51
|
Haddadi M, Jahromi SR, Nongthomba U, Shivanandappa T, Ramesh SR. 4-Hydroxyisophthalic acid from Decalepis hamiltonii rescues the neurobehavioral deficit in transgenic Drosophila model of taupathies. Neurochem Int 2016; 100:78-90. [PMID: 27615061 DOI: 10.1016/j.neuint.2016.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 11/17/2022]
Abstract
Oxidative stress is one of the major etiological factors implicated in pathogenesis of neurodegenerative diseases. Since neurons are more sensitive to oxidative damage there is an increasing interest in developing novel antioxidant therapies, especially herbal preparations due to their safety profile and high efficiency. In this regard, the neuroprotective potential of a novel antioxidant compound, 4-hydroxyisophthalic acid (4-HIPA) isolated from aqueous extract of Decalepis hamiltonii roots was examined using transgenic Drosophila model of taupathy expressing wild-type and mutant forms of 2N4R isoform of human microtubule associated protein tau (MAPT). Taupathy model flies showed cognitive deficits in olfactory memory and deteriorated circadian rhythm of locomotory activities. Administration of 0.1 mg/ml 4-HIPA, markedly enhanced their olfactory memory performance and restored circadian rhythmicity of the transgenic flies locomotory behavior to the normal range. The mechanism of action that underlies 4-HIPA neuroprotection involves enhancement in efficiency of cellular antioxidant defense system by means of elevation in antioxidant enzyme activities and attenuation of oxidative stress. The molecule could positively affect the activity of neurotransmitter enzymes, which in turn enhances neuronal function and ameliorates the Tau-induced neurobehavioral deficits. Our findings showed that 4-HIPA can be considered as a suitable therapeutic candidate for drug development towards treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Mohammad Haddadi
- Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran
| | | | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - T Shivanandappa
- Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India
| | - S R Ramesh
- Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India.
| |
Collapse
|
52
|
Concerted two-proton–coupled electron transfer from catechols to superoxide via hydrogen bonds. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.05.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
53
|
Kitamura Y, Nishikawa A, Nakamura H, Furukawa F, Imazawa T, Umemura T, Uchida K, Hirose M. Effects of N-Acetylcysteine, Quercetin, and Phytic Acid on Spontaneous Hepatic and Renal Lesions in LEC Rats. Toxicol Pathol 2016; 33:584-92. [PMID: 16178122 DOI: 10.1080/01926230500246675] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The effects of anti-oxidants were examined in Long-Evans Cinnamon (LEC) rats, which develop acute hepatic injury, and subsequent hepatic and renal tumors due to accumulation of excess Cu. The rats, at the age of 15 weeks, were supplied a diet containing either 1% of N-acetylcysteine (NAC), quercetin (QC), or phytic acid (PA), or basal diet alone. At weeks 2 and 6 posttreatment, animals were sacrificed for collection of blood and tissue samples. In the NAC-treated group, the development of hepatic and renal lesions was dramatically reduced. In addition, accumulation of Cu and Fe in the liver was suppressed. Acrolein-modified protein, a new marker for lipid peroxidation, was not detected in the liver or kidney of NAC treated rats, even though deposition was evident in control. Neither QC nor PA affected the development of spontaneous hepatic lesions. These results indicate that oxidative stress was reduced by NAC in the liver and kidney, and suggest that Cu and Fe may be involved in the generation of oxidative stress in the liver. In addition, it was suggested that the different effects of the anti-oxidants on lesion development in LEC rats might be related to different mechanisms of action with regard to oxidative stress.
Collapse
Affiliation(s)
- Yasuki Kitamura
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Torgasheva NA, Menzorova NI, Sibirtsev YT, Rasskazov VA, Zharkov DO, Nevinsky GA. Base excision DNA repair in the embryonic development of the sea urchin, Strongylocentrotus intermedius. MOLECULAR BIOSYSTEMS 2016; 12:2247-56. [PMID: 27158700 DOI: 10.1039/c5mb00906e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In actively proliferating cells, such as the cells of the developing embryo, DNA repair is crucial for preventing the accumulation of mutations and synchronizing cell division. Sea urchin embryo growth was analyzed and extracts were prepared. The relative activity of DNA polymerase, apurinic/apyrimidinic (AP) endonuclease, uracil-DNA glycosylase, 8-oxoguanine-DNA glycosylase, and other glycosylases was analyzed using specific oligonucleotide substrates of these enzymes; the reaction products were resolved by denaturing 20% polyacrylamide gel electrophoresis. We have characterized the profile of several key base excision repair activities in the developing embryos (2 blastomers to mid-pluteus) of the grey sea urchin, Strongylocentrotus intermedius. The uracil-DNA glycosylase specific activity sharply increased after blastula hatching, whereas the specific activity of 8-oxoguanine-DNA glycosylase steadily decreased over the course of the development. The AP-endonuclease activity gradually increased but dropped at the last sampled stage (mid-pluteus 2). The DNA polymerase activity was high at the first cleavage division and then quickly decreased, showing a transient peak at blastula hatching. It seems that the developing sea urchin embryo encounters different DNA-damaging factors early in development within the protective envelope and later as a free-floating larva, with hatching necessitating adaptation to the shift in genotoxic stress conditions. No correlation was observed between the dynamics of the enzyme activities and published gene expression data from developing congeneric species, S. purpuratus. The results suggest that base excision repair enzymes may be regulated in the sea urchin embryos at the level of covalent modification or protein stability.
Collapse
Affiliation(s)
- Natalya A Torgasheva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentieva Ave., Novosibirsk 630090, Russia. and Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Natalya I Menzorova
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 159 100 let Vladivostoku Ave., Vladivostok 690022, Russia
| | - Yurii T Sibirtsev
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 159 100 let Vladivostoku Ave., Vladivostok 690022, Russia
| | - Valery A Rasskazov
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 159 100 let Vladivostoku Ave., Vladivostok 690022, Russia
| | - Dmitry O Zharkov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentieva Ave., Novosibirsk 630090, Russia. and Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentieva Ave., Novosibirsk 630090, Russia. and Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| |
Collapse
|
55
|
Dincel GC, Atmaca HT. Role of oxidative stress in the pathophysiology of Toxoplasma gondii infection. Int J Immunopathol Pharmacol 2016; 29:226-40. [PMID: 26966143 PMCID: PMC5806720 DOI: 10.1177/0394632016638668] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/19/2016] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress (OS) plays an essential role in the pathogenesis of common neurodegenerative diseases. We have previously shown that Toxoplasma gondii (T. gondii) induces high nitric oxide (NO) production, glial activation, and apoptosis that altogether cause severe neuropathology in toxoplasma encephalitis (TE). The objective of this study was to investigate the cytotoxic effect of OS and to identify a correlation between the causes of T. gondii induced neuropathology. Expression levels of glutathione reductase (GR), Cu/Zn superoxide dismutase (SOD1), neuron specific enolase (NSE), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were investigated. Results of the study revealed that the levels of GR (P <0.005) and NSE (P <0.001) expression in the brain tissue markedly increased while SOD1 activity decreased (P <0.001) in the infected group compared to the non-infected group. In addition, intense staining for 8-OHdG (P <0.05) was observed both in the nucleus and the cytoplasm of neurons and glial cells that underwent OS. These results were reasonable to suggest that T. gondii-mediated OS might play a pivotal role and a different type of role in the mechanism of neurodegeneration/neuropathology in the process of TE. The results also clearly indicated that increased levels of NO and apoptosis might contribute to OS-related pathogenesis of TE. As a result, OS and expression of NSE might give an idea of the disease progress and may have a critical diagnostic significance for patients with T. gondii infection.
Collapse
Affiliation(s)
- Gungor Cagdas Dincel
- Gumushane University, Siran Mustafa Beyaz Vocational High School, Siran, Gumushane, Turkey
| | - Hasan Tarik Atmaca
- Kirikkale University, Faculty of Veterinary Medicine, Department of Pathology, Yahsihan, Kirikkale, Turkey
| |
Collapse
|
56
|
Lavoie S, Steullet P, Kulak A, Preitner F, Do KQ, Magistretti PJ. Glutamate Cysteine Ligase-Modulatory Subunit Knockout Mouse Shows Normal Insulin Sensitivity but Reduced Liver Glycogen Storage. Front Physiol 2016; 7:142. [PMID: 27148080 PMCID: PMC4838631 DOI: 10.3389/fphys.2016.00142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/04/2016] [Indexed: 01/22/2023] Open
Abstract
Glutathione (GSH) deficits have been observed in several mental or degenerative illness, and so has the metabolic syndrome. The impact of a decreased glucose metabolism on the GSH system is well-known, but the effect of decreased GSH levels on the energy metabolism is unclear. The aim of the present study was to investigate the sensitivity to insulin in the mouse knockout (KO) for the modulatory subunit of the glutamate cysteine ligase (GCLM), the rate-limiting enzyme of GSH synthesis. Compared to wildtype (WT) mice, GCLM-KO mice presented with reduced basal plasma glucose and insulin levels. During an insulin tolerance test, GCLM-KO mice showed a normal fall in glycemia, indicating normal insulin secretion. However, during the recovery phase, plasma glucose levels remained lower for longer in KO mice despite normal plasma glucagon levels. This is consistent with a normal counterregulatory hormonal response but impaired mobilization of glucose from endogenous stores. Following a resident-intruder stress, during which stress hormones mobilize glucose from hepatic glycogen stores, KO mice showed a lower hyperglycemic level despite higher plasma cortisol levels when compared to WT mice. The lower hepatic glycogen levels observed in GCLM-KO mice could explain the impaired glycogen mobilization following induced hypoglycemia. Altogether, our results indicate that reduced liver glycogen availability, as observed in GCLM-KO mice, could be at the origin of their lower basal and challenged glycemia. Further studies will be necessary to understand how a GSH deficit, typically observed in GCLM-KO mice, leads to a deficit in liver glycogen storage.
Collapse
Affiliation(s)
- Suzie Lavoie
- Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital and University of LausanneLausanne-Prilly, Switzerland; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, The University of MelbourneParkville, VIC, Australia
| | - Pascal Steullet
- Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital and University of Lausanne Lausanne-Prilly, Switzerland
| | - Anita Kulak
- Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital and University of Lausanne Lausanne-Prilly, Switzerland
| | - Frederic Preitner
- Mouse Metabolic Evaluation Facility, Center for Integrative Genomics, University of Lausanne Lausanne, Switzerland
| | - Kim Q Do
- Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital and University of Lausanne Lausanne-Prilly, Switzerland
| | - Pierre J Magistretti
- Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital and University of LausanneLausanne-Prilly, Switzerland; Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de LausanneLausanne, Switzerland; BESE Division, King Abdullah University of Sciences and Technology (KAUST)Thuwal, Saudi Arabia
| |
Collapse
|
57
|
Pillai VB, Bindu S, Sharp W, Fang YH, Kim G, Gupta M, Samant S, Gupta MP. Sirt3 protects mitochondrial DNA damage and blocks the development of doxorubicin-induced cardiomyopathy in mice. Am J Physiol Heart Circ Physiol 2016; 310:H962-72. [PMID: 26873966 PMCID: PMC4867337 DOI: 10.1152/ajpheart.00832.2015] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/08/2016] [Indexed: 01/15/2023]
Abstract
Doxorubicin (Doxo) is a chemotherapeutic drug widely used to treat variety of cancers. One of the most serious side effects of Doxo is its dose-dependent and delayed toxicity to the heart. Doxo is known to induce cardiac mitochondrial damage. Recently, the mitochondrial sirtuin SIRT3 has been shown to protect mitochondria from oxidative stress. Here we show that overexpression of SIRT3 protects the heart from toxicity of Doxo by preventing the drug-induced mitochondrial DNA (mtDNA) damage. Doxo treatment caused depletion of Sirt3 levels both in primary cultures of cardiomyocytes and in mouse hearts, which led to massive acetylation of mitochondrial proteins. Doxo-induced toxicity to cardiomyocytes was associated with increased reactive oxygen species (ROS) production, mitochondrial fragmentation, and cell death. Overexpression of SIRT3 helped to attenuate Doxo-induced ROS levels and cardiomyocyte death. Sirt3 knockout (Sirt3.KO) mice could not endure the full dose of Doxo treatment, developed exacerbated cardiac hypertrophy, and died during the course of treatment, whereas Sirt3 transgenic (Sirt3.tg) mice were protected against Doxo-induced cardiotoxicity. Along with Sirt3, we also observed a concomitant decrease in levels of oxoguanine-DNA glycosylase-1 (OGG1), a major DNA glycosylase that hydrolyzes oxidized-guanine (8-oxo-dG) to guanine. Depletion of OGG1 levels was associated with increased mtDNA damage. Sirt3.KO mice and Doxo-treated mice showed increased 8-oxo-dG adducts in DNA and corresponding increase in mtDNA damage, whereas, 8-oxo-dG adducts and mtDNA damage were markedly reduced in Sirt3 overexpressing transgenic mice hearts. These results thus demonstrated that Sirt3 activation protects the heart from Doxo-induced cardiotoxicity by maintaining OGG1 levels and protecting mitochondria from DNA damage.
Collapse
MESH Headings
- 8-Hydroxy-2'-Deoxyguanosine
- Animals
- Cardiomegaly/chemically induced
- Cardiomegaly/enzymology
- Cardiomegaly/genetics
- Cardiomegaly/pathology
- Cardiomyopathies/chemically induced
- Cardiomyopathies/enzymology
- Cardiomyopathies/genetics
- Cardiomyopathies/pathology
- Cardiomyopathies/prevention & control
- Cell Death
- Cells, Cultured
- DNA Adducts/metabolism
- DNA Damage
- DNA Glycosylases/metabolism
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Deoxyguanosine/analogs & derivatives
- Deoxyguanosine/metabolism
- Disease Models, Animal
- Doxorubicin
- Female
- Fibroblasts/enzymology
- Fibroblasts/pathology
- Hydrolysis
- Male
- Mice, Knockout
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/pathology
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Oxidative Stress
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Sirtuin 3/deficiency
- Sirtuin 3/genetics
- Sirtuin 3/metabolism
- Sirtuins/metabolism
- Time Factors
Collapse
Affiliation(s)
- Vinodkumar B Pillai
- Department of Surgery, Committee on Molecular Pathogenesis and Molecular Medicine, Biological Science Division, University of Chicago, Chicago, Illinois
| | - Samik Bindu
- Department of Surgery, Committee on Molecular Pathogenesis and Molecular Medicine, Biological Science Division, University of Chicago, Chicago, Illinois
| | - Will Sharp
- Department Medicine, Committee on Molecular Pathogenesis and Molecular Medicine, Biological Science Division, University of Chicago, Chicago, Illinois; and
| | - Yong Hu Fang
- Department Medicine, Committee on Molecular Pathogenesis and Molecular Medicine, Biological Science Division, University of Chicago, Chicago, Illinois; and
| | - Gene Kim
- Department Medicine, Committee on Molecular Pathogenesis and Molecular Medicine, Biological Science Division, University of Chicago, Chicago, Illinois; and
| | - Madhu Gupta
- Department of Physiology and Biophysics, University of Illinois, Chicago, Illinois
| | - Sadhana Samant
- Department of Surgery, Committee on Molecular Pathogenesis and Molecular Medicine, Biological Science Division, University of Chicago, Chicago, Illinois
| | - Mahesh P Gupta
- Department of Surgery, Committee on Molecular Pathogenesis and Molecular Medicine, Biological Science Division, University of Chicago, Chicago, Illinois
| |
Collapse
|
58
|
Ye X, Jiang R, Zhang Q, Wang R, Yang C, Ma J, Du H. Increased 8-hydroxy-2'-deoxyguanosine in leukocyte DNA from patients with type 2 diabetes and microangiopathy. J Int Med Res 2016; 44:472-82. [PMID: 27009027 PMCID: PMC5536714 DOI: 10.1177/0300060515621530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/13/2015] [Indexed: 01/10/2023] Open
Abstract
Objective To evaluate oxidative damage in leukocytes from patients with type 2 diabetes by examining 8-hydroxy-2’-deoxyguanosine (8-OHdG) levels. Methods Patients with type 2 diabetes and healthy controls were assessed for demographic, clinical and biochemical characteristics. Levels of 8-OHdG in extracted leukocyte DNA were determined by enzyme linked immunosorbent assay. Results Of 108 patients with type 2 diabetes (56 with microangiopathy, 52 without) and 65 healthy controls, leukocyte 8-OHdG levels were higher in patients with type 2 diabetes versus controls (median ± interquartile range [IQR], 3.19 ± 2.17 versus 0.38 ± 1.00 ng/ml), and higher in patients with type 2 diabetes and microangiopathy versus those without microangiopathy (median ± IQR, 3.34 ± 1.87 versus 2.71 ± 2.26 ng/ml). Patients with type 2 diabetes and microangiopathy had higher serum creatinine and urinary albumin levels versus those without microangiopathy. Leukocyte 8-OHdG levels, duration of type 2 diabetes, albuminuria, use of insulin and use of angiotensin-converting enzyme (ACE) inhibitors/angiotensin receptor blockers (ARBs) were independently associated with microangiopathy in patients with type 2 diabetes after adjustment for smoking. Conclusions Leukocyte oxidative DNA damage was high in patients with type 2 diabetes and microangiopathy. Presence of microangiopathy was associated with leukocyte 8-OHdG levels, duration of type 2 diabetes, albuminuria and use of ACE inhibitors/ARBs or insulin.
Collapse
Affiliation(s)
- Xiaozhen Ye
- Department of Endocrinology, Jinling Hospital, Southern Medical School, Nanjing, Jiangsu Province, China
| | - Rong Jiang
- Department of Endocrinology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu Province, China
| | - Qianqian Zhang
- Department of Endocrinology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu Province, China
| | - Ruifeng Wang
- Department of Endocrinology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu Province, China
| | - Cuihua Yang
- Department of Endocrinology, Jinling Hospital, Nanjing, Jiangsu Province, China
| | - Jian Ma
- Department of Endocrinology, Jinling Hospital, Nanjing, Jiangsu Province, China
| | - Hong Du
- Department of Endocrinology, Jinling Hospital, Nanjing, Jiangsu Province, China
| |
Collapse
|
59
|
Iron stimulates plasma-activated medium-induced A549 cell injury. Sci Rep 2016; 6:20928. [PMID: 26865334 PMCID: PMC4750041 DOI: 10.1038/srep20928] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/13/2016] [Indexed: 01/20/2023] Open
Abstract
Non-thermal atmospheric pressure plasma is applicable to living cells and has emerged as a novel technology for cancer therapy. Plasma has recently been shown to affect cells not only by direct irradiation, but also by indirect treatments with previously prepared plasma-activated medium (PAM). Iron is an indispensable element but is also potentially toxic because it generates the hydroxyl radical (•OH) in the presence of hydrogen peroxide (H2O2) via the Fenton reaction. The aim of the present study was to demonstrate the contribution of iron to PAM-induced A549 adenocarcinoma cell apoptosis. We detected the generation of •OH and elevation of intracellular ferrous ions in PAM-treated cells and found that they were inhibited by iron chelator. The elevations observed in ferrous ions may have been due to their release from the intracellular iron store, ferritin. Hydroxyl radical-induced DNA injury was followed by the activation of poly(ADP-ribose) polymerase-1, depletion of NAD+ and ATP, and elevations in intracellular Ca2+. The sensitivities of normal cells such as smooth muscle cells and keratinocytes to PAM were less than that of A549 cells. These results demonstrated that H2O2 in PAM and/or •OH generated in the presence of iron ions disturbed the mitochondrial-nuclear network in cancer cells.
Collapse
|
60
|
Brzozowski B, Mazur-Bialy A, Pajdo R, Kwiecien S, Bilski J, Zwolinska-Wcislo M, Mach T, Brzozowski T. Mechanisms by which Stress Affects the Experimental and Clinical Inflammatory Bowel Disease (IBD): Role of Brain-Gut Axis. Curr Neuropharmacol 2016; 14:892-900. [PMID: 27040468 PMCID: PMC5333596 DOI: 10.2174/1570159x14666160404124127] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/28/2016] [Accepted: 03/16/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Stress of different origin is known to alter so called "braingut axis" and contributes to a broad array of gastrointestinal disorders including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and other functional gastrointestinal diseases. The stressful situations and various stressors including psychosocial events, heat, hypo- and hyperthermia may worsen the course of IBD via unknown mechanism. The aims of this paper were to provide an overview of experimental and clinical evidences that stress activates the brain-gut axis which results in a mucosal mast cells activation and an increase in the production of proinflammatory cytokines and other endocrine and humoral mediators. METHODS Research and online content related to effects of stress on lower bowel disorders are reviewed and most important mechanisms are delineated. RESULTS Brain conveys the neural, endocrine and circulatory messages to the gut via brain-gut axis reflecting changes in corticotrophin releasing hormone, mast cells activity, neurotransmission at the autonomic nerves system and intestinal barrier function all affecting the pathogenesis of animal colitis and human IBD. Stress triggers the hypothalamus-pituitary axis and the activation of the autonomic nervous system, an increase in cortisol levels and proinflammatory cytokines such as tumor necrosis factor-alpha, interleukin-8, interleukin-1beta and interleukin-6. CONCLUSION The acute or chronic stress enhances the intestinal permeability weakening of the tight junctions and increasing bacterial translocation into the intestinal wall. An increased microbial load in the colonic tissue, excessive cytokine release and a partially blunted immune reactivity in response to stress result in its negative impact on IBD.
Collapse
Affiliation(s)
- Bartosz Brzozowski
- Gastroenterology and Hepatology Clinic Jagiellonian University Medical College, Cracow, Poland
| | - Agnieszka Mazur-Bialy
- Department of Physical Exercise, Faculty of Health Care, Jagiellonian University Medical College, Poland and
| | - Robert Pajdo
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Slawomir Kwiecien
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Jan Bilski
- Department of Physical Exercise, Faculty of Health Care, Jagiellonian University Medical College, Poland and
| | | | - Tomasz Mach
- Gastroenterology and Hepatology Clinic Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
61
|
Lozano-Sepulveda SA, Bryan-Marrugo OL, Cordova-Fletes C, Gutierrez-Ruiz MC, Rivas-Estilla AM. Oxidative stress modulation in hepatitis C virus infected cells. World J Hepatol 2015; 7:2880-2889. [PMID: 26692473 PMCID: PMC4678374 DOI: 10.4254/wjh.v7.i29.2880] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 11/07/2015] [Accepted: 12/01/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) replication is associated with the endoplasmic reticulum, where the virus can induce cellular stress. Oxidative cell damage plays an important role in HCV physiopathology. Oxidative stress is triggered when the concentration of oxygen species in the extracellular or intracellular environment exceeds antioxidant defenses. Cells are protected and modulate oxidative stress through the interplay of intracellular antioxidant agents, mainly glutathione system (GSH) and thioredoxin; and antioxidant enzyme systems such as superoxide dismutase, catalase, GSH peroxidase, and heme oxygenase-1. Also, the use of natural and synthetic antioxidants (vitamin C and E, N-acetylcysteine, glycyrrhizin, polyenylphosphatidyl choline, mitoquinone, quercetin, S-adenosylmethionine and silymarin) has already shown promising results as co-adjuvants in HCV therapy. Despite all the available information, it is not known how different agents with antiviral activity can interfere with the modulation of the cell redox state induced by HCV and decrease viral replication. This review describes an evidence-based consensus on molecular mechanisms involved in HCV replication and their relationship with cell damage induced by oxidative stress generated by the virus itself and cell antiviral machinery. It also describes some molecules that modify the levels of oxidative stress in HCV-infected cells.
Collapse
Affiliation(s)
- Sonia A Lozano-Sepulveda
- Sonia A Lozano-Sepulveda, Owen L Bryan-Marrugo, Carlos Cordova-Fletes, Ana M Rivas-Estilla, Department of Biochemistry and Molecular Medicine, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Owen L Bryan-Marrugo
- Sonia A Lozano-Sepulveda, Owen L Bryan-Marrugo, Carlos Cordova-Fletes, Ana M Rivas-Estilla, Department of Biochemistry and Molecular Medicine, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Carlos Cordova-Fletes
- Sonia A Lozano-Sepulveda, Owen L Bryan-Marrugo, Carlos Cordova-Fletes, Ana M Rivas-Estilla, Department of Biochemistry and Molecular Medicine, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Maria C Gutierrez-Ruiz
- Sonia A Lozano-Sepulveda, Owen L Bryan-Marrugo, Carlos Cordova-Fletes, Ana M Rivas-Estilla, Department of Biochemistry and Molecular Medicine, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Ana M Rivas-Estilla
- Sonia A Lozano-Sepulveda, Owen L Bryan-Marrugo, Carlos Cordova-Fletes, Ana M Rivas-Estilla, Department of Biochemistry and Molecular Medicine, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| |
Collapse
|
62
|
Kuroda K, Azuma K, Mori T, Kawamoto K, Murahata Y, Tsuka T, Osaki T, Ito N, Imagawa T, Itoh F, Okamoto Y. The Safety and Anti-Tumor Effects of Ozonated Water in Vivo. Int J Mol Sci 2015; 16:25108-20. [PMID: 26506343 PMCID: PMC4632793 DOI: 10.3390/ijms161025108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/05/2015] [Accepted: 10/12/2015] [Indexed: 01/05/2023] Open
Abstract
Ozonated water is easier to handle than ozone gas. However, there have been no previous reports on the biological effects of ozonated water. We conducted a study on the safety of ozonated water and its anti-tumor effects using a tumor-bearing mouse model and normal controls. Local administration of ozonated water (208 mM) was not associated with any detrimental effects in normal tissues. On the other hand, local administration of ozonated water (20.8, 41.6, 104, or 208 mM) directly into the tumor tissue induced necrosis and inhibited proliferation of tumor cells. There was no significant difference in the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick-end labeling (TUNEL)-positive cells following administration of ozonated water. The size of the necrotic areas was dependent on the concentration of ozonated water. These results indicate that ozonated water does not affect normal tissue and damages only the tumor tissue by selectively inducing necrosis. There is a possibility that it exerts through the production of reaction oxygen species (ROS). In addition, the induction of necrosis rather than apoptosis is very useful in tumor immunity. Based on these results, we believe that administration of ozonated water is a safe and potentially simple adjunct or alternative to existing antineoplastic treatments.
Collapse
Affiliation(s)
- Kohei Kuroda
- Department of Clinical Medicine, Joint School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| | - Kazuo Azuma
- Department of Clinical Medicine, Joint School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| | - Takuro Mori
- Department of Clinical Medicine, Joint School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| | - Kinya Kawamoto
- Department of Clinical Medicine, Joint School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| | - Yusuke Murahata
- Department of Clinical Medicine, Joint School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| | - Takeshi Tsuka
- Department of Clinical Medicine, Joint School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| | - Tomohiro Osaki
- Department of Clinical Medicine, Joint School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| | - Norihiko Ito
- Department of Clinical Medicine, Joint School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| | - Tomohiro Imagawa
- Department of Clinical Medicine, Joint School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| | - Fumio Itoh
- Department of Technical Development, Sakuragawa Pump Co., Ltd., Osaka 567-0005, Japan.
| | - Yoshiharu Okamoto
- Department of Clinical Medicine, Joint School of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| |
Collapse
|
63
|
Pagano G, d'Ischia M, Pallardó FV. Fanconi anemia (FA) and crosslinker sensitivity: Re-appraising the origins of FA definition. Pediatr Blood Cancer 2015; 62:1137-43. [PMID: 25732180 DOI: 10.1002/pbc.25452] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/12/2015] [Indexed: 11/06/2022]
Abstract
The commonly accepted definition of Fanconi anemia (FA) relying on DNA repair deficiency is submitted to a critical review starting from the early reports pointing to mitomycin C bioactivation and to the toxicity mechanisms of diepoxybutane and a group of nitrogen mustards causing DNA crosslinks in FA cells. A critical analysis of the literature prompts revisiting the FA phenotype and crosslinker sensitivity in terms of an oxidative stress (OS) background, redox-related anomalies of FA (FANC) proteins, and mitochondrial dysfunction. This re-appraisal of FA basic defect might lead to innovative approaches both in elucidating FA phenotypes and in clinical management.
Collapse
Affiliation(s)
- Giovanni Pagano
- Istituto Nazionale Tumori Fondazione G. Pascale-Cancer Research Center at Mercogliano (CROM), Mercogliano (AV), Italy
| | - Marco d'Ischia
- Department of Chemical Sciences, University of Naples "Federico II,", Naples, Italy
| | - Federico V Pallardó
- University of Valencia-INCLIVA, CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), Valencia, Spain
| |
Collapse
|
64
|
Yang JH, Kim KM, Kim MG, Seo KH, Han JY, Ka SO, Park BH, Shin SM, Ku SK, Cho IJ, Ki SH. Role of sestrin2 in the regulation of proinflammatory signaling in macrophages. Free Radic Biol Med 2015; 78:156-67. [PMID: 25463278 DOI: 10.1016/j.freeradbiomed.2014.11.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/01/2014] [Accepted: 11/03/2014] [Indexed: 01/04/2023]
Abstract
Sestrins (Sesns) are conserved antioxidant proteins that accumulate in cells in response to various stresses. However, the regulatory roles of Sesn2 in the immune system and in inflammatory responses remain obscure. In the present study, we investigated whether Sesn2 regulates Toll like receptor (TLR)-mediated inflammatory signaling and sought to identify the molecular mechanism responsible. In cells expressing Sesn2, it was found that Sesn2 almost completely inhibited lipopolysaccharide (LPS)-induced NO release and iNOS expression. A gene knockdown experiment confirmed the role of Sesn2 in LPS-activated RAW264.7 cells. Consistently, proinflammatory cytokine (e.g., TNF-α, IL-6, and IL-1β) release and expression were inhibited in Sesn2-expressing cells. Furthermore, Sesn2 prevented LPS-elicited cell death and ROS production via inhibition of NADPH oxidase. NF-κB and AP-1 are redox-sensitive transcription factors that regulate the expressions of diverse inflammatory genes. Surprisingly, Sesn2 specifically inhibited AP-1 luciferase activity and its DNA binding, but not those of NF-κB. AP-1 inhibition by Sesn2 was found to be due to a lack of JNK, p38, and c-Jun phosphorylation. Next, we investigated whether Sesn2 protects galactosamine (Gal)/LPS-induced liver injury in mice infected with a recombinant adenovirus Sesn2 (Ad-Sesn2). Ad-Sesn2 present less severe hepatic injury as supported by decreases in the ALT, AST, and hepatocyte degeneration. Moreover, Ad-Sesn2 attenuated Gal/LPS-induced proinflammatory gene expression in mice. The study shows that Sesn2 inhibits TLR-induced proinflammatory signaling and protects cells by inhibiting JNK- or p38-mediated c-Jun phosphorylation.
Collapse
Affiliation(s)
- Ji Hye Yang
- College of Pharmacy, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759, South Korea
| | - Kyu Min Kim
- College of Pharmacy, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759, South Korea
| | - Mi Gwang Kim
- College of Pharmacy, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759, South Korea
| | - Kyu Hwa Seo
- College of Pharmacy, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759, South Korea
| | - Jae Yoon Han
- College of Pharmacy, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759, South Korea
| | - Sun-O Ka
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Sang Mi Shin
- College of Pharmacy, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759, South Korea
| | - Sae Kwang Ku
- MRC-GHF, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 712-715, Republic of Korea
| | - Il Je Cho
- MRC-GHF, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 712-715, Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759, South Korea.
| |
Collapse
|
65
|
Dheer R, Davies JM, Abreu MT. Inflammation and Colorectal Cancer. INTESTINAL TUMORIGENESIS 2015:211-256. [DOI: 10.1007/978-3-319-19986-3_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
66
|
Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int J Mol Sci 2014; 16:193-217. [PMID: 25547488 PMCID: PMC4307243 DOI: 10.3390/ijms16010193] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 12/05/2014] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen and nitrogen species have been implicated in diverse pathophysiological conditions, including inflammation, neurodegenerative diseases and cancer. Accumulating evidence indicates that oxidative damage to biomolecules including lipids, proteins and DNA, contributes to these diseases. Previous studies suggest roles of lipid peroxidation and oxysterols in the development of neurodegenerative diseases and inflammation-related cancer. Our recent studies identifying and characterizing carbonylated proteins reveal oxidative damage to heat shock proteins in neurodegenerative disease models and inflammation-related cancer, suggesting dysfunction in their antioxidative properties. In neurodegenerative diseases, DNA damage may not only play a role in the induction of apoptosis, but also may inhibit cellular division via telomere shortening. Immunohistochemical analyses showed co-localization of oxidative/nitrative DNA lesions and stemness markers in the cells of inflammation-related cancers. Here, we review oxidative stress and its significant roles in neurodegenerative diseases and cancer.
Collapse
|
67
|
Abstract
The aim of this study was to determine the procedure parameters, including drying, extracting and pH on the antioxidant activity and antioxidative compounds in Perilla frutescens leaves. The extraction of antioxidants from Perilla frutescens leaves is studied considering different drying and extracting procedures to investigate the selectivity of the process. The radical-scavenging activity (RSA) of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) and the determination of the total phenolic content are applied to evaluate the antioxidant activity and antioxidative compounds of the Perilla frutescens leave extracts. The highest antioxidant activity is observed for the extract obtained by freeze drying, extracting by ultrasound with 80% methanol adjusted at pH 4.The antioxidant compound extraction yield was also the highest at these extraction conditions. The total phenol contents among the Perilla frutescens leave extracts produced by different drying procedures were similar, while the antioxidant activities were different This concluding that the amount of phenolic compounds extracted was similar but the type and probable structure of the phenolic changed during heat-drying procedure providing in this way. Our study showed that proper process technology could ultimately extract compounds potentially effective against diseases related to free radical oxidation.
Collapse
|
68
|
Piechota-Polanczyk A, Fichna J. Review article: the role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:605-20. [PMID: 24798211 PMCID: PMC4065336 DOI: 10.1007/s00210-014-0985-1] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/24/2014] [Indexed: 12/12/2022]
Abstract
In this review, we focus on the role of oxidative stress in the aetiology of inflammatory bowel diseases (IBD) and colitis-associated colorectal cancer and discuss free radicals and free radical-stimulated pathways as pharmacological targets for anti-IBD drugs. We also suggest novel anti-oxidative agents, which may become effective and less-toxic alternatives in IBD and colitis-associated colorectal cancer treatment. A Medline search was performed to identify relevant bibliography using search terms including: ‘free radicals,’ ‘antioxidants,’ ‘oxidative stress,’ ‘colon cancer,’ ‘ulcerative colitis,’ ‘Crohn’s disease,’ ‘inflammatory bowel disease.’ Several therapeutics commonly used in IBD treatment, among which are immunosuppressants, corticosteroids and anti-TNF-α antibodies, could also affect the IBD progression by interfering with cellular oxidative stress and cytokine production. Experimental data shows that these drugs may effectively scavenge free radicals, increase anti-oxidative capacity of cells, influence multiple signalling pathways, e.g. MAPK and NF-kB, and inhibit pro-oxidative enzyme and cytokine concentration. However, their anti-oxidative and anti-inflammatory effectiveness still needs further investigation. A highly specific antioxidative activity may be important for the clinical treatment and relapse of IBD. In the future, a combination of currently used pharmaceutics, together with natural and synthetic anti-oxidative compounds, like lipoic acid or curcumine, could be taken into account in the design of novel anti-IBD therapies.
Collapse
|
69
|
Lee HC, Huang KH, Yeh TS, Chi CW. Somatic alterations in mitochondrial DNA and mitochondrial dysfunction in gastric cancer progression. World J Gastroenterol 2014; 20:3950-3959. [PMID: 24744584 PMCID: PMC3983450 DOI: 10.3748/wjg.v20.i14.3950] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/26/2013] [Accepted: 02/26/2014] [Indexed: 02/06/2023] Open
Abstract
Energy metabolism reprogramming was recently identified as one of the cancer hallmarks. One of the underlying mechanisms of energy metabolism reprogramming is mitochondrial dysfunction caused by mutations in nuclear genes or mitochondrial DNA (mtDNA). In the past decades, several types of somatic mtDNA alterations have been identified in gastric cancer. However, the role of these mtDNA alterations in gastric cancer progression remains unclear. In this review, we summarize recently identified somatic mtDNA alterations in gastric cancers as well as the relationship between these alterations and the clinicopathological features of gastric cancer. The causative factors and potential roles of the somatic mtDNA alterations in cancer progression are also discussed. We suggest that point mutations and mtDNA copy number decreases are the two most common mtDNA alterations that result in mitochondrial dysfunction in gastric cancers. The two primary mutation types (transition mutations and mononucleotide or dinucleotide repeat instability) imply potential causative factors. Mitochondrial dysfunction-generated reactive oxygen species may be involved in the malignant changes of gastric cancer. The search for strategies to prevent mtDNA alterations and inhibit the mitochondrial retrograde signaling will benefit the development of novel treatments for gastric cancer and other malignancies.
Collapse
|
70
|
Awonuga AO, Belotte J, Abuanzeh S, Fletcher NM, Diamond MP, Saed GM. Advances in the Pathogenesis of Adhesion Development: The Role of Oxidative Stress. Reprod Sci 2014; 21:823-836. [PMID: 24520085 DOI: 10.1177/1933719114522550] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Over the past several years, there has been increasing recognition that pathogenesis of adhesion development includes significant contributions of hypoxia induced at the site of surgery, the resulting oxidative stress, and the subsequent free radical production. Mitochondrial dysfunction generated by surgically induced tissue hypoxia and inflammation can lead to the production of reactive oxygen and nitrogen species as well as antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase which when optimal have the potential to abrogate mitochondrial dysfunction and oxidative stress, preventing the cascade of events leading to the development of adhesions in injured peritoneum. There is a significant cross talk between the several processes leading to whether or not adhesions would eventually develop. Several of these processes present avenues for the development of measures that can help in abrogating adhesion formation or reformation after intraabdominal surgery.
Collapse
Affiliation(s)
- Awoniyi O Awonuga
- Department of Obstetrics and Gynecology, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Jimmy Belotte
- Department of Obstetrics and Gynecology, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Suleiman Abuanzeh
- Department of Obstetrics and Gynecology, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nicole M Fletcher
- Department of Obstetrics and Gynecology, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael P Diamond
- Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, GA, USA
| | - Ghassan M Saed
- Department of Obstetrics and Gynecology, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, Wayne State University, School of Medicine, Detroit, MI, USA Department of Physiology, Program for Reproductive Sciences, Wayne State University, School of Medicine, Detroit, MI, USA Karmanos Cancer Institute, Molecular Biology and Genetics Program, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
71
|
Ohnishi S, Ma N, Thanan R, Pinlaor S, Hammam O, Murata M, Kawanishi S. DNA damage in inflammation-related carcinogenesis and cancer stem cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:387014. [PMID: 24382987 PMCID: PMC3870134 DOI: 10.1155/2013/387014] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/20/2013] [Indexed: 02/07/2023]
Abstract
Infection and chronic inflammation have been recognized as important factors for carcinogenesis. Under inflammatory conditions, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from inflammatory and epithelial cells and result in oxidative and nitrative DNA damage, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. The DNA damage can cause mutations and has been implicated in the initiation and/or promotion of inflammation-mediated carcinogenesis. It has been estimated that various infectious agents are carcinogenic to humans (IARC group 1), including parasites (Schistosoma haematobium (SH) and Opisthorchis viverrini (OV)), viruses (hepatitis C virus (HCV), human papillomavirus (HPV), and Epstein-Barr virus (EBV)), and bacterium Helicobacter pylori (HP). SH, OV, HCV, HPV, EBV, and HP are important risk factors for bladder cancer, cholangiocarcinoma, hepatocellular carcinoma, cervical cancer, nasopharyngeal carcinoma, and gastric cancer, respectively. We demonstrated that 8-nitroguanine was strongly formed via inducible nitric oxide synthase (iNOS) expression at these cancer sites of patients. Moreover, 8-nitroguanine was formed in Oct3/4-positive stem cells in SH-associated bladder cancer tissues and in Oct3/4- and CD133-positive stem cells in OV-associated cholangiocarcinoma tissues. Therefore, it is considered that oxidative and nitrative DNA damage in stem cells may play a key role in inflammation-related carcinogenesis.
Collapse
Affiliation(s)
- Shiho Ohnishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Mie, Japan
| | - Ning Ma
- Faculty of Health Science, Suzuka University of Medical Science, Suzuka 510-0293, Mie, Japan
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Olfat Hammam
- Departments of Pathology and Urology, Theodor Bilharz Research Institute, Giza 12411, Egypt
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Mie, Japan
| |
Collapse
|
72
|
Koskenkorva-Frank TS, Weiss G, Koppenol WH, Burckhardt S. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radic Biol Med 2013; 65:1174-1194. [PMID: 24036104 DOI: 10.1016/j.freeradbiomed.2013.09.001] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 02/07/2023]
Abstract
Production of minute concentrations of superoxide (O2(*-)) and nitrogen monoxide (nitric oxide, NO*) plays important roles in several aspects of cellular signaling and metabolic regulation. However, in an inflammatory environment, the concentrations of these radicals can drastically increase and the antioxidant defenses may become overwhelmed. Thus, biological damage may occur owing to redox imbalance-a condition called oxidative and/or nitrosative stress. A complex interplay exists between iron metabolism, O2(*-), hydrogen peroxide (H2O2), and NO*. Iron is involved in both the formation and the scavenging of these species. Iron deficiency (anemia) (ID(A)) is associated with oxidative stress, but its role in the induction of nitrosative stress is largely unclear. Moreover, oral as well as intravenous (iv) iron preparations used for the treatment of ID(A) may also induce oxidative and/or nitrosative stress. Oral administration of ferrous salts may lead to high transferrin saturation levels and, thus, formation of non-transferrin-bound iron, a potentially toxic form of iron with a propensity to induce oxidative stress. One of the factors that determine the likelihood of oxidative and nitrosative stress induced upon administration of an iv iron complex is the amount of labile (or weakly-bound) iron present in the complex. Stable dextran-based iron complexes used for iv therapy, although they contain only negligible amounts of labile iron, can induce oxidative and/or nitrosative stress through so far unknown mechanisms. In this review, after summarizing the main features of iron metabolism and its complex interplay with O2(*-), H2O2, NO*, and other more reactive compounds derived from these species, the potential of various iron therapies to induce oxidative and nitrosative stress is discussed and possible underlying mechanisms are proposed. Understanding the mechanisms, by which various iron formulations may induce oxidative and nitrosative stress, will help us develop better tolerated and more efficient therapies for various dysfunctions of iron metabolism.
Collapse
Affiliation(s)
- Taija S Koskenkorva-Frank
- Chemical and Preclinical Research and Development, Vifor (International) Ltd., CH-9001 St. Gallen, Switzerland
| | - Günter Weiss
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Willem H Koppenol
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Susanna Burckhardt
- Chemical and Preclinical Research and Development, Vifor (International) Ltd., CH-9001 St. Gallen, Switzerland; Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
73
|
Yao CW, Piao MJ, Kim KC, Zheng J, Cha JW, Hyun JW. 6'-o-galloylpaeoniflorin protects human keratinocytes against oxidative stress-induced cell damage. Biomol Ther (Seoul) 2013; 21:349-57. [PMID: 24244822 PMCID: PMC3825198 DOI: 10.4062/biomolther.2013.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 02/07/2023] Open
Abstract
6'-O-galloylpaeoniflorin (GPF) is a galloylated derivate of paeoniflorin and a key chemical constituent of the peony root, a perennial flowering plant that is widely used as an herbal medicine in East Asia. This study is the first investigation of the cytoprotective effects of GPF against hydrogen peroxide (H2O2)-induced cell injury and death in human HaCaT keratinocytes. GPF demonstrated a significant scavenging capacity against the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical, H2O2-generated intracellular reactive oxygen species (ROS), the superoxide anion radical (O2-), and the hydroxyl radical (•OH). GPF also safeguarded HaCaT keratinocytes against H2O2-provoked apoptotic cell death and attenuated oxidative macromolecular damage to DNA, lipids, and proteins. The compound exerted its cytoprotective actions in keratinocytes at least in part by decreasing the number of DNA strand breaks, the levels of 8-isoprostane (a stable end-product of lipid peroxidation), and the formation of carbonylated protein species. Taken together, these results indicate that GPF may be developed as a cytoprotector against ROS-mediated oxidative stress.
Collapse
Affiliation(s)
- Cheng Wen Yao
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Republic of Korea
| | | | | | | | | | | |
Collapse
|
74
|
Biasi F, Leonarduzzi G, Oteiza PI, Poli G. Inflammatory bowel disease: mechanisms, redox considerations, and therapeutic targets. Antioxid Redox Signal 2013; 19:1711-47. [PMID: 23305298 PMCID: PMC3809610 DOI: 10.1089/ars.2012.4530] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative stress is thought to play a key role in the development of intestinal damage in inflammatory bowel disease (IBD), because of its primary involvement in intestinal cells' aberrant immune and inflammatory responses to dietary antigens and to the commensal bacteria. During the active disease phase, activated leukocytes generate not only a wide spectrum of pro-inflammatory cytokines, but also excess oxidative reactions, which markedly alter the redox equilibrium within the gut mucosa, and maintain inflammation by inducing redox-sensitive signaling pathways and transcription factors. Moreover, several inflammatory molecules generate further oxidation products, leading to a self-sustaining and auto-amplifying vicious circle, which eventually impairs the gut barrier. The current treatment of IBD consists of long-term conventional anti-inflammatory therapy and often leads to drug refractoriness or intolerance, limiting patients' quality of life. Immune modulators or anti-tumor necrosis factor α antibodies have recently been used, but all carry the risk of significant side effects and a poor treatment response. Recent developments in molecular medicine point to the possibility of treating the oxidative stress associated with IBD, by designing a proper supplementation of specific lipids to induce local production of anti-inflammatory derivatives, as well as by developing biological therapies that target selective molecules (i.e., nuclear factor-κB, NADPH oxidase, prohibitins, or inflammasomes) involved in redox signaling. The clinical significance of oxidative stress in IBD is now becoming clear, and may soon lead to important new therapeutic options to lessen intestinal damage in this disease.
Collapse
Affiliation(s)
- Fiorella Biasi
- 1 Department of Clinical and Biological Sciences, University of Turin , San Luigi Gonzaga Hospital, Orbassano, Italy
| | | | | | | |
Collapse
|
75
|
Modeling the scavenging activity of ellagic acid and its methyl derivatives towards hydroxyl, methoxy, and nitrogen dioxide radicals. J Mol Model 2013; 19:5445-56. [DOI: 10.1007/s00894-013-2023-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/25/2013] [Indexed: 02/08/2023]
|
76
|
Prasad AK, Mishra PC. Study of scavenging action of zingerone towards the OH radical: formation of vanillin and ferulic acid. J PHYS ORG CHEM 2013. [DOI: 10.1002/poc.3200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ajit Kumar Prasad
- Department of Physics; Banaras Hindu University; Varanasi 221 005 India
| | - P. C. Mishra
- Department of Physics; Banaras Hindu University; Varanasi 221 005 India
| |
Collapse
|
77
|
Ríos-Arrabal S, Artacho-Cordón F, León J, Román-Marinetto E, del Mar Salinas-Asensio M, Calvente I, Núñez MI. Involvement of free radicals in breast cancer. SPRINGERPLUS 2013; 2:404. [PMID: 24024092 PMCID: PMC3765596 DOI: 10.1186/2193-1801-2-404] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 08/22/2013] [Indexed: 12/14/2022]
Abstract
Researchers have recently shown an increased interest in free radicals and their role in the tumor microenvironment. Free radicals are molecules with high instability and reactivity due to the presence of an odd number of electrons in the outermost orbit of their atoms. Free radicals include reactive oxygen and nitrogen species, which are key players in the initiation and progression of tumor cells and enhance their metastatic potential. In fact, they are now considered a hallmark of cancer. However, both reactive species may contribute to improve the outcomes of radiotherapy in cancer patients. Besides, high levels of reactive oxygen species may be indicators of genotoxic damage in non-irradiated normal tissues. The purpose of this article is to review recent research on free radicals and carcinogenesis in order to understand the pathways that contribute to tumor malignancy. This review outlines the involvement of free radicals in relevant cellular events, including their effects on genetic instability through (growth factors and tumor suppressor genes, their enhancement of mitogenic signals, and their participation in cell remodeling, proliferation, senescence, apoptosis, and autophagy processes; the possible relationship between free radicals and inflammation is also explored. This knowledge is crucial for evaluating the relevance of free radicals as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Sandra Ríos-Arrabal
- />Departamento de Radiología y Medicina Física, Universidad de Granada, Av. Madrid s/n, 18012 Granada, Spain
| | - Francisco Artacho-Cordón
- />Departamento de Radiología y Medicina Física, Universidad de Granada, Av. Madrid s/n, 18012 Granada, Spain
- />Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - Josefa León
- />Ciber de Enfermedades Hepáticas y Digestivas CIBERehd, Granada, Spain
| | - Elisa Román-Marinetto
- />Departamento de Radiología y Medicina Física, Universidad de Granada, Av. Madrid s/n, 18012 Granada, Spain
| | | | - Irene Calvente
- />Departamento de Radiología y Medicina Física, Universidad de Granada, Av. Madrid s/n, 18012 Granada, Spain
| | - Maria Isabel Núñez
- />Departamento de Radiología y Medicina Física, Universidad de Granada, Av. Madrid s/n, 18012 Granada, Spain
- />Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- />Instituto de Biopatología y Medicina Regenerativa (IBIMER), Universidad de Granada, Av. Conocimiento, s/n, 18100 Armilla Granada, Spain
| |
Collapse
|
78
|
Hayes J, Kirf D, Garvey M, Rowan N. Disinfection and toxicological assessments of pulsed UV and pulsed-plasma gas-discharge treated-water containing the waterborne protozoan enteroparasite Cryptosporidium parvum. J Microbiol Methods 2013; 94:325-37. [PMID: 23892042 DOI: 10.1016/j.mimet.2013.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
We report for the first time on the comparative use of pulsed-plasma gas-discharge (PPGD) and pulsed UV light (PUV) for the novel destruction of the waterborne enteroparasite Cryptosporidium parvum. It also describes the first cyto-, geno- and ecotoxicological assays undertaken to assess the safety of water decontaminated using PPGD and PUV. During PPGD treatments, the application of high voltage pulses (16 kV, 10 pps) to gas-injected water (N2 or O2, flow rate 2.5L/min) resulted in the formation of a plasma that generated free radicals, ultraviolet light, acoustic shock waves and electric fields that killed ca. 4 log C. parvum oocysts in 32 min exposure. Findings showed that PPGD-treated water produced significant cytotoxic properties (as determined by MTT and neutral red assays), genotoxic properties (as determined by comet and Ames assays), and ecotoxic properties (as determined by Microtox™, Thamnotox™ and Daphnotox™ assays) that are representative of different trophic levels in aquatic environment (p<0.05). Depending in part on the type of injected gas used, PPGD-treated water became either alkaline (pH ≤ 8.58, using O2) or acidic (pH ≥ 3.21, using N2) and contained varying levels of reactive free radicals such as ozone (0.8 mg/L) and/or dissociated nitric and nitrous acid that contributed to the observed disinfection and toxicity. Chemical analysis of PPGD-treated water revealed increasing levels of electrode metals that were present at ≤ 30 times the tolerated respective values for EU drinking water. PUV-treated water did not exhibit any toxicity and was shown to be far superior to that of PPGD for killing C. parvum oocysts taking only 90 s of pulsing [UV dose of 6.29 μJ/cm(2)] to produce a 4-log reduction compared to a similar reduction level achieved after 32min PPGD treatment as determined by combined in vitro CaCo-2 cell culture-qPCR.
Collapse
Affiliation(s)
- Jennifer Hayes
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Ireland
| | | | | | | |
Collapse
|
79
|
Li Y, Kong D, Ahmad A, Bao B, Sarkar FH. Antioxidant function of isoflavone and 3,3'-diindolylmethane: are they important for cancer prevention and therapy? Antioxid Redox Signal 2013; 19:139-50. [PMID: 23391445 PMCID: PMC3689155 DOI: 10.1089/ars.2013.5233] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
SIGNIFICANCE Oxidative stress has been mechanistically linked with aging and chronic diseases, including cancer. In fact, oxidative stress status, chronic disease-related inflammation, and cancer occurred in the aging population are tightly correlated. It is well known that the activation of nuclear factor kappa B (NF-κB) plays important roles in oxidative stress, inflammation, and carcinogenesis. Therefore, targeting NF-κB is an important preventive or therapeutic strategy against oxidative stress, inflammation, and cancer. RECENT ADVANCES A variety of natural compounds has been found to reduce oxidative stress through their antioxidant activity. Among them, isoflavone, indole-3-carbinol (I3C), and its in vivo dimeric compound 3,3'-diindolylmethane (DIM) have shown their promising effects on the inhibition of NF-κB with corresponding reduction of oxidative stress. CRITICAL ISSUES It has been found that isoflavone, I3C, and DIM could inhibit cancer development and progression by regulating multiple cellular signaling pathways that are related to oxidative stress and significantly deregulated in cancer. FUTURE DIRECTIONS The antioxidative and anticancer effects of these natural agents make them strong candidates for chemoprevention and/or therapy against human malignancies. However, more clinical trials are needed to evaluate the effects of isoflavone and DIM for the prevention of cancer development and also for the treatment of cancer either alone or in combination with conventional cancer therapeutics.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
80
|
Lee WH, Loo CY, Bebawy M, Luk F, Mason RS, Rohanizadeh R. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol 2013; 11:338-78. [PMID: 24381528 PMCID: PMC3744901 DOI: 10.2174/1570159x11311040002] [Citation(s) in RCA: 324] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/17/2013] [Accepted: 03/19/2013] [Indexed: 12/15/2022] Open
Abstract
Curcumin (diferuloylmethane), a polyphenol extracted from the plant Curcuma longa, is widely used in Southeast Asia, China and India in food preparation and for medicinal purposes. Since the second half of the last century, this traditional medicine has attracted the attention of scientists from multiple disciplines to elucidate its pharmacological properties. Of significant interest is curcumin's role to treat neurodegenerative diseases including Alzheimer's disease (AD), and Parkinson's disease (PD) and malignancy. These diseases all share an inflammatory basis, involving increased cellular reactive oxygen species (ROS) accumulation and oxidative damage to lipids, nucleic acids and proteins. The therapeutic benefits of curcumin for these neurodegenerative diseases appear multifactorial via regulation of transcription factors, cytokines and enzymes associated with (Nuclear factor kappa beta) NFκB activity. This review describes the historical use of curcumin in medicine, its chemistry, stability and biological activities, including curcumin's anti-cancer, anti-microbial, anti-oxidant, and anti-inflammatory properties. The review further discusses the pharmacology of curcumin and provides new perspectives on its therapeutic potential and limitations. Especially, the review focuses in detail on the effectiveness of curcumin and its mechanism of actions in treating neurodegenerative diseases such as Alzheimer's and Parkinson's diseases and brain malignancies.
Collapse
Affiliation(s)
- Wing-Hin Lee
- Advanced Drug Delivery Group, Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
| | - Ching-Yee Loo
- Advanced Drug Delivery Group, Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
| | - Mary Bebawy
- School of Pharmacy, Graduate School of Health, University of Technology Sydney PO Box 123 Broadway, NSW 2007, Australia
| | - Frederick Luk
- School of Pharmacy, Graduate School of Health, University of Technology Sydney PO Box 123 Broadway, NSW 2007, Australia
| | - Rebecca S Mason
- Physiology and Bosch Institute, University of Sydney, NSW 2006, Australia
| | - Ramin Rohanizadeh
- Advanced Drug Delivery Group, Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
| |
Collapse
|
81
|
A comparative study of cytotoxic, membrane and DNA damaging effects of Origanum majorana’s essential oil and its oxygenated monoterpene component linalool on parental and epirubicin-resistant H1299 cells. Biologia (Bratisl) 2013. [DOI: 10.2478/s11756-013-0196-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
82
|
Wolf TJA, Schalk O, Radloff R, Wu G, Lang P, Stolow A, Unterreiner AN. Ultrafast photoinduced dynamics of halogenated cyclopentadienes: observation of geminate charge-transfer complexes in solution. Phys Chem Chem Phys 2013; 15:6673-83. [PMID: 23443649 DOI: 10.1039/c3cp44295k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoinduced dynamics of the fully halogenated cyclopentadienes C5Cl6 and C5Br6 have been investigated in solution and gas phase by femtosecond time-resolved spectroscopy. Both in solution and in gas phase, homolytic dissociation into a halogen radical and a C5X5 (X = Cl, Br) radical was observed. In liquid phase, solvent-dependent formation of charge transfer complexes between geminate radicals was observed for the first time. These complexes were found to be surprisingly stable and offered the opportunity to follow the dynamics of specific radical pairs. In the case of C5Cl6 in trichloroethanol, a reaction of the chlorine radical with molecules from the solvent cage was observed.
Collapse
Affiliation(s)
- T J A Wolf
- Institut für Physikalische Chemie and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.
| | | | | | | | | | | | | |
Collapse
|
83
|
Nahar T, Uddin B, Hossain S, Sikder AM, Ahmed S. Aloe vera gel protects liver from oxidative stress-induced damage in experimental rat model. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2013; 10:/j/jcim.2013.10.issue-1/jcim-2012-0020/jcim-2012-0020.xml. [PMID: 23652643 DOI: 10.1515/jcim-2012-0020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/29/2012] [Indexed: 01/30/2023]
Abstract
Aloe vera is a semi-tropical plant of Liliaceae family which has a wide range of applications in traditional medicine. In the present study, we sought to investigate the heptaoprotective potential of Aloe vera gel as a diet supplement. To achieve this goal, we have designed in vitro and in vivo experimental models of chemical-induced liver damage using male Sprague-Dawley rat. In the in vitro model, its effect was evaluated on Fenton's reaction-induced liver lipid peroxidation. Co-incubation with gel significantly reduced the generation of liver lipid peroxide (LPO). Next, to see the similar effect in vivo, gel was orally administered to rats once daily for 21 successive days. Following 1 hour of the last administration of gel, rats were treated with intra-peritoneal injection of CCl4. Dietary gel showed significant hepatoprotection against CCl4-induced damage as evident by restoration of liver LPO, serum transaminases, alkaline phosphatase, and total bilirubin towards near normal. The beneficial effects were pronounced with the doses used (400 and 800 mg/kg body weight). Besides, we did not observe any significant drop in serum albumin, globulin as well as total protein levels of gel-administered rats. Histopathology of the liver tissue further supported the biochemical findings confirming the hepatoprotective potential of dietary gel.
Collapse
Affiliation(s)
- Taslima Nahar
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, Savar, Bangladesh.
| | | | | | | | | |
Collapse
|
84
|
Clinacanthus nutans Extracts Are Antioxidant with Antiproliferative Effect on Cultured Human Cancer Cell Lines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:462751. [PMID: 23533485 PMCID: PMC3600186 DOI: 10.1155/2013/462751] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/20/2013] [Accepted: 01/21/2013] [Indexed: 01/03/2023]
Abstract
Clinacanthus nutans Lindau leaves (CN) have been used in traditional medicine but the therapeutic potential has not been explored for cancer prevention and treatment. Current study aimed to evaluate the antioxidant and antiproliferative effects of CN, extracted in chloroform, methanol, and water, on cancer cell lines. Antioxidant properties of CN were evaluated using DPPH, galvinoxyl, nitric oxide, and hydrogen peroxide based radical scavenging assays, whereas the tumoricidal effect was tested on HepG2, IMR32, NCL-H23, SNU-1, Hela, LS-174T, K562, Raji, and IMR32 cancer cells using MTT assay. Our data showed that CN in chloroform extract was a good antioxidant against DPPH and galvinoxyl radicals, but less effective in negating nitric oxide and hydrogen peroxide radicals. Chloroform extract exerted the highest antiproliferative effect on K-562 (91.28 ± 0.03%) and Raji cell lines (88.97 ± 1.07%) at 100 μg/ml and the other five cancer cell lines in a concentration-dependent manner, but not on IMR-32 cells. Fourteen known compounds were identified in chloroform extract, which was analysed by gas chromatography—mass spectra analysis. In conclusion, CN extracts possess antioxidant and antiproliferative properties against cultured cancer cell lines, suggesting an alternate adjunctive regimen for cancer prevention or treatment.
Collapse
|
85
|
Medina S, Domínguez-Perles R, Cejuela-Anta R, Villaño D, Martínez-Sanz JM, Gil P, García-Viguera C, Ferreres F, Gil JI, Gil-Izquierdo A. Assessment of oxidative stress markers and prostaglandins after chronic training of triathletes. Prostaglandins Other Lipid Mediat 2012; 99:79-86. [DOI: 10.1016/j.prostaglandins.2012.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 12/28/2022]
|
86
|
Kinetics of the reaction between 1,3-diphenylisobenzofuran and nitrogen dioxide studied by steady-state fluorescence. RESEARCH ON CHEMICAL INTERMEDIATES 2012. [DOI: 10.1007/s11164-012-0814-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
87
|
Srivastava A, Jagan Mohan Rao L, Shivanandappa T. 4-(2-Hydroxypropan-2-yl)-1-methylcyclohexane-1,2-diol prevents xenobiotic induced cytotoxicity. Toxicol In Vitro 2012; 26:1040-6. [DOI: 10.1016/j.tiv.2012.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 11/25/2022]
|
88
|
Jena NR, Mishra PC. Formation of ring-opened and rearranged products of guanine: mechanisms and biological significance. Free Radic Biol Med 2012; 53:81-94. [PMID: 22583701 DOI: 10.1016/j.freeradbiomed.2012.04.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 03/30/2012] [Accepted: 04/06/2012] [Indexed: 11/16/2022]
Abstract
DNA damage by endogenous and exogenous agents is a serious concern, as the damaged products can affect genome integrity severely. Damage to DNA may arise from various factors such as DNA base modifications, strand break, inter- and intrastrand crosslinks, and DNA-protein crosslinks. Among these factors, DNA base modification is a common and important form of DNA damage that has been implicated in mutagenesis, carcinogenesis, and many other pathological conditions. Among the four DNA bases, guanine (G) has the smallest oxidation potential, because of which it is frequently modified by reactive species, giving rise to a plethora of lethal lesions. Similarly, 8-oxo-7,8-dihydroguanine (8-oxoG), an oxidatively damaged guanine lesion, also undergoes various degradation reactions giving rise to several mutagenic species. The various products formed from reactions of G or 8-oxoG with different reactive species are mainly 2,6-diamino-4-oxo-5-formamidopyrimidine, 2,5-diamino-4H-imidazolone, 2,2,4-triamino-5-(2H)-oxazolone, 5-guanidino-4-nitroimidazole, guanidinohydantoin, spiroiminodihydantoin, cyanuric acid, parabanic acid, oxaluric acid, and urea, among others. These products are formed from either ring opening or ring opening and subsequent rearrangement. The main aim of this review is to provide a comprehensive overview of various possible reactions and the mechanisms involved, after which these ring-opened and rearranged products of guanine would be formed in DNA. The biological significance of oxidatively damaged products of G is also discussed.
Collapse
Affiliation(s)
- N R Jena
- Department of Physics, Indian Institute of Information Technology, Design and Manufacturing, Khamaria, Jabalpur 482005, India.
| | | |
Collapse
|
89
|
Association of base excision repair gene polymorphisms with ESRD risk in a Chinese population. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:928421. [PMID: 22720119 PMCID: PMC3375099 DOI: 10.1155/2012/928421] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/06/2012] [Accepted: 04/06/2012] [Indexed: 11/25/2022]
Abstract
The base excision repair (BER) pathway, containing OGG1, MTH1 and MUTYH, is a major protector from oxidative DNA damage in humans, while 8-oxoguanine (8-OHdG), an index of DNA oxidation, is increased in maintenance hemodialysis (HD) patients. Four polymorphisms of BER genes, OGG1 c.977C > G (rs1052133), MTH1 c.247G > A (rs4866), MUTYH c.972G > C (rs3219489), and AluYb8MUTYH (rs10527342), were examined in 337 HD patients and 404 healthy controls. And the 8-OHdG levels in leukocyte DNA were examined in 116 HD patients. The distribution of MUTYH c.972 GG or AluYb8MUTYH differed between the two groups and was associated with a moderately increased risk for end-stage renal disease (ESRD) (P = 0.013 and 0.034, resp.). The average 8-OHdG/106 dG value was significantly higher in patients with the OGG1 c.977G, MUTYH c.972G or AluYb8MUTYH alleles (P < 0.001 via ANOVA). Further analysis showed that combination of MUTYH c.972GG with OGG1 c.977GG or AluYb8MUTYH increased both the risk for ESRD and leukocyte DNA 8-OHdG levels in HD patients. Our study showed that MUTYH c.972GG, AluYb8MUTYH, and combination of OGG1 c.977GG increased the risk for ESRD development in China and suggested that DNA oxidative damage might be involved in such process.
Collapse
|
90
|
Mosaic eucalypt trees suggest genetic control at a point that influences several metabolic pathways. J Chem Ecol 2012; 38:914-23. [PMID: 22661307 DOI: 10.1007/s10886-012-0149-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 04/27/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
Abstract
Mosaic trees contain more than one phenotype. The two Eucalyptus mosaic trees studied here (E. melliodora and E. sideroxylon) are predominantly susceptible to insect herbivory, with the leaves on a single large branch on each tree resisting herbivory. We used gas chromatography-mass spectrometry and high-pressure liquid chromatography to analyze the chemical profile of leaves of the mosaic trees, as well as leaves of adjacent non-mosaic con-specifics. We show that the leaves of the two phenotypes are distinctly different. Compared to the susceptible (S) leaves on the same tree, the resistant (R) leaves on the mosaic trees had low concentrations of sesquiterpenes (E. melliodora: 2 vs. 24 mg·g(-1) dry matter; E. sideroxylon: 8 vs. 22 mg·g(-1) dry matter), high concentrations of FPCs (E. melliodora: 5.4 vs. 0.3 mg·g(-1) dry matter; E. sideroxylon: 9.8 vs. 0.2 mg·g(-1) dry matter) but similar concentrations of nitrogen (E. melliodora: 15.4 vs. 16.8 mg·g(-1) dry matter; E. sideroxylon: 13.1 vs. 14.0 mg·g(-1) dry matter). The only difference between the two mosaic trees was in the levels of monoterpenes. The R leaves from the mosaic E. melliodora contained higher concentrations of monoterpenes compared to the S leaves (12 vs. 6 mg·g(-1) dry matter). In contrast, the leaves from the E. sideroxylon mosaic contained much higher concentrations of monoterpenes with a reversed pattern (R: 26 vs. S: 45 mg·g(-1) dry matter). There were qualitative differences too on the mosaic trees. The R leaves of both species contained much higher concentrations of the monoterpene, 1,8-cineole, whereas the S chemotype of E. sideroxylon only had high concentrations of phellandrenes. Furthermore, the chemical differences between leaves on the R and S branches of the mosaic trees resembled those between the leaves of R and S con-specific trees in the same population. We use these data and knowledge of secondary metabolite biosynthesis to propose that high-level transcriptional differences may control the profile of specialized metabolites in eucalypts.
Collapse
|
91
|
Srivastava A, Jagan Mohan Rao L, Shivanandappa T. A novel cytoprotective antioxidant: 4-Hydroxyisophthalic acid. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.12.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
92
|
Ngwuluka NC. Are Bombax buonopozense and Bombax malabaricum possible nutraceuticals for age management? Prev Med 2012; 54 Suppl:S64-70. [PMID: 22230475 DOI: 10.1016/j.ypmed.2011.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 01/09/2023]
Abstract
Human longevity and healthy ageing though controversial require extended investigations. Some studies have shown that ageing can be managed by reducing the amounts of free radicals the cells are exposed to. Oxidative stress has been shown to be combated by antioxidants and plant sources are known to generate antioxidants that are efficacious and low in toxicity. This review aims to enlighten on antioxidants from Bombax buonopozense and Bombax malabaricum for prevention, reversal or delay of age-related diseases. Furthermore, it advocates for more studies to enable the shift from research to commercial applications of the antioxidants as nutraceuticals in age management.
Collapse
Affiliation(s)
- Ndidi C Ngwuluka
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria.
| |
Collapse
|
93
|
Bir SC, Xiong Y, Kevil CG, Luo J. Emerging role of PKA/eNOS pathway in therapeutic angiogenesis for ischaemic tissue diseases. Cardiovasc Res 2012; 95:7-18. [PMID: 22492672 DOI: 10.1093/cvr/cvs143] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although an abundant amount of research has been devoted to the study of angiogenesis, its precise mechanisms are incompletely understood. Numerous clinical trials focused on therapeutic angiogenesis for the treatment of tissue ischaemia have not been as successful as those of preclinical studies. Thus, additional studies are needed to better understand critical molecular mechanisms regulating ischaemic neovascularization to identify novel therapeutic agents. Nitric oxide (NO) plays a central role in ischaemic neovascularization through the generation of cyclic guanosine monophosphate (cGMP) and the activation of several other signalling responses. Accumulated evidence suggests that endothelial protein kinase A/endothelial NO synthase (PKA/eNOS) signalling may play an important role in ischaemic disorders by promoting neovascularization. This review highlights recent advances in the role of the PKA/eNOS and NO-cGMP-kinase cascade pathway in ischaemic neovascularization. We also discuss molecular relationships of PKA/eNOS with other angiogenic pathways and explore the possibility of activation of the NO/nitrite endocrine system as potential therapeutic targets for ischaemic angiogenesis.
Collapse
Affiliation(s)
- Shyamal C Bir
- Department of Pathology, LSU Health Sciences Center-Shreveport, LA, USA
| | | | | | | |
Collapse
|
94
|
Srivastava A, Jagan Mohan Rao L, Shivanandappa T. 2,4,8-trihydroxybicyclo [3.2.1]octan-3-one scavenges free radicals and protects against xenobiotic-induced cytotoxicity. Free Radic Res 2012; 46:320-8. [PMID: 22239689 DOI: 10.3109/10715762.2012.655729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Currently, there is a great deal of interest in the study of natural compounds with free-radical-scavenging activity because of their potential role in maintaining human health and preventing diseases. In this paper, we report the antioxidant and cytoprotective properties of 2,4,8-trihydroxybicyclo [3.2.1]octan-3-one (TBO) isolated from the aqueous extract of Decalepis hamiltonii roots. Our results show that TBO is a potent scavenger of superoxide (O(2)·-), hydroxyl (·OH), nitric oxide (·NO) and lipid peroxide (LOO·) - physiologically relevant free radicals with IC(50) values in nmolar (42-281) range. TBO also exhibited concentration-dependent secondary antioxidant activities such as reducing power, metal-chelating activity and inhibition of protein carbonylation. Further, TBO at nmolar concentration prevented CuSO(4)-induced human LDL oxidation. Apart from the in vitro free-radical-scavenging activity, TBO demonstrated cytoprotective activity in primary hepatocytes and Ehrlich ascites tumour (EAT) cells against oxidative-stress-inducing xenobiotics. The mechanism of cytoprotective action involved maintaining the intracellular glutathione (GSH), scavenging of reactive oxygen species (ROS) and inhibiting lipid peroxidation (LPO). Based on the results, it is suggested that TBO is a novel bioactive molecule with implications in both prevention and amelioration of diseases involving oxidative stress as well as in the general well-being.
Collapse
Affiliation(s)
- Anup Srivastava
- Department of Food Protectants and Infestation Control, Central Food Technological Research Institute, Mysore, Karnataka, India
| | | | | |
Collapse
|
95
|
Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. J Biomed Biotechnol 2012; 2012:623019. [PMID: 22363173 PMCID: PMC3272848 DOI: 10.1155/2012/623019] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 10/07/2011] [Indexed: 01/07/2023] Open
Abstract
Chronic inflammation induced by biological, chemical, and physical factors has been found to be associated with the increased risk of cancer in various organs. We revealed that infectious agents including liver fluke, Helicobacter pylori, and human papilloma virus and noninfectious agents such as asbestos fiber induced iNOS-dependent formation of 8-nitroguanine and 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG) in cancer tissues and precancerous regions. Our results with the colocalization of phosphorylated ATM and γ-H2AX with 8-oxodG and 8-nitroguanine in inflammation-related cancer tissues suggest that DNA base damage leads to double-stranded breaks. It is interesting from the aspect of genetic instability. We also demonstrated IL-6-modulated iNOS expression via STAT3 and EGFR in Epstein-Barr-virus-associated nasopharyngeal carcinoma and found promoter hypermethylation in several tumor suppressor genes. Such epigenetic alteration may occur by controlling the DNA methylation through IL-6-mediated JAK/STAT3 pathways. Collectively, 8-nitroguanine would be a useful biomarker for predicting the risk of inflammation-related cancers.
Collapse
|
96
|
Srivastava A, Rao LJM, Shivanandappa T. 14-aminotetradecanoic acid exhibits antioxidant activity and ameliorates xenobiotics-induced cytotoxicity. Mol Cell Biochem 2011; 364:1-9. [PMID: 22198290 DOI: 10.1007/s11010-011-1196-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/13/2011] [Indexed: 12/27/2022]
Abstract
Natural compounds with free-radical scavenging activity have potential role in maintaining human health and preventing diseases. In this study, we report the antioxidant and cytoprotective properties of 14-aminotetradecanoic acid (ATDA) isolated from the Decalepis hamiltonii roots. ATDA is a potent scavenger of superoxide (O(2) (•-)), hydroxyl ((•)OH), nitric oxide ((•)NO), and lipid peroxide (LOO(•)) physiologically relevant free radicals with IC(50) values in nM (36-323) range. ATDA also exhibits concentration-dependent secondary antioxidant activities like reducing power, metal-chelating activity, and inhibition of protein carbonylation. Further, ATDA at nM concentration prevented CuSO(4)-induced human LDL oxidation. ATDA demonstrated cytoprotective activity in primary hepatocytes and Ehrlich ascites tumor cells against oxidative stress inducing xenobiotics apart from the in vitro free-radical scavenging activity. The mechanism of cytoprotective action involved maintaining the intracellular glutathione, scavenging of reactive oxygen species, and inhibition of lipid peroxidation. It is suggested that ATDA is a novel bioactive molecule with potential health implications.
Collapse
Affiliation(s)
- Anup Srivastava
- Department of Food Protectants and Infestation Control, Central Food Technological Research Institute, Mysore, 570020 Karnataka, India.
| | | | | |
Collapse
|
97
|
Freeman LR, Keller JN. Oxidative stress and cerebral endothelial cells: regulation of the blood-brain-barrier and antioxidant based interventions. Biochim Biophys Acta Mol Basis Dis 2011; 1822:822-9. [PMID: 22206999 DOI: 10.1016/j.bbadis.2011.12.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 12/14/2011] [Indexed: 12/21/2022]
Abstract
While numerous lines of evidence point to increased levels of oxidative stress playing a causal role in a number of neurodegenerative conditions, our current understanding of the specific role of oxidative stress in the genesis and/or propagation of neurodegenerative diseases remains poorly defined. Even more challenging to the "oxidative stress theory of neurodegeneration" is the fact that many antioxidant-based clinical trials and therapeutic interventions have been largely disappointing in their therapeutic benefit. Together, these factors have led researchers to begin to focus on understanding the contribution of highly localized structures, and defined anatomical features, within the brain as the sites responsible for oxidative stress-induced neurodegeneration. This review focuses on the potential for oxidative stress within the cerebrovascular architecture serving as a modulator of neurodegeneration in a variety of pathological settings. In particular, this review highlights important implications for vascular-derived oxidative stress in the initiating and promoting pathophysiology in the brain, identifying new roles for cerebrovascular oxidative stress in a variety of brain disorders. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Collapse
Affiliation(s)
- Linnea R Freeman
- Pennington Biomedical Research Center, BAton Rouge, LA 70808, USA
| | | |
Collapse
|
98
|
Capillary electrophoretic determination of DNA damage markers: content of 8-hydroxy-2'-deoxyguanosine and 8-nitroguanine in urine. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:3818-22. [PMID: 22098717 DOI: 10.1016/j.jchromb.2011.10.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/19/2011] [Accepted: 10/23/2011] [Indexed: 11/21/2022]
Abstract
A sensitive and low-cost analytical method has been developed to determine 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-nitroguanine (8-NO(2)Gua) based on capillary electrophoresis with amperometric detection (CE-AD) after solid phase extraction (SPE). Under optimized condition, these two markers were well separated from other components coexisting in urine, exhibiting a linear calibration over the concentration range of 0.1-50.0 μg/mL with the detection limits ranging from 0.02 to 0.06 μg/mL. The relative standard deviations (RSDs) were in the range of 0.1-2.1% for peak area, 0.1-1.5% for migration time, respectively. The average recovery and RSD were within the range of 100.0-108.0% and 0.1-1.7%, respectively. It was found that the urinary contents of 8-OHdG and 8-NO(2)Gua in cancer patients were significantly higher than those in healthy ones.
Collapse
|
99
|
Fussell KC, Udasin RG, Smith PJ, Gallo MA, Laskin JD. Catechol metabolites of endogenous estrogens induce redox cycling and generate reactive oxygen species in breast epithelial cells. Carcinogenesis 2011; 32:1285-93. [PMID: 21665890 PMCID: PMC3149209 DOI: 10.1093/carcin/bgr109] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 05/04/2011] [Accepted: 06/01/2011] [Indexed: 12/21/2022] Open
Abstract
Estrogens are major risk factors for the development of breast cancer; they can be metabolized to catechols, which are further oxidized to DNA-reactive quinones and semiquinones (SQs). These metabolites are mutagenic and may contribute to the carcinogenic activity of estrogens. Redox cycling of the SQs and subsequent generation of reactive oxygen species (ROS) is also an important mechanism leading to DNA damage. The SQs of exogenous estrogens have been shown to redox cycle, however, redox cycling and the generation of ROS by endogenous estrogens has never been characterized. In the present studies, we determined whether the catechol metabolites of endogenous estrogens, including 2-hydroxyestradiol, 4-hydroxyestradiol, 4-hydroxyestrone and 2-hydroxyestriol, can redox cycle in breast epithelial cells. These catechol estrogens, but not estradiol, estrone, estriol or 2-methoxyestradiol, were found to redox cycle and generate hydrogen peroxide (H(2)O(2)) and hydroxyl radicals in lysates of three different breast epithelial cell lines: MCF-7, MDA-MB-231 and MCF-10A. The generation of ROS required reduced nicotinamide adenine dinucleotide phosphate as a reducing equivalent and was inhibited by diphenyleneiodonium, a flavoenzyme inhibitor, indicating that redox cycling is mediated by flavin-containing oxidoreductases. Using extracellular microsensors, catechol estrogen metabolites stimulated the release of H(2)O(2) by adherent cells, indicating that redox cycling occurs in viable intact cells. Taken together, these data demonstrate that catechol metabolites of endogenous estrogens undergo redox cycling in breast epithelial cells, resulting in ROS production. Depending on the localized concentrations of catechol estrogens and enzymes that mediate redox cycling, this may be an important mechanism contributing to the development of breast cancer.
Collapse
Affiliation(s)
| | | | - Peter J.S. Smith
- Biocurrents Research Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | - Jeffrey D. Laskin
- To whom correspondence should be addressed. Tel: +1 732 445 0170; Fax: +1 732 445 0119;
| |
Collapse
|
100
|
Lavoie S, Allaman I, Petit JM, Do KQ, Magistretti PJ. Altered glycogen metabolism in cultured astrocytes from mice with chronic glutathione deficit; relevance for neuroenergetics in schizophrenia. PLoS One 2011; 6:e22875. [PMID: 21829542 PMCID: PMC3145770 DOI: 10.1371/journal.pone.0022875] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 07/03/2011] [Indexed: 01/12/2023] Open
Abstract
Neurodegenerative and psychiatric disorders including Alzheimer's, Parkinson's or Huntington's diseases and schizophrenia have been associated with a deficit in glutathione (GSH). In particular, a polymorphism in the gene of glutamate cysteine ligase modulatory subunit (GCLM) is associated with schizophrenia. GSH is the most important intracellular antioxidant and is necessary for the removal of reactive by-products generated by the utilization of glucose for energy supply. Furthermore, glucose metabolism through the pentose phosphate pathway is a major source of NADPH, the cofactor necessary for the regeneration of reduced glutathione. This study aims at investigating glucose metabolism in cultured astrocytes from GCLM knockout mice, which show decreased GSH levels. No difference in the basal metabolism of glucose was observed between wild-type and knockout cells. In contrast, glycogen levels were lower and its turnover was higher in knockout astrocytes. These changes were accompanied by a decrease in the expression of the genes involved in its synthesis and degradation, including the protein targeting to glycogen. During an oxidative challenge induced by tert-Butylhydroperoxide, wild-type cells increased their glycogen mobilization and glucose uptake. However, knockout astrocytes were unable to mobilize glycogen following the same stress and they could increase their glucose utilization only following a major oxidative insult. Altogether, these results show that glucose metabolism and glycogen utilization are dysregulated in astrocytes showing a chronic deficit in GSH, suggesting that alterations of a fundamental aspect of brain energy metabolism is caused by GSH deficit and may therefore be relevant to metabolic dysfunctions observed in schizophrenia.
Collapse
Affiliation(s)
- Suzie Lavoie
- Department of Psychiatry, University Hospital Centre and University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|