51
|
Liu KH, Diener A, Lin Z, Liu C, Sheen J. Primary nitrate responses mediated by calcium signalling and diverse protein phosphorylation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4428-4441. [PMID: 31985788 PMCID: PMC7382375 DOI: 10.1093/jxb/eraa047] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/24/2020] [Indexed: 05/04/2023]
Abstract
Nitrate, the major source of inorganic nitrogen for plants, is a critical signal controlling nutrient transport and assimilation and adaptive growth responses throughout the plant. Understanding how plants perceive nitrate and how this perception is transduced into responses that optimize growth are important for the rational improvement of crop productivity and for mitigating pollution from the use of fertilizers. This review highlights recent findings that reveal key roles of cytosolic-nuclear calcium signalling and dynamic protein phosphorylation via diverse mechanisms in the primary nitrate response (PNR). Nitrate-triggered calcium signatures as well as the critical functions of subgroup III calcium-sensor protein kinases, a specific protein phosphatase 2C, and RNA polymerase II C-terminal domain phosphatase-like 3 are discussed. Moreover, genome-wide meta-analysis of nitrate-regulated genes encoding candidate protein kinases and phosphatases for modulating critical phosphorylation events in the PNR are elaborated. We also consider how phosphoproteomics approaches can contribute to the identification of putative regulatory protein kinases in the PNR. Exploring and integrating experimental strategies, new methodologies, and comprehensive datasets will further advance our understanding of the molecular and cellular mechanisms underlying the complex regulatory processes in the PNR.
Collapse
Affiliation(s)
- Kun-Hsiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA, USA
- Correspondence:
| | - Andrew Diener
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ziwei Lin
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Cong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, China
| | - Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
52
|
Ortíz J, Sanhueza C, Romero-Munar A, Hidalgo-Castellanos J, Castro C, Bascuñán-Godoy L, Coba de la Peña T, López-Gómez M, Florez-Sarasa I, Del-Saz NF. In Vivo Metabolic Regulation of Alternative Oxidase under Nutrient Deficiency-Interaction with Arbuscular Mycorrhizal Fungi and Rhizobium Bacteria. Int J Mol Sci 2020; 21:E4201. [PMID: 32545597 PMCID: PMC7349880 DOI: 10.3390/ijms21124201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 02/02/2023] Open
Abstract
The interaction of the alternative oxidase (AOX) pathway with nutrient metabolism is important for understanding how respiration modulates ATP synthesis and carbon economy in plants under nutrient deficiency. Although AOX activity reduces the energy yield of respiration, this enzymatic activity is upregulated under stress conditions to maintain the functioning of primary metabolism. The in vivo metabolic regulation of AOX activity by phosphorus (P) and nitrogen (N) and during plant symbioses with Arbuscular mycorrhizal fungi (AMF) and Rhizobium bacteria is still not fully understood. We highlight several findings and open questions concerning the in vivo regulation of AOX activity and its impact on plant metabolism during P deficiency and symbiosis with AMF. We also highlight the need for the identification of which metabolic regulatory factors of AOX activity are related to N availability and nitrogen-fixing legume-rhizobia symbiosis in order to improve our understanding of N assimilation and biological nitrogen fixation.
Collapse
Affiliation(s)
- José Ortíz
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, 4030000 Concepción, Chile; (J.O.); (C.S.); (C.C.); (L.B.-G.)
| | - Carolina Sanhueza
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, 4030000 Concepción, Chile; (J.O.); (C.S.); (C.C.); (L.B.-G.)
| | - Antònia Romero-Munar
- Centro de Estudios Avanzados en Fruticultura (CEAF), Camino Las Parcelas 882, km 105 Ruta 5 Sur. Sector los Choapinos, 2940000 Rengo, Chile;
| | - Javier Hidalgo-Castellanos
- Department of Plant Physiology, Faculty of sciences, University of Granada, 18071 Granada, Spain; (J.H.-C.); (M.L.-G.)
| | - Catalina Castro
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, 4030000 Concepción, Chile; (J.O.); (C.S.); (C.C.); (L.B.-G.)
| | - Luisa Bascuñán-Godoy
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, 4030000 Concepción, Chile; (J.O.); (C.S.); (C.C.); (L.B.-G.)
| | | | - Miguel López-Gómez
- Department of Plant Physiology, Faculty of sciences, University of Granada, 18071 Granada, Spain; (J.H.-C.); (M.L.-G.)
| | - Igor Florez-Sarasa
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain;
| | - Néstor Fernández Del-Saz
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, 4030000 Concepción, Chile; (J.O.); (C.S.); (C.C.); (L.B.-G.)
| |
Collapse
|
53
|
Goyal K, Kaur K, Kaur G. Foliar treatment of potassium nitrate modulates the fermentative and sucrose metabolizing pathways in contrasting maize genotypes under water logging stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:899-906. [PMID: 32377040 PMCID: PMC7196593 DOI: 10.1007/s12298-020-00779-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/08/2020] [Accepted: 02/17/2020] [Indexed: 06/11/2023]
Abstract
The effect of potassium nitrate on the status of fermentative and sucrose metabolizing pathways was studied in two maize (Zea mays L.) genotypes, viz., LM 5 (relatively susceptible to flooding) and I 167 (relatively tolerant to flooding) under water logging stress. The higher increase in pyruvate decarboxylase, alcohol dehydrogenase and aldehyde dehydrogenase activities in the hypoxic roots of I 167 seedlings over LM 5 showed the former's efficient tolerance mechanism towards anaerobic conditions. Foliar application of KNO3 reduced these enzymatic activities in the roots of both the genotypes. The shoots of I 167 seedlings also showed a parallel increase in alcohol dehydrogenase and pyruvate decarboxylase activities under water logging stress. These enzymatic activities, however, remained unaffected in shoots of water logged LM 5 seedlings. There was a higher decrease in acid and alkaline invertase activities in the hypoxic roots of I 167 seedlings. KNO3 treatment led to higher acid invertase activity in roots of I 167 seedlings than those of LM 5. Sucrose synthase (synthesis) and sucrose phosphate synthase activities decreased, but sucrose synthase (breakdown) activity increased in the roots of both the genotypes, during water logging. KNO3 increased sucrose synthesizing activities with a parallel increase in the sucrose content of the roots. Sucrose synthesis was comparatively unaffected in I 167 shoots under water logging stress while LM 5 shoots showed higher reduction in its sucrose synthase (synthesis) and sucrose phosphate synthase activities. It may thus be concluded that KNO3 induced a network of reactions for improving water logging tolerance. The nitrate ions acted as an alternate electron acceptor and thus reduced the activities of fermentative enzymes. It promoted the funneling of sugars into the glycolytic pathway by inducing the activities of acid and alkaline invertases in the roots and shoots of maize genotypes. It also directed the hexoses towards biosynthetic pathway by increasing the activities of sucrose synthesizing enzymes.
Collapse
Affiliation(s)
- Khushboo Goyal
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab India
| | - Kamaljit Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab India
| | - Gurjit Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India
| |
Collapse
|
54
|
Iqbal A, Qiang D, Zhun W, Xiangru W, Huiping G, Hengheng Z, Nianchang P, Xiling Z, Meizhen S. Growth and nitrogen metabolism are associated with nitrogen-use efficiency in cotton genotypes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:61-74. [PMID: 32050119 DOI: 10.1016/j.plaphy.2020.02.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 05/23/2023]
Abstract
Crops, including cotton, are sensitive to nitrogen (N) and excessive use can lead to an increase in production costs and environmental problems. We hypothesized that the use of cotton genotypes with substantial root systems and high genetic potentials for nitrogen-use efficiency (NUE) would best address these problems. Therefore, the interspecific variations and traits contributing to NUE in six cotton genotypes having contrasting NUEs were studied in response to various nitrate concentrations. Large genotypic variations were observed in morphophysiological and biochemical traits, especially shoot dry weight, root traits, and N-assimilating enzyme levels. The roots of all the cotton genotypes were more sensitive to low-than high-nitrate concentrations, and the genotype CCRI-69 had the largest root system irrespective of the nitrate concentration. The root morphological traits were positively correlated with N-utilization efficiency and were more affected by genotype than nitrate concentration. Conversely, growth and N-assimilating enzyme levels were more affected by nitrate concentration and were positively correlated with N-uptake efficiency. Based on shoot dry weight, CCRI-69 and XLZ-30 were identified as N-efficient and N-inefficient genotypes, respectively, and these results were confirmed by their contrasting root systems, N metabolism, and NUEs. In the future, multi-omics techniques will be performed to identify key genes/pathways involved in N metabolism, which may have the potential to improve root architecture and increase NUE.
Collapse
Affiliation(s)
- Asif Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China.
| | - Dong Qiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Wang Zhun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Wang Xiangru
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Gui Huiping
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Zhang Hengheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Pang Nianchang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Zhang Xiling
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China.
| | - Song Meizhen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China.
| |
Collapse
|
55
|
Bulgari R, Cocetta G, Trivellini A, Ferrante A. Borage extracts affect wild rocket quality and influence nitrate and carbon metabolism. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:649-660. [PMID: 32255929 PMCID: PMC7113362 DOI: 10.1007/s12298-020-00783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/07/2020] [Accepted: 02/21/2020] [Indexed: 06/11/2023]
Abstract
Market is increasingly demanding vegetables with high quality and nutraceutical characteristics. It was demonstrated that leafy vegetables can get benefit from biostimulants, for the reduction of nitrate concentration and the increment of antioxidants, with potential benefit for human health. The research purpose was to investigate on the role of a novel plant-based biostimulant in affecting nitrogen and carbon metabolism in wild rocket (Diplotaxis tenuifolia L.). Foliar spray treatments were performed with extracts obtained from borage (Borago officinalis L.) leaves and flowers. To evaluate the treatments effect, in vivo determinations (chlorophyll a fluorescence and chlorophyll content) were performed. At harvest, nitrate concentration, sucrose, total sugars, chlorophyll, and carotenoids levels were measured in leaves. In order to characterize the mechanism of action also at molecular level, a set of genes encoding for some of the key enzymes implicated in nitrate and carbon metabolism was selected and their expression was measured by qRT-PCR. Interesting results concerned the increment of sucrose, coherent with a high value of Fv/Fm, in addition to a significant reduction of nitrate and ABA than control, and an enhanced NR in vivo activity. Also, genes expression was influenced by extracts, with a more pronounced effect on N related genes.
Collapse
Affiliation(s)
- Roberta Bulgari
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via Celoria 2, Milan, Italy
| | - Giacomo Cocetta
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via Celoria 2, Milan, Italy
| | - Alice Trivellini
- Institute of Life Science, Scuola Superiore Sant’Anna Pisa, Pz Martiri della Libertà 33, Pisa, Italy
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via Celoria 2, Milan, Italy
| |
Collapse
|
56
|
Ge M, Wang Y, Liu Y, Jiang L, He B, Ning L, Du H, Lv Y, Zhou L, Lin F, Zhang T, Liang S, Lu H, Zhao H. The NIN-like protein 5 (ZmNLP5) transcription factor is involved in modulating the nitrogen response in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:353-368. [PMID: 31793100 PMCID: PMC7217196 DOI: 10.1111/tpj.14628] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 05/12/2023]
Abstract
Maize exhibits marked growth and yield response to supplemental nitrogen (N). Here, we report the functional characterization of a maize NIN-like protein ZmNLP5 as a central hub in a molecular network associated with N metabolism. Predominantly expressed and accumulated in roots and vascular tissues, ZmNLP5 was shown to rapidly respond to nitrate treatment. Under limited N supply, compared with that of wild-type (WT) seedlings, the zmnlp5 mutant seedlings accumulated less nitrate and nitrite in the root tissues and ammonium in the shoot tissues. The zmnlp5 mutant plants accumulated less nitrogen than the WT plants in the ear leaves and seed kernels. Furthermore, the mutants carrying the transgenic ZmNLP5 cDNA fragment significantly increased the nitrate content in the root tissues compared with that of the zmnlp5 mutants. In the zmnlp5 mutant plants, loss of the ZmNLP5 function led to changes in expression for a significant number of genes involved in N signalling and metabolism. We further show that ZmNLP5 directly regulates the expression of nitrite reductase 1.1 (ZmNIR1.1) by binding to the nitrate-responsive cis-element at the 5' UTR of the gene. Interestingly, a natural loss-of-function allele of ZmNLP5 in Mo17 conferred less N accumulation in the ear leaves and seed kernels resembling that of the zmnlp5 mutant plants. Our findings show that ZmNLP5 is involved in mediating the plant response to N in maize.
Collapse
Affiliation(s)
- Min Ge
- Institute of Crop Germplasm and BiotechnologyProvincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjing210014China
| | - Yuancong Wang
- Institute of Crop Germplasm and BiotechnologyProvincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjing210014China
| | - Yuhe Liu
- Department of Crop SciencesUniversity of IllinoisUrbana‐ChampaignILUSA
| | - Lu Jiang
- Institute of Crop Germplasm and BiotechnologyProvincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjing210014China
| | - Bing He
- Institute of Crop Germplasm and BiotechnologyProvincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjing210014China
| | - Lihua Ning
- Institute of Crop Germplasm and BiotechnologyProvincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjing210014China
| | - Hongyang Du
- Institute of Crop Germplasm and BiotechnologyProvincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjing210014China
| | - Yuanda Lv
- Institute of Crop Germplasm and BiotechnologyProvincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjing210014China
| | - Ling Zhou
- Institute of Crop Germplasm and BiotechnologyProvincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjing210014China
| | - Feng Lin
- Institute of Crop Germplasm and BiotechnologyProvincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjing210014China
| | - Tifu Zhang
- Institute of Crop Germplasm and BiotechnologyProvincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjing210014China
| | - Shuaiqiang Liang
- Institute of Crop Germplasm and BiotechnologyProvincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjing210014China
| | - Haiyan Lu
- Institute of Crop Germplasm and BiotechnologyProvincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjing210014China
| | - Han Zhao
- Institute of Crop Germplasm and BiotechnologyProvincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjing210014China
| |
Collapse
|
57
|
Karim MR, Wang R, Zheng L, Dong X, Shen R, Lan P. Physiological and Proteomic Dissection of the Responses of Two Contrasting Wheat Genotypes to Nitrogen Deficiency. Int J Mol Sci 2020; 21:E2119. [PMID: 32204457 PMCID: PMC7139514 DOI: 10.3390/ijms21062119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 01/18/2023] Open
Abstract
Nitrogen deficiency usually occurs along with aluminum toxicity in acidic soil, which is one of the major constraints for wheat production worldwide. In order to compare adaptive processes to N deficiency with different Al-tolerant wheat cultivars, we chose Atlas 66 and Scout 66 to comprehensively analyze the physiological responses to N deficiency, coupled with label-free mass spectrometry-based proteomics analysis. Results showed that both cultivars were comparable in most physiological indexes under N deficient conditions. However, the chlorophyll content in Scout 66 was higher than that of Atlas 66 under N deficiency. Further proteomic analysis identified 5592 and 5496 proteins in the leaves of Atlas 66 and Scout 66, respectively, of which 658 and 734 proteins were shown to significantly change in abundance upon N deficiency, respectively. The majority of the differentially expressed proteins were involved in cellular N compound metabolic process, photosynthesis, etc. Moreover, tetrapyrrole synthesis and sulfate assimilation were particularly enriched in Scout 66. Our findings provide evidence towards a better understanding of genotype-dependent responses under N deficiency which could help us to develop N efficient cultivars to various soil types.
Collapse
Affiliation(s)
- Mohammad Rezaul Karim
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (M.R.K.); (R.W.); (L.Z.); (X.D.); (R.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruonan Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (M.R.K.); (R.W.); (L.Z.); (X.D.); (R.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (M.R.K.); (R.W.); (L.Z.); (X.D.); (R.S.)
| | - Xiaoying Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (M.R.K.); (R.W.); (L.Z.); (X.D.); (R.S.)
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (M.R.K.); (R.W.); (L.Z.); (X.D.); (R.S.)
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (M.R.K.); (R.W.); (L.Z.); (X.D.); (R.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
58
|
Vazquez A, Recalde L, Cabrera A, Groppa MD, Benavides MP. Does nitrogen source influence cadmium distribution in Arabidopsis plants? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110163. [PMID: 31951900 DOI: 10.1016/j.ecoenv.2020.110163] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/09/2019] [Accepted: 01/02/2020] [Indexed: 05/22/2023]
Abstract
The purpose of the present work was to study the effect of the nitrogen source (NO3- vs NH4+) on cadmium (Cd) uptake, translocation and partition and its associated toxicity in hydroponically-grown Arabidopsis plants. After a short growth period on a complete Hoagland nutrient solution, Arabidopsis seedlings continued in the same growth medium (NA) or were switched to NO3- (N) or NH4+ (A) as sole N sources and supplied with 2.5 μM Cd. Unrelated to the nitrogen source, Cd reached higher levels in roots than in leaves. However, when ammonium was the source of nitrogen, Cd accumulation in roots was lower than in N or NA medium and the metal translocation to the aerial part was restricted, reaching values 25%-35% below the levels observed in plants grown with N or NA. Cadmium negatively affected chlorophyll content and PSII quantum yield, independently of the nitrogen source, with the highest decrease (35%) under NA treatment. Proline content increased, either with NA, N or A supplied in the presence of Cd, whereas a rise in total anthocyanin content was clearly favored when ammonium was the source of nitrogen, with or without Cd. In leaves, while NIA1 and NIA2 expression was markedly reduced by Cd in the presence of N or NA, ammonium source slightly reduced NIA1 expression but greatly upregulated NIA2 expression upon Cd exposure. The decay in NR activity was independent of the nitrogen source when Cd was applied and this decay was accompanied by a great increase in NH4+ levels either with nitrates or ammonium in the medium in the presence of Cd. Only NIA1 was detected in roots and its expression, together with NR activity and nitrates levels, was the highest in N medium devoid of Cd. The possibility of reducing Cd health risks through nitrogen fertilization practices is discussed.
Collapse
Affiliation(s)
- Analía Vazquez
- Instituto de Química y Fisicoquímica Biológicas Dr Alejandro Paladini (IQUIFIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laura Recalde
- Universidad de Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina
| | - Andrea Cabrera
- Universidad de Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina
| | - María Daniela Groppa
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Dr Alejandro Paladini (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - María Patricia Benavides
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Dr Alejandro Paladini (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| |
Collapse
|
59
|
Iqbal A, Dong Q, Wang X, Gui H, Zhang H, Zhang X, Song M. Variations in Nitrogen Metabolism are Closely Linked with Nitrogen Uptake and Utilization Efficiency in Cotton Genotypes under Various Nitrogen Supplies. PLANTS (BASEL, SWITZERLAND) 2020; 9:E250. [PMID: 32075340 PMCID: PMC7076418 DOI: 10.3390/plants9020250] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
Cotton production is highly sensitive to nitrogen (N) fertilization, whose excessive use is responsible for human and environmental problems. Lowering N supply together with the selection of N-efficient genotypes, more able to uptake, utilize, and remobilize the available N, could be a challenge to maintain high cotton production sustainably. The current study aimed to explore the intraspecific variation among four cotton genotypes in response to various N supplies, in order to identify the most distinct N-efficient genotypes and their nitrogen use efficiency (NUE)-related traits in hydroponic culture. On the basis of shoot dry matter, CCRI-69 and XLZ-30 were identified as N-efficient and N-inefficient genotypes, respectively, and these results were confirmed by their contrasting N metabolism, uptake (NUpE), and utilization efficiency (NUtE). Overall, our results indicated the key role of shoot glutamine synthetase (GS) and root total soluble protein in NUtE. Conversely, tissue N concentration and N-metabolizing enzymes were considered as the key traits in conferring high NUpE. The remobilization of N from the shoot to roots by high shoot GS activity may be a strategy to enhance root total soluble protein, which improves root growth for N uptake and NUE. In future, multi-omics studies will be employed to focus on the key genes and pathways involved in N metabolism and their role in improving NUE.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiling Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (A.I.); (Q.D.)
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (A.I.); (Q.D.)
| |
Collapse
|
60
|
Interactive Effects of the CO2 Enrichment and Nitrogen Supply on the Biomass Accumulation, Gas Exchange Properties, and Mineral Elements Concentrations in Cucumber Plants at Different Growth Stages. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10010139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The concentration changes of mineral elements in plants at different CO2 concentrations ([CO2]) and nitrogen (N) supplies and the mechanisms which control such changes are not clear. Hydroponic trials on cucumber plants with three [CO2] (400, 625, and 1200 μmol mol−1) and five N supply levels (2, 4, 7, 14, and 21 mmol L−1) were conducted. When plants were in high N supply, the increase in total biomass by elevated [CO2] was 51.7% and 70.1% at the seedling and initial fruiting stages, respectively. An increase in net photosynthetic rate (Pn) by more than 60%, a decrease in stomatal conductance (Gs) by 21.2–27.7%, and a decrease in transpiration rate (Tr) by 22.9–31.9% under elevated [CO2] were also observed. High N supplies could further improve the Pn and offset the decrease of Gs and Tr by elevated [CO2]. According to the mineral concentrations and the correlation results, we concluded the main factors affecting these changes. The dilution effect was the main factor driving the reduction of all mineral elements, whereas Tr also had a great impact on the decrease of [N], [K], [Ca], and [Mg] except [P]. In addition, the demand changes of N, Ca, and Mg influenced the corresponding element concentrations in cucumber plants.
Collapse
|
61
|
Sharpe RM, Gustafson L, Hewitt S, Kilian B, Crabb J, Hendrickson C, Jiwan D, Andrews P, Dhingra A. Concomitant phytonutrient and transcriptome analysis of mature fruit and leaf tissues of tomato (Solanum lycopersicum L. cv. Oregon Spring) grown using organic and conventional fertilizer. PLoS One 2020; 15:e0227429. [PMID: 31931517 PMCID: PMC6957345 DOI: 10.1371/journal.pone.0227429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/18/2019] [Indexed: 12/01/2022] Open
Abstract
Enhanced levels of antioxidants, phenolic compounds, carotenoids and vitamin C have been reported for several crops grown under organic fertilizer, albeit with yield penalties. As organic agricultural practices continue to grow and find favor it is critical to gain an understanding of the molecular underpinnings of the factors that limit the yields in organically farmed crops. Concomitant phytochemical and transcriptomic analysis was performed on mature fruit and leaf tissues derived from Solanum lycopersicum L. ‘Oregon Spring’ grown under organic and conventional fertilizer conditions to evaluate the following hypotheses. 1. Organic soil fertilizer management results in greater allocation of photosynthetically derived resources to the synthesis of secondary metabolites than to plant growth, and 2. Genes involved in changes in the accumulation of phytonutrients under organic fertilizer regime will exhibit differential expression, and that the growth under different fertilizer treatments will elicit a differential response from the tomato genome. Both these hypotheses were supported, suggesting an adjustment of the metabolic and genomic activity of the plant in response to different fertilizers. Organic fertilizer treatment showed an activation of photoinhibitory processes through differential activation of nitrogen transport and assimilation genes resulting in higher accumulation of phytonutrients. This information can be used to identify alleles for breeding crops that allow for efficient utilization of organic inputs.
Collapse
Affiliation(s)
- Richard M. Sharpe
- Department of Horticulture, Washington State University,Pullman, WA, United States of America
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA, United States of America
| | - Luke Gustafson
- Department of Horticulture, Washington State University,Pullman, WA, United States of America
| | - Seanna Hewitt
- Department of Horticulture, Washington State University,Pullman, WA, United States of America
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA, United States of America
| | - Benjamin Kilian
- Department of Horticulture, Washington State University,Pullman, WA, United States of America
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA, United States of America
| | - James Crabb
- Department of Horticulture, Washington State University,Pullman, WA, United States of America
| | - Christopher Hendrickson
- Department of Horticulture, Washington State University,Pullman, WA, United States of America
| | - Derick Jiwan
- Department of Horticulture, Washington State University,Pullman, WA, United States of America
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA, United States of America
| | - Preston Andrews
- Department of Horticulture, Washington State University,Pullman, WA, United States of America
| | - Amit Dhingra
- Department of Horticulture, Washington State University,Pullman, WA, United States of America
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA, United States of America
- * E-mail:
| |
Collapse
|
62
|
Chitosan and its oligosaccharides, a promising option for sustainable crop production- a review. Carbohydr Polym 2020; 227:115331. [DOI: 10.1016/j.carbpol.2019.115331] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/15/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
|
63
|
Shah JM, Muntaha ST, Ali E, Khan AA, Zaidi SHR, Shahzad AN, Hassan Z, Nawaz A, Rashid M, Bukhari SAH. Comparative study of the genetic basis of nitrogen use efficiency in wild and cultivated barley. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1435-1444. [PMID: 31736546 PMCID: PMC6825228 DOI: 10.1007/s12298-019-00714-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/30/2019] [Accepted: 09/06/2019] [Indexed: 05/31/2023]
Abstract
To curb the increasing demand for nitrogenous fertilizers, it is imperative to develop new cultivars with comparatively greater nitrogen use efficiency (NUE). Nonetheless, so far very meager information is available concerning the variances among barley (Hordeum vulgare L.) varieties for their response to nitrogen deprivation. The current study was carried out to explore the potential of barley genotypes for higher NUE. A hydroponic experiment was conducted at seedling stage to compare the performance of four barley genotypes, ZD9 and XZ149 (with higher NUE) and HXRL and XZ56 (with lower NUE) in response to low (0.1 mM) and normal nitrogen (2 mM) levels. Under low N, all the genotypes expressed less number of tillers, decreased soluble proteins, chlorophyll and N concentrations in both roots and shoots, in comparison with normal N supply. However, significant differences were found among the genotypes. The genotypes with high NUE (ZD9 and XZ149) showed higher N concentration, increased number of tillers, improved chlorophyll and soluble proteins in both roots and shoots as compared to the inefficient ones (HXRL and XZ56). Furthermore, nitrate transporter gene (NRT2.1) showed higher expression under low N, both in roots and leaves of N efficient genotypes, as compared to the N inefficient ones. However, N assimilatory genes (GS1 and GS2) showed higher expression under normal and low N level, in leaves and roots respectively. The outcome of the study revealed that genotypes with higher NUE (ZD9 and XZ149) performed better under reduced N supply, and may require relatively less N fertilizer for normal growth and development, as compared to those with lower NUE. The study also revealed a time-specific expression pattern of studied genes, indicating the duration of low N stress. The current study suggested that future work must involve the time course as a key factor while studying expression patterns of these genes to better understand the genetic basis of low-N tolerance.
Collapse
Affiliation(s)
- Jawad Munawar Shah
- College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058 People’s Republic of China
- College of Agriculture, Bahaudin Zakaria University, Bahadur sub Campus, Layyah, Pakistan
| | - Sidra tul Muntaha
- College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Essa Ali
- Zhejiang University of Technology, Hangzhou, People’s Republic of China
| | - Azhar Abbas Khan
- College of Agriculture, Bahaudin Zakaria University, Bahadur sub Campus, Layyah, Pakistan
| | - Syed Hassan Raza Zaidi
- College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Ahmad Naeem Shahzad
- Department of Agronomy, Bahauddin Zakariya University, Multan, 60800 Pakistan
| | - Zeshan Hassan
- College of Agriculture, Bahaudin Zakaria University, Bahadur sub Campus, Layyah, Pakistan
| | - Ahmad Nawaz
- College of Agriculture, Bahaudin Zakaria University, Bahadur sub Campus, Layyah, Pakistan
| | - Muhammad Rashid
- Department of Agronomy, Lasbella University of Agriculture, Water and Marine Sciences, Uthal, Lasbella, Pakistan
| | | |
Collapse
|
64
|
Measurement of Nitrate Reductase Activity in Tomato (Solanum lycopersicum L.) Leaves Under Different Conditions. Methods Mol Biol 2019. [PMID: 31595467 DOI: 10.1007/978-1-4939-9790-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Nitrogen is one of the crucial macronutrients essential for plant growth, development, and survival under stress conditions. Depending on cellular requirement, plants can absorb nitrogen mainly in multiple forms such as nitrate (NO3 -) or ammonium (NH4 +) or combination of both via efficient and highly regulated transport systems in roots. In addition, nitrogen-fixing symbiotic bacteria can fix atmospheric nitrogen in to NH4 + via highly regulated complex enzyme system and supply to the roots in nodules of several species of leguminous plants. If NO3 - is a primary source, it is transported from roots and then it is rapidly converted to nitrite (NO2 -) by nitrate reductase (NR) (EC 1.6.6.1) which is a critical and very important enzyme for this conversion. This key reaction is mediated by transfer of two electrons from NAD(P)H to NO3 -. This occurs via the three redox centers comprised of two prosthetic groups (FAD and heme) and a MoCo cofactor. NR activity is greatly influenced by factors such as developmental stage and various stress conditions such as hypoxia, salinity and pathogen infection etc. In addition, light/dark dynamics plays crucial role in modulating NR activity. NR activity can be easily detected by measuring the conversion of NO3 - to NO2 - under optimized conditions. Here, we describe a detailed protocol for measuring relative NR enzyme activity of tomato crude extracts. This protocol offers an efficient and straightforward procedure to compare the NR activity of various plants under different conditions.
Collapse
|
65
|
Angkawijaya AE, Nguyen VC, Nakamura Y. LYSOPHOSPHATIDIC ACID ACYLTRANSFERASES 4 and 5 are involved in glycerolipid metabolism and nitrogen starvation response in Arabidopsis. THE NEW PHYTOLOGIST 2019; 224:336-351. [PMID: 31211859 DOI: 10.1111/nph.16000] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Nitrogen (N) deficiency triggers an accumulation of a storage lipid triacylglycerol (TAG) in seed plants and algae. Whereas the metabolic pathway and regulatory mechanism to synthesize TAG from diacylglycerol are well known, enzymes involved in the supply of diacylglycerol remain elusive under N starvation. Lysophosphatidic acid acyltransferase (LPAT) catalyzes an important step of the de novo phospholipid biosynthesis pathway and thus has a strong flux control in the biosynthesis of phospholipids and TAG. Five LPAT isoforms are known in Arabidopsis; however, the functions of LPAT4 and LPAT5 remain elusive. Here, we show that LPAT4 and LPAT5 are functional endoplasmic-reticulum-localized LPATs. Seedlings of the double knockout mutant lpat4-1 lpat5-1 showed reduced content of phospholipids and TAG under normal growth condition. Under N starvation, lpat4-1 lpat5-1 seedlings showed severer growth defect than the wild-type in shoot. The phenotype was similar to dgat1-4, which affects a major TAG biosynthesis pathway and showed similarly reduced TAG content as the lpat4-1 lpat5-1. We suggest that LPAT4 and LPAT5 may redundantly function in endoplasmic-reticulum-localized de novo glycerolipid biosynthesis for phospholipids and TAG, which is important for the N starvation response in Arabidopsis.
Collapse
Affiliation(s)
- Artik Elisa Angkawijaya
- Institute of Plant and Microbial Biology, Academia Sinica, 128 sec.2 Academia Road, Nankang, Taipei, 11529, Taiwan
| | - Van Cam Nguyen
- Institute of Plant and Microbial Biology, Academia Sinica, 128 sec.2 Academia Road, Nankang, Taipei, 11529, Taiwan
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, 128 sec.2 Academia Road, Nankang, Taipei, 11529, Taiwan
| |
Collapse
|
66
|
Ueda Y, Yanagisawa S. Perception, transduction, and integration of nitrogen and phosphorus nutritional signals in the transcriptional regulatory network in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3709-3717. [PMID: 30949701 DOI: 10.1093/jxb/erz148] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/19/2019] [Indexed: 05/20/2023]
Abstract
Nitrate and phosphate ions are major sources of nitrogen and phosphorus for plants. In addition to their vital roles as indispensable macronutrients, these ions function as signalling molecules and induce a variety of responses. Plants adapt to different levels of nutrients by altering their gene expression profile and subsequent physiological and morphological responses. Advances made in recent years have provided novel insights into plant nutrient sensing and modulation of gene expression. Key breakthroughs include elucidation of the mechanisms underlying post-translational regulation of NIN-LIKE PROTEIN (NLP) and PHOSPHATE STARVATION RESPONSE (PHR) family transcription factors, which function as master regulators of responses to nitrate and phosphate starvation, respectively. Determination of the mechanisms whereby these nutrient signals are integrated through NIGT1/HHO family proteins has likewise represented important progress. Further studies have revealed novel roles in nutrient signalling of transcription factors that have previously been shown to be associated with other signals, such as light and phytohormones. Nitrate and phosphate signals are thus transmitted through an intricate gene regulatory network with the help of various positive and negative transcriptional regulators. These complex regulatory patterns enable plants to integrate input signals from various environmental factors and trigger appropriate responses, as exemplified by the regulatory module involving NIGT1/HHO family proteins. These mechanisms collectively support nutrient homeostasis in plants.
Collapse
Affiliation(s)
- Yoshiaki Ueda
- Biotechnology Research Center, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo
| | - Shuichi Yanagisawa
- Biotechnology Research Center, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo
| |
Collapse
|
67
|
Zhang K, Wu Y, Hang H. Differential contributions of NO 3 -/NH 4 + to nitrogen use in response to a variable inorganic nitrogen supply in plantlets of two Brassicaceae species in vitro. PLANT METHODS 2019; 15:86. [PMID: 31384291 PMCID: PMC6668107 DOI: 10.1186/s13007-019-0473-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The primary sources of nitrogen for plants have been suggested to be nitrate (NO3 -) and ammonium (NH4 +). However, when both nitrate and ammonium are simultaneously available to plants, it is very difficult to differentially quantify NO3 -/NH4 + utilization in culture media or soil. Consequently, the contribution of NO3 -/NH4 + to total inorganic nitrogen assimilation cannot be determined. RESULTS We developed a method called the bidirectional stable nitrogen isotope tracer to differentially quantify the nitrate and ammonium utilization by Orychophragmus violaceus (Ov) and Brassica napus (Bn) plantlets in vitro. The utilization efficiency of nitrate was markedly lower than the utilization efficiency of ammonium for plantlets of both Ov and Bn. In both Ov and Bn, the proportion of NO3 -/NH4 + utilization did not show a linear relationship with inorganic nitrogen supply. The Ov plantlets assimilated more nitrate than the Bn plantlets at the lowest inorganic nitrogen concentration. CONCLUSIONS Quantifying the utilization of nitrate and ammonium can reveal the differences in nitrate and ammonium assimilation among plants at different inorganic nitrogen supply levels and provide an alternate way to conveniently optimize the supply of inorganic nitrogen in culture media.
Collapse
Affiliation(s)
- Kaiyan Zhang
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001 China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 99 Lincheng West Road, Guanshanhu District, Guiyang, 550081 Guizhou Province People’s Republic of China
| | - Yanyou Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 99 Lincheng West Road, Guanshanhu District, Guiyang, 550081 Guizhou Province People’s Republic of China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, 710061 China
| | - Hongtao Hang
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001 China
| |
Collapse
|
68
|
Meyer RC, Gryczka C, Neitsch C, Müller M, Bräutigam A, Schlereth A, Schön H, Weigelt-Fischer K, Altmann T. Genetic diversity for nitrogen use efficiency in Arabidopsis thaliana. PLANTA 2019; 250:41-57. [PMID: 30904943 DOI: 10.1007/s00425-019-03140-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
The plasticity of plant growth response to differing nitrate availability renders the identification of biomarkers difficult, but allows access to genetic factors as tools to modulate root systems to a wide range of soil conditions. Nitrogen availability is a major determinant of crop yield. While the application of fertiliser substantially increases the yield on poor soils, it also causes nitrate pollution of water resources and high costs for farmers. Increasing nitrogen use efficiency in crop plants is a necessary step to implement low-input agricultural systems. We exploited the genetic diversity present in the worldwide Arabidopsis thaliana population to study adaptive growth patterns and changes in gene expression associated with chronic low nitrate stress, to identify biomarkers associated with good plant performance under low nitrate availability. Arabidopsis accessions were grown on agar plates with limited and sufficient supply of nitrate to measure root system architecture as well as shoot and root fresh weight. Differential gene expression was determined using Affymetrix ATH1 arrays. We show that the response to differing nitrate availability is highly variable in Arabidopsis accessions. Analyses of vegetative shoot growth and root system architecture identified accession-specific reaction modes to cope with limited nitrate availability. Transcription and epigenetic factors were identified as important players in the adaption to limited nitrogen in a global gene expression analysis. Five nitrate-responsive genes emerged as possible biomarkers for NUE in Arabidopsis. The plasticity of plant growth in response to differing nitrate availability in the substrate renders the identification of morphological and molecular features as biomarkers difficult, but at the same time allows access to a multitude of genetic factors which can be used as tools to modulate and adjust root systems to a wide range of soil conditions.
Collapse
Affiliation(s)
- Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466, Seeland, Germany.
| | - Corina Gryczka
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
| | - Cathleen Neitsch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
- IDT Biologika GmbH, Magdeburg, Germany
| | - Margarete Müller
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
- Bayer HealthCare Pharmaceuticals, Berlin, Germany
| | - Andrea Bräutigam
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Armin Schlereth
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Kathleen Weigelt-Fischer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
| |
Collapse
|
69
|
Wu Z, Luo J, Han Y, Hua Y, Guan C, Zhang Z. Low Nitrogen Enhances Nitrogen Use Efficiency by Triggering NO 3- Uptake and Its Long-Distance Translocation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6736-6747. [PMID: 31184154 DOI: 10.1021/acs.jafc.9b02491] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nitrogen is essential for plant growth and crop productivity; however, nitrogen use efficiency (NUE) decreases with increasing N supply, resulting in a waste of resources. Molecular mechanisms underlying low-nitrogen (LN)-mediated enhancement of NUE are not clear. We used high-NUE Brassica napus genotype H (Xiangyou 15), low-NUE B. napus genotype L (814), and Arabidopsis mutant aux1 to elucidate the mechanism underlying the changes in NUE under different rates of N fertilizer application. NUE of B. napus increased under LN, which enhanced N uptake ability by regulating root system architecture and plasma membrane H+-ATPase activity; AUX1 was involved in this process. Additionally, BnNRT1.5 was upregulated and BnNRT1.8 was downregulated under LN, whereby more N was transferred to the shoot through enhanced N transport. Observed changes in photosynthesis under LN were associated with N assimilation efficiency. Our study provides new insights into the mechanisms of plant adaptation to the environment.
Collapse
Affiliation(s)
- Zhimin Wu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences , Hunan Agricultural University , Changsha , Hunan 410128 , People's Republic of China
| | - Jinsong Luo
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences , Hunan Agricultural University , Changsha , Hunan 410128 , People's Republic of China
| | - Yongliang Han
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences , Hunan Agricultural University , Changsha , Hunan 410128 , People's Republic of China
| | - Yingpeng Hua
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences , Hunan Agricultural University , Changsha , Hunan 410128 , People's Republic of China
| | - Chunyun Guan
- National Center of Oilseed Crops Improvement , Hunan Branch, Changsha , Hunan 410128 , People's Republic of China
| | - Zhenhua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences , Hunan Agricultural University , Changsha , Hunan 410128 , People's Republic of China
| |
Collapse
|
70
|
de Ávila Silva L, Condori-Apfata JA, Marcelino MM, Tavares ACA, Raimundi SCJ, Martino PB, Araújo WL, Zsögön A, Sulpice R, Nunes-Nesi A. Nitrogen differentially modulates photosynthesis, carbon allocation and yield related traits in two contrasting Capsicum chinense cultivars. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:224-237. [PMID: 31128692 DOI: 10.1016/j.plantsci.2019.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 05/24/2023]
Abstract
Yield-related traits of Capsicum chinense are highly dependent on coordination between vegetative and reproductive growth, since the formation of reproductive tissues occurs iteratively in new sympodial bifurcations. In this study, we used two C. chinense cultivars (Biquinho and Habanero), contrasting for fruit size and fruit set, to investigate the responses of nitrogen (N) deficiency and excess on growth, photosynthesis, carbon (C) and N metabolisms as well as yield-related traits. Both cultivars increased biomass allocation to leaves in conditions of higher N supply and exhibited a parabolic behavior for fruit biomass allocation. Plants growing under N-deficiency produced a lower number of flowers and heavier fruits. Contrarily, plants under high N condition tended to decrease their CO2 assimilation rate, harvest index and fruit weight. Biquinho, the cultivar with lower fruit size and higher fruit set, was initially less affected by excess of N due to its continuous formation of new reproductive sinks in relation to Habanero (which has lower fruit set and higher fruit size). The results suggest that N amount influences sucrose supply to different organs and can differentially affect yield-related traits between Capsicum cultivars with contrasting source-sink relations.
Collapse
Affiliation(s)
- Lucas de Ávila Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Jorge A Condori-Apfata
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Mariana Marques Marcelino
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Ana C Azevedo Tavares
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Sábata C Januário Raimundi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Pedro Brandão Martino
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Ronan Sulpice
- National University of Ireland, Galway, Plant Systems Biology Lab, Plant and AgriBiosciences Research Centre, Ryan Institute, Ireland
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
71
|
Wang J, Song K, Sun L, Qin Q, Sun Y, Pan J, Xue Y. Morphological and Transcriptome Analysis of Wheat Seedlings Response to Low Nitrogen Stress. PLANTS 2019; 8:plants8040098. [PMID: 30991719 PMCID: PMC6524375 DOI: 10.3390/plants8040098] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/25/2022]
Abstract
Nitrogen (N) is one of the essential macronutrients that plays an important role in plant growth and development. Unfortunately, low utilization rate of nitrogen has become one of the main abiotic factors affecting crop growth. Nevertheless, little research has been done on the molecular mechanism of wheat seedlings resisting or adapting to low nitrogen environment. In this paper, the response of wheat seedlings against low nitrogen stress at phenotypic changes and gene expression level were studied. The results showed that plant height, leaf area, shoot and root dry weight, total root length, and number under low nitrogen stress decreased by 26.0, 28.1, 24.3, 38.0, 41.4, and 21.2 percent, respectively compared with plants under normal conditions. 2265 differentially expressed genes (DEGs) were detected in roots and 2083 DEGs were detected in leaves under low nitrogen stress (N-) compared with the control (CK). 1688 genes were up-regulated and 577 genes were down-regulated in roots, whilst 505 genes were up-regulated and 1578 were down-regulated in leaves. Among the most addressed Gene Ontology (GO) categories, oxidation reduction process, oxidoreductase activity, and cell component were mostly represented. In addition, genes involved in the signal transduction, carbon and nitrogen metabolism, antioxidant activity, and environmental adaptation were highlighted. Our study provides new information for further understanding the response of wheat to low nitrogen stress.
Collapse
Affiliation(s)
- Jun Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Ke Song
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
- Shanghai Scientific Observation and Experimental Station for Agricultural Environment and Land Conservation, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
- Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
- Shanghai Engineering Research Center of Low-Carbon Agriculture (SERLA), Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Lijuan Sun
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
- Shanghai Scientific Observation and Experimental Station for Agricultural Environment and Land Conservation, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
- Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
- Shanghai Engineering Research Center of Low-Carbon Agriculture (SERLA), Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Qin Qin
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
- Shanghai Scientific Observation and Experimental Station for Agricultural Environment and Land Conservation, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
- Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
- Shanghai Engineering Research Center of Low-Carbon Agriculture (SERLA), Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Yafei Sun
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
- Shanghai Scientific Observation and Experimental Station for Agricultural Environment and Land Conservation, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
- Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
- Shanghai Engineering Research Center of Low-Carbon Agriculture (SERLA), Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Jianjun Pan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yong Xue
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
- Shanghai Scientific Observation and Experimental Station for Agricultural Environment and Land Conservation, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
- Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
- Shanghai Engineering Research Center of Low-Carbon Agriculture (SERLA), Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
72
|
Wany A, Gupta AK, Kumari A, Mishra S, Singh N, Pandey S, Vanvari R, Igamberdiev AU, Fernie AR, Gupta KJ. Nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia in Arabidopsis. ANNALS OF BOTANY 2019; 123:691-705. [PMID: 30535180 PMCID: PMC6417481 DOI: 10.1093/aob/mcy202] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 10/10/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Nitrogen (N) levels vary between ecosystems, while the form of available N has a substantial impact on growth, development and perception of stress. Plants have the capacity to assimilate N in the form of either nitrate (NO3-) or ammonium (NH4+). Recent studies revealed that NO3- nutrition increases nitric oxide (NO) levels under hypoxia. When oxygen availability changes, plants need to generate energy to protect themselves against hypoxia-induced damage. As the effects of NO3- or NH4+ nutrition on energy production remain unresolved, this study was conducted to investigate the role of N source on group VII transcription factors, fermentative genes, energy metabolism and respiration under normoxic and hypoxic conditions. METHODS We used Arabidopsis plants grown on Hoagland medium with either NO3- or NH4+ as a source of N and exposed to 0.8 % oxygen environment. In both roots and seedlings, we investigated the phytoglobin-nitric oxide cycle and the pathways of fermentation and respiration; furthermore, NO levels were tested using a combination of techniques including diaminofluorescein fluorescence, the gas phase Griess reagent assay, respiration by using an oxygen sensor and gene expression analysis by real-time quantitative reverse transcription-PCR methods. KEY RESULTS Under NO3- nutrition, hypoxic stress leads to increases in nitrate reductase activity, NO production, class 1 phytoglobin transcript abundance and metphytoglobin reductase activity. In contrast, none of these processes responded to hypoxia under NH4+ nutrition. Under NO3- nutrition, a decreased total respiratory rate and increased alternative oxidase capacity and expression were observed during hypoxia. Data correlated with decreased reactive oxygen species and lipid peroxidation levels. Moreover, increased fermentation and NAD+ recycling as well as increased ATP production concomitant with the increased expression of transcription factor genes HRE1, HRE2, RAP2.2 and RAP2.12 were observed during hypoxia under NO3- nutrition. CONCLUSIONS The results of this study collectively indicate that nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia.
Collapse
Affiliation(s)
- Aakanksha Wany
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Alok Kumar Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Sonal Mishra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Namrata Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Sonika Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Rhythm Vanvari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, Canada
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | |
Collapse
|
73
|
Singh BN, Dwivedi P, Sarma BK, Singh GS, Singh HB. A novel function of N-signaling in plants with special reference to Trichoderma interaction influencing plant growth, nitrogen use efficiency, and cross talk with plant hormones. 3 Biotech 2019; 9:109. [PMID: 30863693 DOI: 10.1007/s13205-019-1638-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/16/2019] [Indexed: 10/27/2022] Open
Abstract
Trichoderma spp. is considered as a plant growth promoter and biocontrol fungal agents. They colonize on the surface of root in most of the agriculture crops. They secrete different secondary metabolites and enzymes which promote different physiological processes as well as protect plants from various environmental stresses. This is part of their vital functions. They are widely exploited as a biocontrol agent and plant growth promoter in agricultural fields. Colonization of Trichoderma with roots can enhance nutrient acquisition from surrounding soil to root and can substantially increase nitrogen use efficiency (NUE) in crops and linked with activation of plant signaling cascade. Among Trichoderma species, only some Trichoderma species were well characterized which help in the uptake of nitrogen-containing compound (especially nitrate form) and induced nitric oxide (NO) in plants. Both nitrate and NO are known as a signaling agent, involved in plant growth and development and disease resistance. Activation of these signaling molecules may crosstalk with other signaling molecule (Ca2+) and phytohormone (auxin, gibberellins, cytokinin and ethylene). This ability of Trichoderma is important to agriculture not only for increased plant growth but also to control plant diseases. Recently, Trichoderma strains have been shown to encompass the ability to regulate transcripts level of high-affinity nitrate transporters and probably it was positively regulated by NO. This review aims to focus the usage of Trichoderma strains on crops by their abilities to regulate transcript levels, probably through activation of plant N signaling transduction that improve plant health.
Collapse
|
74
|
Wang M, Gu Z, Wang R, Guo J, Ling N, Firbank LG, Guo S. Plant Primary Metabolism Regulated by Nitrogen Contributes to Plant-Pathogen Interactions. PLANT & CELL PHYSIOLOGY 2019; 60:329-342. [PMID: 30388252 DOI: 10.1093/pcp/pcy211] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/27/2018] [Indexed: 06/08/2023]
Abstract
Nitrogen contributes to plant defense responses by the regulation of plant primary metabolism during plant-pathogen interactions. Based on biochemical, physiological, bioinformatic and transcriptome approaches, we investigated how different nitrogen forms (ammonium vs. nitrate) regulate the physiological response of cucumber (Cucumis sativus) to Fusarium oxysporum f. sp. cucumerinum (FOC) infection. The metabolic profile revealed that nitrate-grown plants accumulated more organic acids, while ammonium-grown plants accumulated more amino acids; FOC infection significantly increased levels of both amino acids and organic acids in the roots of ammonium-grown plants. Transcriptome analysis showed that genes related to carbon metabolism were mostly up-regulated in plants grown with nitrate, whereas in ammonium-grown plants the up-regulated genes were mostly those that were related to primary nitrogen metabolism. Root FOC colonization and disease incidence were positively correlated with levels of root amino acids and negatively correlated with levels of root organic acids. In conclusion, organic acid metabolism and expression of related genes increased under nitrate, whereas ammonium increased the level of amino acids and expression of related genes; these altered levels of organic acids and amino acids resulted in different tolerances to FOC infection depending on the nitrogen forms supplied.
Collapse
Affiliation(s)
- Min Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Zechen Gu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ruirui Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Junjie Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ning Ling
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | | | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
75
|
Ding F, Hu Q, Wang M, Zhang S. Knockout of SlSBPASE Suppresses Carbon Assimilation and Alters Nitrogen Metabolism in Tomato Plants. Int J Mol Sci 2018; 19:E4046. [PMID: 30558146 PMCID: PMC6320769 DOI: 10.3390/ijms19124046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 01/02/2023] Open
Abstract
Sedoheptulose-1,7-bisphosphatase (SBPase) is an enzyme in the Calvin⁻Benson cycle and has been documented to be important in carbon assimilation, growth and stress tolerance in plants. However, information on the impact of SBPase on carbon assimilation and nitrogen metabolism in tomato plants (Solanum lycopersicum) is rather limited. In the present study, we investigated the role of SBPase in carbon assimilation and nitrogen metabolism in tomato plants by knocking out SBPase gene SlSBPASE using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing technology. Compared with wild-type plants, slsbpase mutant plants displayed severe growth retardation. Further analyses showed that knockout of SlSBPASE led to a substantial reduction in SBPase activity and as a consequence, ribulose-1,5-bisphosphate (RuBP) regeneration and carbon assimilation rate were dramatically inhibited in slsbpase mutant plants. It was further observed that much lower levels of sucrose and starch were accumulated in slsbpase mutant plants than their wild-type counterparts during the photoperiod. Intriguingly, mutation in SlSBPASE altered nitrogen metabolism as demonstrated by changes in levels of protein and amino acids and activities of nitrogen metabolic enzymes. Collectively, our data suggest that SlSBPASE is required for optimal growth, carbon assimilation and nitrogen metabolism in tomato plants.
Collapse
Affiliation(s)
- Fei Ding
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Qiannan Hu
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Meiling Wang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Shuoxin Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
76
|
Zhang GB, Meng S, Gong JM. The Expected and Unexpected Roles of Nitrate Transporters in Plant Abiotic Stress Resistance and Their Regulation. Int J Mol Sci 2018; 19:ijms19113535. [PMID: 30423982 PMCID: PMC6274899 DOI: 10.3390/ijms19113535] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 11/22/2022] Open
Abstract
Nitrate transporters are primarily responsible for absorption of nitrate from soil and nitrate translocation among different parts of plants. They deliver nitrate to where it is needed. However, recent studies have revealed that nitrate transporters are extensively involved in coping with adverse environmental conditions besides limited nitrate/nitrogen availability. In this review, we describe the functions of the nitrate transporters related to abiotic stresses and their regulation. The expected and unexpected roles of nitrate transporters in plant abiotic stress resistance will also be discussed.
Collapse
Affiliation(s)
- Guo-Bin Zhang
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Shuan Meng
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China.
| | - Ji-Ming Gong
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
77
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 19:ijms19092506. [PMID: 30149541 PMCID: PMC6165531 DOI: 10.3390/ijms19092506] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
78
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 57:2367-2379. [PMID: 30149541 DOI: 10.1093/pcp/pcw157] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/07/2018] [Accepted: 09/05/2016] [Indexed: 05/25/2023] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
79
|
Molecular Regulation of Nitrate Responses in Plants. Int J Mol Sci 2018; 19:ijms19072039. [PMID: 30011829 PMCID: PMC6073361 DOI: 10.3390/ijms19072039] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022] Open
Abstract
Nitrogen is an essential macronutrient that affects plant growth and development. Improving the nitrogen use efficiency of crops is of great importance for the economic and environmental sustainability of agriculture. Nitrate (NO3−) is a major form of nitrogen absorbed by most crops and also serves as a vital signaling molecule. Research has identified key molecular components in nitrate signaling mainly by employing forward and reverse genetics as well as systems biology. In this review, we focus on advances in the characterization of genes involved in primary nitrate responses as well as the long-term effects of nitrate, especially in terms of how nitrate regulates root development.
Collapse
|
80
|
Nawaz MA, Chen C, Shireen F, Zheng Z, Sohail H, Afzal M, Ali MA, Bie Z, Huang Y. Genome-wide expression profiling of leaves and roots of watermelon in response to low nitrogen. BMC Genomics 2018; 19:456. [PMID: 29898660 PMCID: PMC6001020 DOI: 10.1186/s12864-018-4856-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/06/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nitrogen (N) is a key macronutrient required for plant growth and development. In this study, watermelon plants were grown under hydroponic conditions at 0.2 mM N, 4.5 mM N, and 9 mM N for 14 days. RESULTS Dry weight and photosynthetic assimilation at low N (0.2 mM) was reduced by 29 and 74% compared with high N (9 mM). The photochemical activity (Fv/Fm) was also reduced from 0.78 at high N to 0.71 at low N. The N concentration in the leaf, stem, and root of watermelon under low N conditions was reduced by 68, 104, and 108%, respectively compared with 9 mM N treatment after 14 days of N treatment. In the leaf tissues of watermelon grown under low N conditions, 9598 genes were differentially expressed, out of which 4533 genes (47.22%) were up-regulated whereas, 5065 genes (52.78%) were down-regulated compared with high N. Similarly in the root tissues, 3956 genes were differentially expressed, out of which 1605 genes were up-regulated (40.57%) and 2351 genes were down-regulated (59.43%), compared with high N. Our results suggest that leaf tissues are more sensitive to N deficiency compared with root tissues. The gene ontology (GO) analysis showed that the availability of N significantly affected 19 biological processes, 8 cell component metabolic pathways, and 3 molecular functions in the leaves; and 13 biological processes, 12 molecular functions, and 5 cell component metabolic pathways in the roots of watermelon. The low affinity nitrate transporters, high affinity nitrate transporters, ammonium transporters, genes related with nitrogen assimilation, and chlorophyll and photosynthesis were expressed differentially in response to low N. Three nitrate transporters (Cla010066, Cla009721, Cla012765) substantially responded to low nitrate supply in the root and leaf tissues. Additionally, a large number of transcription factors (1365) were involved in adaptation to low N availability. The major transcription factor families identified in this study includes MYB, AP2-EREBP, bHLH, C2H2 and NAC. CONCLUSION Candidate genes identified in this study for nitrate uptake and transport can be targeted and utilized for further studies in watermelon breeding and improvement programs to improve N uptake and utilization efficiency.
Collapse
Affiliation(s)
- Muhammad Azher Nawaz
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- University College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Chen Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Fareeha Shireen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Zhuhua Zheng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Hamza Sohail
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Muhammad Afzal
- University College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Amjad Ali
- Department of Plant Pathology, and Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Zhilong Bie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Yuan Huang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
81
|
Sawan ZM. Mineral fertilizers and plant growth retardants: Its effects on cottonseed yield; its quality and contents. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/23312025.2018.1459010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
82
|
Durand M, Mainson D, Porcheron B, Maurousset L, Lemoine R, Pourtau N. Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose transporters. PLANTA 2018; 247:587-611. [PMID: 29138971 PMCID: PMC5809531 DOI: 10.1007/s00425-017-2807-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/30/2017] [Indexed: 05/18/2023]
Abstract
MAIN CONCLUSION The regulation of source-to-sink sucrose transport is associated with AtSUC and AtSWEET sucrose transporters' gene expression changes in plants grown hydroponically under different physiological conditions. Source-to-sink transport of sucrose is one of the major determinants of plant growth. Whole-plant carbohydrates' partitioning requires the specific activity of membrane sugar transporters. In Arabidopsis thaliana plants, two families of transporters are involved in sucrose transport: AtSUCs and AtSWEETs. This study is focused on the comparison of sucrose transporter gene expression, soluble sugar and starch levels and long distance sucrose transport, in leaves and sink organs (mainly roots) in different physiological conditions (along the plant life cycle, during a diel cycle, and during an osmotic stress) in plants grown hydroponically. In leaves, the AtSUC2, AtSWEET11, and 12 genes known to be involved in phloem loading were highly expressed when sucrose export was high and reduced during osmotic stress. In roots, AtSUC1 was highly expressed and its expression profile in the different conditions tested suggests that it may play a role in sucrose unloading in roots and in root growth. The SWEET transporter genes AtSWEET12, 13, and 15 were found expressed in all organs at all stages studied, while differential expression was noticed for AtSWEET14 in roots, stems, and siliques and AtSWEET9, 10 expressions were only detected in stems and siliques. A role for these transporters in carbohydrate partitioning in different source-sink status is proposed, with a specific attention on carbon demand in roots. During development, despite trophic competition with others sinks, roots remained a significant sink, but during osmotic stress, the amount of translocated [U-14C]-sucrose decreased for rosettes and roots. Altogether, these results suggest that source-sink relationship may be linked with the regulation of sucrose transporter gene expression.
Collapse
Affiliation(s)
- Mickaël Durand
- Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Dany Mainson
- Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Benoît Porcheron
- Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Laurence Maurousset
- Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Rémi Lemoine
- Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Nathalie Pourtau
- Université de Poitiers, UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Sucres & Echanges Végétaux-Environnement", Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
83
|
Singh BN, Dwivedi P, Sarma BK, Singh GS, Singh HB. Trichoderma asperellum T42 Reprograms Tobacco for Enhanced Nitrogen Utilization Efficiency and Plant Growth When Fed with N Nutrients. FRONTIERS IN PLANT SCIENCE 2018; 9:163. [PMID: 29527216 PMCID: PMC5829606 DOI: 10.3389/fpls.2018.00163] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/29/2018] [Indexed: 05/29/2023]
Abstract
Trichoderma spp., are saprophytic fungi that can improve plant growth through increased nutrient acquisition and change in the root architecture. In the present study, we demonstrate that Trichoderma asperellum T42 mediate enhancement in host biomass, total nitrogen content, nitric oxide (NO) production and cytosolic Ca2+ accumulation in tobacco. T42 inoculation enhanced lateral root, root hair length, root hair density and root/shoot dry mass in tobacco under deprived nutrients condition. Interestingly, these growth attributes were further elevated in presence of T42 and supplementation of NO3- and NH4+ nutrients to tobacco at 40 and 70 days, particularly in NO3- supplementation, whereas no significant increment was observed in nia30 mutant. In addition, NO production was more in tobacco roots in T42 inoculated plants fed with NO3- nutrient confirming NO generation was dependent on NR pathway. NO3- dependent NO production contributed to increase in lateral root initiation, Ca2+ accumulation and activities of nitrate transporters (NRTs) in tobacco. Higher activities of several NRT genes in response to T42 and N nutrients and suppression of ammonium transporter (AMT1) suggested that induction of high affinity NRTs help NO3- acquisition through roots of tobacco. Among the NRTs NRT2.1 and NRT2.2 were more up-regulated compared to the other NRTs. Addition of sodium nitroprusside (SNP), relative to those supplied with NO3-/NH4+ nutrition and T42 treated plants singly, and with application of NO inhibitor, cPTIO, confirmed the altered NO fluorescence intensity in tobacco roots. Our findings suggest that T42 promoted plant growth significantly ant N content in the tobacco plants grown under N nutrients, notably higher in NO3-, providing insight of the strategy for not only tobacco but probably for other crops as well to adapt to fluctuating nitrate availability in soil.
Collapse
Affiliation(s)
- Bansh N. Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Birinchi K. Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Gopal S. Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Harikesh B. Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
84
|
Zhao L, Zhang W, Yang Y, Li Z, Li N, Qi S, Crawford NM, Wang Y. The Arabidopsis NLP7 gene regulates nitrate signaling via NRT1.1-dependent pathway in the presence of ammonium. Sci Rep 2018; 8:1487. [PMID: 29367694 PMCID: PMC5784019 DOI: 10.1038/s41598-018-20038-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/27/2017] [Indexed: 01/13/2023] Open
Abstract
Nitrate is not only an important nutrient but also a signaling molecule for plants. A few of key molecular components involved in primary nitrate responses have been identified mainly by forward and reverse genetics as well as systems biology, however, many underlining mechanisms of nitrate regulation remain unclear. In this study, we show that the expression of NRT1.1, which encodes a nitrate sensor and transporter (also known as CHL1 and NPF6.3), is modulated by NIN-like protein 7 (NLP7). Genetic and molecular analyses indicate that NLP7 works upstream of NRT1.1 in nitrate regulation when NH4+ is present, while in absence of NH4+, it functions in nitrate signaling independently of NRT1.1. Ectopic expression of NRT1.1 in nlp7 resulted in partial or complete restoration of nitrate signaling (expression from nitrate-regulated promoter NRP), nitrate content and nitrate reductase activity in the transgenic lines. Transcriptome analysis revealed that four nitrogen-related clusters including amino acid synthesis-related genes and members of NRT1/PTR family were modulated by both NLP7 and NRT1.1. In addition, ChIP and EMSA assays results indicated that NLP7 may bind to specific regions of the NRT1.1 promoter. Thus, NLP7 acts as an important factor in nitrate signaling via regulating NRT1.1 under NH4+ conditions.
Collapse
Affiliation(s)
- Lufei Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Wenjing Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yi Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zehui Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Na Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shengdong Qi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Nigel M Crawford
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California, 92093-0116, USA
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
85
|
Wang Z, Zhang L, Sun C, Gu R, Mi G, Yuan L. Phylogenetic, expression and functional characterizations of the maize NLP transcription factor family reveal a role in nitrate assimilation and signaling. PHYSIOLOGIA PLANTARUM 2018; 163:269-281. [PMID: 29364528 DOI: 10.1111/ppl.12696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/07/2018] [Accepted: 01/17/2018] [Indexed: 05/09/2023]
Abstract
Although nitrate represents an important nitrogen (N) source for maize, a major crop of dryland areas, the molecular mechanisms of nitrate uptake and assimilation remain poorly understood. Here, we identified nine maize NIN-like protein (ZmNLP) genes and analyzed the function of one member, ZmNLP3.1, in nitrate nutrition and signaling. The NLP family genes were clustered into three clades in a phylogenic tree. Comparative genomic analysis showed that most ZmNLP genes had collinear relationships to the corresponding NLPs in rice, and that the expansion of the ZmNLP family resulted from segmental duplications in the maize genome. Quantitative PCR analysis revealed the expression of ZmNLP2.1, ZmNLP2.2, ZmNLP3.1, ZmNLP3.2, ZmNLP3.3, and ZmNLP3.4 was induced by nitrate in maize roots. The function of ZmNLP3.1 was investigated by overexpressing it in the Arabidopsis nlp7-1 mutant, which is defective in the AtNLP7 gene for nitrate signaling and assimilation. Ectopic expression of ZmNLP3.1 restored the N-deficient phenotypes of nlp7-1 under nitrate-replete conditions in terms of shoot biomass, root morphology and nitrate assimilation. Furthermore, the nitrate induction of NRT2.1, NIA1, and NiR1 gene expression was recovered in the 35S::ZmNLP3.1/nlp7-1 transgenic lines, indicating that ZmNLP3.1 plays essential roles in nitrate signaling. Taken together, these results suggest that ZmNLP3.1 plays an essential role in regulating nitrate signaling and assimilation processes, and represents a valuable candidate for developing transgenic maize cultivars with high N-use efficiency.
Collapse
Affiliation(s)
- Zhangkui Wang
- Key Laboratory of Plant-Soil Interactions, MOE, Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lei Zhang
- Key Laboratory of Plant-Soil Interactions, MOE, Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Soil Fertilizer Extension Service Station, Beijing, 100029, China
| | - Ci Sun
- Key Laboratory of Plant-Soil Interactions, MOE, Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Riliang Gu
- Key Laboratory of Plant-Soil Interactions, MOE, Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Guohua Mi
- Key Laboratory of Plant-Soil Interactions, MOE, Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lixing Yuan
- Key Laboratory of Plant-Soil Interactions, MOE, Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
86
|
Gao L, Lu Z, Ding L, Guo J, Wang M, Ling N, Guo S, Shen Q. Role of Aquaporins in Determining Carbon and Nitrogen Status in Higher Plants. Int J Mol Sci 2018; 19:E35. [PMID: 29342938 PMCID: PMC5795985 DOI: 10.3390/ijms19010035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 01/01/2023] Open
Abstract
Aquaporins (AQPs) are integral membrane proteins facilitating the transport of water and some small neutral molecules across cell membranes. In past years, much effort has been made to reveal the location of AQPs as well as their function in water transport, photosynthetic processes, and stress responses in higher plants. In the present review, we paid attention to the character of AQPs in determining carbon and nitrogen status. The role of AQPs during photosynthesis is characterized as its function in transporting water and CO₂ across the membrane of chloroplast and thylakoid; recalculated results from published studies showed that over-expression of AQPs contributed to 25% and 50% increases in stomatal conductance (gs) and mesophyll conductance (gm), respectively. The nitrogen status in plants is regulated by AQPs through their effect on water flow as well as urea and NH₄⁺ uptake, and the potential role of AQPs in alleviating ammonium toxicity is discussed. At the same time, root and/or shoot AQP expression is quite dependent on both N supply amounts and forms. Future research directions concerning the function of AQPs in regulating plant carbon and nitrogen status as well as C/N balance are also highlighted.
Collapse
Affiliation(s)
- Limin Gao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhifeng Lu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lei Ding
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium.
| | - Junjie Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Min Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ning Ling
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
87
|
Rajashekar CB. Elevated CO<sub>2</sub> Levels Affect Phytochemicals and Nutritional Quality of Food Crops. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/ajps.2018.92013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
88
|
Luo B, Chen J, Zhu L, Liu S, Li B, Lu H, Ye G, Xu G, Fan X. Overexpression of a High-Affinity Nitrate Transporter OsNRT2.1 Increases Yield and Manganese Accumulation in Rice Under Alternating Wet and Dry Condition. FRONTIERS IN PLANT SCIENCE 2018; 9:1192. [PMID: 30158947 PMCID: PMC6104626 DOI: 10.3389/fpls.2018.01192] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/25/2018] [Indexed: 05/13/2023]
Abstract
Nitrate and manganese (Mn) are necessary elements for the growth and development of rice in paddy soil. Under physiological conditions, we previously reported that the uptake of Mn in roots can be improved by the addition of external nitrate but not ammonium. To investigate the mechanism(s) of this phenotype, we produced plant lines overexpressing OsNRT2.1 and assessed Mn uptake under alternating wet and dry (AWD) and waterlogged (WL) conditions. Under AWD condition, we observed a 31% reduction in grain yields of wild type (WT) plants compared to WL condition. Interestingly, the overexpression of OsNRT2.1 could recover this loss, as OsNRT2.1 transgenic lines displayed higher grain yields than WT plants. We also observed 60% higher grain Mn in the transgenic lines in AWD condition and approximately 30% higher Mn in the grain of transgenic lines in WL condition. We further found that the overexpression of OsNRT2.1 did not alter Mg and Fe in the seeds in either growth condition. The reasons for the increased Mn content in OsNRT2.1 transgenic seeds in AWD condition could be explained by the elevated expression of OsNRAMP family genes including OsNRAMP3, OsNRAMP5, and OsNRAMP6 in node I, the panicle-neck, and the flag leaves. The mechanism(s) underpinning the upregulation of these genes requires further investigation. Taken together, our results provide a new function of OsNRT2.1 in improving rice yields and grain Mn accumulation during water-saving cultivation patterns. This represents a new strategy for maintaining yield and improving food quality in a sustainable agricultural system.
Collapse
Affiliation(s)
- Bingbing Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jingguang Chen
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Longlong Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Shuhua Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Bin Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hong Lu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Guoyou Ye
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Xiaorong Fan,
| |
Collapse
|
89
|
Wang C, Zhang W, Li Z, Li Z, Bi Y, Crawford NM, Wang Y. FIP1 Plays an Important Role in Nitrate Signaling and Regulates CIPK8 and CIPK23 Expression in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:593. [PMID: 29780398 PMCID: PMC5945890 DOI: 10.3389/fpls.2018.00593] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/16/2018] [Indexed: 05/20/2023]
Abstract
Unraveling the molecular mechanisms of nitrate regulation and deciphering the underlying genetic network is vital for elucidating nitrate uptake and utilization in plants. Such knowledge could lead to the improvement of nitrogen-use efficiency in agriculture. Here, we report that the FIP1 gene (factor interacting with poly(A) polymerase 1) plays an important role in nitrate signaling in Arabidopsis thaliana. FIP1 encodes a putative core component of the polyadenylation factor complex. We found that FIP1 interacts with the cleavage and polyadenylation specificity factor 30-L (CPSF30-L), which is also an essential player in nitrate signaling. The induction of nitrate-responsive genes following nitrate treatment was inhibited in the fip1 mutant. The nitrate content was also reduced in fip1 seedlings due to their decreased nitrate uptake activity. Furthermore, the nitrate content was higher in the roots but lower in the roots of fip1, which may result from the downregulation of NRT1.8 and the upregulation of the nitrate assimilation genes. In addition, qPCR analyses revealed that FIP1 negatively regulated the expression of CIPK8 and CIPK23, two protein kinases involved in nitrate signaling. In the fip1 mutant, the increased expression of CIPK23 may affect nitrate uptake, resulting in its lower nitrate content. Genetic and molecular evidence suggests that FIP1 and CPSF30-L function in the same nitrate-signaling pathway, with FIP1 mediating signaling through its interaction with CPSF30-L and its regulation of CIPK8 and CIPK23. Analysis of the 3'-UTR of NRT1.1 showed that the pattern of polyadenylation sites was altered in the fip1 mutant. These findings add a novel component to the nitrate regulation network and enhance our understanding of the underlying mechanisms for nitrate signaling.
Collapse
Affiliation(s)
- Chao Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- Section of General Biology, Department of Life Science and Engineering, Jining University, Jining, China
| | - Wenjing Zhang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Zehui Li
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Zhen Li
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Yingjun Bi
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Nigel M. Crawford
- Section of Cell and Developmental Biology, Division of Biological Science, University of California at San Diego, La Jolla, CA, United States
| | - Yong Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- *Correspondence: Yong Wang,
| |
Collapse
|
90
|
Nadeem F, Ahmad Z, Wang R, Han J, Shen Q, Chang F, Diao X, Zhang F, Li X. Foxtail Millet [ Setaria italica (L.) Beauv.] Grown under Low Nitrogen Shows a Smaller Root System, Enhanced Biomass Accumulation, and Nitrate Transporter Expression. FRONTIERS IN PLANT SCIENCE 2018; 9:205. [PMID: 29520286 PMCID: PMC5826958 DOI: 10.3389/fpls.2018.00205] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Foxtail millet (FM) [Setaria italica (L.) Beauv.] is a grain and forage crop well adapted to nutrient-poor soils. To date little is known how FM adapts to low nitrogen (LN) at the morphological, physiological, and molecular levels. Using the FM variety Yugu1, we found that LN led to lower chlorophyll contents and N concentrations, and higher root/shoot and C/N ratios and N utilization efficiencies under hydroponic culture. Importantly, enhanced biomass accumulation in the root under LN was in contrast to a smaller root system, as indicated by significant decreases in total root length; crown root number and length; and lateral root number, length, and density. Enhanced carbon allocation toward the root was rather for significant increases in average diameter of the LN root, potentially favorable for wider xylem vessels or other anatomical alterations facilitating nutrient transport. Lower levels of IAA and CKs were consistent with a smaller root system and higher levels of GA may promote root thickening under LN. Further, up-regulation of SiNRT1.1, SiNRT2.1, and SiNAR2.1 expression and nitrate influx in the root and that of SiNRT1.11 and SiNRT1.12 expression in the shoot probably favored nitrate uptake and remobilization as a whole. Lastly, more soluble proteins accumulated in the N-deficient root likely as a result of increases of N utilization efficiencies. Such "excessive" protein-N was possibly available for shoot delivery. Thus, FM may preferentially transport carbon toward the root facilitating root thickening/nutrient transport and allocate N toward the shoot maximizing photosynthesis/carbon fixation as a primary adaptive strategy to N limitation.
Collapse
Affiliation(s)
- Faisal Nadeem
- Key Laboratory of Plant–Soil Interactions, Ministry of Education, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Zeeshan Ahmad
- Key Laboratory of Plant–Soil Interactions, Ministry of Education, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Ruifeng Wang
- Key Laboratory of Plant–Soil Interactions, Ministry of Education, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Jienan Han
- Key Laboratory of Plant–Soil Interactions, Ministry of Education, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Qi Shen
- Key Laboratory of Plant–Soil Interactions, Ministry of Education, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Feiran Chang
- Key Laboratory of Plant–Soil Interactions, Ministry of Education, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fusuo Zhang
- Key Laboratory of Plant–Soil Interactions, Ministry of Education, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Xuexian Li
- Key Laboratory of Plant–Soil Interactions, Ministry of Education, Department of Plant Nutrition, China Agricultural University, Beijing, China
- *Correspondence: Xuexian Li,
| |
Collapse
|
91
|
Li Z, Wang R, Gao Y, Wang C, Zhao L, Xu N, Chen KE, Qi S, Zhang M, Tsay YF, Crawford NM, Wang Y. The Arabidopsis CPSF30-L gene plays an essential role in nitrate signaling and regulates the nitrate transceptor gene NRT1.1. THE NEW PHYTOLOGIST 2017; 216:1205-1222. [PMID: 28850721 DOI: 10.1111/nph.14743] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/04/2017] [Indexed: 05/20/2023]
Abstract
Plants have evolved sophisticated mechanisms to adapt to fluctuating environmental nitrogen availability. However, more underlying genes regulating the response to nitrate have yet to be characterized. We report here the identification of a nitrate regulatory mutant whose mutation mapped to the Cleavage and Polyadenylation Specificity Factor 30 gene (CPSF30-L). In the mutant, induction of nitrate-responsive genes was inhibited independent of the ammonium conditions and was restored by expression of the wild-type 65 kDa encoded by CPSF30-L. Molecular and genetic evidence suggests that CPSF30-L works upstream of NRT1.1 and independently of NLP7 in response to nitrate. Analysis of the 3'-UTR of NRT1.1 showed that the pattern of polyadenylation sites was altered in the cpsf30 mutant. Transcriptome analysis revealed that four nitrogen-related clusters were enriched in the differentially expressed genes of the cpsf30 mutant. Nitrate uptake was decreased in the mutant along with reduced expression of the nitrate transporter/sensor gene NRT1.1, while nitrate reduction and amino acid content were enhanced in roots along with increased expression of several nitrate assimilatory genes. These findings indicate that the 65 kDa protein encoded by CPSF30-L mediates nitrate signaling in part by regulating NRT1.1 expression, thus adding an important component to the nitrate signaling network.
Collapse
Affiliation(s)
- Zehui Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Rongchen Wang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yangyang Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chao Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Lufei Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Na Xu
- School of Biological Science, Jining Medical University, Rizhao, Shandong, 276826, China
| | - Kuo-En Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shengdong Qi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Min Zhang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yi-Fang Tsay
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Nigel M Crawford
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, 92093-0116, USA
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
92
|
Chen J, Fan X, Qian K, Zhang Y, Song M, Liu Y, Xu G, Fan X. pOsNAR2.1:OsNAR2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1273-1283. [PMID: 28226420 PMCID: PMC5595721 DOI: 10.1111/pbi.12714] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/14/2017] [Accepted: 02/18/2017] [Indexed: 05/18/2023]
Abstract
The nitrate (NO3-) transporter has been selected as an important gene maker in the process of environmental adoption in rice cultivars. In this work, we transferred another native OsNAR2.1 promoter with driving OsNAR2.1 gene into rice plants. The transgenic lines with exogenous pOsNAR2.1:OsNAR2.1 constructs showed enhanced OsNAR2.1 expression level, compared with wild type (WT), and 15 N influx in roots increased 21%-32% in response to 0.2 mm and 2.5 mm 15NO3- and 1.25 mm 15 NH415 NO3 . Under these three N conditions, the biomass of the pOsNAR2.1:OsNAR2.1 transgenic lines increased 143%, 129% and 51%, and total N content increased 161%, 242% and 69%, respectively, compared to WT. Furthermore in field experiments we found the grain yield, agricultural nitrogen use efficiency (ANUE), and dry matter transfer of pOsNAR2.1:OsNAR2.1 plants increased by about 21%, 22% and 21%, compared to WT. We also compared the phenotypes of pOsNAR2.1:OsNAR2.1 and pOsNAR2.1:OsNRT2.1 transgenic lines in the field, found that postanthesis N uptake differed significantly between them, and in comparison with the WT. Postanthesis N uptake (PANU) increased approximately 39% and 85%, in the pOsNAR2.1:OsNAR2.1 and pOsNAR2.1:OsNRT2.1 transgenic lines, respectively, possibly because OsNRT2.1 expression was less in the pOsNAR2.1:OsNAR2.1 lines than in the pOsNAR2.1:OsNRT2.1 lines during the late growth stage. These results show that rice NO3- uptake, yield and NUE were improved by increased OsNAR2.1 expression via its native promoter.
Collapse
Affiliation(s)
- Jingguang Chen
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Xiaoru Fan
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Kaiyun Qian
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Yong Zhang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Miaoquan Song
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Yu Liu
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Life ScienceZhejiang UniversityHangzhouChina
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
93
|
Kuang Q, Zhang S, Wu P, Chen Y, Li M, Jiang H, Wu G. Global gene expression analysis of the response of physic nut (Jatropha curcas L.) to medium- and long-term nitrogen deficiency. PLoS One 2017; 12:e0182700. [PMID: 28817702 PMCID: PMC5560629 DOI: 10.1371/journal.pone.0182700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 07/21/2017] [Indexed: 11/25/2022] Open
Abstract
Jatropha curcas L. is an important biofuel plant with excellent tolerance of barren environments. However, studies on the regulatory mechanisms that operate in this plant in response to nitrogen (N) shortage are scarce. In this study, genome-wide transcriptional profiles of the roots and leaves of 8-week old physic nut seedlings were analyzed after 2 and 16 days of N starvation. Enrichment results showed that genes associated with N metabolism, processing and regulation of RNA, and transport predominated among those showing alterations in expression. Genes encoding transporter families underwent major changes in expression in both roots and leaves; in particular, those with roles in ammonia, amino acid and peptide transport were generally up-regulated after long-term starvation, while AQUAPORIN genes, whose products function in osmoregulation, were down-regulated. We also found that ASPARA−GINASE B1 and SARCOSINE OXIDASE genes were up-regulated in roots and leaves after 2 and 16 d N starvation. Genes associated with ubiquitination-mediated protein degradation were significantly up-regulated. In addition, genes in the JA biosynthesis pathway were strongly activated while expression of those in GA signaling was inhibited in leaves. We showed that four major classes of genes, those with roles in N uptake, N reutilization, C/N ratio balance, and cell structure and synthesis, were particularly influenced by long-term N limitation. Our discoveries may offer clues to the molecular mechanisms that regulate N reallocation and reutilization so as to maintain or increase plant performance even under adverse environmental conditions.
Collapse
Affiliation(s)
- Qi Kuang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Sheng Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Pingzhi Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yaping Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Meiru Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Huawu Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- * E-mail: (HWJ); (GJW)
| | - Guojiang Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- * E-mail: (HWJ); (GJW)
| |
Collapse
|
94
|
Packett R. Rainfall contributes ~30% of the dissolved inorganic nitrogen exported from a southern Great Barrier Reef river basin. MARINE POLLUTION BULLETIN 2017; 121:16-31. [PMID: 28521935 DOI: 10.1016/j.marpolbul.2017.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/19/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
A study was conducted to estimate how much of the annual load of dissolved inorganic nitrogen (DIN) from Great Barrier Reef (GBR) river basins could come from rainfall. Results suggest rainfall contributed ~37% of the average annual DIN load from the Fitzroy Basin over three wet seasons. Rainfall DIN contribution at plot to sub-catchment scale ranged from 5 to >100% for study sites in the Fitzroy and Pioneer Basins. An estimate using measured and modelled data indicates ~28% of the longer-term average annual DIN load from the entire GBR catchment may originate from rainfall. These estimates may affect current GBR management and water quality targets. Numerous studies predict increases in atmospheric nitrogen pollution from Asia via fossil fuel combustion and more frequent severe La Nina events via global warming. Future GBR rainfall chemistry data may be required for assessing catchment management outcomes and regional trends in atmospheric DIN deposition.
Collapse
Affiliation(s)
- Robert Packett
- Department of Natural Resources and Mines, PO Box 1762, Rockhampton 4700, Queensland, Australia.
| |
Collapse
|
95
|
Hakeem KR, Sabir M, Ozturk M, Akhtar MS, Ibrahim FH. Nitrate and Nitrogen Oxides: Sources, Health Effects and Their Remediation. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 242:183-217. [PMID: 27734212 DOI: 10.1007/398_2016_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Increased use of nitrogenous (N) fertilizers in agriculture has significantly altered the global N-cycle because they release nitrogenous gases of environmental concerns. The emission of nitrous oxide (N2O) contributes to the global greenhouse gas accumulation and the stratospheric ozone depletion. In addition, it causes nitrate leaching problem deteriorating ground water quality. The nitrate toxicity has been reported in a number of studies showing the health hazards like methemoglobinemia in infants and is a potent cause of cancer. Despite these evident negative environmental as well as health impacts, consumption of N fertilizer cannot be reduced in view of the food security for the teeming growing world population. Various agronomic and genetic modifications have been practiced to tackle this problem. Some agronomic techniques adopted include split application of N, use of slow-release fertilizers, nitrification inhibitors and encouraging the use of organic manure over chemical fertilizers. As a matter of fact, the use of chemical means to remediate nitrate from the environment is very difficult and costly. Particularly, removal of nitrate from water is difficult task because it is chemically non-reactive in dilute aqueous solutions. Hence, the use of biological means for nitrate remediation offers a promising strategy to minimize the ill effects of nitrates and nitrites. One of the important goals to reduce N-fertilizer application can be effectively achieved by choosing N-efficient genotypes. This will ensure the optimum uptake of applied N in a balanced manner and exploring the molecular mechanisms for their uptake as well as metabolism in assimilatory pathways. The objectives of this paper are to evaluate the interrelations which exist in the terrestrial ecosystems between the plant type and characteristics of nutrient uptake and analyze the global consumption and demand for fertilizer nitrogen in relation to cereal production, evaluate the various methods used to determine nitrogen use efficincy (NUE), determine NUE for the major cereals grown across large agroclimatic regions, determine the key factors that control NUE, and finally analyze various strategies available to improve the use efficiency of fertilizer nitrogen.
Collapse
Affiliation(s)
- Khalid Rehman Hakeem
- Faculty of Forestry, Universiti Putra Malaysia, Serdang, Selangor, UPM 43400, Malaysia.
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Muhammad Sabir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Munir Ozturk
- Botany Department & Centre for Environmental Studies, Ege University, Izmir, Turkey
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-E-Aam College, Shahjahanpur, 242001, Uttar Pradesh, India
| | - Faridah Hanum Ibrahim
- Faculty of Forestry, Universiti Putra Malaysia, Serdang, Selangor, UPM 43400, Malaysia
| |
Collapse
|
96
|
Lin YL, Tsay YF. Influence of differing nitrate and nitrogen availability on flowering control in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2603-2609. [PMID: 28369493 DOI: 10.1093/jxb/erx053] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nitrogen, an essential macronutrient for plants, regulates many aspects of plant growth and development. Nitrate is one of the major forms of nitrogen taken up by plants from the soil. Nitrate and nitrogen have been reported to regulate flowering; while some studies have shown that lower nitrate/nitrogen promoted flowering, others have reported the opposite trend. To elucidate how nitrate/nitrogen affects flowering, we reviewed the existing literature and conducted experiments to examine flowering time under a wide range of nitrate concentrations using two growth systems. From the literature review and our experiments, we established that differing nitrate availability results in a U-shaped flowering curve, with an optimal concentration of nitrate facilitating flowering and concentrations above or below this optimal concentration delaying flowering. The role of nitrate and nitrogen in regulating flowering has been elucidated by several transcriptomic and mutant studies, which have suggested close interactions between nitrate/nitrogen, phosphate, the circadian clock, photosynthesis, and, potentially, hormones. We discuss several possible molecular mechanisms underlying the U-shaped flowering response.
Collapse
Affiliation(s)
- Ya-Ling Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Fang Tsay
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
97
|
Podgórska A, Burian M, Rychter AM, Rasmusson AG, Szal B. Short-term ammonium supply induces cellular defence to prevent oxidative stress in Arabidopsis leaves. PHYSIOLOGIA PLANTARUM 2017; 160:65-83. [PMID: 28008622 DOI: 10.1111/ppl.12538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/01/2016] [Accepted: 12/13/2016] [Indexed: 05/21/2023]
Abstract
Plants can assimilate nitrogen from soil pools of both ammonium and nitrate, and the relative levels of these two nitrogen sources are highly variable in soil. Long-term ammonium nutrition is known to cause damage to Arabidopsis that has been linked to mitochondrial oxidative stress. Using hydroponic cultures, we analysed the consequences of rapid shifts between nitrate and ammonium nutrition. This did not induce growth retardation, showing that Arabidopsis can compensate for the changes in redox metabolism associated with the variations in nitrogen redox status. During the first 3 h of ammonium treatment, we observed distinct transient shifts in reactive oxygen species (ROS), low-mass antioxidants, ROS-scavenging enzymes, and mitochondrial alternative electron transport pathways, indicating rapid but temporally separated changes in chloroplastic, mitochondrial and cytosolic ROS metabolism. The fast induction of antioxidant defences significantly lowered intracellular H2 O2 levels, and thus protected Arabidopsis leaves from oxidative stress. On the other hand elevated extracellular ROS production in response to ammonium supply may be involved in signalling. The response pattern displays an intricate plasticity of Arabidopsis redox metabolism to minimise stress in responses to nutrient changes.
Collapse
Affiliation(s)
- Anna Podgórska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland
| | - Maria Burian
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland
| | - Anna M Rychter
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland
| | | | - Bożena Szal
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland
| |
Collapse
|
98
|
The mitogen-activated protein kinase kinase 9 (MKK9) modulates nitrogen acquisition and anthocyanin accumulation under nitrogen-limiting condition in Arabidopsis. Biochem Biophys Res Commun 2017; 487:539-544. [PMID: 28435067 DOI: 10.1016/j.bbrc.2017.04.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022]
Abstract
Nitrogen (N) plays important roles as both a macronutrient and signal in plant growth and development. However, our understanding of N signaling and/or response mechanisms in plants is still limited. Here, we show that the mitogen-activated protein kinase kinase 9 (MKK9) is involved in plant N responses in Arabidopsis by regulating production of anthocyanins and the ability of N acquisition under low N conditions. Transgenic plants that express a constitutively active version of MKK9 (MKK9DD) showed decreased accumulation of anthocynanins and reduced expression of key anthocyanin biosynthetic genes under low N condition compared to the plants expressing the inactive form of MKK9 (MKK9KR). The decreased anthocyanin accumulation could be due to the increased N level in the MKK9DD plants as these plants were shown to accumulate more N and have higher expression of N acquisition-related genes under low N condition as compared with the MKK9KR plants. Taken together, our results suggest that MKK9 plays a role in plant adaptation to low N stress by modulating both anthocyanin accumulation and N status.
Collapse
|
99
|
Gao C, Ding L, Li Y, Chen Y, Zhu J, Gu M, Li Y, Xu G, Shen Q, Guo S. Nitrate increases ethylene production and aerenchyma formation in roots of lowland rice plants under water stress. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:430-442. [PMID: 32480576 DOI: 10.1071/fp16258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 12/09/2016] [Indexed: 06/11/2023]
Abstract
Ethylene increases root cortical aerenchyma formation in maize (Zea mays L.), rice (Oryza sativa L.) and other species. To further investigate the effects of nitrate, ammonium and water stress on ethylene production and aerenchyma formation in roots, two lowland rice cultivars (Shanyou 63, hybrid indica, and Yangdao 6, inbred indica) were cultured hydroponically with 10% (w/v) polyethylene glycol to simulate water stress. Water stress decreased shoot biomass, stomatal conductivity and leaf water potential in cultivars fed with nitrate but not with ammonium. Water stress induced more aerenchyma formation in cultivars fed with nitrate rather than ammonium, and increased cortical aerenchyma was found in Yangdao 6. Endogenous ethylene production by roots increased significantly under water stress in plants fed with nitrate rather than ammonium. Exogenous ethylene stimulated root cortical aerenchyma formation. Expression of the ethylene biosynthesis gene 1-aminocyclo-propane-1-carboxylic acid (ACC) synthase (ACS5) was greater in roots fed with nitrate rather than ammonium in the presence and absence of water stress. The expression of ethylene signalling pathway genes involved in programmed cell death (lesion-simulating disease (L.S.D.)1.1 and L.S.D.2; enhanced disease susceptibility (EDS) and phytoalexin-deficient (PAD4)) were regulated by the N form and water stress. In plants of cultivars fed with ammonium, L.S.D.1.1 expression increased under water stress, whereas L.S.D.2, EDS and PAD4 expression decreased. In conclusion, nitrate increases ethylene production and cortical aerenchyma formation in roots of water-stressed lowland rice. However, ammonium increased L.S.D.1.1 expression in water-stressed roots, and decreased ACS5, EDS and PAD4 expression, which would inhibit ethylene production and aerenchyma formation.
Collapse
Affiliation(s)
- Cuimin Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, National Engineering Research Center for Organic-based Fertilizers, Nanjing 210095, China
| | - Lei Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, National Engineering Research Center for Organic-based Fertilizers, Nanjing 210095, China
| | - Yingrui Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, National Engineering Research Center for Organic-based Fertilizers, Nanjing 210095, China
| | - Yupei Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, National Engineering Research Center for Organic-based Fertilizers, Nanjing 210095, China
| | - Jingwen Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, National Engineering Research Center for Organic-based Fertilizers, Nanjing 210095, China
| | - Mian Gu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, National Engineering Research Center for Organic-based Fertilizers, Nanjing 210095, China
| | - Yong Li
- Crop Physiology and Production Center, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Guohua Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, National Engineering Research Center for Organic-based Fertilizers, Nanjing 210095, China
| | - Qirong Shen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, National Engineering Research Center for Organic-based Fertilizers, Nanjing 210095, China
| | - Shiwei Guo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, National Engineering Research Center for Organic-based Fertilizers, Nanjing 210095, China
| |
Collapse
|
100
|
Annunziata MG, Ciarmiello LF, Woodrow P, Maximova E, Fuggi A, Carillo P. Durum Wheat Roots Adapt to Salinity Remodeling the Cellular Content of Nitrogen Metabolites and Sucrose. FRONTIERS IN PLANT SCIENCE 2017; 7:2035. [PMID: 28119716 PMCID: PMC5220018 DOI: 10.3389/fpls.2016.02035] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/20/2016] [Indexed: 05/20/2023]
Abstract
Plants are currently experiencing increasing salinity problems due to irrigation with brackish water. Moreover, in fields, roots can grow in soils which show spatial variation in water content and salt concentration, also because of the type of irrigation. Salinity impairs crop growth and productivity by inhibiting many physiological and metabolic processes, in particular nitrate uptake, translocation, and assimilation. Salinity determines an increase of sap osmolality from about 305 mOsmol kg-1 in control roots to about 530 mOsmol kg-1 in roots under salinity. Root cells adapt to salinity by sequestering sodium in the vacuole, as a cheap osmoticum, and showing a rearrangement of few nitrogen-containing metabolites and sucrose in the cytosol, both for osmotic adjustment and oxidative stress protection, thus providing plant viability even at low nitrate levels. Mainly glycine betaine and sucrose at low nitrate concentration, and glycine betaine, asparagine and proline at high nitrate levels can be assumed responsible for the osmotic adjustment of the cytosol, the assimilation of the excess of ammonium and the scavenging of ROS under salinity. High nitrate plants with half of the root system under salinity accumulate proline and glutamine in both control and salt stressed split roots, revealing that osmotic adjustment is not a regional effect in plants. The expression level and enzymatic activities of asparagine synthetase and Δ1-pyrroline-5-carboxylate synthetase, as well as other enzymatic activities of nitrogen and carbon metabolism, are analyzed.
Collapse
Affiliation(s)
- Maria Grazia Annunziata
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Loredana F. Ciarmiello
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”Caserta, Italy
| | - Pasqualina Woodrow
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”Caserta, Italy
| | - Eugenia Maximova
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Amodio Fuggi
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”Caserta, Italy
| | - Petronia Carillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”Caserta, Italy
| |
Collapse
|