P. mRNA-selective translation induced by FSH in primary Sertoli cells. Mol Endocrinol 2012; 26:669-80. [PMID: 22383463 DOI: 10.1210/me.2011-1267] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
FSH is a key hormonal regulator of Sertoli cell secretory activity, required to optimize sperm production. To fulfil its biological function, FSH binds a G protein-coupled receptor, the FSH-R. The FSH-R-transduced signaling network ultimately leads to the transcription or down-regulation of numerous genes. In addition, recent evidence has suggested that FSH might also regulate protein translation. However, this point has never been demonstrated conclusively yet. Here we have addressed this issue in primary rat Sertoli cells endogenously expressing physiological levels of FSH-R. We observed that, within 90 min of stimulation, FSH not only enhanced overall protein synthesis in a mammalian target of rapamycin-dependent manner but also increased the recruitment of mRNA to polysomes. m(7)GTP pull-down experiments revealed the functional recruitment of mammalian target of rapamycin and p70 S6 kinase to the 5'cap, further supported by the enhanced phosphorylation of one of p70 S6 kinase targets, the eukaryotic initiation factor 4B. Importantly, the scaffolding eukaryotic initiation factor 4G was also recruited, whereas eukaryotic initiation factor 4E-binding protein, the eukaryotic initiation factor 4E generic inhibitor, appeared to play a minor role in translational regulations induced by FSH, in contrast to what is generally observed in response to anabolic factors. This particular regulation of the translational machinery by FSH stimulation might support mRNA-selective translation, as shown here by quantitative RT-PCR amplification of the c-fos and vascular endothelial growth factor mRNA but not of all FSH target mRNA, in polysomal fractions. These findings add a new level of complexity to FSH biological roles in its natural target cells, which has been underappreciated so far.
Collapse
Affiliation(s)
- Astrid Musnier
- BIOS Group, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 85, F-37380 Nouzilly, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
von der Haar T. Mathematical and Computational Modelling of Ribosomal Movement and Protein Synthesis: an overview. Comput Struct Biotechnol J 2012; 1:e201204002. [PMID: 24688632 PMCID: PMC3962216 DOI: 10.5936/csbj.201204002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/31/2011] [Accepted: 11/05/2011] [Indexed: 11/22/2022] Open
Abstract
Translation or protein synthesis consists of a complex system of chemical reactions, which ultimately result in decoding of the mRNA and the production of a protein. The complexity of this reaction system makes it difficult to quantitatively connect its input parameters (such as translation factor or ribosome concentrations, codon composition of the mRNA, or energy availability) to output parameters (such as protein synthesis rates or ribosome densities on mRNAs). Mathematical and computational models of translation have now been used for nearly five decades to investigate translation, and to shed light on the relationship between the different reactions in the system. This review gives an overview over the principal approaches used in the modelling efforts, and summarises some of the major findings that were made.
Collapse
Affiliation(s)
- Tobias von der Haar
- School of Biosciences and Kent Fungal Group, University of Kent, Canterbury, CT2 7NJ, UK
| |
Collapse
|
60
|
Vitale G, Zappavigna S, Marra M, Dicitore A, Meschini S, Condello M, Arancia G, Castiglioni S, Maroni P, Bendinelli P, Piccoletti R, van Koetsveld PM, Cavagnini F, Budillon A, Abbruzzese A, Hofland LJ, Caraglia M. The PPAR-γ agonist troglitazone antagonizes survival pathways induced by STAT-3 in recombinant interferon-β treated pancreatic cancer cells. Biotechnol Adv 2012; 30:169-84. [DOI: 10.1016/j.biotechadv.2011.08.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 07/22/2011] [Accepted: 08/02/2011] [Indexed: 12/30/2022]
|
61
|
Kiraga-Motoszko K, Niedzwiecka A, Modrak-Wojcik A, Stepinski J, Darzynkiewicz E, Stolarski R. Thermodynamics of molecular recognition of mRNA 5' cap by yeast eukaryotic initiation factor 4E. J Phys Chem B 2011; 115:8746-54. [PMID: 21650456 DOI: 10.1021/jp2012039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular mechanisms underlying the recognition of the mRNA 5' terminal structure called "cap" by the eukaryotic initiation factor 4E (eIF4E) are crucial for cap-dependent translation. To gain a deeper insight into how the yeast eIF4E interacts with the cap structure, isothermal titration calorimetry and the van't Hoff analysis based on intrinsic protein fluorescence quenching upon titration with a series of chemical cap analogs were performed, providing a consistent thermodynamic description of the binding process in solution. Equilibrium association constants together with thermodynamic parameters revealed similarities and differences between yeast and mammalian eIF4Es. The yeast eIF4E complex formation was enthalpy-driven and entropy-opposed for each cap analog at 293 K. A nontrivial isothermal enthalpy–entropy compensation was found, described by a compensation temperature, T(c) = 411 ± 18 K. For a low affinity analog, 7-methylguanosine monophosphate, a heat capacity change was detected, ΔC(p)° = +5.2 ± 1.3 kJ·mol(-1)·K(-1). The charge-related interactions involving the 5′-5′ triphosphate bridge of the cap and basic amino acid side chains at the yeast eIF4E cap-binding site were significantly weaker (by ΔΔH°(vH) of about +10 kJ·mol(-1)) than those for the mammalian homologues, suggesting their optimization during the evolution.
Collapse
Affiliation(s)
- Katarzyna Kiraga-Motoszko
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
62
|
Seki N, Takasu T, Sawada S, Nakata M, Nishimura R, Segawa Y, Shibakuki R, Hanafusa T, Eguchi K. Prognostic significance of expression of eukaryotic initiation factor 4E and 4E binding protein 1 in patients with pathological stage I invasive lung adenocarcinoma. Lung Cancer 2011; 70:329-34. [PMID: 20621385 DOI: 10.1016/j.lungcan.2010.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 01/13/2010] [Accepted: 03/11/2010] [Indexed: 01/21/2023]
Abstract
BACKGROUND Both eukaryotic initiation factor 4E (eIF4E) and eIF4E binding protein 1 (4E-BP1) are involved in the malignant progression of human cancers. However, the role of eIF4E and 4E-BP1 expression as prognostic markers has not been evaluated concurrently in any human cancers. METHODS The expression of eIF4E and 4E-BP1 was semiquantitatively examined with immunohistochemical staining in 80 patients with pathological stage I invasive lung adenocarcinoma. RESULTS The 10-year survival rate was significantly lower for patients with high eIF4E expression (64.0% [n=36]) than for patients with low eIF4E expression (89.9% [n=44], P=0.024), and in patients with high eIF4E expression the 10-year survival rate was lower for patients with low 4E-BP1 expression (39.0% [n=12]) than for patients with high 4E-BP1 expression (85.2% [n=24], P=0.036). In patients with low eIF4E expression, the 10-year survival rate was lower for patients with low 4E-BP1 expression (87.6% [n=36]) than for patients with high 4E-BP1 expression (100% [n=8]), but statistical analysis was impossible because all patients with high 4E-BP1 expression were censored. Unfavorable prognostic factors for survival were age greater than 65 years (P=0.015), pathological stage IB disease (P=0.045), high eIF4E expression (P=0.008), and low 4E-BP1 expression (P=0.007). CONCLUSIONS Both eIF4E and 4E-BP1 are potential new prognostic factors for survival and stratification in patients with pathological stage I lung adenocarcinoma. The eIF4E and 4E-BP1 status may provide a basis for individualized therapy.
Collapse
Affiliation(s)
- Nobuhiko Seki
- Division of Medical Oncology, Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
A Novel Unstructured Scaffold Based on 4EBP1 Enables the Functional Display of a Wide Range of Bioactive Peptides. J Mol Biol 2010; 404:819-31. [DOI: 10.1016/j.jmb.2010.09.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 09/22/2010] [Accepted: 09/29/2010] [Indexed: 01/11/2023]
|
64
|
Freire ER, Dhalia R, Moura DMN, da Costa Lima TD, Lima RP, Reis CRS, Hughes K, Figueiredo RCBQ, Standart N, Carrington M, de Melo Neto OP. The four trypanosomatid eIF4E homologues fall into two separate groups, with distinct features in primary sequence and biological properties. Mol Biochem Parasitol 2010; 176:25-36. [PMID: 21111007 DOI: 10.1016/j.molbiopara.2010.11.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/15/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
Abstract
Translation initiation in eukaryotes requires eIF4E, the cap binding protein, which mediates its function through an interaction with the scaffolding protein eIF4G, as part of the eIF4F complex. In trypanosomatids, four eIF4E homologues have been described but the specific function of each is not well characterized. Here, we report a study of these proteins in Trypanosoma brucei (TbEIF4E1 through 4). At the sequence level, they can be assigned to two groups: TbEIF4E1 and 2, similar in size to metazoan eIF4E1; and TbEIF4E3 and 4, with long N-terminal extensions. All are constitutively expressed, but whilst TbEIF4E1 and 2 localize to both the nucleus and cytoplasm, TbEIF4E3 and 4 are strictly cytoplasmic and are also more abundant. After knockdown through RNAi, TbEIF4E3 was the only homologue confirmed to be essential for viability of the insect procyclic form. In contrast, TbEIF4E1, 3 and 4 were all essential for the mammalian bloodstream form. Simultaneous RNAi knockdown of TbEIF4E1 and 2 caused cessation of growth and death in procyclics, but with a delayed impact on translation, whilst knockdown of TbEIF4E3 alone or a combined TbEIF4E1 and 4 knockdown led to substantial translation inhibition which preceded cellular death by several days, at least. Only TbEIF4E3 and 4 were found to interact with T. brucei eIF4G homologues; TbEIF4E3 bound both TbEIF4G3 and 4 whilst TbEIF4E4 bound only to TbEIF4G3. These results are consistent with TbEIF4E3 and 4 having distinct but relevant roles in initiation of protein synthesis.
Collapse
Affiliation(s)
- Eden R Freire
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Moraes Rego s/n, Campus UFPE, Recife, PE 50670-420, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Argadine HM, Mantilla CB, Zhan WZ, Sieck GC. Intracellular signaling pathways regulating net protein balance following diaphragm muscle denervation. Am J Physiol Cell Physiol 2010; 300:C318-27. [PMID: 21084642 DOI: 10.1152/ajpcell.00172.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Unilateral denervation (DNV) of rat diaphragm muscle increases protein synthesis at 3 days after DNV (DNV-3D) and degradation at DNV-5D, such that net protein breakdown is evident by DNV-5D. On the basis of existing models of protein balance, we examined DNV-induced changes in Akt, AMP-activated protein kinase (AMPK), and ERK½ activation, which can lead to increased protein synthesis via mammalian target of rapamycin (mTOR)/p70S6 kinase (p70S6K), glycogen synthase kinase-3β (GSK3β), or eukaryotic initiation factor 4E (eIF4E), and increased protein degradation via forkhead box protein O (FoxO). Protein phosphorylation was measured using Western analyses through DNV-5D. Akt phosphorylation decreased at 1 h and 6 h after DNV compared with sham despite decreased AMPK phosphorylation. Both Akt and AMPK phosphorylation returned to sham levels by DNV-1D. Phosphorylation of their downstream effector mTOR (Ser2481) did not change at any time point after DNV, and phosphorylated p70S6K and eIF4E-binding protein 1 (4EBP1) increased only by DNV-5D. In contrast, ERK½ phosphorylation and its downstream effector eIF4E increased 1.7-fold at DNV-1D and phosphorylated GSK3β increased 1.5-fold at DNV-3D (P < 0.05 for both comparisons). Thus, following DNV there are differential effects on protein synthetic pathways with preferential activation of GSK3β and eIF4E over p70S6K. FoxO1 nuclear translocation occurred by DNV-1D, consistent with its role in increasing expression of atrogenes necessary for subsequent ubiquitin-proteasome activation evident by DNV-5D. On the basis of our results, increased protein synthesis following DNV is associated with changes in ERK½-dependent pathways, but protein degradation results from downregulation of Akt and nuclear translocation of FoxO1. No single trigger is responsible for protein balance following DNV. Protein balance in skeletal muscle depends on multiple synthetic/degradation pathways that should be studied in concert.
Collapse
|
66
|
Lellis AD, Allen ML, Aertker AW, Tran JK, Hillis DM, Harbin CR, Caldwell C, Gallie DR, Browning KS. Deletion of the eIFiso4G subunit of the Arabidopsis eIFiso4F translation initiation complex impairs health and viability. PLANT MOLECULAR BIOLOGY 2010; 74:249-63. [PMID: 20694742 PMCID: PMC2938417 DOI: 10.1007/s11103-010-9670-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 07/24/2010] [Indexed: 05/20/2023]
Abstract
Arabidopsis thaliana knockout lines for the plant-specific eukaryotic translation initiation factors eIFiso4G1 (i4g1) and eIFiso4G2 (i4g2) genes have been obtained. To address the potential for functional redundancy of these genes, homozygous double mutant lines were generated by crossing individual knockout lines. Both single and double mutant plants were analyzed for changes in gross morphology, development, and responses to selected environmental stressors. Single gene knockouts appear to have minimal effect on morphology, germination rate, growth rate, flowering time, or fertility. However, double mutant i4g1/i4g2 knockout plants show reduced germination rates, slow growth rates, moderate chlorosis, impaired fertility and reduced long term seed viability. Double mutant plants also exhibit altered responses to dehydration, salinity, and heat stress. The i4g2 and i4g1/i4g2 double mutant has reduced amounts of chlorophyll a and b suggesting a role in the expression of chloroplast proteins. General protein synthesis did not appear to be affected as the levels of gross protein expression did not appear to change in the mutants. The lack of a phenotype for either of the single mutants suggests there is considerable functional overlap. However, the strong phenotypes observed for the double mutant indicates that the individual gene products may have specialized roles in the expression of proteins involved in plant growth and development.
Collapse
Affiliation(s)
- Andrew D. Lellis
- Department of Chemistry and Biochemistry and the Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712-1096 USA
| | - M. Leah Allen
- Department of Chemistry and Biochemistry and the Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712-1096 USA
| | - Alice W. Aertker
- Department of Chemistry and Biochemistry and the Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712-1096 USA
| | - Jonathan K. Tran
- Department of Chemistry and Biochemistry and the Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712-1096 USA
| | - David M. Hillis
- Section of Integrative Biology, University of Texas, Austin, TX 78712-1096 USA
| | - Courtney R. Harbin
- Department of Chemistry and Biochemistry and the Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712-1096 USA
| | - Christian Caldwell
- Department of Biochemistry, University of California, Riverside, CA 92521-0129 USA
| | - Daniel R. Gallie
- Department of Biochemistry, University of California, Riverside, CA 92521-0129 USA
| | - Karen S. Browning
- Department of Chemistry and Biochemistry and the Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712-1096 USA
| |
Collapse
|
67
|
Li Y, Yue P, Deng X, Ueda T, Fukunaga R, Khuri FR, Sun SY. Protein phosphatase 2A negatively regulates eukaryotic initiation factor 4E phosphorylation and eIF4F assembly through direct dephosphorylation of Mnk and eIF4E. Neoplasia 2010; 12:848-855. [PMID: 20927323 PMCID: PMC2950334 DOI: 10.1593/neo.10704] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/09/2010] [Accepted: 07/09/2010] [Indexed: 01/11/2023]
Abstract
The eukaryotic translation initiation factor 4E (eIF4E) is frequently overexpressed in human cancers and is associated with cellular transformation, tumorigenesis, and metastatic progression. It is known that Mnks can phosphorylate eIF4E. Protein phosphatase 2A (PP2A) functions as a tumor suppressor, and it was previously suggested to regulate eIF4E phosphorylation. However, how PP2A regulates eIF4E phosphorylation has not been fully addressed. In this study, we have not only validated the role of PP2A in regulation of eIF4E phosphorylation but also demonstrated the mechanism underlying this process. Inhibition of PP2A using either okadaic acid or PP2A small interfering RNA (siRNA) increased eIF4E phosphorylation, which could be abolished by the presence of the Mnk inhibitor CGP57380 or deficiency of Mnk genes. Thus, Mnks are involved in PP2A-mediated regulation of eIF4E phosphorylation. Moreover, a dephosphorylation assay revealed that PP2A could directly dephosphorylate Mnk1 and eIF4E. m(7)GTP pull-down assay detected more eIF4G and phospho-eIF4E and less 4EBP-1 in PP2A siRNA-transfected cells than in control siRNA-transfected cells, indicating an increased cap binding of eIF4F complex. Accordingly, okadaic acid treatment or PP2A knockdown increased the levels of c-Myc and Mcl-1, which are proteins known to be regulated by a cap-dependent translation mechanism. Taken together, we conclude that PP2A negatively regulates eIF4E phosphorylation and eIF4F complex assembly through dephosphorylation of Mnk and eIF4E, thus suggesting a novel mechanism by which PP2A exerts its tumor-suppressive function.
Collapse
Affiliation(s)
- Yikun Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Ping Yue
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Xingming Deng
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Takeshi Ueda
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Rikiro Fukunaga
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
68
|
Goh SH, Hong SH, Hong SH, Lee BC, Ju MH, Jeong JS, Cho YR, Kim IH, Lee YS. eIF3m expression influences the regulation of tumorigenesis-related genes in human colon cancer. Oncogene 2010; 30:398-409. [DOI: 10.1038/onc.2010.422] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
69
|
May ER, Armen RS, Mannan AM, Brooks CL. The flexible C-terminal arm of the Lassa arenavirus Z-protein mediates interactions with multiple binding partners. Proteins 2010; 78:2251-64. [PMID: 20544962 PMCID: PMC2933069 DOI: 10.1002/prot.22738] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The arenavirus genome encodes for a Z-protein, which contains a RING domain that coordinates two zinc ions, and has been identified as having several functional roles at various stages of the virus life cycle. Z-protein binds to multiple host proteins and has been directly implicated in the promotion of viral budding, repression of mRNA translation, and apoptosis of infected cells. Using homology models of the Z-protein from Lassa strain arenavirus, replica exchange molecular dynamics (MD) was used to refine the structures, which were then subsequently clustered. Population-weighted ensembles of low-energy cluster representatives were predicted based upon optimal agreement of the chemical shifts computed with the SPARTA program with the experimental NMR chemical shifts. A member of the refined ensemble was identified to be a potential binder of budding factor Tsg101 based on its correspondence to the structure of the HIV-1 Gag late domain when bound to Tsg101. Members of these ensembles were docked against the crystal structure of human eIF4E translation initiation factor. Two plausible binding modes emerged based upon their agreement with experimental observation, favorable interaction energies and stability during MD trajectories. Mutations to Z are proposed that would either inhibit both binding mechanisms or selectively inhibit only one mode. The C-terminal domain conformation of the most populated member of the representative ensemble shielded protein-binding recognition motifs for Tsg101 and eIF4E and represents the most populated state free in solution. We propose that C-terminal flexibility is key for mediating the different functional states of the Z-protein.
Collapse
Affiliation(s)
- Eric R. May
- Department of Chemistry and Program in Biophysics, 930 N. University Ave, University of Michigan, Ann Arbor, MI 48109
| | - Roger S. Armen
- Department of Chemistry and Program in Biophysics, 930 N. University Ave, University of Michigan, Ann Arbor, MI 48109
| | - Aristotle M. Mannan
- Department of Chemistry and Program in Biophysics, 930 N. University Ave, University of Michigan, Ann Arbor, MI 48109
| | - Charles L. Brooks
- Department of Chemistry and Program in Biophysics, 930 N. University Ave, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
70
|
Guimarães CRW, Kopecky DJ, Mihalic J, Shen S, Jeffries S, Thibault ST, Chen X, Walker N, Cardozo M. Thermodynamic analysis of mRNA cap binding by the human initiation factor eIF4E via free energy perturbations. J Am Chem Soc 2010; 131:18139-46. [PMID: 19924990 DOI: 10.1021/ja9064359] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Eukaryotic mRNAs are appended at the 5' end, with the 7-methylguanosine cap linked by a 5'-5'-triphosphate bridge to the first transcribed nucleoside (m7GpppX). Initiation of cap-dependent translation of mRNA requires direct interaction between the cap structure and the eukaryotic translation initiation factor eIF4E. Biophysical studies of the association between eIF4E and various cap analogs have demonstrated that m(7)GTP binds to the protein ca. -5.0 kcal/mol more favorably than unmethylated GTP. In this work, a thermodynamic analysis of the binding process between eIF4E and several cap analogs has been conducted using Monte Carlo (MC) simulations in conjunction with free energy perturbation (FEP) calculations. To address the role of the 7-methyl group in the eIF4E/m7GpppX cap interaction, binding free energies have been computed for m(7)GTP, GTP, protonated GTP at N(7), the 7-methyldeazaguanosine 5'-triphosphate (m(7)DTP), and 7-deazaguanosine 5'-triphosphate (DTP) cap analogs. The MC/FEP simulations for the GTP-->m(7)DTP transformation demonstrate that half of the binding free energy gain of m(7)GTP with respect to GTP can be attributed to favorable van der Waals interactions with Trp166 and reduced desolvation penalty due to the N(7) methyl group. The methyl group both eliminates the desolvation penalty of the N(7) atom upon binding and creates a larger cavity within the solvent that further facilitates the desolvation step. Analysis of the pair m(7)GTP-m(7)DTP suggests that the remaining gain in affinity is related to the positive charge created on the guanine moiety due to the N(7) methylation. The charge provides favorable cation-pi interactions with Trp56 and Trp102 and decreases the negative molecular charge, which helps the transfer from the solvent, a more polar environment, to the protein.
Collapse
Affiliation(s)
- Cristiano R W Guimarães
- Department of Molecular Structure, Amgen, Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Supplementing l-leucine to a low-protein diet increases tissue protein synthesis in weanling pigs. Amino Acids 2010; 39:1477-86. [DOI: 10.1007/s00726-010-0612-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 04/27/2010] [Indexed: 12/16/2022]
|
72
|
Konsavage W, Zhang L, Vary T, Shenberger JS. Hyperoxia inhibits protein synthesis and increases eIF2α phosphorylation in the newborn rat lung. Am J Physiol Lung Cell Mol Physiol 2010; 298:L678-86. [DOI: 10.1152/ajplung.00262.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Prolonged exposure to hyperoxia contributes to aberrant lung growth in premature infants. Of the deleterious effects induced by hyperoxia, alterations in protein synthesis are likely to be of great importance to the developing lung. Regulation of mRNA translation occurs predominantly at the level of initiation via control of mRNA/ribosome binding by proteins known as eukaryotic initiation factors (eIF). Although hyperoxia is known to suppress mRNA translation in adult lungs, little is known regarding the effects in newborns or the involved mechanism. This study was performed to determine the effect of exposure to 95% O2 on pulmonary protein synthesis in 4-day-old Sprague-Dawley rat pups. We found that hyperoxia suppressed the incorporation of [3H]phenylalanine into lung protein over time, resulting in a 23% reduction after 72 h compared with pups reared in room air. This effect was preceded by a shift in total lung RNA to lower order polysomes. Hyperoxia increased eIF4G-eIF4E binding, a surrogate maker of eIF4F complex assembly, and initially activated, then suppressed, the phosphorylation of ribosomal S6 kinase 1 and ribosomal S6 protein, downstream targets of mammalian target of rapamycin. Exposure to 95% O2 enhanced the phosphorylation of the translational repressor eIF2α in whole lung extracts and the immunoreactivity of phosphorylated eIF2α in epithelial cells. Cell culture studies further demonstrated that hyperoxia increases eIF2α phosphorylation in lung epithelial cells, but not in lung fibroblasts. These findings illustrate that hyperoxia-induced suppression of mRNA translation in the newborn lung is accompanied by increased phosphorylation of eIF2α in the epithelium.
Collapse
Affiliation(s)
| | | | - Thomas Vary
- Cellular and Molecular Physiology, The Pennsylvania State College of Medicine, Hershey Pennsylvania
| | - Jeffrey S. Shenberger
- Departments of 1Pediatrics and
- Cellular and Molecular Physiology, The Pennsylvania State College of Medicine, Hershey Pennsylvania
| |
Collapse
|
73
|
Morales-Tirado V, Sojka DK, Katzman SD, Lazarski CA, Finkelman FD, Urban JF, Fowell DJ. Critical requirement for the Wiskott-Aldrich syndrome protein in Th2 effector function. Blood 2010; 115:3498-507. [PMID: 20032499 PMCID: PMC2867263 DOI: 10.1182/blood-2009-07-235754] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 11/29/2009] [Indexed: 01/30/2023] Open
Abstract
Patients with Wiskott-Aldrich syndrome (WAS) have numerous immune cell deficiencies, but it remains unclear how abnormalities in individual cell types contribute to the pathologies of WAS. In T cells, the WAS protein (WASp) regulates actin polymerization and transcription, and plays a role in the dynamics of the immunologic synapse. To examine how these events influence CD4 function, we isolated the WASp deficiency to CD4(+) T cells by adoptive transfer into wild-type mice to study T-cell priming and effector function. WAS(-/-) CD4(+) T cells mediated protective T-helper 1 (Th1) responses to Leishmania major in vivo, but were unable to support Th2 immunity to Nippostrongylus brasiliensis or L major. Mechanistically, WASp was not required for Th2 programming but was required for Th2 effector function. WAS(-/-) CD4(+) T cells up-regulated IL-4 and GATA3 mRNA and secreted IL-4 protein during Th2 differentiation. In contrast, cytokine transcription was uncoupled from protein production in WAS(-/-) Th2-primed effectors. WAS(-/-) Th2s failed to produce IL-4 protein on restimulation despite elevated IL-4/GATA3 mRNA. Moreover, dominant-negative WASp expression in WT effector T cells blocked IL-4 production, but had no effect on IFNgamma. Thus WASp plays a selective, posttranscriptional role in Th2 effector function.
Collapse
MESH Headings
- Animals
- GATA3 Transcription Factor/biosynthesis
- GATA3 Transcription Factor/genetics
- GATA3 Transcription Factor/immunology
- Humans
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-4/biosynthesis
- Interleukin-4/genetics
- Interleukin-4/immunology
- Leishmania major/immunology
- Leishmaniasis, Cutaneous/genetics
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Nippostrongylus/immunology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Strongylida Infections/genetics
- Strongylida Infections/immunology
- Strongylida Infections/metabolism
- Th1 Cells/immunology
- Th2 Cells/immunology
- Th2 Cells/metabolism
- Transcription, Genetic/genetics
- Transcription, Genetic/immunology
- Up-Regulation/genetics
- Up-Regulation/immunology
- Wiskott-Aldrich Syndrome/genetics
- Wiskott-Aldrich Syndrome/immunology
- Wiskott-Aldrich Syndrome/metabolism
- Wiskott-Aldrich Syndrome Protein/genetics
- Wiskott-Aldrich Syndrome Protein/immunology
- Wiskott-Aldrich Syndrome Protein/metabolism
Collapse
Affiliation(s)
- Vanessa Morales-Tirado
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester, NY, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Fan S, Li Y, Yue P, Khuri FR, Sun SY. The eIF4E/eIF4G interaction inhibitor 4EGI-1 augments TRAIL-mediated apoptosis through c-FLIP Down-regulation and DR5 induction independent of inhibition of cap-dependent protein translation. Neoplasia 2010; 12:346-356. [PMID: 20360945 PMCID: PMC2847742 DOI: 10.1593/neo.10144] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/12/2010] [Accepted: 02/15/2010] [Indexed: 01/15/2023]
Abstract
The small molecule 4EGI-1 was identified as an inhibitor of cap-dependent translation initiation owing to its disruption of the eIF4E/eIF4G association through binding to eIF4E. 4EGI-1 exhibits growth-inhibitory and apoptosis-inducing activity in cancer cells; thus, we were interested in its therapeutic efficacy in human lung cancer cells. 4EGI-1, as a single agent, inhibited the growth and induced apoptosis of human lung cancer cells.When combined with the death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), enhanced apoptosis-induced activity was observed. As expected, 4EGI-1 inhibited eIF4E/eIF4G interaction and reduced the levels of cyclin D1 and hypoxia-inducing factor-1alpha (HIF-1alpha), both of which are regulated by a cap-dependent translation mechanism. Moreover, 4EGI-1 induced CCAAT/enhancer-binding protein homologous protein-dependent DR5 expression and ubiquitin/proteasome- mediated degradation of cellular FLICE-inhibitory protein (c-FLIP). Small interfering RNA-mediated blockade of DR5 induction or enforced expression of c-FLIP abrogated 4EGI-1's ability to enhance TRAIL-induced apoptosis, indicating that both DR5 induction and c-FLIP down-regulation contribute to enhancement of TRAIL-induced apoptosis by 4EGI-1. However, inhibition of eIF4E/eIF4G interaction by knockdown of eIF4E effectively reduced the levels of cyclin D1 and HIF-1alpha but failed to induce DR5 expression, downregulate c-FLIP levels, or augment TRAIL-induced apoptosis. These results collectively suggest that 4EGI-1 augments TRAIL-induced apoptosis through induction of DR5 and down-regulation of c-FLIP, independent of inhibition of cap-dependent protein translation.
Collapse
Affiliation(s)
- Songqing Fan
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
- Department of Pathology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Yikun Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Ping Yue
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
75
|
Siemer C, Smiljakovic T, Bhojwani M, Leiding C, Kanitz W, Kubelka M, Tomek W. Analysis of mRNA associated factors during bovine oocyte maturation and early embryonic development. Mol Reprod Dev 2010; 76:1208-19. [PMID: 19697362 DOI: 10.1002/mrd.21096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulation of gene expression at the translational level is particularly essential during developmental periods, when transcription is impaired. According to the closed-loop model of translational initiation, we have analyzed components of the 5 -mRNA cap-binding complex eIF4F (eIF4E, eIF4G, eIF4A), the eIF4E repressor 4E-BP1, and 3 -mRNA poly-(A) tail-associated proteins (PABP1 and 3, PAIP1 and 2, CPEB1, Maskin) during in vitro maturation of bovine oocytes and early embryonic development up to the 16-cell stage. Furthermore, we have elucidated the activity of distinct kinases which are potentially involved in their phosphorylation. Major phosphorylation of specific target sequences of PKA, PKB, PKC, CDKs, ATM/ATR, and MAPK were observed in M II stage oocytes. Furthermore, main changes in the abundance and/or phosphorylation of distinct mRNA-binding factors occur at the transition from M II stage oocytes to 2-cell embryos. In conclusion, the results indicate that, at the transition from oocyte to embryonic development, translational initiation is regulated by striking differences in the abundance and/or phosphorylation of 5 -end and 3 -end mRNA associated factors, mainly the poly-(A) bindings proteins PABP1 and 3, their repressor PAIP2 and a Maskin-like protein with distinct eIF4E-binding properties which prevents eIF4E/cap binding and eIF4F formation in vitro. Nevertheless, from the M II stage to 16-cell embryos a substantial amount of eIF4E and, to a lesser extent, of eIF4G was precipitated by (7)m-GTP-Separose indicating eIF4F complex formation. Therefore, it is likely that in general the reduction in PABP1 and 3 abundance represses overall translation during early embryonic development.
Collapse
Affiliation(s)
- Corinna Siemer
- Research Institute for the Biology of Farm Animals (FBN) Dummerstorf, 18196 Dummerstorf, Germany
| | | | | | | | | | | | | |
Collapse
|
76
|
Ryu JM, Lee MY, Yun SP, Han HJ. High glucose regulates cyclin D1/E of human mesenchymal stem cells through TGF-β1expression via Ca2+/PKC/MAPKs and PI3K/Akt/mTOR signal pathways. J Cell Physiol 2010; 224:59-70. [DOI: 10.1002/jcp.22091] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
77
|
Aitken KJ, Tolg C, Panchal T, Leslie B, Yu J, Elkelini M, Sabha N, Tse DJ, Lorenzo AJ, Hassouna M, Bägli DJ. Mammalian target of rapamycin (mTOR) induces proliferation and de-differentiation responses to three coordinate pathophysiologic stimuli (mechanical strain, hypoxia, and extracellular matrix remodeling) in rat bladder smooth muscle. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:304-19. [PMID: 20019183 DOI: 10.2353/ajpath.2010.080834] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Maladaptive bladder muscle overgrowth and de-differentiation in human bladder obstructive conditions is instigated by coordinate responses to three stimuli: mechanical strain, tissue hypoxia, and extracellular matrix remodeling.( 1,2) Pathway analysis of genes induced by obstructive models of injury in bladder smooth muscle cells (BSMCs) identified a mammalian target of rapamycin (mTOR)-specific inhibitor as a potential pharmacological inhibitor. Strain-induced mTOR-specific S6K activation segregated differently from ERK1/2 activation in intact bladder ex vivo. Though rapamycin's antiproliferative effects in vascular smooth muscle cells are well known, its effects on BSMCs were previously unknown. Rapamycin significantly inhibited proliferation of BSMCs in response to mechanical strain, hypoxia, and denatured collagen. Rapamycin inhibited S6K at mTOR-sensitive phosphorylation sites in response to strain and hypoxia. Rapamycin also supported smooth muscle actin expression in response to strain or hypoxia-induced de-differentiation. Importantly, strain plus hypoxia synergistically augmented mTOR-dependent S6K activation, Mmp7 expression and proliferation. Forced expression of wild-type and constitutively active S6K resulted in loss of smooth muscle actin expression. Decreased smooth muscle actin, increased Mmp7 levels and mTOR pathway activation during in vivo partial bladder obstruction paralleled our in vitro studies. These results point to a coordinate role for mTOR in BSMCs responses to the three stimuli and a potential new therapeutic target for myopathic bladder disease.
Collapse
Affiliation(s)
- Karen J Aitken
- Developmental & Stem Cell Biology, The Hospital For Sick Children Research Institute, Toronto, ON M5G 1X8, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Coelho RP, Yuelling LM, Fuss B, Sato-Bigbee C. Neurotrophin-3 targets the translational initiation machinery in oligodendrocytes. Glia 2009; 57:1754-64. [PMID: 19455580 PMCID: PMC4300950 DOI: 10.1002/glia.20888] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurotrophin-3 (NT-3) regulates oligodendrocyte (OLG) differentiation by mechanisms that remain poorly understood. Exposure of OLGs to NT-3 induces a significant increase in the levels of myelin basic protein (MBP). However, we found that this stimulation occurs in the absence of measurable effects on MBP gene promoter activation or mRNA expression, suggesting that NT-3 upregulates MBP protein expression by a posttranscriptional mechanism. Furthermore, NT-3 also causes an increase in the levels of myelin-associated glycoprotein (MAG) and myelin OLG glycoprotein (MOG), raising the possibility of a more general effect on myelin protein synthesis. Surprisingly, (35)S-methionine incorporation into total OLG proteins demonstrated a 50% increase in labeling following only a brief, 15-min treatment with NT-3. Such a remarkably fast response is unlikely due to transcriptional activation, reinforcing the possibility that NT-3 may play a crucial role in regulating protein expression by a posttranscriptional mechanism. In support of this idea, we found that NT-3 stimulates the phosphorylation of essential regulators of the initiation machinery, eukaryotic initiation factor 4E (eIF4E), and its inhibitory binding partner 4E binding protein 1 (4EBP1), two crucial players in controlling cap-dependent protein synthesis. This stimulation involves the activation of pathways mediated by ERK1/2 and PI3K/mTOR, implicating these two kinase systems as modulators of protein synthesis in developing OLGs. Altogether, these observations show for the first time that NT-3 has the capacity of targeting the translational machinery and suggest a potential stimulatory effect of this neurotrophin on myelination by direct action on protein translation in the OLGs.
Collapse
Affiliation(s)
- Rochelle P. Coelho
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Larra M. Yuelling
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Carmen Sato-Bigbee
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
79
|
Kim YY, Von Weymarn L, Larsson O, Fan D, Underwood JM, Peterson MS, Hecht SS, Polunovsky VA, Bitterman PB. Eukaryotic initiation factor 4E binding protein family of proteins: sentinels at a translational control checkpoint in lung tumor defense. Cancer Res 2009; 69:8455-62. [PMID: 19843855 DOI: 10.1158/0008-5472.can-09-1923] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The usurping of translational control by sustained activation of translation initiation factors is oncogenic. Here, we show that the primary negative regulators of these oncogenic initiation factors--the 4E-BP protein family--operate as guardians of a translational control checkpoint in lung tumor defense. When challenged with the tobacco carcinogen 4-(methylnitrosamino)-I-(3-pyridyl)-1-butanone (NNK), 4ebp1(-/-)/4ebp2(-/-) mice showed increased sensitivity to tumorigenesis compared with their wild-type counterparts. The 4E-BP-deficient state per se creates pro-oncogenic, genome-wide skewing of the molecular landscape, with translational activation of genes governing angiogenesis, growth, and proliferation, and translational activation of the precise cytochrome p450 enzyme isoform (CYP2A5) that bioactivates NNK into mutagenic metabolites. Our study provides in vivo proof for a translational control checkpoint in lung tumor defense.
Collapse
Affiliation(s)
- Yong Y Kim
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
BACKGROUND The mammalian target of rapamycin (mTOR) has emerged as an attractive cancer therapeutic target. Accordingly, several mTOR inhibitors (e.g., rapamycin and its analogs; rapalogs) are currently being tested in many cancer clinical trials. Despite the encouraging results showing that some rapalogs improved overall survival among patients with metastatic renal-cell carcinoma, the single-agent activity of rapalogs in most other tumor-types has been modest, at best. OBJECTIVE To review the current understanding of the mTOR axis and discuss potential strategies to enhance mTOR-targeted cancer therapy. METHODS Preclinical and clinical data in peer-reviewed reports on the novel biological and therapeutic parts of the mTOR axis are discussed. CONCLUSION The mTOR axis involves complex regulatory networks. Inhibition of the mTOR axis with a rapalog induces feedback activation of several survival signaling pathways such as Akt activation, which, in turn, blunt rapalogs' anticancer efficacy. Thus, blockage or prevention of the activation of these survival signaling pathways may enhance mTOR-targeted cancer therapy.
Collapse
Affiliation(s)
- Xuerong Wang
- Emory University School of Medicine, Winship Cancer Institute, Department of Hematology, Atlanta, GA 30322, USA
| | | |
Collapse
|
81
|
Antroquinonol displays anticancer potential against human hepatocellular carcinoma cells: a crucial role of AMPK and mTOR pathways. Biochem Pharmacol 2009; 79:162-71. [PMID: 19723512 DOI: 10.1016/j.bcp.2009.08.022] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 08/21/2009] [Accepted: 08/24/2009] [Indexed: 12/22/2022]
Abstract
5'AMP-activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR) are two serine/threonine protein kinases responsible for cellular energy homeostasis and translational control, respectively. Evidence suggests that these two kniases are potential targets for cancer chemotherapy against hepatocellular carcinoma (HCC). Antroquinonol that is isolated from Antrodia camphorate, a well-known Traditional Chinese Medicine for treatment of liver diseases, displayed effective anticancer activity against both HBV DNA-positive and -negative HCC cell lines. The rank order of potency against HCCs is HepG2>HepG2.2.15>Mahlavu>PLC/PRF/5>SK-Hep1>Hep3B. Antroquinonol completely abolished cell-cycle progression released from double-thymidine-block synchronization and caused a subsequent apoptosis. The data were supported by down-regulation and reduced nuclear translocation of G1-regulator proteins, including cyclin D1, cyclin E, Cdk4 and Cdk2. Further analysis showed that the mRNA expressions of the G1-regulator proteins were not modified by antroquinonol, indicating an inhibition of translational but not transcriptional levels. Antroquinonol induced the assembly of tuberous sclerosis complex (TSC)-1/TSC2, leading to the blockade of cellular protein synthesis through inhibition of protein phosphorylation including mTOR (Ser(2448)), p70(S6K) (Thr(421)/Ser(424) and Thr(389)) and 4E-BP1 (Thr(37)/Thr(46) and Thr(70)). Furthermore, the AMPK activity was elevated by antroquinonol. Compound C, a selective AMPK inhibitor, significantly reversed antroquinonol-mediated effects suggesting the crucial role of AMPK. Besides, the loss of mitochondrial membrane potential and depletion of mitochondrial content indicated the mitochondrial stress caused by antroquinonol. In summary, the data suggest that antroquinonol displays anticancer activity against HCCs through AMPK activation and inhibition of mTOR translational pathway, leading to G1 arrest of the cell-cycle and subsequent cell apoptosis.
Collapse
|
82
|
Fan S, Ramalingam SS, Kauh J, Xu Z, Khuri FR, Sun SY. Phosphorylated eukaryotic translation initiation factor 4 (eIF4E) is elevated in human cancer tissues. Cancer Biol Ther 2009; 8:1463-9. [PMID: 19483468 PMCID: PMC2804981 DOI: 10.4161/cbt.8.15.8960] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) is a rate-limiting factor for cap-dependent protein synthesis and is regulated by PI3 kinase/mTOR and mitogen-activated protein kinase (MAPK)/Mnk signaling pathways. Recent studies have shown that Mnk-mediated eIF4E phosphorylation is absolutely required for eIF4E's oncogenic function. Overexpression of eIF4E has been reported in many types of cancers; however, the expression of phosphorylated eIF4E (p-eIF4E) in human cancer tissues, particularly solid tumor tissues, has not been reported. The current study focused on evaluating p-eIF4E expression patterns in the tumor tissues obtained from patients with a variety of malignancies. Using three different tissue microarrays consisting of a total of 380 cases of human cancers and 146 cases of adjacent normal tissues, we detected p-eIF4E positive staining in 63.4% (241/380) of cancers, but only in 30.1% (44/146) of adjacent normal tissues. Thus, p-eIF4E expression is significantly higher in cancers than in adjacent normal tissues (p < 0.001). In general, there was no major difference in p-eIF4E staining between cancers with and without lymph node metastasis. In certain types of maligancies such as lung, gastric and colorectal cancers, p-eIF4E staining was significantly higher in the early stage (T1) than in the late stage (T3) disease (p < 0.05). Collectively, these findings suggest that p-eIF4E may play a critical role in cancer development, particularly early stages of tumorigenesis and support p-eIF4E as a good cancer therapeutic target.
Collapse
Affiliation(s)
- Songqing Fan
- Departments of Hematology and Medical Oncology, Winship Cancer Institute,Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Suresh S. Ramalingam
- Departments of Hematology and Medical Oncology, Winship Cancer Institute,Emory University School of Medicine, Atlanta, Georgia, USA
| | - John Kauh
- Departments of Hematology and Medical Oncology, Winship Cancer Institute,Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zhiheng Xu
- Departments of Hematology and Medical Oncology, Winship Cancer Institute,Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fadlo R. Khuri
- Departments of Hematology and Medical Oncology, Winship Cancer Institute,Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shi-Yong Sun
- Departments of Hematology and Medical Oncology, Winship Cancer Institute,Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
83
|
Thorn SR, Regnault TRH, Brown LD, Rozance PJ, Keng J, Roper M, Wilkening RB, Hay WW, Friedman JE. Intrauterine growth restriction increases fetal hepatic gluconeogenic capacity and reduces messenger ribonucleic acid translation initiation and nutrient sensing in fetal liver and skeletal muscle. Endocrinology 2009; 150:3021-30. [PMID: 19342452 PMCID: PMC2703533 DOI: 10.1210/en.2008-1789] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Expression of key metabolic genes and proteins involved in mRNA translation, energy sensing, and glucose metabolism in liver and skeletal muscle were investigated in a late-gestation fetal sheep model of placental insufficiency intrauterine growth restriction (PI-IUGR). PI-IUGR fetuses weighed 55% less; had reduced oxygen, glucose, isoleucine, insulin, and IGF-I levels; and had 40% reduction in net branched chain amino acid uptake. In PI-IUGR skeletal muscle, levels of insulin receptor were increased 80%, whereas phosphoinositide-3 kinase (p85) and protein kinase B (AKT2) were reduced by 40%. Expression of eukaryotic initiation factor-4e was reduced 45% in liver, suggesting a unique mechanism limiting translation initiation in PI-IUGR liver. There was either no change (AMP activated kinase, mammalian target of rapamycin) or a paradoxical decrease (protein phosphatase 2A, eukaryotic initiation factor-2 alpha) in activation of major energy and cell stress sensors in PI-IUGR liver and skeletal muscle. A 13- to 20-fold increase in phosphoenolpyruvate carboxykinase and glucose 6 phosphatase mRNA expression in the PI-IUGR liver was-associated with a 3-fold increase in peroxisome proliferator-activated receptor-gamma coactivator-1 alpha mRNA and increased phosphorylation of cAMP response element binding protein. Thus PI-IUGR is-associated with reduced branched chain amino acid uptake and growth factors, yet up-regulation of proximal insulin signaling and a marked increase in the gluconeogenic pathway. Lack of activation of several energy and stress sensors in fetal liver and skeletal muscle, despite hypoxia and low energy status, suggests a novel strategy for survival in the PI-IUGR fetus but with potential maladaptive consequences for reduced nutrient sensing and insulin sensitivity in postnatal life.
Collapse
Affiliation(s)
- Stephanie R Thorn
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Kanka J, Kepková K, Nemcová L. Gene expression during minor genome activation in preimplantation bovine development. Theriogenology 2009; 72:572-83. [PMID: 19501393 DOI: 10.1016/j.theriogenology.2009.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 04/01/2009] [Accepted: 04/03/2009] [Indexed: 11/30/2022]
Abstract
The main goal of this study was to identify mRNA transcripts whose content increases during bovine minor embryonic genome activation. We compared the gene expression profile of the bovine 4-cell-stage embryo and MII oocyte using the technique of suppression subtractive hybridization. Differentially expressed amplicons were subcloned, and 60 of them were sequenced. The resulting DNA sequences were compared with GenBank databases using BLAST search. The expression of five differentially expressed genes with an apparent function in cell cycle progression, chromatin remodeling, and splicing or translation initiation was further characterized by a real-time RT-PCR. Centromere protein F, 350/400ka (CENPF), and splicing factor arginine/serine-rich 3 (SRFS3) show an increase in mRNA content during the 2- to 4-cell and late 8-cell stages. For the high mobility group nucleosomal binding domain 2 (HMGN2), the level of mRNA increases in 2- to 4-cell and morula embryos. The transcription of splicing factor SRFS3 is alpha-amanitin sensitive both during 4-cell and late 8-cell stages. The transcription of CENPF and HMGN2 is alpha-amanitin sensitive only at late 8-cell stage and morula, respectively. SRFS3 represents the first described gene with an important function in preimplantation development, which is also expressed during bovine minor genome activation, and it is alpha-amanitin sensitive during this period. All described genes can play an important role in the preimplantation development of bovine embryos.
Collapse
Affiliation(s)
- J Kanka
- Institute of Animal Physiology and Genetics, Laboratory of Developmental Biology, Academy of Sciences of the Czech Republic v.v.i., 277 21 Libechov, Czech Republic.
| | | | | |
Collapse
|
85
|
Ghosh B, Benyumov AO, Ghosh P, Jia Y, Avdulov S, Dahlberg PS, Peterson M, Smith K, Polunovsky VA, Bitterman PB, Wagner CR. Nontoxic chemical interdiction of the epithelial-to-mesenchymal transition by targeting cap-dependent translation. ACS Chem Biol 2009; 4:367-77. [PMID: 19351181 PMCID: PMC2796976 DOI: 10.1021/cb9000475] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Normal growth and development depends upon high fidelity regulation of cap-dependent translation initiation, a process that is usurped and redirected in cancer to mediate acquisition of malignant properties. The epithelial-to-mesenchymal transition (EMT) is a key translationally regulated step in the development of epithelial cancers and pathological tissue fibrosis. To date, no compounds targeting EMT have been developed. Here we report the synthesis of a novel class of histidine triad nucleotide binding protein (HINT)-dependent pronucleotides that interdict EMT by negatively regulating the association of eIF4E with the mRNA cap. Compound eIF4E inhibitor-1 potently inhibited cap-dependent translation in a dose-dependent manner in zebrafish embryos without causing developmental abnormalities and prevented eIF4E from triggering EMT in zebrafish ectoderm explants without toxicity. Metabolism studies with whole cell lysates demonstrated that the prodrug was rapidly converted into 7-BnGMP. Thus we have successfully developed the first nontoxic small molecule able to inhibit EMT, a key process in the development of epithelial cancer and tissue fibrosis, by targeting the interaction of eIF4E with the mRNA cap and demonstrated the tractability of zebrafish as a model organism for studying agents that modulate EMT. Our work provides strong motivation for the continued development of compounds designed to normalize cap-dependent translation as novel chemo-preventive agents and therapeutics for cancer and fibrosis.
Collapse
Affiliation(s)
- Brahma Ghosh
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexey O. Benyumov
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Phalguni Ghosh
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yan Jia
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Svetlana Avdulov
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter S. Dahlberg
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark Peterson
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Karen Smith
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Peter B. Bitterman
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carston R. Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
86
|
Tsuda M, Toyomitsu E, Kometani M, Tozaki-Saitoh H, Inoue K. Mechanisms underlying fibronectin-induced up-regulation of P2X4R expression in microglia: distinct roles of PI3K-Akt and MEK-ERK signalling pathways. J Cell Mol Med 2009; 13:3251-9. [PMID: 19298529 PMCID: PMC4516482 DOI: 10.1111/j.1582-4934.2009.00719.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract Microglia are resident immune cells in the central nervous system that become activated and produce pro-inflammatory and neurotrophic factors upon activation of various cell-surface receptors. The P2X4 receptor (P2X4R) is a sub-type of the purinergic ion-channel receptors expressed in microglia. P2X4R expression is up-regulated under inflammatory or neurodegenerative conditions, and this up-regulation is implicated in disease pathology. However, the molecular mechanism underlying up-regulation of P2X4R in microglia remains unknown. In the present study, we investigated the intracellular signal transduction pathway that promotes P2X4R expression in microglia in response to fibronectin, an extracellular matrix protein that has previously been shown to stimulate P2X4R expression. We found that in fibronectin-stimulated microglia, activation of phosphatidylinositol 3-kinase (PI3K)–Akt and mitogen-activated protein kinase kinase (MAPK kinase, MEK)–extracellular signal-regulated kinase (ERK) signalling cascades occurred divergently downstream of Src-family kinases (SFKs). Pharmacological interference of PI3K–Akt signalling inhibited fibronectin-induced P2X4R gene expression. Activation of PI3K–Akt signalling resulted in a decrease in the protein level of the transcription factor p53 via mouse double minute 2 (MDM2), an effect that was prevented by MG-132, an inhibitor of the proteasome. In microglia pre-treated with MG-132, fibronectin failed to up-regulate P2X4R expression. Conversely, an inhibitor of p53 caused increased expression of P2X4R, implying a negative regulatory role of p53. On the other hand, inhibiting MEK–ERK signalling activated by fibronectin suppressed an increase in P2X4R protein but interestingly did not affect the level of P2X4R mRNA. We also found that fibronectin stimulation resulted in the activation of the translational factor eIF4E via MAPK-interacting protein kinase-1 (MNK1) in an MEK–ERK signalling-dependent manner, and an MNK1 inhibitor attenuated the increase in P2X4R protein. Together, these results suggest that the PI3K–Akt and MEK–ERK signalling cascades have distinct roles in the up-regulation of P2X4R expression in microglia at transcriptional and post-transcriptional levels, respectively.
Collapse
Affiliation(s)
- Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
87
|
Styryl sulfonyl compounds inhibit translation of cyclin D1 in mantle cell lymphoma cells. Oncogene 2009; 28:1518-28. [DOI: 10.1038/onc.2008.502] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
88
|
Haller F, Löbke C, Ruschhaupt M, Schulten HJ, Schwager S, Gunawan B, Armbrust T, Langer C, Ramadori G, Sültmann H, Poustka A, Korf U, Füzesi L. Increased KIT signalling with up-regulation of cyclin D correlates to accelerated proliferation and shorter disease-free survival in gastrointestinal stromal tumours (GISTs) with KIT exon 11 deletions. J Pathol 2008; 216:225-35. [PMID: 18729075 DOI: 10.1002/path.2402] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gastrointestinal stromal tumours (GISTs) with deletions in KIT exon 11 are characterized by higher proliferation rates and shorter disease-free survival times, compared to GISTs with KIT exon 11 point mutations. Up-regulation of cyclin D is a crucial event for entry into the G1 phase of the cell cycle, and links mitogenic signalling to cell proliferation. Signalling from activated KIT to cyclin D is directed through the RAS/RAF/ERK, PI3K/AKT/mTOR/EIF4E, and JAK/STATs cascades. ERK and STATs initiate mRNA transcription of cyclin D, whereas EIF4E activation leads to increased translation efficiency and reduced degradation of cyclin D protein. The aim of the current study was to analyse the mRNA and protein expression as well as protein phosphorylation of central hubs of these signalling cascades in primary GISTs, to evaluate whether tumours with KIT exon 11 deletions and point mutations differently utilize these pathways. GISTs with KIT exon 11 deletions had significantly higher mitotic counts, higher proliferation rates, and shorter disease-free survival times. In line with this, they had significantly higher expression of cyclin D on the mRNA and protein level. Furthermore, there was a significantly higher amount of phosphorylated ERK1/2, and a higher protein amount of STAT3, mTOR, and EIF4E. PI3K and phosphorylated AKT were also up-regulated, but this was not significant. Ultimately, GISTs with KIT exon 11 deletions had significantly higher phosphorylation of the central negative cell-cycle regulator RB. Phosphorylation of RB is accomplished by activated cyclin D/CDK4/6 complex, and marks a central event in the release of the cell cycle. Altogether, these observations suggest increased KIT signalling with up-regulation of cyclin D as the basis for the unfavourable clinical course in GISTs with KIT exon 11 deletions.
Collapse
Affiliation(s)
- F Haller
- Department of Pathology, Georg August University, Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Xiao YQ, Freire-de-Lima CG, Schiemann WP, Bratton DL, Vandivier RW, Henson PM. Transcriptional and translational regulation of TGF-beta production in response to apoptotic cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:3575-85. [PMID: 18714031 DOI: 10.4049/jimmunol.181.5.3575] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Interaction between apoptotic cells and phagocytes through phosphatidylserine recognition structures results in the production of TGF-beta, which has been shown to play pivotal roles in the anti-inflammatory and anti-immunogenic responses to apoptotic cell clearance. Using 3T3-TbetaRII and RAWTbetaRII cells in which a truncated dominant-negative TGF-beta receptor II was stably transfected to avoid autofeedback induction of TGF-beta, we investigate the mechanisms by which TGF-beta was produced through PSRS engagement. We show, in the present study, that TGF-beta was regulated at both transcriptional and translational steps. P38 MAPK, ERK, and JNK were involved in TGF-beta transcription, whereas translation required activation of Rho GTPase, PI3K, Akt, and mammalian target of rapamycin with subsequent phosphorylation of translation initiation factor eukaryotic initiation factor 4E. Strikingly, these induction pathways for TGF-beta production were different from those initiated in the same cells responding to LPS or PMA.
Collapse
Affiliation(s)
- Yi Qun Xiao
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
90
|
Robbins EW, Travanty EA, Yang K, Iczkowski KA. MAP kinase pathways and calcitonin influence CD44 alternate isoform expression in prostate cancer cells. BMC Cancer 2008; 8:260. [PMID: 18793421 PMCID: PMC2551621 DOI: 10.1186/1471-2407-8-260] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 09/15/2008] [Indexed: 12/02/2022] Open
Abstract
Background Dysregulated expression and splicing of cell adhesion marker CD44 is found in many types of cancer. In prostate cancer (PC) specifically, the standard isoform (CD44s) has been found to be downregulated compared with benign tissue whereas predominant variant isoform CD44v7-10 is upregulated. Mitogen-activated protein kinase pathways and paracrine calcitonin are two common factors linked to dysregulated expression and splicing of CD44 in cancer. Calcitonin has been found to increase proliferation and invasion in PC acting through the protein kinase A pathway. Methods In androgen-independent PC with known high CD44v7-10 expression, CD44 total and CD44v7-10 RNA or protein were assessed in response to exogenous and endogenous calcitonin and to inhibitors of protein kinase A, MEK, JNK, or p38 kinase. Benign cells and calcitonin receptor-negative PC cells were also tested. Results MEK or p38 but not JNK reduced CD44 total RNA by 40%–65% in cancer and benign cells. Inhibition of protein kinase A reduced CD44 total and v7-10 protein expression. In calcitonin receptor-positive cells only, calcitonin increased CD44 variant RNA and protein by 3 h and persisting to 48 h, apparently dependent on an uninhibited p38 pathway. Cells with constitutive CT expression showed an increase in CD44v7-10 mRNA but a decrease in CD44 total RNA. Conclusion The MEK pathway increases CD44 RNA, while calcitonin, acting through the protein kinase A and p38 pathway, facilitates variant splicing. These findings could be used in the formulation of therapeutic methods for PC targeting CD44 alternate splicing.
Collapse
Affiliation(s)
- Eric W Robbins
- Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, USA.
| | | | | | | |
Collapse
|
91
|
Abstract
It is widely accepted that changes in gene expression contribute to enduring modifications of synaptic strength and are required for long-term memory. This is an exciting, wide-open area of research at this moment, one of those areas where it is clear that important work is underway but where the surface has just been scratched in terms of our understanding. Much attention has been given to the mechanisms of gene transcription; however, the regulation of transcription is only one route of manipulating gene expression. Regulation of mRNA translation is another route, and is the ultimate step in the control of gene expression, enabling cells to regulate protein production without altering mRNA synthesis or transport. One of the main advantages of this mechanism over transcriptional control in the nucleus lies in the fact that it endows local sites with independent decision-making authority, a consideration that is of particular relevance in neurons with complex synapto-dendritic architecture. There are a growing number of groups that are taking on the challenge of identifying the mechanisms responsible for regulating the process of mRNA translation during synaptic plasticity and memory formation. In this chapter we will discuss what has been discovered with regard to the localization and regulation of mRNA translation during specific types of neuronal activity in the mammalian central nervous system. The data are most complete for cap-dependent translation; therefore, particular attention will be paid to the machinery that initiates cap-dependent translation and its regulation during synaptic plasticity as well as the behavioral phenotypes consequent to its dysregulation.
Collapse
Affiliation(s)
- Jessica L Banko
- Department of Molecular Medicine, University of South Florida - Health, 12901 Bruce B. Downs Boulevard, MDC 61, Tampa, FL, USA
| | | |
Collapse
|
92
|
Ghosh P, Cheng J, Chou TF, Jia Y, Avdulov S, Bitterman PB, Polunovsky VA, Wagner CR. Expression, purification and characterization of recombinant mouse translation initiation factor eIF4E as a dihydrofolate reductase (DHFR) fusion protein. Protein Expr Purif 2008; 60:132-9. [PMID: 18479935 PMCID: PMC2617730 DOI: 10.1016/j.pep.2008.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 03/14/2008] [Accepted: 03/19/2008] [Indexed: 11/23/2022]
Abstract
One of the earliest steps in translation initiation is recognition of the mRNA cap structure (m7GpppX) by the initiation factor eIF4E. Studies of interactions between purified eIF4E and its binding partners provide important information for understanding mechanisms underlying translational control in normal and cancer cells. Numerous impediments of the available methods used for eIF4E purification led us to develop a novel methodology for obtaining fractions of eIF4E free from undesired by-products. Herein we report methods for bacterial expression of eIF4E tagged with mutant dihydrofolate reductase (DHFR) followed by isolation and purification of the DHFR-eIF4E protein by using affinity and anion exchange chromatography. Fluorescence quenching experiments indicated the cap-analog, 7MeGTP, bound to DHFR-eIF4E and eIF4E with a dissociation constant (K(d)) of 6+/-5 and 10+/-3 nM, respectively. Recombinant eIF4E and DHFR-eIF4E were both shown to significantly enhance in vitro translation in dose dependent manner by 75% at 0.5 microM. Nevertheless increased concentrations of eIF4E and DHFR-eIF4E significantly inhibited translation in a dose dependent manner by a maximum at 2 microM of 60% and 90%, respectively. Thus, we have demonstrated that we have developed an expression system for fully functional recombinant eIF4E. We have also shown that the fusion protein DHFR-eIF4E is functional and thus may be useful for cell based affinity tag studies with fluorescently labeled trimethoprim analogs.
Collapse
Affiliation(s)
- Phalguni Ghosh
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jilin Cheng
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tsui-Fen Chou
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yan Jia
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Svetlana Avdulov
- Department of Pulmonary Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter B. Bitterman
- Department of Pulmonary Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vitaly A. Polunovsky
- Department of Pulmonary Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carston R. Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
93
|
Son DO, Satsu H, Kiso Y, Totsuka M, Shimizu M. Inhibitory effect of carnosine on interleukin-8 production in intestinal epithelial cells through translational regulation. Cytokine 2008; 42:265-276. [DOI: 10.1016/j.cyto.2008.02.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/22/2008] [Accepted: 02/19/2008] [Indexed: 10/22/2022]
|
94
|
Yao K, Yin YL, Chu W, Liu Z, Deng D, Li T, Huang R, Zhang J, Tan B, Wang W, Wu G. Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 2008; 138:867-72. [PMID: 18424593 DOI: 10.1093/jn/138.5.867] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dietary arginine supplementation increases growth of neonatal pigs, but the underlying mechanisms are unknown. This study was conducted to test the hypothesis that the arginine treatment activates translation initiation factors and protein synthesis in skeletal muscle. Piglets were fed milk-based diets supplemented with 0 or 0.6% L-arginine between 7 and 14 d of age. Following a 7-d period of arginine supplementation, at 1 h after the last meal, jugular venous blood samples were obtained for metabolite analysis, whereas longissimus muscle and liver were collected to determine the abundance and phosphorylation state of the mammalian target of the rapamycin (mTOR), ribosomal protein S6 kinase 1 (S6K1), eukaryotic initiation factor (eIF) 4E-binding protein-1 (4E-BP1), eIF4E, and eIF4G. Fractional rates of protein synthesis were measured in muscle and liver using the [(3)H]phenylalanine flooding-dose technique. Arginine supplementation increased (P < 0.05) daily gain, the plasma insulin concentration, and protein synthesis in skeletal muscle but not in liver. The arginine treatment enhanced the formation of the active eIF4E x eIF4G complex but reduced the amount of the inactive 4E-BP1 x eIF4E complex in muscle. These changes were associated with elevated levels of phosphorylated mTOR and 4E-BP1 in muscle of arginine-supplemented piglets (P < 0.05). Neither the total amounts nor phosphorylation levels of the translation initiation factors in the liver differed between control and arginine-supplemented piglets. Collectively, these results suggest that dietary arginine supplementation increases mTOR signaling activity in skeletal muscle, but not in liver, of milk-fed neonatal pigs. The findings provide a molecular mechanism for explaining the previous observation that increased circulating arginine stimulated muscle protein synthesis and promoted weight gain in neonatal pigs.
Collapse
Affiliation(s)
- Kang Yao
- Laboratory of Animal Nutrition and Health, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Differential Phosphorylation of Translation Initiation Regulators 4EBP1, S6k1, and Erk 1/2 Following Inhibition of Alcohol Metabolism in Mouse Heart. Cardiovasc Toxicol 2008; 8:23-32. [DOI: 10.1007/s12012-008-9012-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 02/07/2008] [Indexed: 01/02/2023]
|
96
|
Peng CY, Pan SL, Lee KH, Bastow KF, Teng CM. Molecular mechanism of the inhibitory effect of KS-5 on bFGF-induced angiogenesis in vitro and in vivo. Cancer Lett 2008; 263:114-21. [PMID: 18243528 DOI: 10.1016/j.canlet.2007.12.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/14/2007] [Accepted: 12/14/2007] [Indexed: 11/28/2022]
Abstract
Inhibition of angiogenesis controls the expansion and metastasis of many solid tumors and other related-diseases. KS-5 (1,7-dihydroxy-3-methoxyacridone), is an inactive analogue of the substituted 1-hydroxy acridone antiviral class. This study aimed at studying the effects of KS-5 on bFGF-induced angiogenesis in cultured human umbilical vein endothelial cells (HUVECs) in vitro and in vivo. KS-5 inhibited bFGF (10 ng/ml)-induced cell proliferation in a concentration-dependent manner, but did not exhibit significant cytotoxic effect examined by LDH release assay. KS-5 inhibited bFGF-induced angiogenesis was associated with decreasing DNA synthesis as evaluated by BrdU incorporation assay, and abrogating endothelial cell ERK1/2 and Akt protein phosphorylation, the major signaling pathways involved in cellular processes of angiogenesis. In addition, KS-5 also inhibited bFGF-induced phosphorylation of mTOR and the major downstream effectors, eIF4E and p70(S6K). Moreover, bFGF-induced protein synthesis was also inhibited by KS-5. Most importantly, KS-5 treatment in nude mice inhibited in vivo angiogenesis as revealed by Matrigel implant assay. In conclusion, the present study suggests that KS-5 has potential anti-angiogenetic effect for cancer therapy and other angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Chieh-Yu Peng
- Pharmacological Institute, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Section 1, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
97
|
Morrison PJ, Hara D, Ding Z, Ivy JL. Adding protein to a carbohydrate supplement provided after endurance exercise enhances 4E-BP1 and RPS6 signaling in skeletal muscle. J Appl Physiol (1985) 2008; 104:1029-36. [PMID: 18239077 DOI: 10.1152/japplphysiol.01173.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To examine the role of both endurance exercise and nutrient supplementation on the activation of mRNA translation signaling pathways postexercise, rats were subjected to a 3-h swimming protocol. Immediately following exercise, the rats were provided with a solution containing either 23.7% wt/vol carbohydrates (CHO), 7.9% wt/vol protein (Pro), 31.6% wt/vol (23.7% wt/vol CHO + 7.9% wt/vol Pro) carbohydrates and Pro (CP), or a placebo (EX). The rats were then killed at 0, 30, and 90 min postexercise, and phosphorylation states of mammalian target of rapamycin (mTOR), ribosomal S6 kinase (p70(S6K)), ribosomal protein S6 (rpS6), and 4E-binding protein 1 (4E-BP1), were analyzed by immunoblot analysis in the red and white quadriceps muscle. Results demonstrated that rat groups provided with any of the three nutritional supplements (CHO, Pro, CP) transiently increased the phosphorylation states of mTOR, 4E-BP1, rpS6, and p70(S6K) compared with EX rats. Although CHO, Pro, and CP supplements phosphorylated mTOR and p70(S6K) after exercise, only CP elevated the phosphorylation of rpS6 above all other supplements 30 min postexercise and 4E-BP1 30 and 90 min postexercise. Furthermore, the phosphorylation states of 4E-BP1 (r(2) = 0.7942) and rpS6 (r(2) = 0.760) were highly correlated to insulin concentrations in each group. These results suggest that CP supplementation may be most effective in activating the mTOR-dependent signaling pathway in the postprandial state postexercise, and that there is a strong relationship between the insulin concentration and the activation of enzymes critical for mRNA translation.
Collapse
Affiliation(s)
- Paul J Morrison
- Dept. of Kinesiology and Health Education, Bellmont Hall 222, The Univ. of Texas at Austin, Austin, Texas 78712-0360, USA
| | | | | | | |
Collapse
|
98
|
Rutkowska-Wlodarczyk I, Stepinski J, Dadlez M, Darzynkiewicz E, Stolarski R, Niedzwiecka A. Structural changes of eIF4E upon binding to the mRNA 5' monomethylguanosine and trimethylguanosine Cap. Biochemistry 2008; 47:2710-20. [PMID: 18220364 DOI: 10.1021/bi701168z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recognition of the 5' cap by the eukaryotic initiation factor 4E (eIF4E) is the rate-limiting step in the ribosome recruitment to mRNAs. The regular cap consists of 7-monomethylguanosine (MMG) linked by a 5'-5' triphosphate bridge to the first transcribed nucleoside, while some primitive eukaryotes possess a N (2), N (2),7-trimethylguanosine (TMG) cap structure as a result of trans splicing. Mammalian eIF4E is highly specific to the MMG form of the cap in terms of association constants and thermodynamic driving force. We have investigated conformational changes of eIF4E induced by interaction with two cap analogues, 7-methyl-GTP and N (2), N (2),7-trimethyl-GTP. Hydrogen-deuterium exchange and electrospray mass spectrometry were applied to probe local dynamics of murine eIF4E in the apo and cap-bound forms. The data show that the cap binding induces long-range conformational changes in the protein, not only in the cap-binding pocket but also in a distant region of the 4E-BP/eIF4G binding site. Formation of the complex with 7-methyl-GTP makes the eIF4E structure more compact, while binding of N (2), N (2),7-trimethyl-GTP leads to higher solvent accessibility of the protein backbone in comparison with the apo form. The results suggest that the additional double methylation at the N (2)-amino group of the cap causes sterical effects upon binding to mammalian eIF4E which influence the overall solution dynamics of the protein, thus precluding formation of a tight complex.
Collapse
|
99
|
Chenal J, Pierre K, Pellerin L. Insulin and IGF-1 enhance the expression of the neuronal monocarboxylate transporter MCT2 by translational activation via stimulation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin pathway. Eur J Neurosci 2007; 27:53-65. [PMID: 18093179 DOI: 10.1111/j.1460-9568.2007.05981.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
MCT2 is the main neuronal monocarboxylate transporter essential for facilitating lactate and ketone body utilization as energy substrates. Our study reveals that treatment of cultured cortical neurons with insulin and IGF-1 led to a striking enhancement of MCT2 immunoreactivity in a time- and concentration-dependent manner. Surprisingly, neither insulin nor IGF-1 affected MCT2 mRNA expression, suggesting that regulation of MCT2 protein expression occurs at the translational rather than the transcriptional level. Investigation of the putative signalling pathways leading to translation activation revealed that insulin and IGF-1 induced p44- and p42 MAPK, Akt and mTOR phosphorylation. S6 ribosomal protein, a component of the translational machinery, was also strongly activated by insulin and IGF-1. Phosphorylation of p44- and p42 MAPK was blocked by the MEK inhibitor PD98058, while Akt phosphorylation was abolished by the PI3K inhibitor LY294002. Phosphorylation of mTOR and S6 was blocked by the mTOR inhibitor rapamycin. In parallel, it was observed that LY294002 and rapamycin almost completely blocked the effects of insulin and IGF-1 on MCT2 protein expression, whereas PD98059 and SB202190 (a p38K inhibitor) had no effect on insulin-induced MCT2 expression and only a slight effect on IGF-1-induced MCT2 expression. At the subcellular level, a significant increase in MCT2 protein expression within an intracellular pool was observed while no change at the cell surface was apparent. As insulin and IGF-1 are involved in synaptic plasticity, their effect on MCT2 protein expression via an activation of the PI3K-Akt-mTOR-S6K pathway might contribute to the preparation of neurons for enhanced use of nonglucose energy substrates following altered synaptic efficacy.
Collapse
Affiliation(s)
- Julie Chenal
- Department of Physiology, Université de Lausanne, 7 Rue du Bugnon, 1005 Lausanne, Switzerland
| | | | | |
Collapse
|
100
|
Adams GR, Haddad F, Bodell PW, Tran PD, Baldwin KM. Combined isometric, concentric, and eccentric resistance exercise prevents unloading-induced muscle atrophy in rats. J Appl Physiol (1985) 2007; 103:1644-54. [PMID: 17872405 DOI: 10.1152/japplphysiol.00669.2007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Previously, we reported that an isometric resistance training program that was effective in stimulating muscle hypertrophy in ambulatory rats could not completely prevent muscle atrophy during unloading (Haddad F, Adams GR, Bodell PW, Baldwin KM. J Appl Physiol 100: 433–441, 2006). These results indicated that preventing muscle atrophy does not appear to be simply a function of providing an anabolic stimulus. The present study was undertaken to determine if resistance training, with increased volume (3-s contractions) and incorporating both static and dynamic components, would be effective in preventing unloading-induced muscle atrophy. Rats were exposed to 5 days of muscle unloading via tail suspension. During that time one leg received electrically stimulated resistance exercise (RE) that included an isometric, concentric, and eccentric phase. The results of this study indicate that this combined-mode RE provided an anabolic stimulus sufficient to maintain the mass and myofibril content of the trained but not the contralateral medial gastrocnemius (MG) muscle. Relative to the contralateral MG, the RE stimulus increased the amount of total RNA (indicative of translational capacity) as well as the mRNA for several anabolic/myogenic markers such as insulin-like growth factor-I, myogenin, myoferlin, and procollagen III-α-1 and decreased that of myostatin, a negative regulator of muscle size. The combined-mode RE protocol also increased the activity of anabolic signaling intermediates such as p70S6 kinase. These results indicate that a combination of static- and dynamic-mode RE of sufficient volume provides an effective stimulus to stimulate anabolic/myogenic mechanisms to counter the initial stages of unloading-induced muscle atrophy.
Collapse
Affiliation(s)
- G R Adams
- Dept. of Physiology and Biophysics, Univ. of California, Irvine, CA 92697-4560, USA
| | | | | | | | | |
Collapse
|