51
|
Rueckert S, Pipaliya SV, Dacks JB. Evolution: Parallel Paths to Parasitism in the Apicomplexa. Curr Biol 2020; 29:R836-R839. [PMID: 31505182 DOI: 10.1016/j.cub.2019.07.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A new study presents the first comprehensive genome and transcriptome data for an enigmatic group of apicomplexan parasites, the gregarines. The findings provide insights into the early evolution of parasitism in the apicomplexans and illustrate the important contributions of convergent and parallel evolution in the rise of eukaryotic parasites.
Collapse
Affiliation(s)
- Sonja Rueckert
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Shweta V Pipaliya
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2G3, Canada
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2G3, Canada.
| |
Collapse
|
52
|
|
53
|
Luong LT, Mathot KJ. Facultative parasites as evolutionary stepping-stones towards parasitic lifestyles. Biol Lett 2019; 15:20190058. [PMID: 30991912 DOI: 10.1098/rsbl.2019.0058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Parasites and parasitic lifestyles have evolved from free-living organisms multiple times. How such a key evolutionary transition occurred remains puzzling. Facultative parasites represent potential transitional states between free-living and fully parasitic lifestyles because they can be either free-living or parasitic depending on environmental conditions. We suggest that facultative parasites with phenotypically plastic life-history strategies may serve as evolutionary stepping-stones towards obligate parasitism. Pre-adaptations provide a starting point for the transition towards opportunistic or facultative parasitism, but what evolutionary mechanism underlies the transition from facultative to obligate parasitism? In this Opinion Piece, we outline how facultative parasites could evolve towards obligate parasites via genetic assimilation, either alone or in combination with the Baldwin effect. We further describe the key predictions stemming from each of these evolutionary pathways. The importance of genetic assimilation in evolution has been hotly debated. Studies on facultative parasites may not only provide key insights regarding the evolution of parasitism, but also provide ideal systems in which to test evolutionary theory on genetic accommodation.
Collapse
Affiliation(s)
- Lien T Luong
- 1 Department of Biological Sciences, University of Alberta , Edmonton, Alberta, Canada T6G 2E9
| | - Kimberley J Mathot
- 1 Department of Biological Sciences, University of Alberta , Edmonton, Alberta, Canada T6G 2E9.,2 Canada Research Chair in Integrative Ecology, University of Alberta , Edmonton, Alberta, Canada T6G 2E9
| |
Collapse
|
54
|
Mestre A, Poulin R, Hortal J. A niche perspective on the range expansion of symbionts. Biol Rev Camb Philos Soc 2019; 95:491-516. [DOI: 10.1111/brv.12574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Alexandre Mestre
- Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of Valencia Av. Dr. Moliner 50, 46100 Burjassot Spain
- Department of BiologyUniversity of Concordia Richard J. Renaud Science Complex, 7141 Sherbrooke W., H4B 1R6 Montreal Canada
| | - Robert Poulin
- Department of ZoologyUniversity of Otago 340 Great King Street, 9054 Dunedin New Zealand
| | - Joaquín Hortal
- Department of Biogeography and Global ChangeMuseo Nacional de Ciencias Naturales (MNCN‐CSIC) C/José Gutiérrez Abascal 2, 28006 Madrid Spain
- Departamento de EcologiaICB, Universidade Federal de Goiás (UFG), Rodovia Goiânia‐Nerópolis Km 5, Campus II, Setor Itatiaia, Goiânia GO 74001‐970 Brazil
- cE3c–Centre for EcologyEvolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2 Piso 5, 1749‐016 Lisboa Portugal
| |
Collapse
|
55
|
Variation in parasitoidism of Protocalliphora azurea (Diptera: Calliphoridae) by Nasonia vitripennis (Hymenoptera: Pteromalidae) in Spain. Parasitol Res 2019; 119:559-566. [PMID: 31786698 DOI: 10.1007/s00436-019-06553-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
Abstract
Parasitoid wasps may act as hyperparasites and sometimes regulate the populations of their hosts by a top-down dynamic. Nasonia vitripennis (Walker, 1836) is a generalist gregarious parasitoid that parasitizes several host flies, including the blowfly Protocalliphora Hough, 1899 (Diptera, Calliphoridae), which in turn parasitizes bird nestlings. Nonetheless, the ecological factors underlying N. vitripennis prevalence and parasitoidism intensity on its hosts in natural populations are poorly understood. We have studied the prevalence of N. vitripennis in Protocalliphora azurea (Fallén, 1817) puparia parasitizing wild populations of pied flycatcher (Ficedula hypoleuca) and blue tit (Cyanistes caeruleus) birds in two Mediterranean areas in central and southern Spain. We found some evidence that the prevalence of N. vitripennis was higher in moist habitats in southern Spain. A host-dependent effect was found, since the greater the number of P. azurea puparia, the greater the probability and rate of parasitoidism by the wasp. Our results also suggest that N. vitripennis parasitizes more P. azurea puparia in blue tit nests than in pied flycatcher nests as a consequence of a higher load of these flies in the former. Based on the high prevalence of N. vitripennis in P. azurea puparia in nature, we propose that this wasp may regulate blowfly populations, with possible positive effects on the reproduction of both bird species.
Collapse
|
56
|
Arias-Penna DC, Whitfield JB, Janzen DH, Winifred Hallwachs, Dyer LA, Smith MA, Hebert PD, Fernández-Triana JL. A species-level taxonomic review and host associations of Glyptapanteles (Hymenoptera, Braconidae, Microgastrinae) with an emphasis on 136 new reared species from Costa Rica and Ecuador. Zookeys 2019; 890:1-685. [PMID: 31798309 PMCID: PMC6881475 DOI: 10.3897/zookeys.890.35786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023] Open
Abstract
The descriptive taxonomic study reported here is focused on Glyptapanteles, a species-rich genus of hymenopteran parasitoid wasps. The species were found within the framework of two independent long-term Neotropical caterpillar rearing projects: northwestern Costa Rica (Área de Conservación Guanacaste, ACG) and eastern Andes, Ecuador (centered on Yanayacu Biological Station, YBS). One hundred thirty-six new species of Glyptapanteles Ashmead are described and all of them are authored by Arias-Penna. None of them was recorded in both countries; thus, 78 are from Costa Rica and the remaining 58 from Ecuador. Before this revision, the number of Neotropical described Glyptapanteles did not reach double digits. Reasonable boundaries among species were generated by integrating three datasets: Cytochrome Oxidase I (COI) gene sequencing data, natural history (host records), and external morphological characters. Each species description is accompanied by images and known geographical distribution. Characteristics such as shape, ornamentation, and location of spun Glyptapanteles cocoons were imaged as well. Host-parasitoid associations and food plants are also here published for the first time. A total of 88 species within 84 genera in 15 Lepidoptera families was encountered as hosts in the field. With respect to food plants, these wild-caught parasitized caterpillars were reared on leaves of 147 species within 118 genera in 60 families. The majority of Glyptapanteles species appeared to be relatively specialized on one family of Lepidoptera or even on some much lower level of taxonomic refinement. Those herbivores in turn are highly food-plant specialized, and once caterpillars were collected, early instars (1-3) yielded more parasitoids than later instars. Glyptapanteles jimmilleri Arias-Penna, sp. nov. is the first egg-larval parasitoid recorded within the genus, though there may be many more since such natural history requires a more focused collection of eggs. The rate of hyperparasitoidism within the genus was approximately 4% and was represented by Mesochorus spp. (Ichneumonidae). A single case of multiparasitoidism was reported, Copidosoma floridanum Ashmead (Encyrtidae) and Glyptapanteles ilarisaaksjarvi Arias-Penna, sp. nov. both parasitoid species emerged from the caterpillar of Noctuidae: Condica cupienta (Cramer). Bodyguard behavior was observed in two Glyptapanteles species: G. howelldalyi Arias-Penna, sp. nov. and G. paulhansoni Arias-Penna, sp. nov. A dichotomous key for all the new species is provided. The numerous species described here, and an equal number already reared but not formally described, signal a far greater Glyptapanteles species richness in the Neotropics than suggested by the few described previously.
Collapse
Affiliation(s)
- Diana Carolina Arias-Penna
- Department of Entomology, University of Illinois, 320 Morrill Hall, 505 S. Goodwin Ave., Urbana, IL 61801, USA
| | - James B. Whitfield
- Department of Entomology, University of Illinois, 320 Morrill Hall, 505 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Daniel H. Janzen
- Department of Biology, University of Pennsylvania, 102 Leidy Laboratories, 433 S. University Ave., Philadelphia, PA 19104, USA
| | - Winifred Hallwachs
- Department of Biology, University of Pennsylvania, 3400 Chestnut St, Philadelphia, PA 19104, USA
| | - Lee A. Dyer
- Department of Biology, University of Nevada, 1664 N. Virginia Street, Reno, NV 89557, USA
| | - M. Alex Smith
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Paul D.N. Hebert
- Biodiversity Institute of Ontario, University of Guelph, 579 Gordon St., Guelph, Ontario, N1G 1Y2, Canada
| | - José L. Fernández-Triana
- Canadian National Collection of Insects, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
| |
Collapse
|
57
|
Techer MA, Rane RV, Grau ML, Roberts JMK, Sullivan ST, Liachko I, Childers AK, Evans JD, Mikheyev AS. Divergent evolutionary trajectories following speciation in two ectoparasitic honey bee mites. Commun Biol 2019; 2:357. [PMID: 31583288 PMCID: PMC6773775 DOI: 10.1038/s42003-019-0606-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 09/10/2019] [Indexed: 01/28/2023] Open
Abstract
Multispecies host-parasite evolution is common, but how parasites evolve after speciating remains poorly understood. Shared evolutionary history and physiology may propel species along similar evolutionary trajectories whereas pursuing different strategies can reduce competition. We test these scenarios in the economically important association between honey bees and ectoparasitic mites by sequencing the genomes of the sister mite species Varroa destructor and Varroa jacobsoni. These genomes were closely related, with 99.7% sequence identity. Among the 9,628 orthologous genes, 4.8% showed signs of positive selection in at least one species. Divergent selective trajectories were discovered in conserved chemosensory gene families (IGR, SNMP), and Halloween genes (CYP) involved in moulting and reproduction. However, there was little overlap in these gene sets and associated GO terms, indicating different selective regimes operating on each of the parasites. Based on our findings, we suggest that species-specific strategies may be needed to combat evolving parasite communities.
Collapse
Affiliation(s)
- Maeva A. Techer
- Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, 904-0495 Okinawa, Japan
| | - Rahul V. Rane
- Commonwealth Scientific and Industrial Research Organisation, Clunies Ross St, (GPO Box 1700), Acton, ACT 2601 Australia
- Bio21 Institute, School of BioSciences, University of Melbourne, 30 Flemington Road, Parkville, VIC 3010 Australia
| | - Miguel L. Grau
- Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, 904-0495 Okinawa, Japan
| | - John M. K. Roberts
- Commonwealth Scientific and Industrial Research Organisation, Clunies Ross St, (GPO Box 1700), Acton, ACT 2601 Australia
| | | | | | | | | | - Alexander S. Mikheyev
- Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, 904-0495 Okinawa, Japan
- Australian National University, Canberra, ACT 2600 Australia
| |
Collapse
|
58
|
Nenarokova A, Záhonová K, Krasilnikova M, Gahura O, McCulloch R, Zíková A, Yurchenko V, Lukeš J. Causes and Effects of Loss of Classical Nonhomologous End Joining Pathway in Parasitic Eukaryotes. mBio 2019; 10:e01541-19. [PMID: 31311886 PMCID: PMC6635534 DOI: 10.1128/mbio.01541-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 01/22/2023] Open
Abstract
We report frequent losses of components of the classical nonhomologous end joining pathway (C-NHEJ), one of the main eukaryotic tools for end joining repair of DNA double-strand breaks, in several lineages of parasitic protists. Moreover, we have identified a single lineage among trypanosomatid flagellates that has lost Ku70 and Ku80, the core C-NHEJ components, and accumulated numerous insertions in many protein-coding genes. We propose a correlation between these two phenomena and discuss the possible impact of the C-NHEJ loss on genome evolution and transition to the parasitic lifestyle.IMPORTANCE Parasites tend to evolve small and compact genomes, generally endowed with a high mutation rate, compared with those of their free-living relatives. However, the mechanisms by which they achieve these features, independently in unrelated lineages, remain largely unknown. We argue that the loss of the classical nonhomologous end joining pathway components may be one of the crucial steps responsible for characteristic features of parasite genomes.
Collapse
Affiliation(s)
- Anna Nenarokova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Marija Krasilnikova
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Richard McCulloch
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Vyacheslav Yurchenko
- Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow, Russia
- Life Science Research Centre and Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
59
|
Smit NJ, Bruce NL, Hadfield KA. Life Cycle and Life History Strategies of Parasitic Crustacea. PARASITIC CRUSTACEA 2019; 3. [PMCID: PMC7124122 DOI: 10.1007/978-3-030-17385-2_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Different parasitic life strategies are described including four new life cycles: complex rebrooding, micro-male, mesoparasite and prey-predator transfer. Four new life cycle behaviours are named: nursery hiding, mid-moult stage, positive precursor (intraspecific antagonism) and negative precursor (ambush strategy). Further strategies discussed are opossum attack, double parasitism (doubling of the normal reproductive set), duplex arrangement (separated male-female pairs), simple rebrooding, and describing how displaced parasites and superinfections may partly elucidate life cycles. Proportional stunting masks life history effects of parasitism; cuckoo copepods are true parasites and not just associates; burrowing barnacles (acrothoracicans) are not parasites. Further findings based on life cycle information: branchiurans and pentastomes are possibly not related; firefly seed shrimp are not parasites; copepod pre-adult life cycle stages are common in the western pacific but rare in Caribbean; harpacticoids on vertebrates are not parasites; cuckoo copepods are true parasites; explained the importance of pennellid intermediate hosts. Crustacean parasite life cycles are largely unknown (1% of species). Most crustacean life cycles represent minor modifications from the ancestral free-living mode. Crustacean parasites have less complex and less modified life cycles than other major parasite groups. This limits their exploitation of, and effectiveness, in parasitism. However, these life cycles will be an advantage in Global Change. Most metazoan parasites will be eliminated while crustaceans (and nematodes) will inherit the new world of parasites.
Collapse
Affiliation(s)
- Nico J. Smit
- North-West University, and Unit for Environmental Sciences and Management , Potchefstroom, Northwest South Africa
| | - Niel L. Bruce
- Biodiversity & Geosciences Program, Queensland Museum, South Brisbane BC, Queensland 4101, Australia, and Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Kerry A. Hadfield
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
60
|
Nagler C, Eiler SM, Haug JT. Examination of functional morphology of dajiid isopods using
Arthrophryxus
sp. parasitising a mysid shrimp as an example. ACTA ZOOL-STOCKHOLM 2019. [DOI: 10.1111/azo.12298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christina Nagler
- Department of Biology II Ludwig‐Maximilians‐University Munich Planegg‐Martinsried Germany
| | - Stefan M. Eiler
- Department of Biology II Ludwig‐Maximilians‐University Munich Planegg‐Martinsried Germany
- Department of Zoology Stockholm University Stockholm Sweden
| | - Joachim T. Haug
- Department of Biology II Ludwig‐Maximilians‐University Munich Planegg‐Martinsried Germany
- GeoBio‐Center Ludwig‐Maximilians‐Universität München Munich Germany
| |
Collapse
|
61
|
Polačik M, Reichard M, Smith C, Blažek R. Parasitic cuckoo catfish exploit parental responses to stray offspring. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180412. [PMID: 30967084 PMCID: PMC6388028 DOI: 10.1098/rstb.2018.0412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2018] [Indexed: 11/12/2022] Open
Abstract
Interspecific brood parasitism occurs in several independent lineages of birds and social insects, putatively evolving from intraspecific brood parasitism. The cuckoo catfish, Synodontis multipunctatus, the only known obligatory non-avian brood parasite, exploits mouthbrooding cichlid fishes in Lake Tanganyika, despite the absence of parental care in its evolutionary lineage (family Mochokidae). Cuckoo catfish participate in host spawning events, with their eggs subsequently collected and brooded by parental cichlids, though they can later be selectively rejected by the host. One scenario for the origin of brood parasitism in cuckoo catfish is through predation of cichlid eggs during spawning, eventually resulting in a spatial and temporal match in oviposition by host and parasite. Here we demonstrate experimentally that, uniquely among all known brood parasites, cuckoo catfish have the capacity to re-infect their hosts at a late developmental stage following egg rejection. We show that cuckoo catfish offspring can survive outside the host buccal cavity and re-infect parental hosts at a later incubation phase by exploiting the strong parental instinct of hosts to collect stray offspring. This finding implies an alternative evolutionary origin for cuckoo catfish brood parasitism, with the parental response of host cichlids facilitating its evolution. This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.
Collapse
Affiliation(s)
- M. Polačik
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 65 Brno, Czech Republic
| | - M. Reichard
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 65 Brno, Czech Republic
| | - C. Smith
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 65 Brno, Czech Republic
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
- School of Biology and Bell-Pettigrew Museum of Natural History, University of St Andrews, St Andrews, Fife KY16 9TS, UK
| | - R. Blažek
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 65 Brno, Czech Republic
| |
Collapse
|
62
|
Kasl EL, Font WF, Criscione CD. Resolving evolutionary changes in parasite life cycle complexity: Molecular phylogeny of the trematode genus Alloglossidium indicates more than one origin of precociousness. Mol Phylogenet Evol 2018; 126:371-381. [DOI: 10.1016/j.ympev.2018.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/17/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
|
63
|
Abstract
Nonsense-mediated mRNA decay is a eukaryotic pathway that degrades transcripts with premature termination codons (PTCs). In most eukaryotes, thousands of transcripts are degraded by NMD, including many important regulators of developmental and stress response pathways. Transcripts can be targeted to NMD by the presence of an upstream ORF or by introduction of a PTC through alternative splicing. Many factors involved in the recognition of PTCs and the destruction of NMD targets have been characterized. While some are highly conserved, others have been repeatedly lost in eukaryotic lineages. Here, I detail the factors involved in NMD, our current understanding of their interactions and how they have evolved. I outline a classification system to describe NMD pathways based on the presence/absence of key NMD factors. These types of NMD pathways exist in multiple different lineages, indicating the plasticity of the NMD pathway through recurrent losses of NMD factors during eukaryotic evolution. By classifying the NMD pathways in this way, gaps in our understanding are revealed, even within well studied organisms. Finally, I discuss the likely driving force behind the origins of the NMD pathway before the appearance of the last eukaryotic common ancestor: transposable element expansion and the consequential origin of introns.
Collapse
Affiliation(s)
- James P B Lloyd
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Australia
| |
Collapse
|
64
|
Abstract
Nonsense-mediated mRNA decay is a eukaryotic pathway that degrades transcripts with premature termination codons (PTCs). In most eukaryotes, thousands of transcripts are degraded by NMD, including many important regulators of developmental and stress response pathways. Transcripts can be targeted to NMD by the presence of an upstream ORF or by introduction of a PTC through alternative splicing. Many factors involved in the recognition of PTCs and the destruction of NMD targets have been characterized. While some are highly conserved, others have been repeatedly lost in eukaryotic lineages. Here, I detail the factors involved in NMD, our current understanding of their interactions and how they have evolved. I outline a classification system to describe NMD pathways based on the presence/absence of key NMD factors. These types of NMD pathways exist in multiple different lineages, indicating the plasticity of the NMD pathway through recurrent losses of NMD factors during eukaryotic evolution. By classifying the NMD pathways in this way, gaps in our understanding are revealed, even within well studied organisms. Finally, I discuss the likely driving force behind the origins of the NMD pathway before the appearance of the last eukaryotic common ancestor: transposable element expansion and the consequential origin of introns.
Collapse
Affiliation(s)
- James P B Lloyd
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Australia
| |
Collapse
|
65
|
Affiliation(s)
- David Roy Smith
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| |
Collapse
|
66
|
Pashov A, Hernandez Puente CV, Ibrahim SM, Monzavi-Karbassi B, Makhoul I, Kieber-Emmons T. Thinking Cancer. Monoclon Antib Immunodiagn Immunother 2018; 37:117-125. [PMID: 29939836 DOI: 10.1089/mab.2018.0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Evolutionary theories are necessarily invoked for understanding cancer development at the level of species, at the level of cells and tissues, and for developing effective therapies. It is crucial to view cancer in a Darwinian light, where the differential survival of individual cells is based on heritable variations. In the process of this somatic evolution, multicellularity controls are overridden by cancer cells, which become increasingly autonomous. Ecological epigenetics also helps understand how rogue cells that have basically the same DNA as their normal cell counterpart overcome the tissue homeostasis. As we struggle to wrap our minds around the complexity of these phenomena, we apply often times anthropomorphic terms, such as subversion, hijacking, or hacking, to describe especially the most complex among them-the interaction of tumors with the immune system. In this commentary we highlight examples of the anthropomorphic thinking of cancer and try to put into context the relative meaning of terms and the mechanisms that are oftentimes invoked to justify those terms.
Collapse
Affiliation(s)
- Anastas Pashov
- 1 Stephan Angelov Institute of Microbiology , Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | - Behjatolah Monzavi-Karbassi
- 3 Department of Pathology, University of Arkansas for Medical Sciences , Little Rock, Arkansas
- 4 Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Issam Makhoul
- 4 Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock, Arkansas
- 5 Department of Medicine, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Thomas Kieber-Emmons
- 3 Department of Pathology, University of Arkansas for Medical Sciences , Little Rock, Arkansas
- 4 Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| |
Collapse
|
67
|
Loreto RG, Araújo JPM, Kepler RM, Fleming KR, Moreau CS, Hughes DP. Evidence for convergent evolution of host parasitic manipulation in response to environmental conditions. Evolution 2018; 72:2144-2155. [PMID: 29808578 DOI: 10.1111/evo.13489] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/09/2018] [Accepted: 03/27/2018] [Indexed: 01/19/2023]
Abstract
Environmental conditions exert strong selection on animal behavior. We tested the hypothesis that the altered behavior of hosts due to parasitic manipulation is also subject to selection imposed by changes in environmental conditions over time. Our model system is ants manipulated by parasitic fungi to bite onto vegetation. We analyzed the correlation between forest type (tropical vs. temperate) and the substrate where the host bites (biting substrate: leaf vs. twigs), the time required for the fungi to reach reproductive maturity, and the phylogenetic relationship among specimens from tropical and temperate forests from different parts of the globe. We show that fungal development in temperate forests is longer than the period of time leaves are present and the ants are manipulated to bite twigs. When biting twigs, 90% of the dead ants we examined had their legs wrapped around twigs, which appears to provide better attachment to the plant. Ancestral state character reconstruction suggests that leaf biting is the ancestral trait and that twig biting is a convergent trait in temperate regions of the globe. These three lines of evidence suggest that changes in environmental conditions have shaped the manipulative behavior of the host by its parasite.
Collapse
Affiliation(s)
- Raquel G Loreto
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania.,Center for Infectious Diseases Dynamics, Pennsylvania State University, University Park, Pennsylvania
| | - João P M Araújo
- Center for Infectious Diseases Dynamics, Pennsylvania State University, University Park, Pennsylvania.,Department of Biology, Pennsylvania State University, University Park, Pennsylvania
| | - Ryan M Kepler
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, Beltsville, Maryland
| | - Kimberly R Fleming
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania
| | - Corrie S Moreau
- Department of Science and Education, Field Museum of Natural History, Chicago, Illinois
| | - David P Hughes
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania.,Center for Infectious Diseases Dynamics, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
68
|
Rewired RNAi-mediated genome surveillance in house dust mites. PLoS Genet 2018; 14:e1007183. [PMID: 29377900 PMCID: PMC5805368 DOI: 10.1371/journal.pgen.1007183] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 02/08/2018] [Accepted: 01/03/2018] [Indexed: 11/19/2022] Open
Abstract
House dust mites are common pests with an unusual evolutionary history, being descendants of a parasitic ancestor. Transition to parasitism is frequently accompanied by genome rearrangements, possibly to accommodate the genetic change needed to access new ecology. Transposable element (TE) activity is a source of genomic instability that can trigger large-scale genomic alterations. Eukaryotes have multiple transposon control mechanisms, one of which is RNA interference (RNAi). Investigation of the dust mite genome failed to identify a major RNAi pathway: the Piwi-associated RNA (piRNA) pathway, which has been replaced by a novel small-interfering RNA (siRNA)-like pathway. Co-opting of piRNA function by dust mite siRNAs is extensive, including establishment of TE control master loci that produce siRNAs. Interestingly, other members of the Acari have piRNAs indicating loss of this mechanism in dust mites is a recent event. Flux of RNAi-mediated control of TEs highlights the unusual arc of dust mite evolution. Investigation of small RNA populations in dust mites revealed absence of the piwi-associated RNA (piRNA) pathway. Apart from several nematode and platyhelminths lineages, piRNAs are an essential component of animal genome surveillance, actively targeting and silencing transposable elements. In dust mites, expansion of Dicer produced small-interfering RNA (siRNA) biology compensates for loss of piRNAs. The dramatic difference we find in dust mites is likely a consequence of their evolutionary history, which is marked by descent from a parasite to the current free-living form. Our study highlights a correlation between perturbation of transposon surveillance and shifts in ecology.
Collapse
|
69
|
Feldmeyer B, Elsner D, Alleman A, Foitzik S. Species-specific genes under selection characterize the co-evolution of slavemaker and host lifestyles. BMC Evol Biol 2017; 17:237. [PMID: 29202686 PMCID: PMC5715652 DOI: 10.1186/s12862-017-1078-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The transition to a parasitic lifestyle entails comprehensive changes to the selective regime. In parasites, genes encoding for traits that facilitate host detection, exploitation and transmission should be under selection. Slavemaking ants are social parasites that exploit the altruistic behaviour of their hosts by stealing heterospecific host brood during raids, which afterwards serve as slaves in slavemaker nests. Here we search for evidence of selection in the transcriptomes of three slavemaker species and three closely related hosts. We expected selection on genes underlying recognition and raiding or defense behaviour. Analyses of selective forces in species with a slavemaker or host lifestyle allowed investigation into whether or not repeated instances of slavemaker evolution share the same genetic basis. To investigate the genetic basis of host-slavemaker co-evolution, we created orthologous clusters from transcriptome sequences of six Temnothorax ant species - three slavemakers and three hosts - to identify genes with signatures of selection. We further tested for functional enrichment in selected genes from slavemakers and hosts respectively and investigated which pathways the according genes belong to. RESULTS Our phylogenetic analysis, based on more than 5000 ortholog sequences, revealed sister species status for two slavemakers as well as two hosts, contradicting a previous phylogeny based on mtDNA. We identified 309 genes with signs of positive selection on branches leading to slavemakers and 161 leading to hosts. Among these were genes potentially involved in cuticular hydrocarbon synthesis, thus species recognition, and circadian clock functionality possibly explaining the different activity patterns of slavemakers and hosts. There was little overlap of genes with signatures of positive selection among species, which are involved in numerous different functions and different pathways. CONCLUSIONS We identified different genes, functions and pathways under positive selection in each species. These results point to species-specific adaptations rather than convergent trajectories during the evolution of the slavemaker and host lifestyles suggesting that the evolution of parasitism, even in closely related species, may be achieved in diverse ways.
Collapse
Affiliation(s)
- B Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Molecular Ecology, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
| | - D Elsner
- Evolutionary Biology and Ecology, University of Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany
| | - A Alleman
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany
| | - S Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55128, Mainz, Germany
| |
Collapse
|
70
|
Causier B, Li Z, De Smet R, Lloyd JPB, Van de Peer Y, Davies B. Conservation of Nonsense-Mediated mRNA Decay Complex Components Throughout Eukaryotic Evolution. Sci Rep 2017; 7:16692. [PMID: 29192227 PMCID: PMC5709506 DOI: 10.1038/s41598-017-16942-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/13/2017] [Indexed: 11/15/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is an essential eukaryotic process regulating transcript quality and abundance, and is involved in diverse processes including brain development and plant defenses. Although some of the NMD machinery is conserved between kingdoms, little is known about its evolution. Phosphorylation of the core NMD component UPF1 is critical for NMD and is regulated in mammals by the SURF complex (UPF1, SMG1 kinase, SMG8, SMG9 and eukaryotic release factors). However, since SMG1 is reportedly missing from the genomes of fungi and the plant Arabidopsis thaliana, it remains unclear how UPF1 is activated outside the metazoa. We used comparative genomics to determine the conservation of the NMD pathway across eukaryotic evolution. We show that SURF components are present in all major eukaryotic lineages, including fungi, suggesting that in addition to UPF1 and SMG1, SMG8 and SMG9 also existed in the last eukaryotic common ancestor, 1.8 billion years ago. However, despite the ancient origins of the SURF complex, we also found that SURF factors have been independently lost across the Eukarya, pointing to genetic buffering within the essential NMD pathway. We infer an ancient role for SURF in regulating UPF1, and the intriguing possibility of undiscovered NMD regulatory pathways.
Collapse
Affiliation(s)
- Barry Causier
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Gent, Belgium
| | - Riet De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Gent, Belgium
| | - James P B Lloyd
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Gent, Belgium.,Department of Genetics, Genomics Research Institute, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Brendan Davies
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
71
|
Sweet AD, Chesser RT, Johnson KP. Comparative cophylogenetics of Australian phabine pigeons and doves (Aves: Columbidae) and their feather lice (Insecta: Phthiraptera). Int J Parasitol 2017; 47:347-356. [DOI: 10.1016/j.ijpara.2016.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/16/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
|
72
|
|
73
|
Viney M. How Can We Understand the Genomic Basis of Nematode Parasitism? Trends Parasitol 2017; 33:444-452. [PMID: 28274802 PMCID: PMC5449551 DOI: 10.1016/j.pt.2017.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 11/02/2022]
Abstract
Nematodes are very common animals and they have repeatedly evolved parasitic lifestyles during their evolutionary history. Recently, the genomes of many nematodes, especially parasitic species, have been determined, potentially giving an insight into the genetic and genomic basis of nematodes' parasitism. But, to achieve this, phylogenetically appropriate comparisons of genomes of free-living and parasitic species are needed. Achieving this has often been hampered by the relative lack of information about key free-living species. While such comparative approaches will eventually succeed, I suggest that a synthetic biology approach - moving free-living nematodes towards a parasitic lifestyle - will be our ultimate test of truly understanding the genetic and genomic basis of nematode parasitism.
Collapse
Affiliation(s)
- Mark Viney
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK.
| |
Collapse
|
74
|
Figueroa-Martinez F, Nedelcu AM, Reyes-Prieto A, Smith DR. The plastid genomes of nonphotosynthetic algae are not so small after all. Commun Integr Biol 2017; 10:e1283080. [PMID: 28377793 PMCID: PMC5363391 DOI: 10.1080/19420889.2017.1283080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/27/2022] Open
Abstract
The thing about plastid genomes in nonphotosynthetic plants and algae is that they are
usually very small and highly compact. This is not surprising: a heterotrophic existence
means that genes for photosynthesis can be easily discarded. But the loss of
photosynthesis cannot explain why the plastomes of heterotrophs are so often depauperate
in noncoding DNA. If plastid genomes from photosynthetic taxa can span the gamut of
compactness, why can't those of nonphotosynthetic species? Well, recently we showed
that they can. The free-living, heterotrophic green alga Polytoma uvella
has a plastid genome boasting more than 165 kilobases of noncoding DNA, making it the most
bloated plastome yet found in a heterotroph. In this addendum to the primary study, we
elaborate on why the P. uvella plastome is so inflated, discussing the
potential impact of a free-living vs. parasitic lifestyle on plastid genome expansion in
nonphotosynthetic lineages.
Collapse
Affiliation(s)
- Francisco Figueroa-Martinez
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada; CONACyT-Research Fellow, Universidad Autónoma Metropolitana, Iztapalapa, Vicentina, Mexico City, Mexico; Integrated Microbiology Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada; Integrated Microbiology Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Adrian Reyes-Prieto
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada; Integrated Microbiology Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - David R Smith
- Integrated Microbiology Program, Canadian Institute for Advanced Research, Toronto, ON, Canada; Biology Department, University of Western Ontario, London, ON, Canada
| |
Collapse
|
75
|
Krause A, Pachl P, Schulz G, Lehmitz R, Seniczak A, Schaefer I, Scheu S, Maraun M. Convergent evolution of aquatic life by sexual and parthenogenetic oribatid mites. EXPERIMENTAL & APPLIED ACAROLOGY 2016; 70:439-453. [PMID: 27785647 DOI: 10.1007/s10493-016-0089-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
Convergent evolution is one of the main drivers of traits and phenotypes in animals and plants. Here, we investigated the minimum number of independent colonisations of marine and freshwater habitats in derived oribatid mites (Brachypylina), a mainly terrestrial taxon. Furthermore, we investigated whether the reproductive mode (sexual vs. thelytokous) is associated with the habitat type (marine, freshwater) where the animals live. We hypothesized that continuous resource availability in freshwater systems fosters asexual reproduction. We used 18S rDNA sequences to construct a molecular phylogeny of oribatid mites from terrestrial, marine and freshwater habitats. The results indicate that aquatic life in oribatid mites evolved at least 3×: once in Limnozetoidea (including only freshwater taxa) and at least twice in Ameronothroidea. In Ameronothroidea the taxon Ameronothridae n. gen. (nr. Aquanothrus) colonized fresh water independently from Selenoribatidae and Fortuyniidae (mainly marine Ameronothroidea). Reproductive mode was associated neither with marine nor with freshwater life; rather, in both habitats sexual and parthenogenetic taxa occur. However, the reproductive mode was related to the stability of the habitat. Species that live underwater permanently tend to be parthenogenetic whereas taxa whose life cycle is often interrupted by flooding, such as marine oribatid mites, or by desiccation, e.g., freshwater-living Ameronothridae n. gen. (nr. Aquanothrus) (Ameronothroidea) species, are mainly sexual, indicating that continuous access to resources indeed favours parthenogenetic reproduction. Findings of our study therefore suggest that parthenogenetic reproduction is not selected for by disturbances but by unlimited access to resources.
Collapse
Affiliation(s)
- Alena Krause
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg August University Göttingen, Berliner Straße 28, 37073, Göttingen, Germany
| | - Patrick Pachl
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg August University Göttingen, Berliner Straße 28, 37073, Göttingen, Germany
| | - Garvin Schulz
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg August University Göttingen, Berliner Straße 28, 37073, Göttingen, Germany
| | - Ricarda Lehmitz
- Senckenberg Museum of Natural History Görlitz, Am Museum 1, 02826, Görlitz, Germany
| | - Anna Seniczak
- Department of Ecology, University of Technology and Sciences, Ks. Kordeckiego 20, 85-225, Bydgoszcz, Poland
| | - Ina Schaefer
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg August University Göttingen, Berliner Straße 28, 37073, Göttingen, Germany
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg August University Göttingen, Berliner Straße 28, 37073, Göttingen, Germany
| | - Mark Maraun
- J.F. Blumenbach Institute of Zoology and Anthropology, Georg August University Göttingen, Berliner Straße 28, 37073, Göttingen, Germany.
| |
Collapse
|
76
|
A new phylogeny and environmental DNA insight into paramyxids: an increasingly important but enigmatic clade of protistan parasites of marine invertebrates. Int J Parasitol 2016; 46:605-19. [DOI: 10.1016/j.ijpara.2016.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/13/2016] [Accepted: 04/23/2016] [Indexed: 11/24/2022]
|
77
|
Xu F, Jerlström-Hultqvist J, Kolisko M, Simpson AGB, Roger AJ, Svärd SG, Andersson JO. On the reversibility of parasitism: adaptation to a free-living lifestyle via gene acquisitions in the diplomonad Trepomonas sp. PC1. BMC Biol 2016; 14:62. [PMID: 27480115 PMCID: PMC4967989 DOI: 10.1186/s12915-016-0284-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/13/2016] [Indexed: 01/08/2023] Open
Abstract
Background It is generally thought that the evolutionary transition to parasitism is irreversible because it is associated with the loss of functions needed for a free-living lifestyle. Nevertheless, free-living taxa are sometimes nested within parasite clades in phylogenetic trees, which could indicate that they are secondarily free-living. Herein, we test this hypothesis by studying the genomic basis for evolutionary transitions between lifestyles in diplomonads, a group of anaerobic eukaryotes. Most described diplomonads are intestinal parasites or commensals of various animals, but there are also free-living diplomonads found in oxygen-poor environments such as marine and freshwater sediments. All these nest well within groups of parasitic diplomonads in phylogenetic trees, suggesting that they could be secondarily free-living. Results We present a transcriptome study of Trepomonas sp. PC1, a diplomonad isolated from marine sediment. Analysis of the metabolic genes revealed a number of proteins involved in degradation of the bacterial membrane and cell wall, as well as an extended set of enzymes involved in carbohydrate degradation and nucleotide metabolism. Phylogenetic analyses showed that most of the differences in metabolic capacity between free-living Trepomonas and the parasitic diplomonads are due to recent acquisitions of bacterial genes via gene transfer. Interestingly, one of the acquired genes encodes a ribonucleotide reductase, which frees Trepomonas from the need to scavenge deoxyribonucleosides. The transcriptome included a gene encoding squalene-tetrahymanol cyclase. This enzyme synthesizes the sterol substitute tetrahymanol in the absence of oxygen, potentially allowing Trepomonas to thrive under anaerobic conditions as a free-living bacterivore, without depending on sterols from other eukaryotes. Conclusions Our findings are consistent with the phylogenetic evidence that the last common ancestor of diplomonads was dependent on a host and that Trepomonas has adapted secondarily to a free-living lifestyle. We believe that similar studies of other groups where free-living taxa are nested within parasites could reveal more examples of secondarily free-living eukaryotes. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0284-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Feifei Xu
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jon Jerlström-Hultqvist
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Present address: Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Martin Kolisko
- Department of Biology, Dalhousie University, Halifax, NS, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Present address: Botany Department, University of British Columbia, Vancouver, BC, Canada
| | - Alastair G B Simpson
- Department of Biology, Dalhousie University, Halifax, NS, Canada.,Canadian Institute for Advanced Research, Integrated Microbial Biodiversity Program, Toronto, ON, Canada
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Canadian Institute for Advanced Research, Integrated Microbial Biodiversity Program, Toronto, ON, Canada
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jan O Andersson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
78
|
Okamura B, Gruhl A. Myxozoa + Polypodium: A Common Route to Endoparasitism. Trends Parasitol 2016; 32:268-271. [PMID: 26830727 DOI: 10.1016/j.pt.2016.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 11/16/2022]
Abstract
Recent evidence places the problematic Polypodium, a parasite of fish eggs, firmly as sister taxon to Myxozoa within the Cnidaria. This resolution suggests a single route to endoparasitism in Cnidaria, with larval stages of a common ancestor exploiting fish as first hosts. It also enables new interpretations and insights regarding evolutionary transitions associated with endoparasitism.
Collapse
Affiliation(s)
- Beth Okamura
- Natural History Museum, Department of Life Sciences, London, UK.
| | - Alexander Gruhl
- Natural History Museum, Department of Life Sciences, London, UK; Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
79
|
Bindschedler LV, Panstruga R, Spanu PD. Mildew-Omics: How Global Analyses Aid the Understanding of Life and Evolution of Powdery Mildews. FRONTIERS IN PLANT SCIENCE 2016; 7:123. [PMID: 26913042 PMCID: PMC4753294 DOI: 10.3389/fpls.2016.00123] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/22/2016] [Indexed: 05/21/2023]
Abstract
The common powdery mildew plant diseases are caused by ascomycete fungi of the order Erysiphales. Their characteristic life style as obligate biotrophs renders functional analyses in these species challenging, mainly because of experimental constraints to genetic manipulation. Global large-scale ("-omics") approaches are thus particularly valuable and insightful for the characterisation of the life and evolution of powdery mildews. Here we review the knowledge obtained so far from genomic, transcriptomic and proteomic studies in these fungi. We consider current limitations and challenges regarding these surveys and provide an outlook on desired future investigations on the basis of the various -omics technologies.
Collapse
Affiliation(s)
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen UniversityAachen, Germany
- *Correspondence: Ralph Panstruga,
| | - Pietro D. Spanu
- Department of Life Sciences, Imperial College LondonLondon, UK
| |
Collapse
|
80
|
Siveter D, Briggs D, Siveter D, Sutton M. A 425-Million-Year-Old Silurian Pentastomid Parasitic on Ostracods. Curr Biol 2015; 25:1632-7. [DOI: 10.1016/j.cub.2015.04.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/11/2015] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
|
81
|
Parker GA, Ball MA, Chubb JC. Evolution of complex life cycles in trophically transmitted helminths. I. Host incorporation and trophic ascent. J Evol Biol 2015; 28:267-91. [PMID: 25625702 DOI: 10.1111/jeb.12575] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 01/18/2023]
Abstract
Links between parasites and food webs are evolutionarily ancient but dynamic: life history theory provides insights into helminth complex life cycle origins. Most adult helminths benefit by sexual reproduction in vertebrates, often high up food chains, but direct infection is commonly constrained by a trophic vacuum between free-living propagules and definitive hosts. Intermediate hosts fill this vacuum, facilitating transmission to definitive hosts. The central question concerns why sexual reproduction, and sometimes even larval growth, is suppressed in intermediate hosts, favouring growth arrest at larval maturity in intermediate hosts and reproductive suppression until transmission to definitive hosts? Increased longevity and higher growth in definitive hosts can generate selection for larger parasite body size and higher fecundity at sexual maturity. Life cycle length is increased by two evolutionary mechanisms, upward and downward incorporation, allowing simple (one-host) cycles to become complex (multihost). In downward incorporation, an intermediate host is added below the definitive host: models suggest that downward incorporation probably evolves only after ecological or evolutionary perturbations create a trophic vacuum. In upward incorporation, a new definitive host is added above the original definitive host, which subsequently becomes an intermediate host, again maintained by the trophic vacuum: theory suggests that this is plausible even under constant ecological/evolutionary conditions. The final cycle is similar irrespective of its origin (upward or downward). Insights about host incorporation are best gained by linking comparative phylogenetic analyses (describing evolutionary history) with evolutionary models (examining selective forces). Ascent of host trophic levels and evolution of optimal host taxa ranges are discussed.
Collapse
Affiliation(s)
- G A Parker
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
82
|
Genome mining offers a new starting point for parasitology research. Parasitol Res 2015; 114:399-409. [PMID: 25563615 DOI: 10.1007/s00436-014-4299-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022]
Abstract
Parasites including helminthes, protozoa, and medical arthropod vectors are a major cause of global infectious diseases, affecting one-sixth of the world's population, which are responsible for enormous levels of morbidity and mortality important and remain impediments to economic development especially in tropical countries. Prevalent drug resistance, lack of highly effective and practical vaccines, as well as specific and sensitive diagnostic markers are proving to be challenging problems in parasitic disease control in most parts of the world. The impressive progress recently made in genome-wide analysis of parasites of medical importance, including trematodes of Clonorchis sinensis, Opisthorchis viverrini, Schistosoma haematobium, S. japonicum, and S. mansoni; nematodes of Brugia malayi, Loa loa, Necator americanus, Trichinella spiralis, and Trichuris suis; cestodes of Echinococcus granulosus, E. multilocularis, and Taenia solium; protozoa of Babesia bovis, B. microti, Cryptosporidium hominis, Eimeria falciformis, E. histolytica, Giardia intestinalis, Leishmania braziliensis, L. donovani, L. major, Plasmodium falciparum, P. vivax, Trichomonas vaginalis, Trypanosoma brucei and T. cruzi; and medical arthropod vectors of Aedes aegypti, Anopheles darlingi, A. sinensis, and Culex quinquefasciatus, have been systematically covered in this review for a comprehensive understanding of the genetic information contained in nuclear, mitochondrial, kinetoplast, plastid, or endosymbiotic bacterial genomes of parasites, further valuable insight into parasite-host interactions and development of promising novel drug and vaccine candidates and preferable diagnostic tools, thereby underpinning the prevention and control of parasitic diseases.
Collapse
|
83
|
Abstract
Nematodes are abundant and diverse, and include many parasitic species. Molecular phylogenetic analyses have shown that parasitism of plants and animals has arisen at least 15 times independently. Extant nematode species also display lifestyles that are proposed to be on the evolutionary trajectory to parasitism. Recent advances have permitted the determination of the genomes and transcriptomes of many nematode species. These new data can be used to further resolve the phylogeny of Nematoda, and identify possible genetic patterns associated with parasitism. Plant-parasitic nematode genomes show evidence of horizontal gene transfer from other members of the rhizosphere, and these genes play important roles in the parasite-host interface. Similar horizontal transfer is not evident in animal parasitic groups. Many nematodes have bacterial symbionts that can be essential for survival. Horizontal transfer from symbionts to the nematode is also common, but its biological importance is unclear. Over 100 nematode species are currently targeted for sequencing, and these data will yield important insights into the biology and evolutionary history of parasitism. It is important that these new technologies are also applied to free-living taxa, so that the pre-parasitic ground state can be inferred, and the novelties associated with parasitism isolated.
Collapse
|