51
|
Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella LR, Xu G, Chao DY, Li J, Wang PY, Qin F, Li J, Ding Y, Shi Y, Wang Y, Yang Y, Guo Y, Zhu JK. Plant abiotic stress response and nutrient use efficiency. SCIENCE CHINA-LIFE SCIENCES 2020; 63:635-674. [PMID: 32246404 DOI: 10.1007/s11427-020-1683-x] [Citation(s) in RCA: 634] [Impact Index Per Article: 126.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/17/2020] [Indexed: 12/15/2022]
Abstract
Abiotic stresses and soil nutrient limitations are major environmental conditions that reduce plant growth, productivity and quality. Plants have evolved mechanisms to perceive these environmental challenges, transmit the stress signals within cells as well as between cells and tissues, and make appropriate adjustments in their growth and development in order to survive and reproduce. In recent years, significant progress has been made on many fronts of the stress signaling research, particularly in understanding the downstream signaling events that culminate at the activation of stress- and nutrient limitation-responsive genes, cellular ion homeostasis, and growth adjustment. However, the revelation of the early events of stress signaling, particularly the identification of primary stress sensors, still lags behind. In this review, we summarize recent work on the genetic and molecular mechanisms of plant abiotic stress and nutrient limitation sensing and signaling and discuss new directions for future studies.
Collapse
Affiliation(s)
- Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liming Xiong
- Department of Biology, Hong Kong Baptist University, Kowlong Tong, Hong Kong, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Luis R Herrera-Estrella
- Plant and Soil Science Department (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA.,Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, Irapuato, 36610, México.,College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohua Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dai-Yin Chao
- National Key laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jingrui Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Peng-Yun Wang
- School of Life Science, Henan University, Kaifeng, 457000, China
| | - Feng Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jijang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
52
|
Zhang X, Chen L, Shi Q, Ren Z. SlMYB102, an R2R3-type MYB gene, confers salt tolerance in transgenic tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110356. [PMID: 31928668 DOI: 10.1016/j.plantsci.2019.110356] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/07/2019] [Accepted: 11/21/2019] [Indexed: 05/26/2023]
Abstract
Salinity threatens the productivity of tomato (Solanum lycopersicum L.). R2R3-type MYB transcription factors are important regulators in response to environmental stress. Here, we analyzed the function of the tomato R2R3-type MYB gene SlMYB102. A transcriptional activation assay showed that SlMYB102 had transactivation activity in yeast. Promoter analysis showed that multiple stress-related elements were found in the promoter of SlMYB102. Furthermore, SlMYB102 was induced by osmotic stress, particularly by salt stress. The overexpression of SlMYB102 in tomato affected multiple parameters under salinity stress. Under long-term salt stress, the degree of growth inhibition was significantly reduced in the two overexpression (OE) lines. In addition, the two OE lines maintained a better K+/Na+ ratio, lower reactive oxygen species (ROS) generation (O2•- production rate and H2O2 content) and lower electrolytic leakage rates than the wild type (WT). The activity of ROS scavenging enzymes including superoxide dismutase, peroxidase, catalase and ascorbate peroxidase, and the accumulation of antioxidants (ascorbic acid and glutathione) and proline was higher in the two OE lines compared with WT. The qRT-PCR analysis confirmed that the transcript abundance of many salt stress-related genes (SlSOS1, SlSOS2, SlNHX3, SlNHX4, SlHAK5, SlCPK1 and SlCPK3) was upregulated in two OE lines under salt stress. Collectively, these results suggest that SlMYB102 participates in tomato tolerance through the regulation of a series of molecular and physiological processes.
Collapse
Affiliation(s)
- Xu Zhang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang- Huai Region, Ministry of Agriculture, State Key Laboratory of Crop Biology, Tai' an, Shandong 271018, China.
| | - Lichen Chen
- College of Horticultural Science and Engineering, Shandong Agricultural University, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang- Huai Region, Ministry of Agriculture, State Key Laboratory of Crop Biology, Tai' an, Shandong 271018, China.
| | - Qinghua Shi
- College of Horticultural Science and Engineering, Shandong Agricultural University, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang- Huai Region, Ministry of Agriculture, State Key Laboratory of Crop Biology, Tai' an, Shandong 271018, China.
| | - Zhonghai Ren
- College of Horticultural Science and Engineering, Shandong Agricultural University, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang- Huai Region, Ministry of Agriculture, State Key Laboratory of Crop Biology, Tai' an, Shandong 271018, China.
| |
Collapse
|
53
|
An J, Wang X, Zhang X, Xu H, Bi S, You C, Hao Y. An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1-mediated degradation. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:337-353. [PMID: 31250952 PMCID: PMC6953192 DOI: 10.1111/pbi.13201] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 05/02/2023]
Abstract
MYB transcription factors (TFs) have been demonstrated to play diverse roles in plant growth and development through interaction with basic helix-loop-helix (bHLH) TFs. MdbHLH33, an apple bHLH TF, has been identified as a positive regulator in cold tolerance and anthocyanin accumulation by activating the expressions of MdCBF2 and MdDFR. In the present study, a MYB TF MdMYB308L was found to also positively regulate cold tolerance and anthocyanin accumulation in apple. We found that MdMYB308L interacted with MdbHLH33 and enhanced its binding to the promoters of MdCBF2 and MdDFR. In addition, an apple RING E3 ubiquitin ligase MYB30-INTERACTING E3 LIGASE 1 (MdMIEL1) was identified to be an MdMYB308L-interacting protein and promoted the ubiquitination degradation of MdMYB308L, thus negatively regulated cold tolerance and anthocyanin accumulation in apple. These results suggest that MdMYB308L acts as a positive regulator in cold tolerance and anthocyanin accumulation in apple by interacting with MdbHLH33 and undergoes MdMIEL1-mediated protein degradation. The dynamic change in MYB-bHLH protein complex seems to play a key role in the regulation of plant growth and development.
Collapse
Affiliation(s)
- Jian‐Ping An
- State Key Laboratory of Crop BiologyShandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐An, ShandongChina
| | - Xiao‐Fei Wang
- State Key Laboratory of Crop BiologyShandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐An, ShandongChina
| | - Xiao‐Wei Zhang
- State Key Laboratory of Crop BiologyShandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐An, ShandongChina
| | - Hai‐Feng Xu
- State Key Laboratory of Crop BiologyShandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐An, ShandongChina
| | - Si‐Qi Bi
- State Key Laboratory of Crop BiologyShandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐An, ShandongChina
| | - Chun‐Xiang You
- State Key Laboratory of Crop BiologyShandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐An, ShandongChina
| | - Yu‐Jin Hao
- State Key Laboratory of Crop BiologyShandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐An, ShandongChina
| |
Collapse
|
54
|
Baek D, Shin G, Kim MC, Shen M, Lee SY, Yun DJ. Histone Deacetylase HDA9 With ABI4 Contributes to Abscisic Acid Homeostasis in Drought Stress Response. FRONTIERS IN PLANT SCIENCE 2020; 11:143. [PMID: 32158458 PMCID: PMC7052305 DOI: 10.3389/fpls.2020.00143] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/30/2020] [Indexed: 05/18/2023]
Abstract
Drought stress, a major environmental factor, significantly affects plant growth and reproduction. Plants have evolved complex molecular mechanisms to tolerate drought stress. In this study, we investigated the function of the Arabidopsis thaliana RPD3-type HISTONE DEACETYLASE 9 (HDA9) in response to drought stress. The loss-of-function mutants hda9-1 and hda9-2 were insensitive to abscisic acid (ABA) and sensitive to drought stress. The ABA content in the hda9-1 mutant was reduced in wild type (WT) plant. Most histone deacetylases in animals and plants form complexes with other chromatin-remodeling components, such as transcription factors. In this study, we found that HDA9 interacts with the ABA INSENSITIVE 4 (ABI4) transcription factor using a yeast two-hybrid assay and coimmunoprecipitation. The expression of CYP707A1 and CYP707A2, which encode (+)-ABA 8'-hydroxylases, key enzymes in ABA catabolic pathways, was highly induced in hda9-1, hda9-2, abi4, and hda9-1 abi4 mutants upon drought stress. Chromatin immunoprecipitation and quantitative PCR showed that the HDA9 and ABI4 complex repressed the expression of CYP707A1 and CYP707A2 by directly binding to their promoters in response to drought stress. Taken together, these data suggest that HDA9 and ABI4 form a repressive complex to regulate the expression of CYP707A1 and CYP707A2 in response to drought stress in Arabidopsis.
Collapse
Affiliation(s)
- Dongwon Baek
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Gilok Shin
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Min Chul Kim
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, South Korea
| | - Mingzhe Shen
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- *Correspondence: Dae-Jin Yun,
| |
Collapse
|
55
|
Zhou S, Zheng WJ, Liu BH, Zheng JC, Dong FS, Liu ZF, Wen ZY, Yang F, Wang HB, Xu ZS, Zhao H, Liu YW. Characterizing the Role of TaWRKY13 in Salt Tolerance. Int J Mol Sci 2019; 20:ijms20225712. [PMID: 31739570 PMCID: PMC6888956 DOI: 10.3390/ijms20225712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 01/09/2023] Open
Abstract
The WRKY transcription factor superfamily is known to participate in plant growth and stress response. However, the role of this family in wheat (Triticum aestivum L.) is largely unknown. Here, a salt-induced gene TaWRKY13 was identified in an RNA-Seq data set from salt-treated wheat. The results of RT-qPCR analysis showed that TaWRKY13 was significantly induced in NaCl-treated wheat and reached an expression level of about 22-fold of the untreated wheat. Then, a further functional identification was performed in both Arabidopsis thaliana and Oryza sativa L. Subcellular localization analysis indicated that TaWRKY13 is a nuclear-localized protein. Moreover, various stress-related regulatory elements were predicted in the promoter. Expression pattern analysis revealed that TaWRKY13 can also be induced by polyethylene glycol (PEG), exogenous abscisic acid (ABA), and cold stress. After NaCl treatment, overexpressed Arabidopsis lines of TaWRKY13 have a longer root and a larger root surface area than the control (Columbia-0). Furthermore, TaWRKY13 overexpression rice lines exhibited salt tolerance compared with the control, as evidenced by increased proline (Pro) and decreased malondialdehyde (MDA) contents under salt treatment. The roots of overexpression lines were also more developed. These results demonstrate that TaWRKY13 plays a positive role in salt stress.
Collapse
Affiliation(s)
- Shuo Zhou
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
| | - Wei-Jun Zheng
- College of Agronomy, Northwest A&F University, Yangling 712100, China;
| | - Bao-Hua Liu
- Handan Academy of Agricultural Sciences, Handan 056001, China;
| | - Jia-Cheng Zheng
- College of Agronomy, Anhui Science and Technology University, Fengyang, Chuzhou 239000, China;
| | - Fu-Shuang Dong
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
| | | | - Zhi-Yu Wen
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
| | - Fan Yang
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
| | - Hai-Bo Wang
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
| | - Zhao-Shi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China;
| | - He Zhao
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
- Correspondence: (H.Z.); (Y.-W.L.)
| | - Yong-Wei Liu
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China; (S.Z.); (F.-S.D.); (Z.-Y.W.); (H.-B.W.)
- Correspondence: (H.Z.); (Y.-W.L.)
| |
Collapse
|
56
|
Yu Z, Zhang G, Teixeira da Silva JA, Yang Z, Duan J. The β-1,3-galactosetransferase gene DoGALT2 is essential for stigmatic mucilage production in Dendrobium officinale. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110179. [PMID: 31481215 DOI: 10.1016/j.plantsci.2019.110179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
Stigmatic mucilage plays a crucial role in pollen-grain adhesion on the stigma in flowering plants. Little information is available regarding mucilage biosynthesis in orchid plants. In the present study, stigmatic mucilage is rich in galactose-containing polysaccharides, mainly consisted of galactose and arabinose in Dendrobium officinale. Thirteen galactosyltransferases involved in biosynthesis of the β-1,3-galactose linkage polysaccharides, belonging to the CAZY GT31 family, were identified from D. officinale genome. A positive correlation between the mucilage content and the DoGALT2 expression at different stages was observed. DoGALT2 expressed overall sampled tissues with the highest in D. officinale stigmatic mucilage that contributes to pollen adhesion and elongation. DoGALT2 was targeted to Golgi, and had a GALT domain (PF01762) that was homologous to the characterized GALT2 in Arabidopsis. Compared to wild-type Arabidopsis, DoGALT2 overexpressing plants showed a higher content of galactose and galactose-containing alcohol-insoluble residues, and enhanced tolerance to abiotic stress. DoGALT2 complemented Arabidopsis GALT2 mutant (galt2-1), with an equivalent galactose with wild-type Arabidopsis but significantly higher than galt2-1. These findings provide evidence that DoGALT2 might be involved in regulating the biosynthesis of galactose-containing polysaccharides during D. officinale pollen development.
Collapse
Affiliation(s)
- Zhenming Yu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Guihua Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jaime A Teixeira da Silva
- Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China; P. O. Box 7, Miki-cho post office, Ikenobe 3011-2, Kagawa-ken, 761-0799, Japan
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
57
|
Hassini I, Rios JJ, Garcia-Ibañez P, Baenas N, Carvajal M, Moreno DA. Comparative effect of elicitors on the physiology and secondary metabolites in broccoli plants. JOURNAL OF PLANT PHYSIOLOGY 2019; 239:1-9. [PMID: 31177025 DOI: 10.1016/j.jplph.2019.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/24/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Elicitation is an economic and sustainable technique for increasing the content of secondary metabolites, mainly bioactive compounds, in plants grown for better human nutrition. The aim of this study was to compare the physiological responses (water relations and mineral nutrition) and the enrichment in glucosinolates (GLSs) and phenolic compounds of broccoli plants (Brassica oleracea L. var. italica) receiving different elicitation treatments. The treatments involved the priming of seeds with KCl and the exposure of plants to elicitors, including K2SO4 and NaCl solutions and foliar sprays of methyl jasmonate (MeJA), salicylic acid (SA), and methionine (Met). The physiological response of the plants in terms of root hydraulic conductance was improved by priming with KCl and elicitation with MeJA or Met. Foliar application of Met significantly increased the plant biomass and enhanced mineral nutrition. In general, all treatments increased the accumulation of indole GLSs, but K2SO4 and MeJA gave the best response and MeJA also favored the formation of a newly described compound, cinnamic-GLS, in the plants. Also, the use of Met and SA as elicitors and the supply of K2SO4 increased the abundance of phenolic compounds; K2SO4 also enhanced growth but did not alter the water relations or the accumulation of mineral nutrients. Therefore, although the response to elicitation was positive, with an increased content of bioactive compounds, regulation of the water relations and of the mineral status of the broccoli plants was critical to maintain the yield.
Collapse
Affiliation(s)
- Ismahen Hassini
- Department of Life Sciences. Faculty of Sciences of Bizerte. University of Carthage 7021 Zarzouna, Tunisia
| | - Juan J Rios
- Group of Aquaporins. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC). Campus Universitario de Espinardo - 25, 30100 Murcia, Spain
| | - Paula Garcia-Ibañez
- Group of Aquaporins. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC). Campus Universitario de Espinardo - 25, 30100 Murcia, Spain
| | - Nieves Baenas
- Phytochemistry and Healthy Foods Lab. Food Science and Technology Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC). Campus Universitario de Espinardo - 25, 30100 Murcia, Spain
| | - Micaela Carvajal
- Group of Aquaporins. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC). Campus Universitario de Espinardo - 25, 30100 Murcia, Spain.
| | - Diego A Moreno
- Phytochemistry and Healthy Foods Lab. Food Science and Technology Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC). Campus Universitario de Espinardo - 25, 30100 Murcia, Spain
| |
Collapse
|
58
|
Han G, Yuan F, Guo J, Zhang Y, Sui N, Wang B. AtSIZ1 improves salt tolerance by maintaining ionic homeostasis and osmotic balance in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:55-67. [PMID: 31203894 DOI: 10.1016/j.plantsci.2019.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 05/20/2023]
Abstract
C2H2-type zinc finger proteins play important roles in plant growth, development, and abiotic stress tolerance. Here, we explored the role of the C2H2-type zinc finger protein SALT INDUCED ZINC FINGER PROTEIN1 (AtSIZ1; At3G25910) in Arabidopsis thaliana under salt stress. AtSIZ1 expression was induced by salt treatment. During the germination stage, the germination rate, germination energy, germination index, cotyledon growth rate, and root length were significantly higher in AtSIZ1 overexpression lines than in the wild type under various stress treatments, whereas these indices were significantly reduced in AtSIZ1 loss-of-function mutants. At the mature seedling stage, the overexpression lines maintained higher levels of K+, proline, and soluble sugar, lower levels of Na+ and MDA, and lower Na+/K+ ratios than the wild type. Stress-related marker genes such as SOS1, AtP5CS1, AtGSTU5, COR15A, RD29A, and RD29B were expressed at higher levels in the overexpression lines than the wild type and loss-of-function mutants under salt treatment. These results indicate that AtSIZ1 improves salt tolerance in Arabidopsis by helping plants maintain ionic homeostasis and osmotic balance.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, China
| | - Yi Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, 250014, China.
| |
Collapse
|
59
|
Wang W, Singh SK, Li X, Sun H, Yang Y, Jiang M, Zi H, Liu R, Zhang H, Chu Z. Partial defoliation of Brachypodium distachyon plants grown in petri dishes under low light increases P and other nutrient levels concomitantly with transcriptional changes in the roots. PeerJ 2019; 7:e7102. [PMID: 31223535 PMCID: PMC6571136 DOI: 10.7717/peerj.7102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/07/2019] [Indexed: 02/05/2023] Open
Abstract
Background There have been few studies on the partial defoliation response of grass. It has been unclear how partial defoliation may affect roots at the levels of nutrient accumulation and transcriptional regulation. Hereby we report a comprehensive investigation on molecular impacts of partial defoliation by using a model grass species, Brachypodium distachyon. Results Our Inductively Coupled Plasma Mass Spectrometry analyses of B. distachyon revealed shoot- and root-specific accumulation patterns of a group of macronutrients including potassium (K), Phosphorus (P), Calcium (Ca), Magnesium (Mg), and micronutrients including Sodium (Na), iron (Fe), and Manganese (Mn). Meanwhile, our genome-wide profiling of gene expression patterns depicts transcriptional impacts on B. distachyon roots by cutting the aerial portion. The RNAseq analyses identified a total of 1,268 differentially expressed genes in B. distachyon with partial defoliation treatment. Our comprehensive analyses by means of multiple approaches, including Gene Ontology, InterPro and Pfam protein classification, KEGG pathways, and Plant TFDB, jointly highlight the involvement of hormone-mediated wounding response, primary and secondary metabolites, and ion homeostasis, in B. distachyon after the partial defoliation treatment. In addition, evidence is provided that roots respond to partial defoliation by modifying nutrient uptake and rhizosphere acidification rate, indicating that an alteration of the root/soil interaction occurs in response to this practice. Conclusions This study reveals how partial defoliation alters ion accumulation levels in shoots and roots, as well as partial defoliation-induced transcriptional reprogramming on a whole-genome scale, thereby providing insight into the molecular mechanisms underlying the recovery process of grass after partial defoliation.
Collapse
Affiliation(s)
- Wei Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China.,Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Sunil Kumar Singh
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiwen Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China.,Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China.,College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hui Sun
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Yang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China.,Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Hailing Zi
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Renyi Liu
- Center for Agroforestry Mega Data Science and FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhaoqing Chu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China.,Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
60
|
Kumar D, Malik N, Sengar RS. Physio-biochemical insights into sugarcane genotypes under water stress. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1587838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Devendra Kumar
- Department of Agricultural Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture & Technology, Meerut, Uttar Pradesh, India
| | - Nisha Malik
- Department of Agricultural Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture & Technology, Meerut, Uttar Pradesh, India
| | - Rakesh Singh Sengar
- Department of Agricultural Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture & Technology, Meerut, Uttar Pradesh, India
| |
Collapse
|
61
|
Integrative meta-analysis of transcriptomic responses to abiotic stress in cotton. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 146:112-122. [PMID: 30802474 DOI: 10.1016/j.pbiomolbio.2019.02.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 01/09/2023]
Abstract
Abiotic environmental stresses are important factors that limit the growth, fiber yield, and quality of cotton. In this study, an integrative meta-analysis and a system-biology analysis were performed to explore the underlying transcriptomic mechanisms that are critical for response to stresses. From the meta-analysis, it was observed that a total of 1465 differentially expressed genes (DEGs) between normal and stress conditions. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that DEGs were significantly enriched in the ubiquitin-dependent process, biosynthesis of secondary metabolites, plant hormone, and signaled transduction. The results also indicated that some of DEGs were assigned to transcription factors (TFs). A total of 148 TFs belonged to 25 conserved families were identified that among them S1Fa-like, ERF, NAC, bZIP families, were the most abundant groups. Moreover, we searched in upstream regions of DEGs for over-represented DNA motifs and were able to identify 11 conserved sequence motifs. The functional analysis of these motifs revealed that they were involved in regulation of transcription, DNA replication, cytoskeleton organization, and translation. Weighted gene co-expression network analysis (WGCNA) uncovered 12 distinct co-expression modules. Four modules were significantly associated with genes involved in response to stress and cell wall organization. The network analysis also identified hub genes such as RTNLB5 and PRA1, which may be involved in regulating stress response. The findings could help to understand the mechanisms of response to abiotic stress and introduce candidate genes that may be beneficial to cotton plant breeding programs.
Collapse
|
62
|
Populus euphratica JRL Mediates ABA Response, Ionic and ROS Homeostasis in Arabidopsis under Salt Stress. Int J Mol Sci 2019; 20:ijms20040815. [PMID: 30769802 PMCID: PMC6412788 DOI: 10.3390/ijms20040815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 11/23/2022] Open
Abstract
Sodium chloride (NaCl) induced expression of a jacalin-related mannose-binding lectin (JRL) gene in leaves, roots, and callus cultures of Populus euphratica (salt-resistant poplar). To explore the mechanism of the PeJRL in salinity tolerance, the full length of PeJRL was cloned from P. euphratica and was transformed into Arabidopsis. PeJRL was localized to the cytoplasm in mesophyll cells. Overexpression of PeJRL in Arabidopsis significantly improved the salt tolerance of transgenic plants, in terms of seed germination, root growth, and electrolyte leakage during seedling establishment. Under NaCl stress, transgenic plants retained K+ and limited the accumulation of Na+. PeJRL-transgenic lines increased Na+ extrusion, which was associated with the upward regulation of SOS1, AHA1, and AHA2 genes encoding plasma membrane Na+/proton (H+) antiporter and H+-pumps. The activated H+-ATPases in PeJRL-overexpressed plants restricted the channel-mediated loss of K+ that was activated by NaCl-induced depolarization. Under salt stress, PeJRL–transgenic Arabidopsis maintained reactive oxygen species (ROS) homeostasis by activating the antioxidant enzymes and reducing the production of O2− through downregulation of NADPH oxidases. Of note, the PeJRL-transgenic Arabidopsis repressed abscisic acid (ABA) biosynthesis, thus reducing the ABA-elicited ROS production and the oxidative damage during the period of salt stress. A schematic model was proposed to show the mediation of PeJRL on ABA response, and ionic and ROS homeostasis under NaCl stress.
Collapse
|
63
|
Pei L, Peng L, Wan X, Xiong J, Liu Z, Li X, Yang Y, Wang J. Expression Pattern and Function Analysis of AtPPRT1, a Novel Negative Regulator in ABA and Drought Stress Responses in Arabidopsis. Int J Mol Sci 2019; 20:E394. [PMID: 30658512 PMCID: PMC6358930 DOI: 10.3390/ijms20020394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 02/03/2023] Open
Abstract
Abscisic acid (ABA) plays a fundamental role in plant growth and development, as well as in the responses to abiotic stresses. Previous studies have revealed that many components in ABA and drought stress signaling pathways are ubiquitinated by E3 ligases. In this study, AtPPRT1, a putative C3HC4 zinc-finger ubiquitin E3 ligase, was explored for its role in abiotic stress response in Arabidopsis thaliana. The expression of AtPPRT1 was induced by ABA. In addition, the β-glucuronidase (GUS) gene driven by the AtPPRT1 promoter was more active in the root hair zone and root tips of primary and major lateral roots of young seedlings in the presence of ABA. The assays for seed germination, stomatal aperture, root length, and water deficit demonstrated that the AtPPRT1-overexpressing Arabidopsis was insensitive to ABA and sensitive to drought stress compared with wild-type (WT) plants. The analysis by quantitative real-time PCR (qRT-PCR) revealed that the expression of three stress-inducible genes (AtRAB18, AtERD10, and AtKIN1) were upregulated in the atpprt1 mutant and downregulated in AtPPRT1-overexpressing plants, while two ABA hydrolysis genes (AtCYP707A1 and AtCYP707A3) were downregulated in the atpprt1 mutant and upregulated in AtPPRT1-overexpressing plants in the presence of ABA. AtPPRT1 was localized in the mitochondria. Our findings indicate that AtPPRT1 plays a negative role in ABA and drought stress responses.
Collapse
Affiliation(s)
- Linsen Pei
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Lu Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Xia Wan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Jie Xiong
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Zhibin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Xufeng Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
64
|
Shi WY, Du YT, Ma J, Min DH, Jin LG, Chen J, Chen M, Zhou YB, Ma YZ, Xu ZS, Zhang XH. The WRKY Transcription Factor GmWRKY12 Confers Drought and Salt Tolerance in Soybean. Int J Mol Sci 2018; 19:E4087. [PMID: 30562982 PMCID: PMC6320995 DOI: 10.3390/ijms19124087] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 11/17/2022] Open
Abstract
WRKYs are important regulators in plant development and stress responses. However, knowledge of this superfamily in soybean is limited. In this study, we characterized the drought- and salt-induced gene GmWRKY12 based on RNA-Seq and qRT-PCR. GmWRKY12, which is 714 bp in length, encoded 237 amino acids and grouped into WRKY II. The promoter region of GmWRKY12 included ABER4, MYB, MYC, GT-1, W-box and DPBF cis-elements, which possibly participate in abscisic acid (ABA), drought and salt stress responses. GmWRKY12 was minimally expressed in different tissues under normal conditions but highly expressed under drought and salt treatments. As a nucleus protein, GmWRKY12 was responsive to drought, salt, ABA and salicylic acid (SA) stresses. Using a transgenic hairy root assay, we further characterized the roles of GmWRKY12 in abiotic stress tolerance. Compared with control (Williams 82), overexpression of GmWRKY12 enhanced drought and salt tolerance, increased proline (Pro) content and decreased malondialdehyde (MDA) content under drought and salt treatment in transgenic soybean seedlings. These results may provide a basis to understand the functions of GmWRKY12 in abiotic stress responses in soybean.
Collapse
Affiliation(s)
- Wen-Yan Shi
- College of Life Sciences, College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China.
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Yong-Tao Du
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Jian Ma
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China.
| | - Dong-Hong Min
- College of Life Sciences, College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China.
| | - Long-Guo Jin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Xiao-Hong Zhang
- College of Life Sciences, College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China.
| |
Collapse
|
65
|
Proline Accumulation and its Defensive Role Under Diverse Stress Condition in Plants: An Overview. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.3.73] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
66
|
Xu G, Li M, Zhang H, Chen Q, Jin L, Zheng Q, Liu P, Cao P, Chen X, Zhai N, Zhou H. NtRLK5, a novel RLK-like protein kinase from Nitotiana tobacum, positively regulates drought tolerance in transgenic Arabidopsis. Biochem Biophys Res Commun 2018; 503:1235-1240. [PMID: 30001808 DOI: 10.1016/j.bbrc.2018.07.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 01/28/2023]
Abstract
Receptor-like protein kinase (RLKs) plays pivotal roles in plant growth and development as well as stress responses. However, little is known about the function of RLKs in Nitotiana tobacum. In the present study, we present data on NtRLK5, a novel RLK-like gene isolated from Hongda (Nitotiana tobacum L.). Expression profile analysis revealed that NtRLK5 was strongly induced by drought and salt stresses. Transient expression of NtRLK5-GFP fusion protein in protoplast showed that NtRLK5 was localized to plasma membrane. Overexpression of NtRLK5 conferred enhanced drought tolerance in transgenic Arabidopsis plants, which was attributed to not only the lower malondialdehyde (MDA) and H2O2 contents, but also the higher antioxidant enzymes activities. Moreover, the expression of several antioxidation- and stress-related genes was also significantly up-regulated in NtRLK5 transgenic plants under drought condition. Taken together, the results suggest that NtRLK5 functions as a positive regulator in drought tolerance.
Collapse
Affiliation(s)
- Guoyun Xu
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Mingjuan Li
- Key Laboratory for Agro-ecological Process in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Hui Zhang
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Qiansi Chen
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Lifeng Jin
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Qingxia Zheng
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Pingping Liu
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Peijian Cao
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Xia Chen
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Niu Zhai
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China.
| | - Huina Zhou
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China.
| |
Collapse
|
67
|
Du Z, Li J. Expression, purification and molecular characterization of a novel transcription factor KcCBF3 from Kandelia candel. Protein Expr Purif 2018; 153:26-34. [PMID: 30118861 DOI: 10.1016/j.pep.2018.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 11/28/2022]
Abstract
Kandelia candel, a major species of mangrove in the tropical and subtropical area, is susceptible to low temperature in winter. K. candel was introduced into Zhejiang Province (the northern margin of South China) several decades ago, and suffered from low temperature causing growth retardation, in server cases, even death. To explore the molecular mechanisms of cold acclimation in K. candel, a novel C-repeat binding factor gene KcCBF3 (Genbank accession no. KF111715) of 729 bp open reading frame (ORF) encoding a protein of 242 amino acid residues was isolated, expressed, purified and characterized. Multiple sequence alignment analysis revealed that KcCBF3 contained a highly conserved AP2/EREBP DNA-binding domain which consisting of 79 amino acid residues, as well as two CBF signature sequences. Phylogenetic analysis indicated that KcCBF3 belonged to the A-1 subgroup of DREB subfamily based on the classification of AP2/EREBP transcription factors in Arabidopsis. Semi-quantitative RT-PCR showed that KcCBF3 transcripts were highly accumulated in roots and leaves, and could be induced by low temperature. Electrophoresis mobility shift assay (EMSA) demonstrated KcCBF3 could bind to the core sequence (CCGAC) of cis-acting element C-repeat (CRT)/dehydration-responsive element (DRE) in vitro. These results implied that KcCBF3 might participate in the adaptation of K. candel to low-temperature stress by binding to CRT/DRE element.
Collapse
Affiliation(s)
- Zhaokui Du
- Zhejiang Provincial Key Laboratory of Plant Evolutionary and Conservation, Taizhou University, Taizhou, Zhejiang, 318000, PR China; Institute of Ecology, Taizhou University, Taizhou, Zhejiang, 318000, PR China
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary and Conservation, Taizhou University, Taizhou, Zhejiang, 318000, PR China; Institute of Ecology, Taizhou University, Taizhou, Zhejiang, 318000, PR China.
| |
Collapse
|
68
|
Chen JH, Zhang DZ, Zhang C, Xu ML, Yin WL. Physiological characterization, transcriptomic profiling, and microsatellite marker mining of Lycium ruthenicum. J Zhejiang Univ Sci B 2018; 18:1002-1021. [PMID: 29119738 DOI: 10.1631/jzus.b1700135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lycium ruthenicum is a perennial shrub species that has attracted considerable interest in recent years owing to its nutritional value and ability to thrive in a harsh environment. However, only extremely limited transcriptomic and genomic data related to this species can be found in public databases, thereby limiting breeding research and molecular function analysis. In this study, we characterized the physiological and biochemical responses to saline-alkaline mixed stress by measuring photochemical efficiency, chlorophyll content, and protective enzyme activity. We performed global transcriptomic profiling analysis using the Illumina platform. After optimizing the assembly, a total of 68 063 unique transcript sequences with an average length of 877 bp were obtained. Among these sequences, 4096 unigenes were upregulated and 4381 unigenes were down-regulated after saline-alkaline mixed treatment. The most abundant transcripts and over-represented items were assigned to gene ontology (GO) terms or Kyoto Encyclopedia of Genes and the Genomes (KEGG) categories for overall unigenes, and differentially expressed unigenes were analyzed in detail. Based on this set of RNA-sequencing data, a total of 9216 perfect potential simple sequence repeats (SSRs) were identified within 7940 unigenes with a frequency of 1/6.48 kb. A total of 77 primer pairs were synthesized and examined in wet-laboratory experiments, of which 68 loci (88.3%) were successfully amplified with specific products. Eleven pairs of polymorphic primers were verified in 225 individuals from nine populations. The inbreeding coefficient and the polymorphism information content value ranged from 0.011 to 0.179 and from 0.1112 to 0.6750, respectively. The observed and expected heterozygosities ranged from 0.064 to 0.840 and from 0.115 to 0.726, respectively. Nine populations were clustered into three groups based on a genetic diversity study using these novel markers. Our data will be useful for functional genomic investigations of L. ruthenicum and could be used as a basis for further research on the genetic diversity, genetic differentiation, and gene flow of L. ruthenicum and other closely related species.
Collapse
Affiliation(s)
- Jin-Huan Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Dong-Zhi Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Chong Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Mei-Long Xu
- State Key Laboratory of Seedling Bioengineering, Yinchuan750004, China
| | - Wei-Lun Yin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
69
|
Tian X, Wang Z, Zhang Q, Ci H, Wang P, Yu L, Jia G. Genome-wide transcriptome analysis of the salt stress tolerance mechanism in Rosa chinensis. PLoS One 2018; 13:e0200938. [PMID: 30048505 PMCID: PMC6062038 DOI: 10.1371/journal.pone.0200938] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022] Open
Abstract
Plants regulate responses to salt stress using biological pathways, such as signal perception and transduction, photosynthesis, and energy metabolism. Little is known about the genetics of salt tolerance in Rosa chinensis. Tineke and Hiogi are salt-tolerant and salt-sensitive varieties of R. chinensis, respectively, and are good choices for studying salt-tolerance genes. We studied leaf and root tissues from 1-year-old Hiogi and Tineke plants simultaneously grown under the same conditions. A 0.4%-mmol/L salt ion mixture was added to the basic growth medium. Illumina sequencing was used to identify differentially expressed transcripts. GO and KEGG pathway enrichment analyses were performed to identify differentially expressed genes. We identified many differentially expressed genes associated with salt tolerance. The abscisic acid-dependent signaling pathway was the main pathway that mediated the salt stress response in R. chinensis. Two pathways (plant hormone signal transduction and glutathione metabolism) were also active in salt stress responses in R. chinensis. The difference in salt tolerance in the cultivars was due to different gene sensitivity to salt in these two pathways. Roots also play a role in salt stress response. The effects of salt stress in the roots are eventually manifested in the leaves, causing changes in processes such as photosynthesis, which eventually result in leaf wilting. In Tineke, Snrk2, ABF, HSP, GSTs, and GSH1 showed high activity during salt stress, indicating that these genes are markers of salt tolerance.
Collapse
Affiliation(s)
| | - Zhenyu Wang
- Tianjin TEDA Salina Eco-Landscape Research Center, Tianjin, China
| | - Qing Zhang
- Tianjin TEDA Salina Eco-Landscape Research Center, Tianjin, China
| | - Huacong Ci
- Tianjin TEDA Salina Eco-Landscape Research Center, Tianjin, China
| | - Pengshan Wang
- Tianjin TEDA Salina Eco-Landscape Research Center, Tianjin, China
| | - Lu Yu
- Tianjin TEDA Salina Eco-Landscape Research Center, Tianjin, China
| | - Guixia Jia
- Beijing Forestry University, Beijing, China
- * E-mail:
| |
Collapse
|
70
|
GhKLCR1, a kinesin light chain-related gene, induces drought-stress sensitivity in Arabidopsis. SCIENCE CHINA-LIFE SCIENCES 2018; 62:63-75. [PMID: 29987502 DOI: 10.1007/s11427-018-9307-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/10/2018] [Indexed: 10/28/2022]
Abstract
Drought stress results in significant losses in agricultural production, and especially that of cotton. The molecular mechanisms that coordinate drought tolerance remain elusive in cotton. Here, we isolated a drought-response gene GhKLCR1, which is a close homolog of AtKLCR1, which encodes a kinesin light chain-related protein enriched with a tetratrico peptide-repeat region. A subcellular localization assay showed that GhKLCR1 is associated with the cell membrane. A tissue-specific expression profile analysis demonstrated that GhKLCR1 is a cotton root-specific gene. Further abiotic and hormonal stress treatments showed that GhKLCR1 was upregulated during abiotic stresses, especially after polyethylene glycol treatments. In addition, the glucuronidase (GUS) staining activity increased as the increment of mannitol concentration in transgenic Arabidopsis plants harboring the fusion construct PGhKLCR1::GUS. The root lengths of 35S::GhKLCR1 lines were significantly reduced compared with that of wild type. Additionally, seed germination was strongly inhibited in 35S::GhKLCR1 lines after 300-mmol L-1 mannitol treatments as compared with Columbia-0, indicating the sensitivity of GhKLCR1 to drought. These findings provide a better understanding of the structural, physiological and functional mechanisms of kinesin light chain-related proteins.
Collapse
|
71
|
Ferrier-Pagès C, Sauzéat L, Balter V. Coral bleaching is linked to the capacity of the animal host to supply essential metals to the symbionts. GLOBAL CHANGE BIOLOGY 2018; 24:3145-3157. [PMID: 29569807 DOI: 10.1111/gcb.14141] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 05/26/2023]
Abstract
Massive coral bleaching events result in extensive coral loss throughout the world. These events are mainly caused by seawater warming, but are exacerbated by the subsequent decrease in nutrient availability in surface waters. It has therefore been shown that nitrogen, phosphorus or iron limitation contribute to the underlying conditions by which thermal stress induces coral bleaching. Generally, information on the trophic ecology of trace elements (micronutrients) in corals, and on how they modulate the coral response to thermal stress is lacking. Here, we demonstrate for the first time that heterotrophic feeding (i.e. the capture of zooplankton prey by the coral host) and thermal stress induce significant changes in micro element concentrations and isotopic signatures of the scleractinian coral Stylophora pistillata. The results obtained first reveal that coral symbionts are the major sink for the heterotrophically acquired micronutrients and accumulate manganese, magnesium and iron from the food. These metals are involved in photosynthesis and antioxidant protection. In addition, we show that fed corals can maintain high micronutrient concentrations in the host tissue during thermal stress and do not bleach, whereas unfed corals experience a significant decrease in copper, zinc, boron, calcium and magnesium in the host tissue and bleach. In addition, the significant increase in δ65 Cu and δ66 Zn signature of symbionts and host tissue at high temperature suggests that these isotopic compositions are good proxy for stress in corals. Overall, present findings highlight a new way in which coral heterotrophy and micronutrient availability contribute to coral resistance to global warming and bleaching.
Collapse
Affiliation(s)
| | - Lucie Sauzéat
- CNRS UMR 5276 "Laboratoire de Géologie de Lyon", Ecole Normale Supérieure de Lyon, Lyon Cedex 07, France
| | - Vincent Balter
- CNRS UMR 5276 "Laboratoire de Géologie de Lyon", Ecole Normale Supérieure de Lyon, Lyon Cedex 07, France
| |
Collapse
|
72
|
Zhang J, Li Y, Liu B, Wang L, Zhang L, Hu J, Chen J, Zheng H, Lu M. Characterization of the Populus Rab family genes and the function of PtRabE1b in salt tolerance. BMC PLANT BIOLOGY 2018; 18:124. [PMID: 29914373 PMCID: PMC6006591 DOI: 10.1186/s12870-018-1342-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/05/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Rab proteins form the largest family of the Ras superfamily of small GTP-binding proteins and regulate intracellular trafficking pathways. However, the function of the Rab proteins in woody species is still an open question. RESULTS Here, a total of 67 PtRabs were identified in Populus trichocarpa and categorized into eight subfamilies (RabA-RabH). Based on their chromosomal distribution and duplication blocks in the Populus genome, a total of 27 PtRab paralogous pairs were identified and all of them were generated by whole-genome duplication events. Combined the expression correlation and duplication date, the PtRab paralogous pairs that still keeping highly similar expression patterns were generated around the latest large-scale duplication (~ 13 MYA). The cis-elements and co-expression network of unique expanded PtRabs suggest their potential roles in poplar development and environmental responses. Subcellular localization of PtRabs from each subfamily indicates each subfamily shows a localization pattern similar to what is revealed in Arabidopsis but RabC shows a localization different from their counterparts. Furthermore, we characterized PtRabE1b by overexpressing its constitutively active mutant PtRabE1b(Q74L) in poplar and found that PtRabE1b(Q74L) enhanced the salt tolerance. CONCLUSIONS These findings provide new insights into the functional divergence of PtRabs and resources for genetic engineering resistant breeding in tree species.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Yu Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Bobin Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Lijuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Li Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jun Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Huanquan Zheng
- Developmental Biology Research Initiatives, Biology Department, McGill University, Montreal, Quebec, Canada
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
73
|
Salas-Perez RA, Saski CA, Noorai RE, Srivastava SK, Lawton-Rauh AL, Nichols RL, Roma-Burgos N. RNA-Seq transcriptome analysis of Amaranthus palmeri with differential tolerance to glufosinate herbicide. PLoS One 2018; 13:e0195488. [PMID: 29672568 PMCID: PMC5908165 DOI: 10.1371/journal.pone.0195488] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/23/2018] [Indexed: 11/24/2022] Open
Abstract
Amaranthus palmeri (Amaranthaceae) is a noxious weed in several agroecosystems and in some cases seriously threatens the sustainability of crop production in North America. Glyphosate-resistant Amaranthus species are widespread, prompting the use of alternatives to glyphosate such as glufosinate, in conjunction with glufosinate-resistant crop cultivars, to help control glyphosate-resistant weeds. An experiment was conducted to analyze the transcriptome of A. palmeri plants that survived exposure to 0.55 kg ha-1 glufosinate. Since there was no record of glufosinate use at the collection site, survival of plants within the population are likely due to genetic expression that pre-dates selection; in the formal parlance of weed science this is described as natural tolerance. Leaf tissues from glufosinate-treated and non-treated seedlings were harvested 24 h after treatment (HAT) for RNA-Seq analysis. Global gene expression was measured using Illumina DNA sequence reads from non-treated and treated surviving (presumably tolerant, T) and susceptible (S) plants. The same plants were used to determine the mechanisms conferring differential tolerance to glufosinate. The S plants accumulated twice as much ammonia as did the T plants, 24 HAT. The relative copy number of the glufosinate target gene GS2 did not differ between T and S plants, with 1 to 3 GS2 copies in both biotypes. A reference cDNA transcriptome consisting of 72,780 contigs was assembled, with 65,282 sequences putatively annotated. Sequences of GS2 from the transcriptome assembly did not have polymorphisms unique to the tolerant plants. Five hundred sixty-seven genes were differentially expressed between treated T and S plants. Of the upregulated genes in treated T plants, 210 were more highly induced than were the upregulated genes in the treated S plants. Glufosinate-tolerant plants had greater induction of ABC transporter, glutathione S-transferase (GST), NAC transcription factor, nitronate monooxygenase (NMO), chitin elicitor receptor kinase (CERK1), heat shock protein 83, ethylene transcription factor, heat stress transcription factor, NADH-ubiquinone oxidoreductase, ABA 8'-hydroxylase, and cytochrome P450 genes (CYP72A, CYP94A1). Seven candidate genes were selected for validation using quantitative real time-PCR. While GST was upregulated in treated tolerant plants in at least one population, CYP72A219 was consistently highly expressed in all treated tolerant biotypes. These genes are candidates for contributing tolerance to glufosinate. Taken together, these results show that differential induction of stress-protection genes in a population can enable some individuals to survive herbicide application. Elevated expression of detoxification-related genes can get fixed in a population with sustained selection pressure, leading to evolution of resistance. Alternatively, sustained selection pressure could select for mutation(s) in the GS2 gene with the same consequence.
Collapse
Affiliation(s)
- Reiofeli A. Salas-Perez
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Christopher A. Saski
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Rooksana E. Noorai
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Subodh K. Srivastava
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Amy L. Lawton-Rauh
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | | | - Nilda Roma-Burgos
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
74
|
Xu H, Yang G, Zhang J, Wang Y, Zhang T, Wang N, Jiang S, Zhang Z, Chen X. Overexpression of a repressor MdMYB15L negatively regulates anthocyanin and cold tolerance in red-fleshed callus. Biochem Biophys Res Commun 2018; 500:405-410. [PMID: 29655791 DOI: 10.1016/j.bbrc.2018.04.088] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 10/17/2022]
Abstract
The cold-induced metabolic pathway and anthocyanin biosynthesis play important roles in plant growth. In this study, we identified a bHLH binding motif in the MdMYB15L protein using protein sequence analyses. Yeast two-hybrid and pull-down assays showed that MdMYB15L could interact with MdbHLH33. Overexpressing MdMYB15L in red-fleshed callus inhibited the expression of MdCBF2 and resulted in reduced cold tolerance but did not affect anthocyanin levels. Chip-PCR and EMSA analysis showed that MdMYB15L could bind the type II cis-acting element found in the MdCBF2 promoter. Overexpressing MdMYB15L in red-fleshed callus overexpressing MdbHLH33 also reduced cold tolerance and reduced MdbHLH33-induced anthocyanin biosynthesis. Knocking out the bHLH binding sequence of MdMYB15L (LBSMdMYB15L) prevented LBSMdMYB15L from interacting with MdbHLH33. Overexpressing LBSMdMYB15L in red-fleshed callus overexpressing MdbHLH33 also reduced cold tolerance and reduced MdbHLH33-induced anthocyanin biosynthesis. Together, these results suggested that an apple repressor MdMYB15L might play a key role in the cold signaling and anthocyanin metabolic pathways.
Collapse
Affiliation(s)
- Haifeng Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, China
| | - Guanxian Yang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, China
| | - Jing Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, China
| | - Yicheng Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, China
| | - Tianliang Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, China
| | - Shenghui Jiang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, Shandong, China.
| |
Collapse
|
75
|
Saikia J, Sarma RK, Dhandia R, Yadav A, Bharali R, Gupta VK, Saikia R. Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci Rep 2018; 8:3560. [PMID: 29476114 PMCID: PMC5824784 DOI: 10.1038/s41598-018-21921-w] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/13/2018] [Indexed: 11/09/2022] Open
Abstract
The agricultural crops are often affected by the scarcity of fresh water. Seasonal drought is a major constraint on Northeast Indian agriculture. Almost 80% of the agricultural land in this region is acidic and facing severe drought during the winter period. Apart from classical breeding and transgenic approaches, the application of plant-growth-promoting bacteria (PGPB) is an alternative strategy for improving plant fitness under stressful conditions. The 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing PGPB offer drought stress tolerance by regulating plant ethylene levels. The aim of the present study was to evaluate the consortium effect of three ACC-deaminase producing rhizobacteria - Ochrobactrum pseudogrignonenseRJ12, Pseudomonas sp.RJ15 and Bacillus subtilisRJ46 on drought stress alleviation in Vigna mungo L. and Pisum sativum L. Consortium treatment significantly increase seed germination percentage, root length, shoot length, and dry weight of treated plants. An elevated production of reactive oxygen species scavenging enzymes and cellular osmolytes; higher leaf chlorophyll content; increase in relative water content and root recovery intension were observed after consortium treatment in comparison with the uninoculated plants under drought conditions. The consortium treatment decreased the ACC accumulation and down-regulated ACC-oxidase gene expression. This consortium could be an effective bio-formulator for crop health improvement in drought-affected acidic agricultural fields.
Collapse
Affiliation(s)
- Juthika Saikia
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Rupak K Sarma
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Rajashree Dhandia
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Archana Yadav
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Rupjyoti Bharali
- Department of Biotechnology, Gauhati University, Guwahati, 781014, Assam, India
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, Tallinn, 12618, Estonia
| | - Ratul Saikia
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India.
| |
Collapse
|
76
|
Gaponenko AK, Shulga OA, Mishutkina YB, Tsarkova EA, Timoshenko AA, Spechenkova NA. Perspectives of Use of Transcription Factors for Improving Resistance of Wheat Productive Varieties to Abiotic Stresses by Transgenic Technologies. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418010039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
77
|
Zhu G, Li W, Zhang F, Guo W. RNA-seq analysis reveals alternative splicing under salt stress in cotton, Gossypium davidsonii. BMC Genomics 2018; 19:73. [PMID: 29361913 PMCID: PMC5782385 DOI: 10.1186/s12864-018-4449-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/14/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Numerous studies have focused on the regulation of gene expression in response to salt stress at the transcriptional level; however, little is known about this process at the post-transcriptional level. RESULTS Using a diploid D genome wild salinity-tolerant cotton species, Gossypium davidsonii, we analyzed alternative splicing (AS) of genes related to salt stress by comparing high-throughput transcriptomes from salt-treated and well-watered roots and leaves. A total of 14,172 AS events were identified involving 6798 genes, of which intron retention (35.73%) was the most frequent, being detected in 3492 genes. Under salt stress, 1287 and 1228 differential alternative splicing (DAS) events were identified in roots and leaves, respectively. These DAS genes were associated with specific functional pathways, such as "responses to stress", "metabolic process" and "RNA splicing", implying that AS represents an important pathway of gene regulation in response to salt stress. Several salt response genes, such as pyrroline-5-carboxylate synthase (P5CS), K+ channel outward (KCO1), plasma membrane intrinsic protein (PIP) and WRKY33 which were involved in osmotic balance, ion homeostasis, water transportation and transcriptional regulation, respectively, were identified with differential alternative splicing under salt stress. Moreover, we revealed that 13 genes encoding Ser/Arg-rich (SR) proteins related to AS regulation were differentially alternatively spliced under salt stress. CONCLUSION This study first provide a comprehensive view of AS in G. davidsonii, and highlight novel insights into the potential roles of AS in plant responses to salt stress.
Collapse
Affiliation(s)
- Guozhong Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
78
|
Alam Z, Roncal J, Peña-Castillo L. Genetic variation associated with healthy traits and environmental conditions in Vaccinium vitis-idaea. BMC Genomics 2018; 19:4. [PMID: 29291734 PMCID: PMC5748963 DOI: 10.1186/s12864-017-4396-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/19/2017] [Indexed: 12/31/2022] Open
Abstract
Background Lingonberry (Vaccinium vitis-idaea L.), one of the least studied fruit crops in the Ericaceae family, has a dramatically increased worldwide demand due to its numerous health benefits. Genetic markers can facilitate the selection of berries with desirable climatic adaptations, agronomic and nutritious characteristics to improve cultivation programs. However, no genomic resources are available for this species. Results We used Genotyping-by-Sequencing (GBS) to analyze the genetic variation of 56 lingonberry samples from across Newfoundland and Labrador, Canada. To elucidate a potential adaptation to environmental conditions we searched for genotype-environment associations by applying three distinct approaches to screen the identified single nucleotide polymorphisms (SNPs) for correlation with six environmental variables. We also searched for an association between the identified SNPs and two phenotypic traits: the total phenolic content (TPC) and antioxidant capacity (AC) of fruit. We identified 1586 high-quality putative SNPs using the UNEAK pipeline available in TASSEL. We found 132 SNPs likely associated with at least one of the environmental or phenotypic variables. To obtain insights on the function of the genomic sequences containing the SNPs likely to be associated with the environmental or phenotypic variables, we performed a sequence-based functional annotation and identified homologous protein-coding sequences with functional roles related to abiotic stress response, pathogen defense, RNA metabolism, and, most interestingly, phenolic compound biosynthesis. Conclusions The putative SNPs discovered are the first genomic resource for lingonberry. This resource might prove useful in high-density quantitative trait locus analysis, and association mapping. The identified candidate genes containing the SNPs need further studies on their potential role in local adaptation of lingonberry. Altogether, the present study provides new resources that can be used to breed for desirable traits in lingonberry. Electronic supplementary material The online version of this article (10.1186/s12864-017-4396-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zobayer Alam
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Julissa Roncal
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| | - Lourdes Peña-Castillo
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.,Department of Computer Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| |
Collapse
|
79
|
Lu X, Zhang X, Duan H, Lian C, Liu C, Yin W, Xia X. Three stress-responsive NAC transcription factors from Populus euphratica differentially regulate salt and drought tolerance in transgenic plants. PHYSIOLOGIA PLANTARUM 2018; 162:73-97. [PMID: 28776695 DOI: 10.1111/ppl.12613] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 05/04/2023]
Abstract
Stress-responsive NAM, Arabidopsis transcription activation factor 1/2 (ATAF1/2) and CUC2 (SNAC) genes are being used to alter stress tolerance in Arabidopsis or grasses through genetic engineering. However, limited reports are available about the functional characteristics of SNAC in trees. In this study, three putative NAC proteins were identified from Populus euphratica. PeNAC034 and PeNAC045 were classified into the ATAF subgroup and PeNAC036 into the ANAC072 subgroup. These three SNAC transcription factors were localized in the nucleus and contained the transcription activation domain in their C-terminal. Under drought and salt stresses, PeNAC036 was strongly induced in the whole plant, but PeNAC034 was significantly suppressed in the roots and stems, and PeNAC045 was inhibited in the roots. PeNAC036 overexpression in Arabidopsis wild-type (WT) (OEPeNAC036) and PeNAC036 complementation in mutant anac072 (anac072/PeNAC036) lines increased tolerance to salt and drought, whereas PeNAC034 overexpression in WT (OEPeNAC034) and PeNAC034 complementation in mutant ataf1 (ataf1/PeNAC034) lines enhanced salt and drought sensitivity. After drought and salt treatments, the expression levels of COR47, RD29B, ERD11, RD22 and DREB2A were upregulated in OEPeNAC036 and anac072/PeNAC036 lines, but were downregulated in OEPeNAC034 and ataf1/PeNAC034 plants. Compared with WT and Vector lines, PeNAC045 overexpression in poplar WT (OEPeNAC045) led to a significant decrease in the net photosynthesis rate, stomatal conductance and transpiration rate under salinity and drought conditions. These results suggest that P. euphratica can adapt to the environment of high salinity and drought, which may be related to the differential expression patterns of SNAC genes.
Collapse
Affiliation(s)
- Xin Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Xiaofei Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Hui Duan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Conglong Lian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Chao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, P. R. China
| |
Collapse
|
80
|
Yao L, Wang J, Li B, Meng Y, Ma X, Si E, Ren P, Yang K, Shang X, Wang H. Transcriptome sequencing and comparative analysis of differentially-expressed isoforms in the roots of Halogeton glomeratus under salt stress. Gene 2017; 646:159-168. [PMID: 29292193 DOI: 10.1016/j.gene.2017.12.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/06/2017] [Accepted: 12/28/2017] [Indexed: 11/19/2022]
Abstract
Although Halogeton glomeratus (H. glomeratus) has been confirmed to have a unique mechanism to regulate Na+ efflux from the cytoplasm and compartmentalize Na+ into leaf vacuoles, little is known about the salt tolerance mechanisms of roots under salinity stress. In the present study, transcripts were sequenced using the BGISEQ-500 sequencing platform (BGI, Wuhan, China). After quality control, approximately 24.08 million clean reads were obtained and the average mapping ratio to the reference gene was 70.00%. When comparing salt-treated samples with the control, a total of 550, 590, 1411 and 2063 DEIs were identified at 2, 6, 24 and 72h, respectively. Numerous differentially-expressed isoforms that play important roles in response and adaptation to salt condition are related to metabolic processes, cellular processes, single-organism processes, localization, biological regulation, responses to stimulus, binding, catalytic activity and transporter activity. Fifty-eight salt-induced isoforms were common to different stages of salt stress; most of these DEIs were related to signal transduction and transporters, which maybe the core isoforms regulating Na+ uptake and transport in the roots of H. glomeratus. The expression patterns of 18 DEIs that were detected by quantitative real-time polymerase chain reaction were consistent with their respective changes in transcript abundance as identified by RNA-Seq technology. The present study thoroughly explored potential isoforms involved in salt tolerance on H. glomeratus roots at five time points. Our results may serve as an important resource for the H. glomeratus research community, improving our understanding of salt tolerance in halophyte survival under high salinity stress.
Collapse
Affiliation(s)
- Lirong Yao
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China; College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Juncheng Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China; College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Baochun Li
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China; Department of Botany, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yaxiong Meng
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China; College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xiaole Ma
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China; College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Erjing Si
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China; College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Panrong Ren
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China; College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Ke Yang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China; College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xunwu Shang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Huajun Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China; College of Agronomy, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
81
|
Yang Y, Wang W, Xu T, Liu N, Wang H, Feng D. Heterologous expression of wheat TaRUB1 gene enhances disease resistance in Arabidopsis thaliana. PLANT CELL REPORTS 2017; 36:1985-1994. [PMID: 29032425 DOI: 10.1007/s00299-017-2221-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
Expression of TaRUB1 gene in Arabidopsis thaliana elevates the level of disease-related genes in response to pathogen invasion through the accumulation of callose, necrotic cells, and the outbreak of ROS. Ubiquitin (Ub) and ubiquitin-like proteins are highly conserved in sequence and can covalently bind and modify many intracellular proteins which can be recognized and degraded by 26S proteasome. Post-translational modification of proteins has become a hot research spot today. In the previous study, a cDNA of related-to-ubiquitin protein belonged to ubiquitin-like proteins, whose spatial structure comprised Ub and NEDD8, was obtained from wheat SN6306 by suppression-subtractive hybridization and was named TaRUB1. TaRUB1 is induced by wheat powdery mildew and significantly upregulated in resistant wheat SN6306. In this study, heterologous expression of TaRUB1 in A. thaliana was used to study the function of this gene in response to pathogen Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000). Transgenic A. thaliana showed relatively fewer disease symptoms, accompanied by common inhibition of living body parasitic defense responses, accumulation of more callose and reactive oxygen species (ROS), and concentrated cell death, simultaneously antioxidant enzyme activities of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase were higher than those in wild-type (WT) plant after infection with Pst DC3000. Meanwhile, hypersensitive cell death, which was possibly ROS burst, was also observed in transgenic A. thaliana. By quantitative reverse transcription-polymerase chain reaction analysis, some marker genes for hypersensitive response showed significantly higher transcriptional expression level in transgenic A. thaliana, which activates system-acquired resistance, than that of WT plants. Heterologous expression of TaRUB1 can significantly enhance resistance to Pst DC3000 in A. thaliana, suggesting that TaRUB1 is related to plant disease resistance.
Collapse
Affiliation(s)
- Yanlin Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Wenqiang Wang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, 271018, China
| | - Tian Xu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Na Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Honggang Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Deshun Feng
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
82
|
Chai H, Yang W, Shi H. Cellular polyamines modulate mRNA stability. PLANT SIGNALING & BEHAVIOR 2017; 12:e1323163. [PMID: 28448201 PMCID: PMC5647947 DOI: 10.1080/15592324.2017.1323163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Polyamines (PAs) are polycationic compounds found in all living organisms and play crucial roles in growth and survival. PAs interact with and modulate the functions of anionic macromolecules such as DNA, RNA and proteins. LHR1/PUT3 is a polyamine influx transporter localized in the plasma membrane in Arabidopsis. In our recent paper in The Plant Journal, 1 we demonstrated that LHR1/PUT3 has a pivotal role in stabilizing the mRNAs of several important heat stress responsive genes under high temperature. In this short communication, we discuss about a putative pathway for modulating the PUT3 transport activity and the significance of evolutionary variations in PUT3 in Arabidopsis.
Collapse
Affiliation(s)
- Haoxi Chai
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Wannian Yang
- Hubei Key Laboratory of Genetic Regulation and Integrated Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
- Hubei Key Laboratory of Genetic Regulation and Integrated Biology, School of Life Sciences, Central China Normal University, Wuhan, China
- CONTACT Huazhong Shi , Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409–1061 USA
| |
Collapse
|
83
|
Barrero-Sicilia C, Silvestre S, Haslam RP, Michaelson LV. Lipid remodelling: Unravelling the response to cold stress in Arabidopsis and its extremophile relative Eutrema salsugineum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:194-200. [PMID: 28818375 PMCID: PMC5567406 DOI: 10.1016/j.plantsci.2017.07.017] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/20/2017] [Accepted: 07/12/2017] [Indexed: 05/19/2023]
Abstract
Environmental constraints limit the geographic distribution of many economically important crops. Cold stress is an important abiotic stress that affects plant growth and development, resulting in loss of vigour and surface lesions. These symptoms are caused by, among other metabolic processes, the altered physical and chemical composition of cell membranes. As a major component of cell membranes lipids have been recognized as having a significant role in cold stress, both as a mechanical defence through leaf surface protection and plasma membrane remodelling, and as signal transduction molecules. We present an overview integrating gene expression and lipidomic data published so far in Arabidopsis and its relative the extremophile Eutrema salsugineum. This data enables a better understanding of the contribution of the lipidome in determining the ability to tolerate suboptimal temperature conditions. Collectively this information will allow us to identify the key lipids and pathways responsible for resilience, enabling the development of new approaches for crop tolerance to stress.
Collapse
Affiliation(s)
| | - Susana Silvestre
- Plant Sciences, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Richard P Haslam
- Plant Sciences, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK.
| | | |
Collapse
|
84
|
Wani SH, Dutta T, Neelapu NRR, Surekha C. Transgenic approaches to enhance salt and drought tolerance in plants. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
85
|
Genome-wide characterization and expression analysis of the aldehyde dehydrogenase (ALDH) gene superfamily under abiotic stresses in cotton. Gene 2017; 628:230-245. [PMID: 28711668 DOI: 10.1016/j.gene.2017.07.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/24/2017] [Accepted: 07/11/2017] [Indexed: 11/20/2022]
Abstract
In plants, aldehyde dehydrogenases (ALDHs) function as 'aldehyde scavengers' by removing reactive aldehydes and thus play important roles in stress responses. To date, 30 ALDHs have been identified in Gossypium raimondii, whereas ALDHs have not been studied in Gossypium arboreum or in tetraploid cotton. In this study, we identified 30, 59 and 59 aldehyde dehydrogenase (ALDH) genes from G. arboreum, G. hirsutum and G. barbadense, respectively. Gene structure analysis revealed that members of the same family exhibit similar exon-intron structures and structural domains, and all members of the ALDH18 family possess a distinct AA-kinase domain. Synteny analysis showed that segmental and tandem duplications have played an important role in the expansion and evolution of ALDHs in cotton. Phylogenetic and synteny analysis between G. arboreum and G. raimondii demonstrated that all GaALDHs and GrALDHs are orthologous and that most GaALDHs are located in syntenic blocks corresponding to those of G. raimondii, implying that these genes appeared before the divergence of G. arboreum and G. raimondii and that no expansion of the ALDH superfamily has occurred in these two cotton species. Quantitative real-time PCR analysis revealed that the majority of GaALDHs and GhALDHs are up-regulated under conditions of high salinity and drought, indicating that these genes may be stress responsive. The findings of this study, based on genome-wide identification of ALDHs in Gossypium and analysis of their evolution and expression, provide a foundation for further analysis of ALDHs and suggest potential target genes for improving stress resistance in cotton.
Collapse
|
86
|
Ferreira THS, Tsunada MS, Bassi D, Araújo P, Mattiello L, Guidelli GV, Righetto GL, Gonçalves VR, Lakshmanan P, Menossi M. Sugarcane Water Stress Tolerance Mechanisms and Its Implications on Developing Biotechnology Solutions. FRONTIERS IN PLANT SCIENCE 2017; 8:1077. [PMID: 28690620 PMCID: PMC5481406 DOI: 10.3389/fpls.2017.01077] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/06/2017] [Indexed: 05/20/2023]
Abstract
Sugarcane is a unique crop with the ability to accumulate high levels of sugar and is a commercially viable source of biomass for bioelectricity and second-generation bioethanol. Water deficit is the single largest abiotic stress affecting sugarcane productivity and the development of water use efficient and drought tolerant cultivars is an imperative for all major sugarcane producing countries. This review summarizes the physiological and molecular studies on water deficit stress in sugarcane, with the aim to help formulate more effective research strategies for advancing our knowledge on genes and mechanisms underpinning plant response to water stress. We also overview transgenic studies in sugarcane, with an emphasis on the potential strategies to develop superior sugarcane varieties that improve crop productivity in drought-prone environments.
Collapse
Affiliation(s)
- Thais H. S. Ferreira
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Max S. Tsunada
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Denis Bassi
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Pedro Araújo
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Lucia Mattiello
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Giovanna V. Guidelli
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Germanna L. Righetto
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Vanessa R. Gonçalves
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | | | - Marcelo Menossi
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| |
Collapse
|
87
|
Wei D, Zhang W, Wang C, Meng Q, Li G, Chen THH, Yang X. Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 257:74-83. [PMID: 28224920 DOI: 10.1016/j.plantsci.2017.01.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/03/2017] [Accepted: 01/20/2017] [Indexed: 05/03/2023]
Abstract
Tomato (Solanum lycopersicum cv. 'Moneymaker') was transformed with the choline oxidase gene codA from Arthrobacter globiformis, which was modified to allow for targeting to both chloroplasts and the cytosol. Glycine betaine (GB) was accumulated in transformed plants, while no detectable GB was found in wild-type (WT) plants. Compared to WT plants, transgenic lines showed significantly higher photosynthetic rates (Pn) and antioxidant enzyme activities and lower reactive oxygen species (ROS) accumulation in the leaves when exposed to salt stress. Furthermore, compared with WT plants, K+ efflux decreased and Na+ efflux increased in roots of transgenic plants under salt stress; resulted in lower Na+/K+ ratios in transgenic lines. The exogenous application of GB also significantly reduced NaCl-induced K+ efflux and increased Na+ efflux in WT plants. A qRT-PCR assay indicated that GB enhanced NaCl-induced expression of genes encoding the K+ transporter, Na+/H+ antiporter, and H+-ATPase. These results suggest that the enhanced salt tolerance conferred by codA in transgenic tomato plants might be due to the regulation of ion channel and transporters by GB, which would allow high potassium levels and low sodium levels to be maintained in transgenic plants under salt stress condition.
Collapse
Affiliation(s)
- Dandan Wei
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Wen Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Cuicui Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Qingwei Meng
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Gang Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Tony H H Chen
- Department of Horticulture, ALS 4017, Oregon State University, Corvallis, OR 97331, USA
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
88
|
Quan R, Wang J, Yang D, Zhang H, Zhang Z, Huang R. EIN3 and SOS2 synergistically modulate plant salt tolerance. Sci Rep 2017; 7:44637. [PMID: 28300216 PMCID: PMC5353744 DOI: 10.1038/srep44637] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/13/2017] [Indexed: 12/27/2022] Open
Abstract
Ethylene biosynthesis and the ethylene signaling pathway regulate plant salt tolerance by activating the expression of downstream target genes such as those related to ROS and Na+/K+ homeostasis. The Salt Overly Sensitive (SOS) pathway regulates Na+/K+ homeostasis in Arabidopsis under salt stress. However, the connection between these two pathways is unclear. Through genetic screening, we identified two sos2 alleles as salt sensitive mutants in the ein3-1 background. Neither Ethylene-Insensitive 2 (EIN2) nor EIN3 changed the expression patterns of SOS genes including SOS1, SOS2, SOS3 and SOS3-like Calcium Binding Protein 8 (SCaBP8), but SOS2 activated the expression of one target gene of EIN3, Ethylene and Salt-inducible ERF 1 (ESE1). Moreover, Ser/Thr protein kinase SOS2 phosphorylated EIN3 in vitro mainly at the S325 site and weakly at the S35, T42 and S606 sites. EIN3 S325A mutation reduced its transcriptional activating activity on ESE1 promoter:GUS in a transient GUS assay, and impaired its ability to rescue ein3-1 salt hypersensitivity. Furthermore, SOS2 activated salt-responsive ESE1 target gene expression under salt stress. Therefore, EIN3-SOS2 might link the ethylene signaling pathway and the SOS pathway in Arabidopsis salt responses.
Collapse
Affiliation(s)
- Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Road, Beijing, 100081, China.,National Key Facility of Crop Gene Resources and Genetic Improvement, 12 Zhongguancun South Road, Beijing, 100081, China
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Road, Beijing, 100081, China.,National Key Facility of Crop Gene Resources and Genetic Improvement, 12 Zhongguancun South Road, Beijing, 100081, China
| | - Dexin Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Road, Beijing, 100081, China.,National Key Facility of Crop Gene Resources and Genetic Improvement, 12 Zhongguancun South Road, Beijing, 100081, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Road, Beijing, 100081, China.,National Key Facility of Crop Gene Resources and Genetic Improvement, 12 Zhongguancun South Road, Beijing, 100081, China
| | - Zhijin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Road, Beijing, 100081, China.,National Key Facility of Crop Gene Resources and Genetic Improvement, 12 Zhongguancun South Road, Beijing, 100081, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Road, Beijing, 100081, China.,National Key Facility of Crop Gene Resources and Genetic Improvement, 12 Zhongguancun South Road, Beijing, 100081, China
| |
Collapse
|
89
|
Giuffrida F, Cassaniti C, Malvuccio A, Leonardi C. Effects of salt stress imposed during two growth phases on cauliflower production and quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1552-1560. [PMID: 27405605 DOI: 10.1002/jsfa.7900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 05/27/2023]
Abstract
BACKGROUND Cultivation of cauliflower is diffused in Mediterranean areas where water salinity results in the need to identify alternative irrigation sources or management strategies. Using saline water during two growth phases (from transplanting to visible appearance of inflorescence or from appearance of inflorescence to head harvest), the present study aimed to identify the growth period that is more suitable for irrigation with low quality water in relation to cauliflower production and quality. RESULTS Salinity affected cauliflower growth mainly when imposed in the first growth phase. The growth reduction depended mainly on ion-specific effects, although slight nutrient imbalances as a result of Na+ and Cl- antagonisms were observed. The use of non-saline water in the first or second growth period reduced both the osmotic and toxic effects of salinity. When salinity was applied during inflorescence growth, yield was reduced because of a restriction of water accumulation in the head. CONCLUSION The results of the present study demonstrate the possibility of producing marketable cauliflower heads under conditions of salinity by timing the application of the best quality water during the first growth phase to improve fruit quality and during the second phase to reduce the negative effects of salinity on yield. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francesco Giuffrida
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia 5, 95123, Catania, Italy
| | - Carla Cassaniti
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia 5, 95123, Catania, Italy
| | - Angelo Malvuccio
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia 5, 95123, Catania, Italy
| | - Cherubino Leonardi
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia 5, 95123, Catania, Italy
| |
Collapse
|
90
|
Malook I, Shah G, Jan M, Shinwari KI, Aslam MM, Rehman SU, Jamil M. Smoke Priming Regulates Growth and the Expression of Myeloblastosis and Zinc-Finger Genes in Rice under Salt Stress. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/s13369-016-2378-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
91
|
|
92
|
Yao PF, Li CL, Zhao XR, Li MF, Zhao HX, Guo JY, Cai Y, Chen H, Wu Q. Overexpression of a Tartary Buckwheat Gene, FtbHLH3, Enhances Drought/Oxidative Stress Tolerance in Transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:625. [PMID: 28487715 PMCID: PMC5403918 DOI: 10.3389/fpls.2017.00625] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/06/2017] [Indexed: 05/05/2023]
Abstract
bHLH (basic helix-loop-helix) transcription factors play important roles in the abiotic stress response in plants, but their characteristics and functions in tartary buckwheat (Fagopyrum tataricum), a flavonoid-rich cereal crop with a strong stress tolerance, have not been fully investigated. Here, a novel bHLH gene, designated FtbHLH3, was isolated and characterized. Expression analysis in tartary buckwheat revealed that FtbHLH3 was mainly induced by polyethylene glycol 6000 (PEG6000) and abscisic acid (ABA) treatments. Subcellular localization and a yeast one-hybrid assay indicated that FtbHLH3 has transcriptional activation activities. Overexpression of FtbHLH3 in Arabidopsis resulted in increased drought/oxidative tolerance, which was attributed to not only lower malondialdehyde (MDA), ion leakage (IL), and reactive oxygen species (ROS) but also higher proline (Pro) content, activities of antioxidant enzymes, and photosynthetic efficiency in transgenic lines compared to wild type (WT). Moreover, qRT-PCR analysis indicated that the expression of multiple stress-responsive genes in the transgenic lines was significantly higher than in WT under drought stress. In particular, the expression of AtNCED, a rate-limiting enzyme gene in ABA biosynthesis, was increased significantly under both normal and stress conditions. Additionally, an ABA-response-element (ABRE) was also found in the promoter regions. Furthermore, the transgenic Arabidopsis lines of the FtbHLH3 promoter had higher GUS activity after drought stress. In summary, our results indicated that FtbHLH3 may function as a positive regulator of drought/oxidative stress tolerance in transgenic Arabidopsis through an ABA-dependent pathway.
Collapse
|
93
|
Ferreira THS, Tsunada MS, Bassi D, Araújo P, Mattiello L, Guidelli GV, Righetto GL, Gonçalves VR, Lakshmanan P, Menossi M. Sugarcane Water Stress Tolerance Mechanisms and Its Implications on Developing Biotechnology Solutions. FRONTIERS IN PLANT SCIENCE 2017; 8:1077. [PMID: 28690620 PMCID: PMC5481406 DOI: 10.3389/fpls.2017.01077/full 10.3389/fpls.2017.01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Sugarcane is a unique crop with the ability to accumulate high levels of sugar and is a commercially viable source of biomass for bioelectricity and second-generation bioethanol. Water deficit is the single largest abiotic stress affecting sugarcane productivity and the development of water use efficient and drought tolerant cultivars is an imperative for all major sugarcane producing countries. This review summarizes the physiological and molecular studies on water deficit stress in sugarcane, with the aim to help formulate more effective research strategies for advancing our knowledge on genes and mechanisms underpinning plant response to water stress. We also overview transgenic studies in sugarcane, with an emphasis on the potential strategies to develop superior sugarcane varieties that improve crop productivity in drought-prone environments.
Collapse
Affiliation(s)
- Thais H. S. Ferreira
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Max S. Tsunada
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Denis Bassi
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Pedro Araújo
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Lucia Mattiello
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Giovanna V. Guidelli
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Germanna L. Righetto
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | - Vanessa R. Gonçalves
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
| | | | - Marcelo Menossi
- Functional Genome Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of CampinasCampinas, Brazil
- *Correspondence: Marcelo Menossi
| |
Collapse
|
94
|
Banerjee A, Roychoudhury A. Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. PROTOPLASMA 2017; 254:3-16. [PMID: 26669319 DOI: 10.1007/s00709-015-0920-4] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/01/2015] [Indexed: 05/21/2023]
Abstract
One of the major causes of significant crop loss throughout the world is the myriad of environmental stresses including drought, salinity, cold, heavy metal toxicity, and ultraviolet-B (UV-B) rays. Plants as sessile organisms have evolved various effective mechanism which enable them to withstand this plethora of stresses. Most of such regulatory mechanisms usually follow the abscisic-acid (ABA)-dependent pathway. In this review, we have primarily focussed on the basic leucine zipper (bZIP) transcription factors (TFs) activated by the ABA-mediated signalosome. Upon perception of ABA by specialized receptors, the signal is transduced via various groups of Ser/Thr kinases, which phosphorylate the bZIP TFs. Following such post-translational modification of TFs, they are activated so that they bind to specific cis-acting sequences called abscisic-acid-responsive elements (ABREs) or GC-rich coupling elements (CE), thereby influencing the expression of their target downstream genes. Several in silico techniques have been adopted so far to predict the structural features, recognize the regulatory modification sites, undergo phylogenetic analyses, and facilitate genome-wide survey of TF under multiple stresses. Current investigations on the epigenetic regulation that controls greater accessibility of the inducible regions of DNA of the target gene to the bZIP TFs exclusively under stress situations, along with the evolved stress memory responses via genomic imprinting mechanism, have been highlighted. The potentiality of overexpression of bZIP TFs, either in a homologous or in a heterologous background, in generating transgenic plants tolerant to various abiotic stressors have also been addressed by various groups. The present review will provide a coherent documentation on the functional characterization and regulation of bZIP TFs under multiple environmental stresses, with the major goal of generating multiple-stress-tolerant plant cultivars in near future.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India.
| |
Collapse
|
95
|
Kumari J, Udawat P, Dubey AK, Haque MI, Rathore MS, Jha B. Overexpression of SbSI-1, A Nuclear Protein from Salicornia brachiata Confers Drought and Salt Stress Tolerance and Maintains Photosynthetic Efficiency in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2017; 8:1215. [PMID: 28751902 PMCID: PMC5508026 DOI: 10.3389/fpls.2017.01215] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 06/27/2017] [Indexed: 05/14/2023]
Abstract
A novel Salicornia brachiata Salt Inducible (SbSI-1) gene was isolated and overexpressed in tobacco for in planta functional validation subjected to drought and salt stress. SbSI-1 is a nuclear protein. The transgenic tobacco overexpressing SbSI-1 gene exhibited better seed germination, growth performances, pigment contents, cell viability, starch accumulation, and tolerance index under drought and salt stress. Overexpression of SbSI-1 gene alleviated the build-up of reactive oxygen species (ROS) and curtailed the ROS-induced oxidative damages thus improved the physiological health of transgenic tobacco under stressed conditions. The higher activities of antioxidant enzymes, lower accumulation of ROS, higher membrane stability, relative water content, and polyphenol contents indicated the better survival of the transgenic tobacco than wild-type (WT) tobacco under stressed conditions. Transgenic tobacco had a higher net photosynthetic rate, PSII operating efficiency, and performance index under drought and salt stress. Higher accumulation of compatible solutes and K+/Na+ ratio in transgenic tobacco than WT showed the better osmotic and redox homeostasis under stressed conditions. The up-regulation of genes encoding antioxidant enzymes (NtSOD, NtAPX, and NtCAT) and transcription factors (NtDREB2 and NtAP2) in transgenic tobacco under stressed conditions showed the role of SbSI-1 in ROS alleviation and involvement of this gene in abiotic stress tolerance. Multivariate data analysis exhibited statistical distinction among growth responses, physiological health, osmotic adjustment, and photosynthetic responses of WT and transgenic tobacco under stressed conditions. The overexpression of SbSI-1 gene curtailed the ROS-induced oxidative damages and maintained the osmotic homeostasis under stress conditions thus improved physiological health and photosynthetic efficiencies of the transgenic tobacco overexpressing SbSI-1 gene.
Collapse
Affiliation(s)
- Jyoti Kumari
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial ResearchNew Delhi, India
| | - Pushpika Udawat
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial ResearchNew Delhi, India
| | - Ashish K. Dubey
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
| | - Md Intesaful Haque
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
| | - Mangal S. Rathore
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial ResearchNew Delhi, India
- *Correspondence: Mangal S. Rathore ;
| | - Bhavanath Jha
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial ResearchNew Delhi, India
- Bhavanath Jha
| |
Collapse
|
96
|
Gao F, Yao H, Zhao H, Zhou J, Luo X, Huang Y, Li C, Chen H, Wu Q. Tartary buckwheat FtMYB10 encodes an R2R3-MYB transcription factor that acts as a novel negative regulator of salt and drought response in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:387-396. [PMID: 27814568 DOI: 10.1016/j.plaphy.2016.10.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 05/26/2023]
Abstract
Tartary buckwheat is a strongly abiotic, resistant coarse cereal, but its tolerance mechanisms for stress are largely unknown. MYB transcription factors play key roles in various physiological, biochemical and molecular responses, which can both positively and negatively regulate the stress tolerance of plants. In this study, we report that the expression of FtMYB10, a R2R3-MYB gene from Tartary buckwheat, was induced significantly by ABA and drought treatments. A seed germination test under ABA treatment indicated that transgenic lines were less sensitive to ABA. The overexpression of FtMYB10 in Arabidopsis reduced drought and salt tolerance. Further studies showed that the proline contents in the transgenic plants are markedly decreased associated with reduced expression of the P5CS1 gene under both normal and stress conditions. Furthermore, the expression of some stress-responsive genes, including DREB1/CBFs, RD29B, RD22, and several genes of the DRE/CRT class, decreased in response to FtMYB10 overexpression in Arabidopsis. These results suggest that FtMYB10 may play a key role in ABA signaling feedback regulation and act as a novel negative regulator of salt and drought stress tolerance in plants.
Collapse
Affiliation(s)
- Fei Gao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Huipeng Yao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Jing Zhou
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Xiaopeng Luo
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Yunji Huang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China.
| |
Collapse
|
97
|
Liao Y, Hu C, Zhang X, Cao X, Xu Z, Gao X, Li L, Zhu J, Chen R. Isolation of a novel leucine-rich repeat receptor-like kinase (OsLRR2) gene from rice and analysis of its relation to abiotic stress responses. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1242377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Yongrong Liao
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Changqiong Hu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuewei Zhang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xufeng Cao
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhengjun Xu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoling Gao
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lihua Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jianqing Zhu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Rongjun Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
98
|
Ozaslan C, Farooq S, Onen H, Bukun B, Ozcan S, Gunal H. Invasion Potential of Two Tropical Physalis Species in Arid and Semi-Arid Climates: Effect of Water-Salinity Stress and Soil Types on Growth and Fecundity. PLoS One 2016; 11:e0164369. [PMID: 27741269 PMCID: PMC5065205 DOI: 10.1371/journal.pone.0164369] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 09/23/2016] [Indexed: 11/23/2022] Open
Abstract
Invasive plants are recognized for their impressive abilities to withstand adverse environmental conditions however, all invaders do not express the similar abilities. Therefore, survival, growth, nutrient uptake and fecundity of two co-occurring, invasive Physalis species were tested under water and salinity stresses, and different soil textures in the current study. Five different water stress levels (100, 75, 50, 25, and 12.5% pot water contents), four different soil salinity levels (0, 3, 6, and 12 dSm-1) and four different soil textures (67% clay, 50% clay, silt clay loam and sandy loam) were included in three different pot experiments. Both weeds survived under all levels of water stress except 12.5% water contents and on all soil types however, behaved differently under increasing salinity. The weeds responded similarly to salinity up till 3 dSm-1 whereas, P. philadelphica survived for longer time than P. angulata under remaining salinity regimes. Water and salinity stress hampered the growth and fecundity of both weeds while, soil textures had slight effect. Both weeds preferred clay textured soils for better growth and nutrient uptake however, interactive effect of weeds and soil textures was non-significant. P. angulata accumulated higher K and Na while P. philadelphica accrued more Ca and Mg as well as maintained better K/Na ratio. P. angulata accumulated more Na and P under salinity stress while, P. philadelphica accrued higher K and Mg, and maintained higher K/Na ratio. Collectively, highest nutrient accumulation was observed under stress free conditions and on clay textured soils. P. philadelphica exhibited higher reproductive output under all experimental conditions than P. angulata. It is predicted that P. philadelphica will be more problematic under optimal water supply and high salinity while P. angulata can better adapt water limited environments. The results indicate that both weeds have considerable potential to further expand their ranges in semi-arid regions of Turkey.
Collapse
Affiliation(s)
- Cumali Ozaslan
- Department of Plant Protection, Dicle University, Diyarbakir, Turkey
| | - Shahid Farooq
- Department of Plant Protection, Gaziosmanpaşa University, Tokat, Turkey
| | - Huseyin Onen
- Department of Plant Protection, Gaziosmanpaşa University, Tokat, Turkey
| | - Bekir Bukun
- Department of Plant Protection, Dicle University, Diyarbakir, Turkey
| | | | - Hikmet Gunal
- Department of Soil Science and Plant Nutrition, Gaziosmanpaşa University, Tokat, Turkey
| |
Collapse
|
99
|
Li W, Chen M, Wang E, Hu L, Hawkesford MJ, Zhong L, Chen Z, Xu Z, Li L, Zhou Y, Guo C, Ma Y. Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice. BMC Genomics 2016; 17:797. [PMID: 27733118 PMCID: PMC5062844 DOI: 10.1186/s12864-016-3113-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 09/23/2016] [Indexed: 01/07/2023] Open
Abstract
Background Autophagy is a cellular degradation process that is highly evolutionarily-conserved in yeast, plants, and animals. In plants, autophagy plays important roles in regulating intracellular degradation and recycling of amino acids in response to nutrient starvation, senescence, and other environmental stresses. Foxtail millet (Setaria italica) has strong resistance to stresses and has been proposed as an ideal material for use in the study of the physiological mechanisms of abiotic stress tolerance in plants. Although the genome sequence of foxtail millet (Setaria italica) is available, the characteristics and functions of abiotic stress-related genes remain largely unknown for this species. Results A total of 37 putative ATG (autophagy-associated genes) genes in the foxtail millet genome were identified. Gene duplication analysis revealed that both segmental and tandem duplication events have played significant roles in the expansion of the ATG gene family in foxtail millet. Comparative synteny mapping between the genomes of foxtail millet and rice suggested that the ATG genes in both species have common ancestors, as their ATG genes were primarily located in similar syntenic regions. Gene expression analysis revealed the induced expression of 31 SiATG genes by one or more phytohormone treatments, 26 SiATG genes by drought, salt and cold, 24 SiATG genes by darkness and 25 SiATG genes by nitrogen starvation. Results of qRT-PCR showing that among 37 SiATG genes, the expression level of SiATG8a was the highest after nitrogen starvation treatment 24 h, suggesting its potential role in tolerance to nutrient starvation. Moreover, the heterologous expression of SiATG8a in rice improved nitrogen starvation tolerance. Compared to wild type rice, the transgenic rice performed better and had higher aboveground total nitrogen content when the plants were grown under nitrogen starvation conditions. Conclusions Our results deepen understanding about the characteristics and functions of ATG genes in foxtail millet and also identify promising new genetic resources that should be of use in future efforts to develop varieties of foxtail millet and other crop species that have resistance to nitrogen deficiency stress. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3113-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weiwei Li
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Ming Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Erhui Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Liqin Hu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Malcolm J Hawkesford
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Li Zhong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Zhu Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230000, China
| | - Zhaoshi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Liancheng Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Yongbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, 150025, China.
| | - Youzhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| |
Collapse
|
100
|
Liu A, Hu Z, Bi A, Fan J, Gitau MM, Amombo E, Chen L, Fu J. Photosynthesis, antioxidant system and gene expression of bermudagrass in response to low temperature and salt stress. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1445-1457. [PMID: 27443677 DOI: 10.1007/s10646-016-1696-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 05/19/2023]
Abstract
There is widespread distribution of salinized lands in northern China. Harnessing such land is essential to environmental health. Bermudagrass [Cynodon dactylon (L.) Pers.] has the potential to improve the salinized lands. However, low temperature remarkably limits the growth of bermudagrass in winter. Currently, there is no information about the interaction of cold and salt in this plant. Hence, the objectives of this study were to figure out the effects of combined cold and salinity stress on bermudagrass. In this study, 4 °C and 200 mM salt solution was used as cold and salt treatments respectively while 4 °C along with 200 mM salt solution were applied as combined stress. After 5 days treatment, bermudagrass displayed a dramatic decline in the turf quality and chlorophyll content, but higher malonaldehyde, electrolyte leakage, hydrogen peroxide content, antioxidant enzyme activity in the combined stress regime as compared to cold or salt treated alone. Analysis of chlorophyll a revealed that the combined stress aggravated stress-induced inhibition of photosystem II. In addition, the expressions of stress-related genes were up-regulated with a lower expression level when cold and salt applied together. In summary, the grass exposed to combined stress presented a relatively lower stress tolerance and suffered a more severe damage than grass grown in the other regimes. These findings are crucial for elucidating the molecular mechanisms of cold and salt combined stress in bermudagrass, and provide information for breeding programs to select and develop bermudagrass cultivars that are suitable for improvement of the northern China salinized land.
Collapse
Affiliation(s)
- Ao Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Zhengrong Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Aoyue Bi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Jibiao Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Margaret Mukami Gitau
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| |
Collapse
|