51
|
Bennabi D, Haffen E, Van Waes V. Vortioxetine for Cognitive Enhancement in Major Depression: From Animal Models to Clinical Research. Front Psychiatry 2019; 10:771. [PMID: 31780961 PMCID: PMC6851880 DOI: 10.3389/fpsyt.2019.00771] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022] Open
Abstract
Objectives: Vortioxetine has already shown its efficacy in the acute and long-term treatment of major depressive disorder (MDD) and its potential interest in the prevention of relapse. The aim of this study was to review the current status of knowledge regarding its cognitive effects. Methods: We conducted a review of key data obtained from preclinical behavioral models and clinical trials in MDD focusing on vortioxetine-induced cognitive changes. Results: In animals, acute and chronic administration of vortioxetine improves performance on objective measures that cover a broad range of cognitive domains. In human, vortioxetine appears to be a useful treatment option in MDD patients with cognitive dysfunction. Conclusion: Vortioxetine constitutes a promising treatment for treatment of cognitive impairment in MDD, but its place in the therapeutic armamentarium still needs to be determined.
Collapse
Affiliation(s)
- Djamila Bennabi
- Department of Clinical Psychiatry, INSERM, CHU de Besançon, Neurosciences, University Bourgogne Franche-Comté, FondaMental Foundation, Creteil, France
| | - Emmanuel Haffen
- Department of Clinical Psychiatry, INSERM, CHU de Besançon, Neurosciences, University Bourgogne Franche-Comté, FondaMental Foundation, Creteil, France
| | - Vincent Van Waes
- Laboratory of Integrative and Clinical Neuroscience, University of Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
52
|
Gonda X, Sharma SR, Tarazi FI. Vortioxetine: a novel antidepressant for the treatment of major depressive disorder. Expert Opin Drug Discov 2018; 14:81-89. [DOI: 10.1080/17460441.2019.1546691] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xenia Gonda
- Department of Psychiatry and Psychotherapy, Kutvolgyi Clinical Centre, Semmelweis University, Budapest, Hungary
- MTA-SE Neurochemistry and Neuropsychopharmacology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Semmelweis University, Budapest, Hungary
| | - Samata R. Sharma
- Department of Psychiatry, Harvard Medical School, Brigham and Women’s Hospital, Boston, USA
| | - Frank I. Tarazi
- Department of Psychiatry and Neuroscience Program, Harvard Medical School, McLean Hospital, Belmont, USA
| |
Collapse
|
53
|
Girotti M, Adler SM, Bulin SE, Fucich EA, Paredes D, Morilak DA. Prefrontal cortex executive processes affected by stress in health and disease. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:161-179. [PMID: 28690203 PMCID: PMC5756532 DOI: 10.1016/j.pnpbp.2017.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 11/23/2022]
Abstract
Prefrontal cortical executive functions comprise a number of cognitive capabilities necessary for goal directed behavior and adaptation to a changing environment. Executive dysfunction that leads to maladaptive behavior and is a symptom of psychiatric pathology can be instigated or exacerbated by stress. In this review we survey research addressing the impact of stress on executive function, with specific focus on working memory, attention, response inhibition, and cognitive flexibility. We then consider the neurochemical pathways underlying these cognitive capabilities and, where known, how stress alters them. Finally, we review work exploring potential pharmacological and non-pharmacological approaches that can ameliorate deficits in executive function. Both preclinical and clinical literature indicates that chronic stress negatively affects executive function. Although some of the circuitry and neurochemical processes underlying executive function have been characterized, a great deal is still unknown regarding how stress affects these processes. Additional work focusing on this question is needed in order to make progress on developing interventions that ameliorate executive dysfunction.
Collapse
Affiliation(s)
- Milena Girotti
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA.
| | - Samantha M Adler
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Sarah E Bulin
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Elizabeth A Fucich
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Denisse Paredes
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - David A Morilak
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| |
Collapse
|
54
|
Modulation of Kalirin-7 expression by hippocampal CA1 5-HT 1B receptors in spatial memory consolidation. Behav Brain Res 2018; 356:148-155. [PMID: 29949735 DOI: 10.1016/j.bbr.2018.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022]
Abstract
Serotonin 5-HT1B receptors (5-HT1BRs) are distributed in hippocampal CA1 and play a pivotal role in cognitive function. Activation of 5-HT1BRs regulates synaptic plasticity at the excitatory synapses in the hippocampus. However, the role and its underlying mechanism of 5-HT1BR activation-mediated glutamatergic synaptic plasticity in spatial memory are not fully understood. In this study, spatial memory of Sprague-Dawley (SD) rats was assessed in a Morris water maze after bilateral dorsal hippocampal CA1 infusion of the 5-HT1BR antagonist GR55562 (25 μg/μL) or agonist CP93129 (25 μg/μL). GR55562 did not affect the spatial memory acquisition but significantly increased the target quadrant preference during the memory consolidation probe performed 14 d after the training session, while CP93129 impaired the memory consolidation process. Moreover, GR55562 significantly increased, while CP93129 significantly decreased, the density of dendritic spines on the distal apical dendrites of CA1 pyramidal neurons. Furthermore, western blot experiments indicated that GR55562 significantly increased, but CP93129 significantly reduced, the expression of Kalirin-7 (Kal-7), PSD95, and GluA2/3 subunits of AMPA receptors. Our results suggest that Kal-7 and Kal-7-mediatedalteration of AMPA receptor subtype expression may play crucial roles in the impact of hippocampal CA1 5-HT1BR activation on spatial memory consolidation.
Collapse
|
55
|
Lu L, Li Z, Zuo Y, Zhao L, Liu B. Radioprotective activity of glutathione on cognitive ability in X-ray radiated tumor-bearing mice. Neurol Res 2018; 40:758-766. [PMID: 29847238 DOI: 10.1080/01616412.2018.1476080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lina Lu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu, China
- School of Chemical Engineering, Northwest University for Nationalities, Lanzhou, Gansu, China
| | - Zongli Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yanhua Zuo
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Libo Zhao
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Bin Liu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu, China
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
56
|
Keefe RSE, Nomikos G, Zhong W, Christensen MC, Jacobson W. A Subgroup Analysis of the Impact of Vortioxetine on Functional Capacity, as Measured by UPSA, in Patients with Major Depressive Disorder and Subjective Cognitive Dysfunction. Int J Neuropsychopharmacol 2018; 21:442-447. [PMID: 29546401 PMCID: PMC5932468 DOI: 10.1093/ijnp/pyy020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/09/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND We evaluated vortioxetine's effects on functional capacity in demographic and clinical subgroups of patients with major depressive disorder. METHODS This was an exploratory analysis of the CONNECT study (NCT01564862) that evaluated changes in functional capacity using University of California San Diego Performance-based Skills Assessment data, categorized by sex, age, education, employment status, and baseline disease severity (Montgomery-Åsberg Depression Rating Scale, Clinical Global Impressions-Severity of Illness). RESULTS Greater changes in University of California San Diego Performance-based Skills Assessment composite scores were observed with vortioxetine vs placebo in specific subgroups: males (∆+3.2), females (∆+2.9), 45-54 or ≥55 years (∆+5.6, ∆+3.4), working (∆+2.8), high school or greater education (∆+2.7, ∆+2.8), disease severity (Montgomery-Åsberg Depression Rating Scale, <30, ∆+3.5; ≥30, ∆+2.5; Clinical Global Impressions-Severity of Illness ≤4, ∆+2.8; >4, ∆+3.0), major depressive episodes (≤2, >2 [∆+2.7,+3.3]), and episode duration (≤22, >22 weeks [∆+3.7,+2.4]). CONCLUSIONS Our findings support the need for additional studies to assess whether vortioxetine improves functional capacity within specific patient subgroups. CLINICAL TRIAL REGISTRY clinicaltrials.gov: NCT01564862.
Collapse
Affiliation(s)
- Richard S E Keefe
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, Durham, North Carolina,Correspondence: Richard S. E. Keefe, PhD, Duke University Medical Center, Box 3270, Durham, NC 27710 ()
| | - George Nomikos
- Takeda Development Center Americas, Inc., Deerfield, Illinois
| | - Wei Zhong
- Takeda Development Center Americas, Inc., Deerfield, Illinois
| | | | | |
Collapse
|
57
|
Abstract
This article covers current research on the relationship between depression and cognitive impairment in older adults. First, it approaches the clinical assessment of late-life depression and comorbid cognitive impairment. Cognitive risk factors for suicide are discussed. Research is then provided on neuropsychological changes associated with depression, discussing subjective cognitive impairment, mild cognitive impairment, and dementia profiles. Additionally, literature regarding neuroimaging and biomarker findings in depressed older adults is presented. Finally, therapeutic models for treatment of late-life depression are also discussed, including psychotherapy models, holistic treatments, pharmacologic approaches, and brain-stimulation therapies.
Collapse
|
58
|
Williams WR. Cell signal transduction: hormones, neurotransmitters and therapeutic drugs relate to purine nucleotide structure. J Recept Signal Transduct Res 2018; 38:101-111. [PMID: 29402169 DOI: 10.1080/10799893.2018.1431279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Purine nucleotides transduce cell membrane receptor responses and modulate ion channel activity. This is accomplished through conformational change in the structure of nucleotides and cell membrane associated proteins. The aim of this study is to enhance our understanding of nucleotide dependence in regard to signal transduction events, drug action and pharmacological promiscuity. Nucleotides and ligand structures regulating Gα protein subunits, voltage- and ligand-gated ion channels are investigated for molecular similarity using a computational program. Results differentiate agonist and antagonist structures, identify molecular similarity within nucleotide and ligand structures and demonstrate the potential of ligands to regulate nucleotide conformational change. Relative molecular similarity within nucleotides and the ligands of the major receptor classes provides insight into mechanisms of receptor and ion channel regulation. The nucleotide template model has some merit as an initial screening tool in the study and comparison of drug and hormone structures.
Collapse
Affiliation(s)
- W R Williams
- a Faculty of Life Sciences & Education , University of South Wales , Cardiff , UK
| |
Collapse
|
59
|
Partial inhibition of catecholamine activity and enhanced responsiveness to NMDA after sustained administration of vortioxetine. Neuropharmacology 2018; 128:425-432. [DOI: 10.1016/j.neuropharm.2017.10.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 12/20/2022]
|
60
|
Yan L, Wei M, Gong AG, Song P, Lou J, Bi CW, Xu SL, Xiong A, Dong TT, Tsim KW. A Modified Chinese Herbal Decoction (Kai-Xin-San) Promotes NGF-Induced Neuronal Differentiation in PC12 Cells via Up-Regulating Trk A Signaling. Front Cell Dev Biol 2017; 5:118. [PMID: 29312939 PMCID: PMC5744097 DOI: 10.3389/fcell.2017.00118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/11/2017] [Indexed: 02/04/2023] Open
Abstract
Kai-Xin-San (KXS), a Chinese herbal decoction, has been applied to medical care of depression for thousands of years. It is composed of two functional paired-herbs: Ginseng Radix et Rhizoma (GR)-Polygalae Radix (PR) and Acori Tatarinowii Rhizoma (ATR)-Poria (PO). The compatibility of the paired-herbs has been frequently changed to meet the criteria of syndrome differentiation and treatment variation. Currently, a modified KXS (namely KXS2012) was prepared by optimizing the combinations of GR-PR and ATR-PO: the new herbal formula was shown to be very effective in animal studies. However, the cellular mechanism of KXS2012 against depression has not been fully investigated. Here, the study on KXS2012-induced neuronal differentiation in cultured PC12 cells was analyzed. In PC12 cultures, single application of KXS2012 showed no effect on the neuronal differentiation, but which showed robust effects in potentiating nerve growth factor (NGF)-induced neurite outgrowth and neurofilament expression. The potentiating effect of KXS2012 was mediated through NGF receptor, tropomyosin receptor kinase (Trk) A: because the receptor expression and activity was markedly up-regulated in the presence of KXS2012, and the potentiating effect was blocked by k252a, an inhibitor of Trk A. Our current results in cell cultures fully support the therapeutic efficacy of KXS2012 against depression.
Collapse
Affiliation(s)
- Lu Yan
- Shenzhen Research Institute, Hong Kong University of Science and Technology, Shenzhez, China.,Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, China.,Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China.,Division of Life Science and Center for Chinese Medicine, Hong Kong University of Science and Technology, Hong Kong, China
| | - Min Wei
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, China.,Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Amy G Gong
- Shenzhen Research Institute, Hong Kong University of Science and Technology, Shenzhez, China.,Division of Life Science and Center for Chinese Medicine, Hong Kong University of Science and Technology, Hong Kong, China
| | - Pingping Song
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, China.,Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Jianshu Lou
- Shenzhen Research Institute, Hong Kong University of Science and Technology, Shenzhez, China.,Division of Life Science and Center for Chinese Medicine, Hong Kong University of Science and Technology, Hong Kong, China
| | - Cathy W Bi
- Shenzhen Research Institute, Hong Kong University of Science and Technology, Shenzhez, China.,Division of Life Science and Center for Chinese Medicine, Hong Kong University of Science and Technology, Hong Kong, China
| | - Sherry L Xu
- Division of Life Science and Center for Chinese Medicine, Hong Kong University of Science and Technology, Hong Kong, China
| | - Aizhen Xiong
- Division of Life Science and Center for Chinese Medicine, Hong Kong University of Science and Technology, Hong Kong, China
| | - Tina T Dong
- Shenzhen Research Institute, Hong Kong University of Science and Technology, Shenzhez, China.,Division of Life Science and Center for Chinese Medicine, Hong Kong University of Science and Technology, Hong Kong, China
| | - Karl W Tsim
- Shenzhen Research Institute, Hong Kong University of Science and Technology, Shenzhez, China.,Division of Life Science and Center for Chinese Medicine, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
61
|
Dale E, Grunnet M, Pehrson AL, Frederiksen K, Larsen PH, Nielsen J, Stensbøl TB, Ebert B, Yin H, Lu D, Liu H, Jensen TN, Yang CR, Sanchez C. The multimodal antidepressant vortioxetine may facilitate pyramidal cell firing by inhibition of 5-HT 3 receptor expressing interneurons: An in vitro study in rat hippocampus slices. Brain Res 2017; 1689:1-11. [PMID: 29274875 DOI: 10.1016/j.brainres.2017.12.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/28/2017] [Accepted: 12/19/2017] [Indexed: 01/07/2023]
Abstract
The multimodal antidepressant vortioxetine is thought to mediate its pharmacological effects via 5-HT1A receptor agonism, 5-HT1B receptor partial agonism, 5-HT1D, 5-HT3, 5-HT7 receptor antagonism and 5-HT transporter inhibition. Here we studied vortioxetine's functional effects across species (canine, mouse, rat, guinea pig and human) in cellular assays with heterologous expression of 5-HT3A receptors (in Xenopus oocytes and HEK-293 cells) and in mouse neuroblastoma N1E-115 cells with endogenous expression of 5-HT3A receptors. Furthermore, we studied the effects of vortioxetine on activity of CA1 Stratum Radiatum interneurons in rat hippocampus slices using current- and voltage-clamping methods. The patched neurons were subsequently filled with biocytin for confirmation of 5-HT3 receptor mRNA expression by in situ hybridization. Whereas, both vortioxetine and the 5-HT3 receptor antagonist ondansetron potently antagonized 5-HT-induced currents in the cellular assays, vortioxetine had a slower off-rate than ondansetron in oocytes expressing 5-HT3A receptors. Furthermore, vortioxetine's but not ondansetron's 5-HT3 receptor antagonistic potency varied considerably across species. Vortioxetine had the highest potency at rat and the lowest potency at guinea pig 5-HT3A receptors. Finally, in 5-HT3 receptor-expressing GABAergic interneurons from the CA1 stratum radiatum, vortioxetine and ondansetron blocked depolarizations induced by superfusion of either 5-HT or the 5-HT3 receptor agonist mCPBG. Taken together, these data add to a growing literature supporting the idea that vortioxetine may inhibit GABAergic neurotransmission in some brain regions via a 5-HT3 receptor antagonism-dependent mechanism and thereby disinhibit pyramidal neurons and enhance glutamatergic signaling.
Collapse
Affiliation(s)
- Elena Dale
- Brintellix Science Team, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Copenhagen, Denmark
| | - Morten Grunnet
- Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Copenhagen, Denmark
| | - Alan L Pehrson
- Brintellix Science Team, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Copenhagen, Denmark
| | - Kristen Frederiksen
- Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Copenhagen, Denmark
| | - Peter H Larsen
- Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Copenhagen, Denmark
| | - Jacob Nielsen
- Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Copenhagen, Denmark
| | - Tine B Stensbøl
- Brintellix Science Team, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Copenhagen, Denmark
| | - Bjarke Ebert
- Brintellix Science Team, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Copenhagen, Denmark
| | - Haolan Yin
- ChemPartner Co. Ltd, 998 Halei Road, Zhangjiang Hi-Tech Park, Shanghai 201203, PR China
| | - Dunguo Lu
- ChemPartner Co. Ltd, 998 Halei Road, Zhangjiang Hi-Tech Park, Shanghai 201203, PR China
| | - Huiquing Liu
- ChemPartner Co. Ltd, 998 Halei Road, Zhangjiang Hi-Tech Park, Shanghai 201203, PR China
| | - Thomas N Jensen
- Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Copenhagen, Denmark
| | - Charles R Yang
- ChemPartner Co. Ltd, 998 Halei Road, Zhangjiang Hi-Tech Park, Shanghai 201203, PR China
| | - Connie Sanchez
- Brintellix Science Team, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Copenhagen, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Skovagervej 2, DK-8240 Risskov, Denmark.
| |
Collapse
|
62
|
Chakroborty S, Geisbush TR, Dale E, Pehrson AL, Sánchez C, West AR. Impact of Vortioxetine on Synaptic Integration in Prefrontal-Subcortical Circuits: Comparisons with Escitalopram. Front Pharmacol 2017; 8:764. [PMID: 29123483 PMCID: PMC5662919 DOI: 10.3389/fphar.2017.00764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/11/2017] [Indexed: 11/28/2022] Open
Abstract
Prefrontal-subcortical circuits support executive functions which often become dysfunctional in psychiatric disorders. Vortioxetine is a multimodal antidepressant that is currently used in the clinic to treat major depressive disorder. Mechanisms of action of vortioxetine include serotonin (5-HT) transporter blockade, 5-HT1A receptor agonism, 5-HT1B receptor partial agonism, and 5-HT1D, 5-HT3, and 5-HT7 receptor antagonism. Vortioxetine facilitates 5-HT transmission in the medial prefrontal cortex (mPFC), however, the impact of this compound on related prefrontal-subcortical circuits is less clear. Thus, the current study examined the impact of systemic vortioxetine administration (0.8 mg/kg, i.v.) on spontaneous spiking and spikes evoked by electrical stimulation of the mPFC in the anterior cingulate cortex (ACC), medial shell of the nucleus accumbens (msNAc), and lateral septal nucleus (LSN) in urethane-anesthetized rats. We also examined whether vortioxetine modulated afferent drive in the msNAc from hippocampal fimbria (HF) inputs. Similar studies were performed using the selective 5-HT reuptake inhibitor [selective serotonin reuptake inhibitors (SSRI)] escitalopram (1.6 mg/kg, i.v.) to enable comparisons between the multimodal actions of vortioxetine and SSRI-mediated effects. No significant differences in spontaneous activity were observed in the ACC, msNAc, and LSN across treatment groups. No significant impact of treatment on mPFC-evoked responses was observed in the ACC. In contrast, vortioxetine decreased mPFC-evoked activity recorded in the msNAc as compared to parallel studies in control and escitalopram treated groups. Thus, vortioxetine may reduce mPFC-msNAc afferent drive via a mechanism that, in addition to an SSRI-like effect, requires 5-HT receptor modulation. Recordings in the LSN revealed a significant increase in mPFC-evoked activity following escitalopram administration as compared to control and vortioxetine treated groups, indicating that complex modulation of 5-HT receptors by vortioxetine may offset SSRI-like effects in this region. Lastly, neurons in the msNAc were more responsive to stimulation of the HF following both vortioxetine and escitalopram administration, indicating that elevation of 5-HT tone and 5-HT receptor modulation may facilitate excitatory hippocampal synaptic drive in this region. The above findings point to complex 5-HT receptor-dependent effects of vortioxetine which may contribute to its unique impact on the function of prefrontal-subcortical circuits and the development of novel strategies for treating mood disorders.
Collapse
Affiliation(s)
- Shreaya Chakroborty
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Thomas R Geisbush
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Elena Dale
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Cambridge, MA, United States
| | - Alan L Pehrson
- Department of Psychology, Montclair State University, Montclair, NJ, United States
| | - Connie Sánchez
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anthony R West
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
63
|
Fornaro M, Solmi M, Veronese N, De Berardis D, Buonaguro EF, Tomasetti C, Perna G, Preti A, Carta MG. The burden of mood-disorder/cerebrovascular disease comorbidity: essential neurobiology, psychopharmacology, and physical activity interventions. Int Rev Psychiatry 2017; 29:425-435. [PMID: 28681620 DOI: 10.1080/09540261.2017.1299695] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardio-vascular diseases (CVDs) and CVD-related disorders (including cerebrovascular diseases; CBVDs) are a major public health concern as they represent the leading cause of mortality and morbidity in developed countries. Patients with CVDs and CBVDs co-morbid with mood disorders, especially bipolar disorder (BD) and major depressive disorder (MDD), suffer reduced quality-of-life and significant disability adjusted for years of life and mortality. The relationship between CVDs/CBVDs and mood disorders is likely to be bidirectional. Evidence for shared genetic risk of pathways involved in stress reaction, serotonin or dopamine signalling, circadian rhythms, and energy balance was reported in genome-wide association studies. There is some evidence of a neuroprotective effect of various antidepressants, which may be boosted by physical exercise, especially by aerobic ones. Patients with CVDs/CBVDs should be routinely attentively evaluated for the presence of mood disorders, with tools aimed at detecting both symptoms of depression and of hypomania/mania. Behavioural lifestyle interventions targeting nutrition and exercise, coping strategies, and attitudes towards health should be routinely provided to patients with mood disorders, to prevent the risk of CVDs/CBVDs. A narrative review of the evidence is herein provided, focusing on pharmacological and physical therapy interventions.
Collapse
Affiliation(s)
- Michele Fornaro
- a Department of Neuroscience, Reproductive Science and Odontostomatology , School of Medicine 'Federico II' Naples , Naples , Italy.,b Department of Psychiatry , Columbia University Medical Center, New York State Psychiatric Institute , New York , NY , USA
| | - Marco Solmi
- c Neuroscience Department , University of Padua , Padua , Italy.,d Institute for Clinical Research and Education in Medicine, I.R.E.M , Padua , Italy
| | - Nicola Veronese
- d Institute for Clinical Research and Education in Medicine, I.R.E.M , Padua , Italy.,e Department of Medicine (DIMED), Geriatrics Division , University of Padova , Padova , Italy
| | - Domenico De Berardis
- f Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment , Hospital 'G. Mazzini' , Teramo , Italy
| | - Elisabetta Filomena Buonaguro
- a Department of Neuroscience, Reproductive Science and Odontostomatology , School of Medicine 'Federico II' Naples , Naples , Italy
| | - Carmine Tomasetti
- a Department of Neuroscience, Reproductive Science and Odontostomatology , School of Medicine 'Federico II' Naples , Naples , Italy
| | - Giampaolo Perna
- g Department of Psychiatry and Neuropsychology , Maastricht University , Maastricht , Netherlands.,h Department of Clinical Neurosciences, FoRiPsi , Hermanas Hospitalarias-Villa San Benedetto Menni Hospital , Albese con Cassano , Como , Italy.,i Department of Psychiatry and Behavioural Sciences, Leonard Miller School of Medicine , University of Miami , Miami , FL , USA
| | - Antonio Preti
- j Center of Liaison Psychiatry and Psychosomatics , University Hospital, University of Cagliari , Monserrato , Cagliari , Italy
| | - Mauro Giovanni Carta
- k Department of Public Health, Clinical and Molecular Medicine , University of Cagliari , Monserrato , Cagliari , Italy
| |
Collapse
|
64
|
Guo JD, O'Flaherty BM, Rainnie DG. Serotonin gating of cortical and thalamic glutamate inputs onto principal neurons of the basolateral amygdala. Neuropharmacology 2017; 126:224-232. [PMID: 28899729 DOI: 10.1016/j.neuropharm.2017.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/31/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022]
Abstract
The basolateral amygdala (BLA) is a key site for crossmodal association of sensory stimuli and an important relay in the neural circuitry of emotion. Indeed, the BLA receives substantial glutamatergic inputs from multiple brain regions including the prefrontal cortex and thalamic nuclei. Modulation of glutamatergic transmission in the BLA regulates stress- and anxiety-related behaviors. Serotonin (5-HT) also plays an important role in regulating stress-related behavior through activation of both pre- and postsynaptic 5-HT receptors. Multiple 5-HT receptors are expressed in the BLA, where 5-HT has been reported to modulate glutamatergic transmission. However, the 5-HT receptor subtype mediating this effect is not yet clear. The aim of this study was to use patch-clamp recordings from BLA neurons in an ex vivo slice preparation to examine 1) the effect of 5-HT on extrinsic sensory inputs, and 2) to determine if any pathway specificity exists in 5-HT regulation of glutamatergic transmission. Two independent input pathways into the BLA were stimulated: the external capsule to mimic cortical input, and the internal capsule to mimic thalamic input. Bath application of 5-HT reversibly reduced the amplitude of evoked excitatory postsynaptic currents (eEPSCs) induced by stimulation of both pathways. The decrease was associated with an increase in the paired-pulse ratio and coefficient of variation of eEPSC amplitude, suggesting 5-HT acts presynaptically. Moreover, the effect of 5-HT in both pathways was mimicked by the selective 5-HT1B receptor agonist CP93129, but not by the 5-HT1A receptor agonist 8-OH DPAT. Similarly the effect of exogenous 5-HT was blocked by the 5-HT1B receptor antagonist GR55562, but not affected by the 5-HT1A receptor antagonist WAY 100635 or the 5-HT2 receptor antagonists pirenperone and MDL 100907. Together these data suggest 5-HT gates cortical and thalamic glutamatergic inputs into the BLA by activating presynaptic 5-HT1B receptors.
Collapse
Affiliation(s)
- Ji-Dong Guo
- Division of Behavioral Neuroscience & Psychiatric Disorders, Yerkes National Primate Research Center, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| | - Brendan M O'Flaherty
- Division of Behavioral Neuroscience & Psychiatric Disorders, Yerkes National Primate Research Center, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Donald G Rainnie
- Division of Behavioral Neuroscience & Psychiatric Disorders, Yerkes National Primate Research Center, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
65
|
Miyamoto Y, Iegaki N, Fu K, Ishikawa Y, Sumi K, Azuma S, Uno K, Muramatsu SI, Nitta A. Striatal N-Acetylaspartate Synthetase Shati/Nat8l Regulates Depression-Like Behaviors via mGluR3-Mediated Serotonergic Suppression in Mice. Int J Neuropsychopharmacol 2017; 20:1027-1035. [PMID: 29020418 PMCID: PMC5716104 DOI: 10.1093/ijnp/pyx078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Several clinical studies have suggested that N-acetylaspartate and N-acetylaspartylglutamate levels in the human brain are associated with various psychiatric disorders, including major depressive disorder. We have previously identified Shati/Nat8l, an N-acetyltransferase, in the brain using an animal model of psychosis. Shati/Nat8l synthesizes N-acetylaspartate from L-aspartate and acetyl-coenzyme A. Further, N-acetylaspartate is converted into N-acetylaspartylglutamate, a neurotransmitter for metabotropic glutamate receptor 3. METHODS Because Shati/Nat8l mRNA levels were increased in the dorsal striatum of mice following the exposure to forced swimming stress, Shati/Nat8l was overexpressed in mice by the microinjection of adeno-associated virus vectors containing Shati/Nat8l gene into the dorsal striatum (dS-Shati/Nat8l mice). The dS-Shati/Nat8l mice were further assessed using behavioral and neurochemical tests. RESULTS The dS-Shati/Nat8l mice exhibited behavioral despair in the forced swimming and tail suspension tests and social withdrawal in the 3-chamber social interaction test. These depression-like behaviors were attenuated by the administration of a metabotropic glutamate receptor 2/3 antagonist and a selective serotonin reuptake inhibitor. Furthermore, the metabolism of N-acetylaspartate to N-acetylaspartylglutamate was decreased in the dorsal striatum of the dS-Shati/Nat8l mice. This finding corresponded with the increased expression of glutamate carboxypeptidase II, an enzyme that metabolizes N-acetylaspartylglutamate present in the extracellular space. Extracellular serotonin levels were lower in the dorsal striatum of the dS-Shati/Nat8l and normal mice that were repeatedly administered a selective glutamate carboxypeptidase II inhibitor. CONCLUSIONS Our findings indicate that the striatal expression of N-acetylaspartate synthetase Shati/Nat8l plays a role in major depressive disorder via the metabotropic glutamate receptor 3-mediated functional control of the serotonergic neuronal system.
Collapse
Affiliation(s)
- Yoshiaki Miyamoto
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Miyamoto, Mr Iegaki, Mr Fu, Mr Ishikawa, Mr Sumi, Mr Azuma, and Drs Uno and Nitta)
| | - Noriyuki Iegaki
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Miyamoto, Mr Iegaki, Mr Fu, Mr Ishikawa, Mr Sumi, Mr Azuma, and Drs Uno and Nitta)
| | - Kequan Fu
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Miyamoto, Mr Iegaki, Mr Fu, Mr Ishikawa, Mr Sumi, Mr Azuma, and Drs Uno and Nitta)
| | - Yudai Ishikawa
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Miyamoto, Mr Iegaki, Mr Fu, Mr Ishikawa, Mr Sumi, Mr Azuma, and Drs Uno and Nitta)
| | - Kazuyuki Sumi
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Miyamoto, Mr Iegaki, Mr Fu, Mr Ishikawa, Mr Sumi, Mr Azuma, and Drs Uno and Nitta)
| | - Sota Azuma
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Miyamoto, Mr Iegaki, Mr Fu, Mr Ishikawa, Mr Sumi, Mr Azuma, and Drs Uno and Nitta)
| | - Kyosuke Uno
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Miyamoto, Mr Iegaki, Mr Fu, Mr Ishikawa, Mr Sumi, Mr Azuma, and Drs Uno and Nitta)
| | - Shin-ichi Muramatsu
- Division of Neurology, Jichi Medical University, Shimotsuke, Japan (Dr Muramatsu),Center for Gene & Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan (Dr Muramatsu)
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (Dr Miyamoto, Mr Iegaki, Mr Fu, Mr Ishikawa, Mr Sumi, Mr Azuma, and Drs Uno and Nitta),Correspondence: Atsumi Nitta, PhD, Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan ()
| |
Collapse
|
66
|
Waller JA, Nygaard SH, Li Y, du Jardin KG, Tamm JA, Abdourahman A, Elfving B, Pehrson AL, Sánchez C, Wernersson R. Neuroplasticity pathways and protein-interaction networks are modulated by vortioxetine in rodents. BMC Neurosci 2017; 18:56. [PMID: 28778148 PMCID: PMC5543755 DOI: 10.1186/s12868-017-0376-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/21/2017] [Indexed: 01/29/2023] Open
Abstract
Background The identification of biomarkers that predict susceptibility to major depressive disorder and treatment response to antidepressants is a major challenge. Vortioxetine is a novel multimodal antidepressant that possesses pro-cognitive properties and differentiates from other conventional antidepressants on various cognitive and plasticity measures. The aim of the present study was to identify biological systems rather than single biomarkers that may underlie vortioxetine’s treatment effects. Results We show that the biological systems regulated by vortioxetine are overlapping between mouse and rat in response to distinct treatment regimens and in different brain regions. Furthermore, analysis of complexes of physically-interacting proteins reveal that biomarkers involved in transcriptional regulation, neurodevelopment, neuroplasticity, and endocytosis are modulated by vortioxetine. A subsequent qPCR study examining the expression of targets in the protein–protein interactome space in response to chronic vortioxetine treatment over a range of doses provides further biological validation that vortioxetine engages neuroplasticity networks. Thus, the same biology is regulated in different species and sexes, different brain regions, and in response to distinct routes of administration and regimens. Conclusions A recurring theme, based on the present study as well as previous findings, is that networks related to synaptic plasticity, synaptic transmission, signal transduction, and neurodevelopment are modulated in response to vortioxetine treatment. Regulation of these signaling pathways by vortioxetine may underlie vortioxetine’s cognitive-enhancing properties. Electronic supplementary material The online version of this article (doi:10.1186/s12868-017-0376-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica A Waller
- External Sourcing and Scientific Excellence, Lundbeck Research U.S.A., Paramus, NJ, 07652, USA
| | | | - Yan Li
- External Sourcing and Scientific Excellence, Lundbeck Research U.S.A., Paramus, NJ, 07652, USA
| | | | - Joseph A Tamm
- In Vitro Biology, Lundbeck Research U.S.A., Paramus, NJ, 07652, USA
| | | | - Betina Elfving
- Translational Neuropsychiatry Unit, Aarhus University, 8240, Risskov, Denmark
| | - Alan L Pehrson
- External Sourcing and Scientific Excellence, Lundbeck Research U.S.A., Paramus, NJ, 07652, USA
| | - Connie Sánchez
- External Sourcing and Scientific Excellence, Lundbeck Research U.S.A., Paramus, NJ, 07652, USA.
| | - Rasmus Wernersson
- Intomics A/S, Diplomvej 377, 2800, Lyngby, Denmark. .,Center for Biological Sequence Analysis, Technical University of Denmark, 2800, Lyngby, Denmark.
| |
Collapse
|
67
|
Laursen B, Bundgaard CH, Graversen C, Grupe M, Sanchez C, Leiser SC, Sorensen HBD, Drewes AM, Bastlund JF. Acute dosing of vortioxetine strengthens event-related brain activity associated with engagement of attention and cognitive functioning in rats. Brain Res 2017; 1664:37-47. [DOI: 10.1016/j.brainres.2017.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/23/2017] [Accepted: 03/26/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Bettina Laursen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Mølleparkvej 4, 9000 Aalborg, Denmark; Department of Synaptic Transmission In vivo, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark.
| | - Cecilie H Bundgaard
- Department of Electrical Engineering, Technical University of Denmark, Building 349, Oersteds Plads, 2800 Kgs. Lyngby, Denmark
| | - Carina Graversen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Mølleparkvej 4, 9000 Aalborg, Denmark
| | - Morten Grupe
- Department of Synaptic Transmission In vivo, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Connie Sanchez
- Brintellix Science Team, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Steven C Leiser
- Brintellix Science Team, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Helge B D Sorensen
- Department of Electrical Engineering, Technical University of Denmark, Building 349, Oersteds Plads, 2800 Kgs. Lyngby, Denmark
| | - Asbjørn M Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Mølleparkvej 4, 9000 Aalborg, Denmark
| | - Jesper F Bastlund
- Department of Synaptic Transmission In vivo, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| |
Collapse
|
68
|
Chaki S. mGlu2/3 Receptor Antagonists as Novel Antidepressants. Trends Pharmacol Sci 2017; 38:569-580. [DOI: 10.1016/j.tips.2017.03.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/18/2017] [Accepted: 03/22/2017] [Indexed: 12/28/2022]
|
69
|
Veldman ER, Svedberg MM, Svenningsson P, Lundberg J. Distribution and levels of 5-HT 1B receptors in anterior cingulate cortex of patients with bipolar disorder, major depressive disorder and schizophrenia - An autoradiography study. Eur Neuropsychopharmacol 2017; 27:504-514. [PMID: 28318898 DOI: 10.1016/j.euroneuro.2017.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 12/19/2022]
Abstract
The serotonin 1B receptor has recently received more interest as a possible new target for pharmacological treatment of psychiatric disorders. However, the exact mechanisms of action remain unclear. This study aimed to examine the binding distribution and levels of the serotonin 1B receptor in-depth in the anterior cingulate cortex (ACC) and provide more insight in its functional role in bipolar disorder (BD), major depressive disorder (MDD) and schizophrenia (SZ). Serotonin 1B receptor binding distribution was visualized with high resolution autoradiography (ARG), using the radioligand [3H]AZ10419369, in postmortem ACC tissue from patients diagnosed with BD (n=14), MDD (n=12), SZ (n=13) and healthy subjects (n=13). Moreover, a quantification of receptor binding was made with ARG, in relation to patient group, age and gender. In all subject groups a significantly higher specific binding of serotonin 1B receptor was measured in the outer ACC layers compared to the inner ACC layers. Correlation analysis with ARG binding patterns of several radioligands resulted in a significant correlation with glutamatergic N-methyl-D-aspartate receptor binding in the outer layers. No significant difference was found between subject groups in binding levels and distribution. In female subjects a significantly lower receptor binding was found than in male subjects, which was most profound in patients diagnosed with MDD. The binding distribution of the serotonin 1B receptor found in this study supports a role in glutamate transmission in the ACC and was not shown to be significantly altered in BD, MDD or SZ. A gender difference in serotonin 1B receptor binding was found.
Collapse
Affiliation(s)
- Emma R Veldman
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden.
| | - Marie M Svedberg
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Per Svenningsson
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Johan Lundberg
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
70
|
Chronic vortioxetine treatment in rodents modulates gene expression of neurodevelopmental and plasticity markers. Eur Neuropsychopharmacol 2017; 27:192-203. [PMID: 28108062 DOI: 10.1016/j.euroneuro.2016.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/10/2016] [Accepted: 11/21/2016] [Indexed: 11/20/2022]
Abstract
The multimodal antidepressant vortioxetine displays an antidepressant profile distinct from those of conventional selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) and possesses cognitive-enhancing properties in preclinical and clinical studies. Recent studies have begun to investigate molecular mechanisms that may differentiate vortioxetine from other antidepressants. Acute studies in adult rats and chronic studies in a middle-aged mouse model reveal upregulation of several markers that play a central role in synaptic plasticity. However, the effect of chronic vortioxetine treatment on expression of neuroplasticity and neurodevelopmental biomarkers in naïve rats has not been evaluated. In the present study, we demonstrate that vortioxetine at a range of doses regulates expression of genes associated with plasticity in the frontal cortex, hippocampus, region encompassing the amygdala, as well as in blood, and displays similar effects relative to the SSRI fluoxetine in adult naïve rats. These genes encode immediate early genes (IEGs), translational regulators, and the neurodevelopmental marker Sema4g. Similar findings detected in brain regions and in blood provide a potential translational impact, and vortioxetine appears to consistently regulate signaling in these networks of neuroplasticity and developmental markers.
Collapse
|
71
|
Xu P, Wang KZ, Lu C, Dong LM, Le Zhai J, Liao YH, Aibai S, Yang Y, Liu XM. Antidepressant-like effects and cognitive enhancement of the total phenols extract of Hemerocallis citrina Baroni in chronic unpredictable mild stress rats and its related mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:819-826. [PMID: 27623554 DOI: 10.1016/j.jep.2016.09.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Depression induce distressed emotional state and cognitive deficits simultaneously, which both should be improved in the treatment. Hemerocallis citrina Baroni (HC) is a traditional herbal medicine in Eastern-Asia areas and the total phenols extract of HC (HCPE) contains the main active ingredients. It has been reported that HC has the emotional improvement effect. But the cognitive effect of HC was seldom researched. AIM OF THE STUDY We designed to evaluate the antidepressant and cognitive improvement effect of HCPE using a chronic unpredictable mild stress (CUMS) model, and the potential mechanisms were explored by investigating the corticosterone (CORT), monoamine neurotansmitters, brain-derived neurotropic factor (BDNF) and oxidative stress. MATERIALS AND METHODS The depression rats were induced by CUMS procedures and treated with HCPE (10, 20, 40mg/kg/day, by gastric gavage). The antidepressant effect was evaluated by sucrose preference test, open field test and body weight, while the cognitive improvement was investigated using morris water maze test. Besides, the levels of monoamine neurotransmitters in the hippocampus and frontal cortex were measured by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The serum CORT and BDNF in hippocampus were test using enzyme-linked immunosorbent assay (ELISA) kits. The oxidative stress indicators in frontal cortex were also analyzed. RESULTS HCPE (40mg/kg) improved the emotion and cognition related behaviors in depression effectively. Moreover, HCPE increased the neurotransmitters concentration (5-HT, DA and NE) in the hippocampus and frontal cortex compared with CUMS rats. Meanwhile, the CUMS induced changes of serum corticosterone level and the hippocampus BDNF level were reversed. Besides, HCPE reduced malondialdehyde (MDA) in the frontal cortex of model rats. CONCLUSION It suggested that HCPE could improve the depression-like emotional status and associated cognitive deficits in CUMS rats, which might be mediated by regulation of neurotransmitters and BDNF levels in brain, alleviation of corticosterone level as well as the alleviation of oxidative stress.
Collapse
Affiliation(s)
- Pan Xu
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ke Zhu Wang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Cong Lu
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Li Ming Dong
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jun Le Zhai
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yong Hong Liao
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Silafu Aibai
- Department of Pharmacology and Toxicology Laboratory, Xinjiang Institute of Traditional Uighur Medicine, Urumqi, Xinjiang 830049, China
| | - Yanyan Yang
- China Astronauts Research and Training Center, Beijing 100094, China
| | - Xin Min Liu
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
72
|
David DJ, Tritschler L, Guilloux JP, Gardier AM, Sanchez C, Gaillard R. [Pharmacological properties of vortioxetine and its pre-clinical consequences]. Encephale 2016; 42:1S12-23. [PMID: 26879252 DOI: 10.1016/s0013-7006(16)30015-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Selective Serotonin Reuptake Inhibitors (SSRIs) are extensively used for the treatment of major depressive disorder (MDD). SSRIs are defined as indirect receptor agonists since the activation of postsynaptic receptors is a consequence of an increase in extracellular concentrations of serotonin (5-HT) mediated by the blockade of serotonin transporter. The activation of some serotoninergic receptors (5-HT1A, post-synaptic, 5-HT1B post-synaptic, 5-HT2B, and 5-HT4), but not all (5-HT1A, pre-synaptic, 5-HT1B pre-synaptic, 5-HT2A, 5-HT2C, 5-HT3, and probably 5-HT6), induces anxiolytic/antidepressive - like effects. Targetting specifically some of them could potentially improve the onset of action and/or efficacy and/or prevent MD relapse. Vortioxetine (Brintellix, 1- [2-(2,4-dimethylphenyl-sulfanyl)-phenyl]-piperazine) is a novel multi-target antidepressant drug approved by the Food and Drug Administration (FDA) and by European Medicines Agency. Its properties are markedly different from the extensively prescribed SSRIs. Compared to the SSRIs, vortioxetine is defined as a multimodal antidepressant drug since it is not only a serotonin reuptake inhibitor, but also a 5-HT1D, 5-HT3, 5-HT7 receptor antagonist, 5-HT1B receptor partial agonist and 5-HT1A receptor agonist. This specific pharmacological profile enables vortioxetine to affect not only the serotoninergic and noradrenergic systems, but also the histaminergic, cholinergic, gamma-butyric acid (GABA) ergic and glutamatergic ones. Thus, vortioxetine not only induces antidepressant-like or anxiolytic-like activity but also improves cognitive parameters in several animal models. Indeed, vortioxetine was shown to improve working memory, episodic memory, cognitive flexibility and spatial memory in young adult rodents and also in old animal models. These specific effects of the vortioxetine are of interest considering that cognitive dysfunction is a common comorbidity to MDD. Altogether, even though this molecule still needs to be investigated further, especially in the insufficient-response to antidepressant drugs, vortioxetine is already an innovative therapeutic option for the treatment of major depression.
Collapse
Affiliation(s)
- D J David
- Inserm UMR-S 1178 Santé Mentale et Santé Publique, Université Paris-Sud, Fac Pharmacie, Université Paris Saclay, Châtenay-Malabry, France; DJD et LT ont contribué de façon équivalente à l'élaboration du manuscrit
| | - L Tritschler
- Inserm UMR-S 1178 Santé Mentale et Santé Publique, Université Paris-Sud, Fac Pharmacie, Université Paris Saclay, Châtenay-Malabry, France; DJD et LT ont contribué de façon équivalente à l'élaboration du manuscrit
| | - J-P Guilloux
- Inserm UMR-S 1178 Santé Mentale et Santé Publique, Université Paris-Sud, Fac Pharmacie, Université Paris Saclay, Châtenay-Malabry, France
| | - A M Gardier
- Inserm UMR-S 1178 Santé Mentale et Santé Publique, Université Paris-Sud, Fac Pharmacie, Université Paris Saclay, Châtenay-Malabry, France
| | - C Sanchez
- Lundbeck Research USA, Inc., 215 College Road, 07652 Paramus, NJ, United States
| | - R Gaillard
- Service Hospitalo-Universitaire - Addictologie, Centre Hospitalier Sainte Anne, 1, rue Cabanis, 75674 Paris cedex 14, France.
| |
Collapse
|
73
|
Potential involvement of serotonergic signaling in ketamine's antidepressant actions: A critical review. Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:27-38. [PMID: 27262695 DOI: 10.1016/j.pnpbp.2016.05.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/24/2016] [Accepted: 05/31/2016] [Indexed: 02/07/2023]
Abstract
A single i.v. infusion of ketamine, classified as an N-methyl-d-aspartate (NMDA) receptor antagonist, may alleviate depressive symptoms within hours of administration in treatment resistant depressed patients, and the antidepressant effect may last for several weeks. These unique therapeutic properties have prompted researchers to explore the mechanisms mediating the antidepressant effects of ketamine, but despite many efforts, no consensus on its antidepressant mechanism of action has been reached. Recent preclinical reports have associated the neurotransmitter serotonin (5-hydroxytryptamine; 5-HT) with the antidepressant-like action of ketamine. Here, we review the current evidence for a serotonergic role in ketamine's antidepressant effects. The pharmacological profile of ketamine may include equipotent activity on several non-NMDA targets, and the current hypotheses for the mechanisms responsible for ketamine's antidepressant activity do not appear to preclude the possibility that non-glutamate neurotransmitters are involved in the antidepressant effects. At multiple levels, the serotonergic and glutamatergic systems interact, and such crosstalk could support the notion that changes in serotonergic neurotransmission may impact ketamine's antidepressant potential. In line with these prospects, ketamine may increase 5-HT levels in the prefrontal cortex of rats, plausibly via hippocampal NMDA receptor inhibition and activation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. In addition, a number of preclinical studies suggest that the antidepressant-like effects of ketamine may depend on endogenous activation of 5-HT receptors. Recent imaging and behavioral data predominantly support a role for 5-HT1A or 5-HT1B receptors, but the full range of 5-HT receptors has currently not been systematically investigated in this context. Furthermore, the nature of any 5-HT dependent mechanism in ketamine's antidepressant effect is currently not understood, and therefore, more studies are warranted to confirm this hypothesis and explore the specific pathways that might implicate 5-HT.
Collapse
|
74
|
|
75
|
Millan MJ, Rivet JM, Gobert A. The frontal cortex as a network hub controlling mood and cognition: Probing its neurochemical substrates for improved therapy of psychiatric and neurological disorders. J Psychopharmacol 2016; 30:1099-1128. [PMID: 27756833 DOI: 10.1177/0269881116672342] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The highly-interconnected and neurochemically-rich frontal cortex plays a crucial role in the regulation of mood and cognition, domains disrupted in depression and other central nervous system disorders, and it is an important site of action for their therapeutic control. For improving our understanding of the function and dysfunction of the frontal cortex, and for identifying improved treatments, quantification of extracellular pools of neuromodulators by microdialysis in freely-moving rodents has proven indispensable. This approach has revealed a complex mesh of autoreceptor and heteroceptor interactions amongst monoaminergic pathways, and led from selective 5-HT reuptake inhibitors to novel classes of multi-target drugs for treating depression like the mixed α2-adrenoceptor/5-HT reuptake inhibitor, S35966, and the clinically-launched vortioxetine and vilazodone. Moreover, integration of non-monoaminergic actions resulted in the discovery and development of the innovative melatonin receptor agonist/5-HT2C receptor antagonist, Agomelatine. Melatonin levels, like those of corticosterone and the "social hormone", oxytocin, can now be quantified by microdialysis over the full 24 h daily cycle. Further, the introduction of procedures for measuring extracellular histamine and acetylcholine has provided insights into strategies for improving cognition by, for example, blockade of 5-HT6 and/or dopamine D3 receptors. The challenge of concurrently determining extracellular levels of GABA, glutamate, d-serine, glycine, kynurenate and other amino acids, and of clarifying their interactions with monoamines, has also been resolved. This has proven important for characterizing the actions of glycine reuptake inhibitors that indirectly augment transmission at N-methyl-d-aspartate receptors, and of "glutamatergic antidepressants" like ketamine, mGluR5 antagonists and positive modulators of AMPA receptors (including S47445). Most recently, quantification of the neurotoxic proteins Aβ42 and Tau has extended microdialysis studies to the pathogenesis of neurodegenerative disorders, and another frontier currently being broached is microRNAs. The present article discusses the above themes, focusses on recent advances, highlights opportunities for clinical "translation", and suggests avenues for further progress.
Collapse
Affiliation(s)
- Mark J Millan
- Pole for Therapeutic Innovation in CNS disorders, IDR Servier, Croissy-sur-Seine, France
| | - Jean-Michel Rivet
- Pole for Therapeutic Innovation in CNS disorders, IDR Servier, Croissy-sur-Seine, France
| | - Alain Gobert
- Pole for Therapeutic Innovation in CNS disorders, IDR Servier, Croissy-sur-Seine, France
| |
Collapse
|
76
|
Abstract
BACKGROUND While extensive literature on the role of the serotonin receptor 1A (5-HT1A-R) in cognition exists, the findings are largely from animal studies. There has been little research conducted into 5-HT1A-R genotypes and cognitive function in humans. This article evaluates the role of 5-HT1A-R genotypes on the profile of cognitive function in patients with major depressive disorder (MDD). METHODS The study sample was 455 MDD patients aged between 18 and 55 years. They had enrolled into a clinical trial and were tested prior to dosing on the baseline study day using the CDR System, an integrated set of 3 attention tests, 2 working memory tests, and 4 episodic memory tests. 5-HT1A-R genotyping for (SNP ID rs6295) had been conducted during the study screening period. RESULTS Validated factor scores were derived from the 9 tests. It was found that patients with the C/C genotype for the C(1019)G polymorphism of the 5-HT1A-R were significantly superior in retaining and retrieving information, in both working and episodic memory, than those with either the C/G or the G/G genotypes. No differences were found in measures of attention or in the speed of retrieval of information from memory. CONCLUSIONS This is, to our knowledge, the first relationship found between objective tests of cognitive function and 5-HT1A-R genotypes in MDD.
Collapse
|
77
|
Pehrson AL, Hillhouse TM, Haddjeri N, Rovera R, Porter JH, Mørk A, Smagin G, Song D, Budac D, Cajina M, Sanchez C. Task- and Treatment Length-Dependent Effects of Vortioxetine on Scopolamine-Induced Cognitive Dysfunction and Hippocampal Extracellular Acetylcholine in Rats. J Pharmacol Exp Ther 2016; 358:472-82. [PMID: 27402279 PMCID: PMC4998672 DOI: 10.1124/jpet.116.233924] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/08/2016] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder (MDD) is a common psychiatric disorder that often features impairments in cognitive function, and these cognitive symptoms can be important determinants of functional ability. Vortioxetine is a multimodal antidepressant that may improve some aspects of cognitive function in patients with MDD, including attention, processing speed, executive function, and memory. However, the cause of these effects is unclear, and there are several competing theories on the underlying mechanism, notably including regionally-selective downstream enhancement of glutamate neurotransmission and increased acetylcholine (ACh) neurotransmission. The current work sought to evaluate the ACh hypothesis by examining vortioxetine's ability to reverse scopolamine-induced impairments in rodent tests of memory and attention. Additionally, vortioxetine's effects on hippocampal extracellular ACh levels were examined alongside studies of vortioxetine's pharmacokinetic profile. We found that acute vortioxetine reversed scopolamine-induced impairments in social and object recognition memory, but did not alter scopolamine-induced impairments in attention. Acute vortioxetine also induced a modest and short-lived increase in hippocampal ACh levels. However, this short-term effect is at variance with vortioxetine's moderately long brain half life (5.1 hours). Interestingly, subchronic vortioxetine treatment failed to reverse scopolamine-induced social recognition memory deficits and had no effects on basal hippocampal ACh levels. These data suggest that vortioxetine has some effects on memory that could be mediated through cholinergic neurotransmission, however these effects are modest and only seen under acute dosing conditions. These limitations may argue against cholinergic mechanisms being the primary mediator of vortioxetine's cognitive effects, which are observed under chronic dosing conditions in patients with MDD.
Collapse
Affiliation(s)
- Alan L Pehrson
- Lundbeck Research USA, Paramus, New Jersey (A.L.P., G.S., D.S., D.B., M.C., C.S.); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark (C.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (T.M.H.); Psychology Department, Virginia Commonwealth University, Richmond, Virginia (T.M.H., J.H.P.); Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France (R.R., N.H.); and H. Lundbeck A/S, Copenhagen-Valby, Denmark (A.M.)
| | - Todd M Hillhouse
- Lundbeck Research USA, Paramus, New Jersey (A.L.P., G.S., D.S., D.B., M.C., C.S.); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark (C.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (T.M.H.); Psychology Department, Virginia Commonwealth University, Richmond, Virginia (T.M.H., J.H.P.); Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France (R.R., N.H.); and H. Lundbeck A/S, Copenhagen-Valby, Denmark (A.M.)
| | - Nasser Haddjeri
- Lundbeck Research USA, Paramus, New Jersey (A.L.P., G.S., D.S., D.B., M.C., C.S.); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark (C.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (T.M.H.); Psychology Department, Virginia Commonwealth University, Richmond, Virginia (T.M.H., J.H.P.); Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France (R.R., N.H.); and H. Lundbeck A/S, Copenhagen-Valby, Denmark (A.M.)
| | - Renaud Rovera
- Lundbeck Research USA, Paramus, New Jersey (A.L.P., G.S., D.S., D.B., M.C., C.S.); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark (C.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (T.M.H.); Psychology Department, Virginia Commonwealth University, Richmond, Virginia (T.M.H., J.H.P.); Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France (R.R., N.H.); and H. Lundbeck A/S, Copenhagen-Valby, Denmark (A.M.)
| | - Joseph H Porter
- Lundbeck Research USA, Paramus, New Jersey (A.L.P., G.S., D.S., D.B., M.C., C.S.); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark (C.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (T.M.H.); Psychology Department, Virginia Commonwealth University, Richmond, Virginia (T.M.H., J.H.P.); Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France (R.R., N.H.); and H. Lundbeck A/S, Copenhagen-Valby, Denmark (A.M.)
| | - Arne Mørk
- Lundbeck Research USA, Paramus, New Jersey (A.L.P., G.S., D.S., D.B., M.C., C.S.); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark (C.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (T.M.H.); Psychology Department, Virginia Commonwealth University, Richmond, Virginia (T.M.H., J.H.P.); Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France (R.R., N.H.); and H. Lundbeck A/S, Copenhagen-Valby, Denmark (A.M.)
| | - Gennady Smagin
- Lundbeck Research USA, Paramus, New Jersey (A.L.P., G.S., D.S., D.B., M.C., C.S.); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark (C.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (T.M.H.); Psychology Department, Virginia Commonwealth University, Richmond, Virginia (T.M.H., J.H.P.); Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France (R.R., N.H.); and H. Lundbeck A/S, Copenhagen-Valby, Denmark (A.M.)
| | - Dekun Song
- Lundbeck Research USA, Paramus, New Jersey (A.L.P., G.S., D.S., D.B., M.C., C.S.); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark (C.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (T.M.H.); Psychology Department, Virginia Commonwealth University, Richmond, Virginia (T.M.H., J.H.P.); Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France (R.R., N.H.); and H. Lundbeck A/S, Copenhagen-Valby, Denmark (A.M.)
| | - David Budac
- Lundbeck Research USA, Paramus, New Jersey (A.L.P., G.S., D.S., D.B., M.C., C.S.); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark (C.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (T.M.H.); Psychology Department, Virginia Commonwealth University, Richmond, Virginia (T.M.H., J.H.P.); Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France (R.R., N.H.); and H. Lundbeck A/S, Copenhagen-Valby, Denmark (A.M.)
| | - Manuel Cajina
- Lundbeck Research USA, Paramus, New Jersey (A.L.P., G.S., D.S., D.B., M.C., C.S.); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark (C.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (T.M.H.); Psychology Department, Virginia Commonwealth University, Richmond, Virginia (T.M.H., J.H.P.); Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France (R.R., N.H.); and H. Lundbeck A/S, Copenhagen-Valby, Denmark (A.M.)
| | - Connie Sanchez
- Lundbeck Research USA, Paramus, New Jersey (A.L.P., G.S., D.S., D.B., M.C., C.S.); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark (C.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (T.M.H.); Psychology Department, Virginia Commonwealth University, Richmond, Virginia (T.M.H., J.H.P.); Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France (R.R., N.H.); and H. Lundbeck A/S, Copenhagen-Valby, Denmark (A.M.)
| |
Collapse
|
78
|
Sternat T, Katzman MA. Neurobiology of hedonic tone: the relationship between treatment-resistant depression, attention-deficit hyperactivity disorder, and substance abuse. Neuropsychiatr Dis Treat 2016; 12:2149-64. [PMID: 27601909 PMCID: PMC5003599 DOI: 10.2147/ndt.s111818] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Anhedonia, defined as the state of reduced ability to experience feelings of pleasure, is one of the hallmarks of depression. Hedonic tone is the trait underlying one's characteristic ability to feel pleasure. Low hedonic tone represents a reduced capacity to experience pleasure, thus increasing the likelihood of experiencing anhedonia. Low hedonic tone has been associated with several psychopathologies, including major depressive disorder (MDD), substance use, and attention-deficit hyperactivity disorder (ADHD). The main neural pathway that modulates emotional affect comprises the limbic-cortical-striatal-pallidal-thalamic circuits. The activity of various components of the limbic-cortical-striatal-pallidal-thalamic pathway is correlated with hedonic tone in healthy individuals and is altered in MDD. Dysfunction of these circuits has also been implicated in the relative ineffectiveness of selective serotonin reuptake inhibitors used to treat anxiety and depression in patients with low hedonic tone. Mood disorders such as MDD, ADHD, and substance abuse share low hedonic tone as well as altered activation of brain regions involved in reward processing and monoamine signaling as their features. Given the common features of these disorders, it is not surprising that they have high levels of comorbidities. The purpose of this article is to review the neurobiology of hedonic tone as it pertains to depression, ADHD, and the potential for substance abuse. We propose that, since low hedonic tone is a shared feature of MDD, ADHD, and substance abuse, evaluation of hedonic tone may become a diagnostic feature used to predict subtypes of MDD, such as treatment-resistant depression, as well as comorbidities of these disorders.
Collapse
Affiliation(s)
- Tia Sternat
- START Clinic for Mood and Anxiety Disorders
- Department of Psychology, Adler Graduate Professional School, Toronto
| | - Martin A Katzman
- START Clinic for Mood and Anxiety Disorders
- Department of Psychology, Adler Graduate Professional School, Toronto
- Division of Clinical Sciences, The Northern Ontario School of Medicine
- Department of Psychology, Lakehead University, Thunder Bay, ON, Canada
| |
Collapse
|
79
|
Biney RP, Benneh CK, Ameyaw EO, Boakye-Gyasi E, Woode E. Xylopia aethiopica fruit extract exhibits antidepressant-like effect via interaction with serotonergic neurotransmission in mice. JOURNAL OF ETHNOPHARMACOLOGY 2016; 184:49-57. [PMID: 26902831 DOI: 10.1016/j.jep.2016.02.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/06/2016] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xylopia aethiopica has been used traditionally to treat some central nervous system disorders including epilepsy. AIM OF THE STUDY Despite the central analgesic and sedative effects, there is little evidence for its traditional use for CNS disorders. This study thus assessed the antidepressant potential of Xylopia aethiopica ethanolic fruit extract (XAE). MATERIAL AND METHODS Antidepressant effect was assessed in the forced swim test (FST) and tail suspension test (TST) models in mice. The role of monoamines in the antidepressant effects of XAE was evaluated by selective depletion of serotonin and noradrenaline, whereas involvement of NMDA/nitric oxide was assessed with NMDA receptor co-modulators; d-serine and d-cycloserine and NOS inhibitor, l-NAME. RESULTS Xylopia aethiopica (30, 100, 300mgkg(-1)) dose dependently reduced immobility in both FST and TST. The reduced immobility was reversed after 5-hydroxytryptamine (5-HT) depletion with tryptophan hydroxylase inhibitor-p-chlorophenylalanine (pCPA) and after monoamine depletion with vesicular monoamine transporter inhibitor-reserpine. The observed antidepressant effect was not affected by catecholamine depletion with the tyrosine hydroxylase inhibitor, α-methyl-p-tyrosine (AMPT). Similarly XAE did not potentiate the toxicity of a sub-lethal dose of noradrenaline. XAE had a synergistic effect with the glycineB receptor partial agonist, d-cycloserine and nitric oxide synthase inhibitor, l-NAME. However established antidepressant effects of XAE were abolished by NMDA and NOS activation with d-serine and l-arginine. CONCLUSION This study shows that Xylopia aethiopica has antidepressant potential largely due to effects on 5-HT neurotransmission with possible glutamatergic effect through the glycineB co-binding site and nitric oxide synthase inhibition.
Collapse
Affiliation(s)
- Robert P Biney
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Charles K Benneh
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Elvis O Ameyaw
- Department of Biomedical and Forensic Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Eric Boakye-Gyasi
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Eric Woode
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
80
|
Orsolini L, Tomasetti C, Valchera A, Iasevoli F, Buonaguro EF, Vellante F, Fornaro M, Fiengo A, Mazza M, Vecchiotti R, Perna G, de Bartolomeis A, Martinotti G, Di Giannantonio M, De Berardis D. New advances in the treatment of generalized anxiety disorder: the multimodal antidepressant vortioxetine. Expert Rev Neurother 2016; 16:483-95. [PMID: 27050932 DOI: 10.1586/14737175.2016.1173545] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Generalized Anxiety Disorder (GAD) is a persistent condition characterized by chronic anxiety, exaggerated worry and tension, mainly comorbid with Major Depressive Disorder (MDD). Currently, selective serotonin reuptake inhibitors and serotonin-norepinephrine reuptake inhibitors are recommended as first-line treatment of GAD. However, some patients may not respond to the treatment or discontinue due to adverse effects. Vortioxetine (VRX) is a multimodal antidepressant with a unique mechanism of action, by acting as 5-HT3A, 5-HT1D and 5-HT7 receptor antagonist, partial agonist at the 5-HT1A and 5-HT1B receptors and inhibitor at the 5-HT transporter. Preliminary clinical trials showed contrasting findings in terms of improvement of the anxiety symptomatology and/or cognitive impairment. Here, we aim to systematically review the evidence currently available on the efficacy, safety and tolerability of VRX in the treatment of GAD. The generalizability of results on the efficacy of VRX in patients with anxiety symptomatology and GAD is limited due to few and contrasting RCTs so far available. Only two studies, of which one prevention relapse trial, reported a significant improvement in anxiety symptomatology compared to three with negative findings.
Collapse
Affiliation(s)
- Laura Orsolini
- a School of Life and Medical Sciences , University of Hertfordshire , Hatfield , UK.,b Villa San Giuseppe Hospital , Hermanas Hospitalarias , Ascoli Piceno , Italy.,c Polyedra Research Group , Teramo , Italy.,d Department of Psychiatry and Neuropsychology , University of Maastricht , Maastricht , The Netherlands
| | - Carmine Tomasetti
- c Polyedra Research Group , Teramo , Italy.,e NHS, Department of Mental Health ASL Teramo, Psychiatric Service of Diagnosis and Treatment , Hospital 'Maria SS dello Splendore' , Giulianova , Italy.,f Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences , University of Naples 'Federico II' , Napoli , Italy
| | - Alessandro Valchera
- b Villa San Giuseppe Hospital , Hermanas Hospitalarias , Ascoli Piceno , Italy.,c Polyedra Research Group , Teramo , Italy
| | - Felice Iasevoli
- c Polyedra Research Group , Teramo , Italy.,f Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences , University of Naples 'Federico II' , Napoli , Italy
| | - Elisabetta Filomena Buonaguro
- c Polyedra Research Group , Teramo , Italy.,f Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences , University of Naples 'Federico II' , Napoli , Italy
| | - Federica Vellante
- c Polyedra Research Group , Teramo , Italy.,g NHS, Department of Mental Health ASL Teramo, Psychiatric Service of Diagnosis and Treatment , Hospital 'G. Mazzini' , Teramo , Italy.,h Department of Neuroscience and Imaging , University 'G. d'Annunzio' , Chieti , Italy
| | - Michele Fornaro
- c Polyedra Research Group , Teramo , Italy.,i New York Psychiatric Institute , Columbia University , New York , NY , USA
| | | | - Monica Mazza
- c Polyedra Research Group , Teramo , Italy.,j Department of Life, Health and Environmental Sciences , University of L'Aquila , L'Aquila , Italy
| | - Roberta Vecchiotti
- b Villa San Giuseppe Hospital , Hermanas Hospitalarias , Ascoli Piceno , Italy.,c Polyedra Research Group , Teramo , Italy.,d Department of Psychiatry and Neuropsychology , University of Maastricht , Maastricht , The Netherlands
| | - Giampaolo Perna
- d Department of Psychiatry and Neuropsychology , University of Maastricht , Maastricht , The Netherlands.,k Hermanas Hospitalarias, FoRiPsi, Department of Clinical Neurosciences , Villa San Benedetto Menni , Albese con Cassano , Como , Italy.,l Department of Psychiatry and Behavioral Sciences , Leonard Miller School of Medicine, University of Miami , Coral Gables , Florida , USA
| | - Andrea de Bartolomeis
- f Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences , University of Naples 'Federico II' , Napoli , Italy
| | - Giovanni Martinotti
- i New York Psychiatric Institute , Columbia University , New York , NY , USA
| | | | - Domenico De Berardis
- c Polyedra Research Group , Teramo , Italy.,g NHS, Department of Mental Health ASL Teramo, Psychiatric Service of Diagnosis and Treatment , Hospital 'G. Mazzini' , Teramo , Italy.,i New York Psychiatric Institute , Columbia University , New York , NY , USA
| |
Collapse
|
81
|
Regional distribution of serotonergic receptors: a systems neuroscience perspective on the downstream effects of the multimodal-acting antidepressant vortioxetine on excitatory and inhibitory neurotransmission. CNS Spectr 2016; 21:162-83. [PMID: 26250622 DOI: 10.1017/s1092852915000486] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Previous work from this laboratory hypothesized that the multimodal antidepressant vortioxetine enhances cognitive function through a complex mechanism, using serotonergic (5-hydroxytryptamine, 5-HT) receptor actions to modulate gamma-butyric acid (GABA) and glutamate neurotransmission in key brain regions like the prefrontal cortex (PFC) and hippocampus. However, serotonergic receptors have circumscribed expression patterns, and therefore vortioxetine's effects on GABA and glutamate neurotransmission will probably be regionally selective. In this article, we attempt to develop a conceptual framework in which the effects of 5-HT, selective serotonin reuptake inhibitors (SSRIs), and vortioxetine on GABA and glutamate neurotransmission can be understood in the PFC and striatum-2 regions with roles in cognition and substantially different 5-HT receptor expression patterns. Thus, we review the anatomy of the neuronal microcircuitry in the PFC and striatum, anatomical data on 5-HT receptor expression within these microcircuits, and electrophysiological evidence on the effects of 5-HT on the behavior of each cell type. This analysis suggests that 5-HT and SSRIs will have markedly different effects within the PFC, where they will induce mixed effects on GABA and glutamate neurotransmission, compared to the striatum, where they will enhance GABAergic interneuron activity and drive down the activity of medium spiny neurons. Vortioxetine is expected to reduce GABAergic interneuron activity in the PFC and concomitantly increase cortical pyramidal neuron firing. However in the striatum, vortioxetine is expected to increase activity at GABAergic interneurons and have mixed excitatory and inhibitory effects in medium spiny neurons. Thus the conceptual framework developed here suggests that vortioxetine will have regionally selective effects on GABA and glutamate neurotransmission.
Collapse
|
82
|
Gupta D, Prabhakar V, Radhakrishnan M. 5HT3 receptors: Target for new antidepressant drugs. Neurosci Biobehav Rev 2016; 64:311-25. [PMID: 26976353 DOI: 10.1016/j.neubiorev.2016.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/31/2022]
Abstract
5HT3 receptors (5HT3Rs) have long been identified as a potential target for antidepressants. Several studies have reported that antagonism of 5HT3Rs produces antidepressant-like effects. However, the exact role of 5HT3Rs and the mode of antidepressant action of 5HT3R antagonists still remain a mystery. Here, we provide a comprehensive overview of 5HT3Rs: (a) regional and subcellular distribution of 5HT3Rs in discrete brain regions, (b) preclinical and clinical evidence supporting the antidepressant effect of 5HT3R antagonists, and (c) neurochemical, biological and neurocellular signaling pathways associated with the antidepressant action of 5HT3R antagonists. 5HT3Rs located on the serotonergic and other neurotransmitter interneuronal projections control their release and affect mood and emotional behavior; however, new evidence suggests that apart from modulating the neurotransmitter functions, 5HT3R antagonists have protective effects in the pathogenic events including hypothalamic-pituitary-adrenal-axis hyperactivity, brain oxidative stress and impaired neuronal plasticity, pointing to hereby unknown and novel mechanisms of their antidepressant action. Nonetheless, further investigations are warranted to establish the exact role of 5HT3Rs in depression and antidepressant action of 5HT3R antagonists.
Collapse
Affiliation(s)
- Deepali Gupta
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| | - Visakh Prabhakar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| | - Mahesh Radhakrishnan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| |
Collapse
|
83
|
Magierski R, Sobow T. Serotonergic drugs for the treatment of neuropsychiatric symptoms in dementia. Expert Rev Neurother 2016; 16:375-87. [PMID: 26886148 DOI: 10.1586/14737175.2016.1155453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Behavioral and psychological symptoms of dementia (known also as neuropsychiatric symptoms) are essential features of Alzheimer's disease and related dementias. The near universal presence of neuropsychiatric symptoms in dementia (up to 90% of cases) has brought significant attention of clinicians and experts to the field. Non-pharmacological and pharmacological interventions are recommended for various types of neuropsychiatric symptoms. However, most pharmacological interventions for the treatment of behavioral and psychological symptoms of dementia are used off-label in many countries. Cognitive decline and neuropsychiatric symptoms can be linked to alterations in multiple neurotransmitter systems, so modification of abnormalities in specific systems may improve clinical status of patients with neuropsychiatric symptoms. Use of serotonergic compounds (novel particles acting on specific receptors and widely acting drugs) in the treatment of neuropsychiatric symptoms is reviewed.
Collapse
Affiliation(s)
- Radoslaw Magierski
- a Department of Old Age Psychiatry and Psychotic Disorders , Medical University of Lodz , Lodz , Poland
| | - Tomasz Sobow
- b Department of Medical Psychology , Medical University of Lodz , Lodz , Poland
| |
Collapse
|
84
|
Chen F, du Jardin KG, Waller JA, Sanchez C, Nyengaard JR, Wegener G. Vortioxetine promotes early changes in dendritic morphology compared to fluoxetine in rat hippocampus. Eur Neuropsychopharmacol 2016; 26:234-245. [PMID: 26711685 DOI: 10.1016/j.euroneuro.2015.12.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/20/2015] [Accepted: 12/01/2015] [Indexed: 12/28/2022]
Abstract
Preclinical studies reveal that the multimodal antidepressant vortioxetine enhances long-term potentiation and dendritic branching compared to a selective serotonin reuptake inhibitor (SSRI). In the present study, we investigated vortioxetine׳s effects on spines and dendritic morphology in rat hippocampus at two time points compared to the SSRI, fluoxetine. Rats were dosed for 1 and 4 weeks with vortioxetine and fluoxetine at doses relevant for antidepressant activity. Dendritic morphology of pyramidal neurons (i.e., dendritic length, dendritic branch, spine number and density, and Sholl analysis) was examined in Golgi-stained sections from hippocampal CA1. After 1 week of treatment, vortioxetine significantly increased spine number (apical and basal dendrites), spine density (only basal), dendritic length (only apical), and dendritic branch number (apical and basal), whereas fluoxetine had no effect. After 4 weeks of treatment, vortioxetine significantly increased all measures of dendritic spine morphology as did fluoxetine except for spine density of basal dendrites. The number of intersections in the apical and basal dendrites was also significantly increased for both treatments after 4 weeks compared to control. In addition, 4 weeks of vortioxetine treatment, but not fluoxetine, promoted a decrease in spine neck length. In conclusion, 1-week vortioxetine treatment induced changes in spine number and density and dendritic morphology, whereas an equivalent dose of fluoxetine had no effects. Decreased spine neck length following 4-week vortioxetine treatment suggests a transition to mature spine morphology. This implies that vortioxetine׳s effects on spine and dendritic morphology are mediated by mechanisms that go beyond serotonin reuptake inhibition.
Collapse
Affiliation(s)
- Fenghua Chen
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, DK-8000 Aarhus C, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8240 Risskov, Denmark.
| | - Kristian Gaarn du Jardin
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8240 Risskov, Denmark
| | - Jessica A Waller
- Sourcing and Scientific Excellence at Lundbeck Research USA, Inc., Paramus, NJ 07652-1431, USA
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8240 Risskov, Denmark; Sourcing and Scientific Excellence at Lundbeck Research USA, Inc., Paramus, NJ 07652-1431, USA
| | - Jens R Nyengaard
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8240 Risskov, Denmark; Centre for Pharmaceutical Excellence, School of Pharmacy, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
85
|
Abstract
BACKGROUND Cognitive dysfunction in major depressive disorder (MDD) encompasses several domains, including but not limited to executive function, verbal memory, and attention. Furthermore, cognitive dysfunction is a frequent residual manifestation in depression and may persist during the remitted phase. Cognitive deficits may also impede functional recovery, including workforce performance, in patients with MDD. The overarching aims of this opinion article are to critically evaluate the effects of available antidepressants as well as novel therapeutic targets on neurocognitive dysfunction in MDD. DISCUSSION Conventional antidepressant drugs mitigate cognitive dysfunction in some people with MDD. However, a significant proportion of MDD patients continue to experience significant cognitive impairment. Two multicenter randomized controlled trials (RCTs) reported that vortioxetine, a multimodal antidepressant, has significant precognitive effects in MDD unrelated to mood improvement. Lisdexamfetamine dimesylate was shown to alleviate executive dysfunction in an RCT of adults after full or partial remission of MDD. Preliminary evidence also indicates that erythropoietin may alleviate cognitive dysfunction in MDD. Several other novel agents may be repurposed as cognitive enhancers for MDD treatment, including minocycline, insulin, antidiabetic agents, angiotensin-converting enzyme inhibitors, S-adenosyl methionine, acetyl-L-carnitine, alpha lipoic acid, omega-3 fatty acids, melatonin, modafinil, galantamine, scopolamine, N-acetylcysteine, curcumin, statins, and coenzyme Q10. The management of cognitive dysfunction remains an unmet need in the treatment of MDD. However, it is hoped that the development of novel therapeutic targets will contribute to 'cognitive remission', which may aid functional recovery in MDD.
Collapse
|
86
|
Deutschenbaur L, Beck J, Kiyhankhadiv A, Mühlhauser M, Borgwardt S, Walter M, Hasler G, Sollberger D, Lang UE. Role of calcium, glutamate and NMDA in major depression and therapeutic application. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:325-33. [PMID: 25747801 DOI: 10.1016/j.pnpbp.2015.02.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/04/2015] [Accepted: 02/20/2015] [Indexed: 01/17/2023]
Abstract
Major depression is a common, recurrent mental illness that affects millions of people worldwide. Recently, a unique fast neuroprotective and antidepressant treatment effect has been observed by ketamine, which acts via the glutamatergic system. Hence, a steady accumulation of evidence supporting a role for the excitatory amino acid neurotransmitter (EAA) glutamate in the treatment of depression has been observed in the last years. Emerging evidence indicates that N-methyl-D-aspartate (NMDA), group 1 metabotropic glutamate receptor antagonists and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) agonists have antidepressant properties. Indeed, treatment with NMDA receptor antagonists has shown the ability to sprout new synaptic connections and reverse stress-induced neuronal changes. Based on glutamatergic signaling, a number of therapeutic drugs might gain interest in the future. Several compounds such as ketamine, memantine, amantadine, tianeptine, pioglitazone, riluzole, lamotrigine, AZD6765, magnesium, zinc, guanosine, adenosine aniracetam, traxoprodil (CP-101,606), MK-0657, GLYX-13, NRX-1047, Ro25-6981, LY392098, LY341495, D-cycloserine, D-serine, dextromethorphan, sarcosine, scopolamine, pomaglumetad methionil, LY2140023, LY404039, MGS0039, MPEP, 1-aminocyclopropanecarboxylic acid, all of which target this system, have already been brought up, some of them recently. Drugs targeting the glutamatergic system might open up a promising new territory for the development of drugs to meet the needs of patients with major depression.
Collapse
Affiliation(s)
- Lorenz Deutschenbaur
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland
| | - Johannes Beck
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland
| | - Anna Kiyhankhadiv
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland
| | - Markus Mühlhauser
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland
| | - Marc Walter
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland
| | - Gregor Hasler
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland
| | - Daniel Sollberger
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland
| | - Undine E Lang
- Department of Psychiatry and Psychotherapy (UPK), University Hospital of Basel, Basel, Switzerland.
| |
Collapse
|
87
|
Abstract
PURPOSE OF REVIEW Cognitive dysfunction in major depressive disorder (MDD) is common, pervasive across multiple subdomains of cognitive function, and is a principle determinant of health outcomes from patient, provider, and societal perspectives. The overarching aim herein is to provide rationale for the evaluation, measurement, and specific treatment of cognitive function in adults with MDD. RECENT FINDINGS Evidence indicates that cognitive dysfunction in MDD is a critical mediator of workplace disability. Systematic evaluation and measurement of cognitive function is warranted. All individuals with MDD should be evaluated for both objective and subjective cognitive dysfunction. Although differences between antidepressants in overall antidepressant efficacy are not consistent, unequivocal differences in improving measures of cognitive function are noted with evidence indicating that vortioxetine has multidomain cognitive benefits, whereas duloxetine has replicated evidence of improving measures of acquisition and recall (i.e. memory). SUMMARY The probability of functional recovery in MDD is likely to increase with interventions that specifically target and improve measures of cognitive function. Clinicians are encouraged to evaluate patients using a validated measure (e.g. the THINC-it tool); prevention of cognitive impairment in MDD is a critical therapeutic priority. Vortioxetine and duloxetine benefit measures of cognitive function in MDD. Preliminary evidence of beneficial effects on cognitive emotional processing are reported with ketamine.
Collapse
|
88
|
Waller JA, Chen F, Sánchez C. Vortioxetine promotes maturation of dendritic spines in vitro: A comparative study in hippocampal cultures. Neuropharmacology 2015; 103:143-54. [PMID: 26702943 DOI: 10.1016/j.neuropharm.2015.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/03/2015] [Accepted: 12/13/2015] [Indexed: 10/22/2022]
Abstract
Cognitive dysfunction is prevalent in patients with major depressive disorder (MDD), and cognitive impairments can persist after relief of depressive symptoms. The multimodal-acting antidepressant vortioxetine is an antagonist at 5-HT3, 5-HT7, and 5-HT1D receptors, a partial agonist at 5-HT1B receptors, an agonist at 5-HT1A receptors, and an inhibitor of the serotonin (5-HT) transporter (SERT) and has pro-cognitive properties. In preclinical studies, vortioxetine enhances long-term potentiation (LTP), a cellular correlate of neuroplasticity, and enhances memory in various cognitive tasks. However, the molecular mechanisms by which vortioxetine augments LTP and memory remain unknown. Dendritic spines are specialized, actin-rich microdomains on dendritic shafts and are major sites of most excitatory synapses. Since dendritic spine remodeling is implicated in synaptic plasticity and spine size dictates the strength of synaptic transmission, we assessed if vortioxetine, relative to other antidepressants including ketamine, duloxetine, and fluoxetine, plays a role in the maintenance of dendritic spine architecture in vitro. We show that vortioxetine, ketamine, and duloxetine induce spine enlargement. However, only vortioxetine treatment increased the number of spines in contact with presynaptic terminals. In contrast, fluoxetine had no effect on spine remodeling. These findings imply that the various 5-HT receptor mechanisms of vortioxetine may play a role in its effect on spine dynamics and in increasing the proportion of potentially functional synaptic contacts.
Collapse
Affiliation(s)
- Jessica A Waller
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Paramus, NJ 07652, USA
| | - Fenghua Chen
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, DK-8000 Aarhus C, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8240 Risskov, Denmark
| | - Connie Sánchez
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Paramus, NJ 07652, USA.
| |
Collapse
|
89
|
Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): actions at serotonin receptors may enhance downstream release of four pro-cognitive neurotransmitters. CNS Spectr 2015; 20:515-9. [PMID: 26062986 DOI: 10.1017/s1092852915000358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vortioxetine is an antidepressant with multiple pharmacologic modes of action that enhance release of dopamine, norepinephrine, acetylcholine, and histamine.
Collapse
|
90
|
[Psychopharmacology of anxiety and depression: Historical aspects, current treatments and perspectives]. ANNALES PHARMACEUTIQUES FRANÇAISES 2015; 74:93-118. [PMID: 26472602 DOI: 10.1016/j.pharma.2015.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/25/2015] [Accepted: 09/02/2015] [Indexed: 01/08/2023]
Abstract
Pharmacological treatment of acute anxiety still relies on benzodiazepines, while chronic anxiety disorders and depression are treated with different antidepressants, according to specific indications. The monoaminergic axis is represented by two families which are being developed: (i) serotonin-norepinephrine-dopamine reuptake inhibitors (SNDRI), also called triple reuptake inhibitors (TRI), for the treatment of depression (amitifadine), (ii) multimodal antidepressants for depression and anxiety disorders (generalized anxiety disorder mainly) (tedatioxetine, vortioxetine and vilazodone). Third-generation antipsychotics (aripiprazole, lurasidone, brexpiprazole, cariprazine) appear relevant in the treatment of resistant depression and some anxiety disorders. Among the modulators of the glutamatergic axis, promising compounds include: (i) ionotropic regulators of NMDA receptors: esketamine, AVP-923 and AVP-786, CERC-301, rapastinel (Glyx-13), NRX-1074 developed for depression, rapastinel and bitopertine developed for obsessive compulsive disorder, (ii) metabotropic glutamate receptors modulators: decoglurant and basimglurant developed for depression and mavoglurant developed for obsessive compulsive disorder.
Collapse
|
91
|
Stan TL, Sousa VC, Zhang X, Ono M, Svenningsson P. Lurasidone and fluoxetine reduce novelty-induced hypophagia and NMDA receptor subunit and PSD-95 expression in mouse brain. Eur Neuropsychopharmacol 2015; 25:1714-22. [PMID: 26256011 DOI: 10.1016/j.euroneuro.2015.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/17/2015] [Accepted: 07/14/2015] [Indexed: 01/23/2023]
Abstract
Lurasidone, a novel second-generation antipsychotic agent, exerts antidepressant actions in patients suffering from bipolar type I disorder. Lurasidone acts as a high affinity antagonist at multiple monoamine receptors, particularly 5-HT2A, 5-HT7, D2 and α2 receptors, and as a partial agonist at 5-HT1A receptors. Accumulating evidence indicates therapeutic actions by monoaminergic antidepressants are mediated via alterations of glutamate receptor-mediated neurotransmission. Here, we used mice and investigated the effects of chronic oral administration of vehicle, lurasidone (3 or 10mg/kg) or fluoxetine (20mg/kg) in the novelty induced hypophagia test, a behavioral test sensitive to chronic antidepressant treatment. We subsequently performed biochemical analyses on NMDA receptor subunits and associated proteins. Both lurasidone and fluoxetine reduced the latency to feed in the novelty-induced hypophagia test. Western blotting experiments showed that both lurasidone and fluoxetine decreased the total levels of NR1, NR2A and NR2B subunits of NMDA receptors and PSD-95 (PostSynaptic Density-95) in hippocampus and prefrontal cortex. Taken together, these data indicate that antidepressant/anxiolytic-like effects of lurasidone, as well as fluoxetine, could involve reduced NMDA receptor-mediated signal transduction, particularly in pathways regulated by PSD-95, in hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Tiberiu Loredan Stan
- Section of Translational Neuropharmacology, Center of Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Vasco Cabral Sousa
- Section of Translational Neuropharmacology, Center of Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Xiaoqun Zhang
- Section of Translational Neuropharmacology, Center of Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | | | - Per Svenningsson
- Section of Translational Neuropharmacology, Center of Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden.
| |
Collapse
|
92
|
Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): blocking 5HT3 receptors enhances release of serotonin, norepinephrine, and acetylcholine. CNS Spectr 2015; 20:455-9. [PMID: 26122791 DOI: 10.1017/s1092852915000346] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Vortioxetine is an antidepressant with multiple pharmacologic modes of action at targets where serotonin neurons connect with other neurons. 5HT3 receptor antagonism is one of these actions, and this leads to increased release of norepinephrine (NE), acetylcholine (ACh), and serotonin (5HT) within various brain circuits.
Collapse
|
93
|
Safety and tolerability of vortioxetine (15 and 20 mg) in patients with major depressive disorder: results of an open-label, flexible-dose, 52-week extension study. Int Clin Psychopharmacol 2015; 30:255-64. [PMID: 26020712 PMCID: PMC4525811 DOI: 10.1097/yic.0000000000000081] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vortioxetine is approved for the treatment of adults with major depressive disorder. This open-label extension (OLE) study evaluated the safety and tolerability of vortioxetine in the long-term treatment of major depressive disorder patients, as well as evaluated its effectiveness using measures of depression, anxiety, and overall functioning. This was a 52-week, flexible-dose, OLE study in patients who completed one of three randomized, double-blind, placebo-controlled, 8-week vortioxetine trials. All patients were switched to 10 mg/day vortioxetine for week 1, then adjusted between 15 and 20 mg for the remainder of the study, but not downtitrated below 15 mg. Safety and tolerability were assessed on the basis of treatment-emergent adverse events (TEAEs), vital signs, laboratory values, physical examination, and the Columbia-Suicide Severity Rating Scale. Efficacy measures included the Montgomery-Åsberg Depression Rating Scale, the Hamilton Anxiety Scale, the Clinical Global Impression Scale-Severity of Illness, and the Sheehan Disability Scale. Of the 1075 patients enrolled, 1073 received at least one dose of vortioxetine and 538 (50.0%) completed the study. A total of 537 patients withdrew early, with 115 (10.7% of the original study population) withdrawing because of TEAEs. Long-term treatment with vortioxetine was well tolerated; the most common TEAEs (≥10%) were nausea and headache. Laboratory values, vital signs, and physical examinations revealed no trends of clinical concern. The mean Montgomery-Åsberg Depression Rating Scale total score was 19.9 at the start of the extension study and 9.0 after 52 weeks of treatment (observed cases). Similar improvements were observed with the Hamilton Anxiety Scale (Δ-4.2), the Clinical Global Impression Scale-Severity of Illness (Δ-1.2), and the Sheehan Disability Scale (Δ-4.7) total scores after 52 weeks of treatment (observed case). In this 52-week, flexible-dose OLE study, 15 and 20 mg vortioxetine were safe and well tolerated. After entry into this study, patients continued to show improvement in depression and anxiety symptoms, as well as overall functioning, throughout the treatment period.
Collapse
|
94
|
Culpepper L, Muskin PR, Stahl SM. Major Depressive Disorder: Understanding the Significance of Residual Symptoms and Balancing Efficacy with Tolerability. Am J Med 2015; 128:S1-S15. [PMID: 26337210 DOI: 10.1016/j.amjmed.2015.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Major depressive disorder is a complex and frequent psychiatric condition that poses significant challenges to both the patients who experience it and the physicians who treat them. The goal of therapy is for patients to achieve remission, which requires identifying and measuring symptoms at the outset and throughout treatment to document both response and resistance to treatment. A number of validated instruments are available both for diagnosis of and response to treatment. Many factors affect a patient's ability to achieve remission, but although many patients do achieve remission, a significant number continue to have residual symptoms that cause functional impairment. METHODS Review of the literature for treatment of major depression, including mechanisms of action, individualized treatment optimization, residual symptom reduction, and minimization of side effects. RESULTS For sustained remission, all symptoms must be treated until they are undetectable. Patients who do not achieve remission after adequate treatment trials should be evaluated for adherence to treatment, as well as comorbid psychiatric and medical disorders. In these cases, consideration should be given to changing therapy by switching, combining, or augmenting initial therapy, as well as referring some patients to a psychiatrist for treatment with specialized modalities. Linking symptoms with malfunctioning brain circuits and neurotransmitters provides a targeted approach for achieving sustained remission. Neurobiology also provides a rational basis for combination therapy in patients with treatment-resistant depression, because it can aid selection of different drugs with different mechanisms of action or of multifunctional/multimodal antidepressant drugs that target more than 1 molecular mechanism. DISCUSSION Recent advances and better understanding of neurobiology provide a rational basis for individualizing treatment of patients with major depression.
Collapse
Affiliation(s)
- Larry Culpepper
- Department of Family Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Mass.
| | - Philip R Muskin
- Department of Psychiatry, Columbia University Medical Center, New York, NY
| | - Stephen M Stahl
- Department of Psychiatry, University of California San Diego, San Diego; Neuroscience Education Institute, Carlsbad, Calif; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
95
|
Li Y, Pehrson AL, Waller JA, Dale E, Sanchez C, Gulinello M. A critical evaluation of the activity-regulated cytoskeleton-associated protein (Arc/Arg3.1)'s putative role in regulating dendritic plasticity, cognitive processes, and mood in animal models of depression. Front Neurosci 2015; 9:279. [PMID: 26321903 PMCID: PMC4530346 DOI: 10.3389/fnins.2015.00279] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/23/2015] [Indexed: 11/13/2022] Open
Abstract
Major depressive disorder (MDD) is primarily conceptualized as a mood disorder but cognitive dysfunction is also prevalent, and may limit the daily function of MDD patients. Current theories on MDD highlight disturbances in dendritic plasticity in its pathophysiology, which could conceivably play a role in the production of both MDD-related mood and cognitive symptoms. This paper attempts to review the accumulated knowledge on the basic biology of the activity-regulated cytoskeleton-associated protein (Arc or Arg3.1), its effects on neural plasticity, and how these may be related to mood or cognitive dysfunction in animal models of MDD. On a cellular level, Arc plays an important role in modulating dendritic spine density and remodeling. Arc also has a close, bidirectional relationship with postsynaptic glutamate neurotransmission, since it is stimulated by multiple glutamatergic receptor mechanisms but also modulates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor internalization. The effects on AMPA receptor trafficking are likely related to Arc's ability to modulate phenomena such as long-term potentiation, long-term depression, and synaptic scaling, each of which are important for maintaining proper cognitive function. Chronic stress models of MDD in animals show suppressed Arc expression in the frontal cortex but elevation in the amygdala. Interestingly, cognitive tasks depending on the frontal cortex are generally impaired by chronic stress, while those depending on the amygdala are enhanced, and antidepressant treatments stimulate cortical Arc expression with a timeline that is reminiscent of the treatment efficacy lag observed in the clinic or in preclinical models. However, pharmacological treatments that stimulate regional Arc expression do not universally improve relevant cognitive functions, and this highlights a need to further refine our understanding of Arc on a subcellular and network level.
Collapse
Affiliation(s)
- Yan Li
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Alan L Pehrson
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Jessica A Waller
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Elena Dale
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Connie Sanchez
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Maria Gulinello
- Behavioral Core Facility, Department of Neuroscience, Albert Einstein College of Medicine Bronx, NY, USA
| |
Collapse
|
96
|
Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): modifying serotonin's downstream effects on glutamate and GABA (gamma amino butyric acid) release. CNS Spectr 2015; 20:331-6. [PMID: 26062900 DOI: 10.1017/s1092852915000334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Vortioxetine is an antidepressant with multiple pharmacologic modes of action at targets where serotonin neurons connect with other neurons. These actions modify the release of both glutamate and GABA (gamma amino butyric acid) within various brain circuits.
Collapse
|
97
|
El Mansari M, Lecours M, Blier P. Effects of acute and sustained administration of vortioxetine on the serotonin system in the hippocampus: electrophysiological studies in the rat brain. Psychopharmacology (Berl) 2015; 232:2343-52. [PMID: 25665528 PMCID: PMC4464372 DOI: 10.1007/s00213-015-3870-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/14/2015] [Indexed: 01/31/2023]
Abstract
RATIONALE Vortioxetine is a novel multimodal antidepressant that is a 5-HT1B receptor partial agonist, a 5-HT1A receptor agonist, an inhibitor of the serotonin (5-HT) transporter, and a 5-HT1D, 5-HT3, and 5-HT7 receptor antagonist in vitro. In vivo studies have shown that vortioxetine enhances levels of 5-HT and desensitizes 5-HT1A autoreceptors. OBJECTIVES The aim of the present study was to investigate the effects of acute and long-term administration of vortioxetine on the terminal 5-HT1B receptor and the tonic activation of 5-HT1A receptor in the rat hippocampus. METHODS These receptors were assessed following vortioxetine administration acutely or subcutaneously using minipumps for 14 days. These studies were carried out using in vivo electrophysiological recording, microiontophoresis, and stimulation of the ascending 5-HT fibers. RESULTS Vortioxetine enhanced the inhibitory effect of the stimulation of the 5-HT bundle at a high, but not low frequency and reversed the inhibitory effect of the 5-HT1B receptor agonist CP 94253. These results indicate that this compound acted as a 5-HT1B receptor partial agonist. Vortioxetine inhibited 5-HT reuptake but did not dampen the sensitivity of postsynaptic 5-HT1A receptors on pyramidal neurons. Long-term administration of vortioxetine and escitalopram (both at 5 mg/kg/day) induced an increase of tonic activation of the 5-HT1A receptors in CA3 pyramidal neurons, resulting in an increase in 5-HT transmission. In addition, vortioxetine decreased the function of terminal 5-HT1B autoreceptor following its sustained administration. CONCLUSIONS Desensitization of 5-HT1B autoreceptor and an increase of tonic activation of 5-HT1A receptors in the hippocampus may contribute to the antidepressant effect of vortioxetine.
Collapse
Affiliation(s)
- Mostafa El Mansari
- University of Ottawa Institute of Mental Health Research, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada.
| | - Maurice Lecours
- University of Ottawa Institute of Mental Health Research, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada
| | - Pierre Blier
- University of Ottawa Institute of Mental Health Research, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada
| |
Collapse
|
98
|
Mahableshwarkar AR, Zajecka J, Jacobson W, Chen Y, Keefe RSE. A Randomized, Placebo-Controlled, Active-Reference, Double-Blind, Flexible-Dose Study of the Efficacy of Vortioxetine on Cognitive Function in Major Depressive Disorder. Neuropsychopharmacology 2015; 40:2025-37. [PMID: 25687662 PMCID: PMC4839526 DOI: 10.1038/npp.2015.52] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/26/2015] [Accepted: 02/10/2015] [Indexed: 01/05/2023]
Abstract
This multicenter, randomized, double-blind, placebo-controlled, active-referenced (duloxetine 60 mg), parallel-group study evaluated the short-term efficacy and safety of vortioxetine (10-20 mg) on cognitive function in adults (aged 18-65 years) diagnosed with major depressive disorder (MDD) who self-reported cognitive dysfunction. Efficacy was evaluated using ANCOVA for the change from baseline to week 8 in the digit symbol substitution test (DSST)-number of correct symbols as the prespecified primary end point. The patient-reported perceived deficits questionnaire (PDQ) and physician-assessed clinical global impression (CGI) were analyzed in a prespecified hierarchical testing sequence as key secondary end points. Additional predefined end points included the objective performance-based University of San Diego performance-based skills assessment (UPSA) (ANCOVA) to measure functionality, MADRS (MMRM) to assess efficacy in depression, and a prespecified multiple regression analysis (path analysis) to calculate direct vs indirect effects of vortioxetine on cognitive function. Safety and tolerability were assessed at all visits. Vortioxetine was statistically superior to placebo on the DSST (P < 0.05), PDQ (P < 0.01), CGI-I (P < 0.001), MADRS (P < 0.05), and UPSA (P < 0.001). Path analysis indicated that vortioxetine's cognitive benefit was primarily a direct treatment effect rather than due to alleviation of depressive symptoms. Duloxetine was not significantly different from placebo on the DSST or UPSA, but was superior to placebo on the PDQ, CGI-I, and MADRS. Common adverse events (incidence ⩾ 5%) for vortioxetine were nausea, headache, and diarrhea. In this study of MDD adults who self-reported cognitive dysfunction, vortioxetine significantly improved cognitive function, depression, and functionality and was generally well tolerated.
Collapse
Affiliation(s)
| | - John Zajecka
- Department of Psychiatry, Rush University Medical Center, Chicago, IL, USA
| | | | - Yinzhong Chen
- Takeda Development Center Americas, Deerfield, IL, USA
| | - Richard SE Keefe
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA,Department of Psychiatry and Behavioral Science, Duke University Medical Center, Box 3270 Medical Center, Durham, NC 27710, USA, Tel: +1 919 684 4306, Fax: +1 919 684 2632, E-mail:
| |
Collapse
|
99
|
Al-Sukhni M, Maruschak NA, McIntyre RS. Vortioxetine : a review of efficacy, safety and tolerability with a focus on cognitive symptoms in major depressive disorder. Expert Opin Drug Saf 2015; 14:1291-304. [PMID: 26022537 DOI: 10.1517/14740338.2015.1046836] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Vortioxetine is a pharmacodynamically novel antidepressant that exerts effects on various neurotransmitters including serotonin, noradrenaline, dopamine, glutamate, histamine and acetylcholine. Its efficacy in the symptomatic management of major depressive disorder (MDD) has been established in several short- and long-term trials. Vortioxetine has also demonstrated independent pro-cognitive effects in adults with MDD. AREAS COVERED This report provides a concise review of the pharmacology, efficacy and safety of vortioxetine as they pertain to cognition. EXPERT OPINION The significant impact of cognitive dysfunction in MDD has achieved increased consideration among researchers over the past decade. Vortioxetine is the first antidepressant agent to demonstrate meaningful clinical efficacy in the improvement of cognition in adults with MDD, independent of improvement in affective symptomatology. These results provide the impetus for further study into the potential pro-cognitive effects of vortioxetine in other conditions wherein cognitive dysfunction is prominent.
Collapse
Affiliation(s)
- Mayce Al-Sukhni
- General Psychiatry and Acute Care Units, Centre for Addiction and Mental Health , 250 College Street, Toronto, ON M5T 1R8 , Canada
| | | | | |
Collapse
|
100
|
Leiser SC, Pehrson AL, Robichaud PJ, Sanchez C. Multimodal antidepressant vortioxetine increases frontal cortical oscillations unlike escitalopram and duloxetine--a quantitative EEG study in rats. Br J Pharmacol 2015; 171:4255-72. [PMID: 24846338 PMCID: PMC4241092 DOI: 10.1111/bph.12782] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 04/27/2014] [Accepted: 05/03/2014] [Indexed: 12/28/2022] Open
Abstract
Background and Purpose EEG studies show that 5-HT is involved in regulation of sleep–wake state and modulates cortical oscillations. Vortioxetine is a 5-HT3, 5-HT7, and 5-HT1D receptor antagonist, 5-HT1B partial agonist, 5-HT1A agonist, and 5-HT transporter inhibitor. Preclinical (animal) and clinical studies with vortioxetine show positive impact on cognitive metrics involving cortical function. Here we assess vortioxetine's effect on cortical neuronal oscillations in actively awake rats. Experimental Approach Telemetric EEG recordings were obtained with the following treatments (mg·kg−1, s.c.): vehicle, vortioxetine (0.1, 1.0, 3.0, 10), 5-HT1A agonist flesinoxan (2.5), 5-HT3 antagonist ondansetron (0.30), 5-HT7 antagonist SB-269970-A (10), escitalopram (2.0), duloxetine (10) and vortioxetine plus flesinoxan. Target occupancies were determined by ex vivo autoradiography. Key Results Vortioxetine dose-dependently increased wakefulness. Flesinoxan, duloxetine, ondansetron, but not escitalopram or SB-269970-A increased wakefulness. Quantitative spectral analyses showed vortioxetine alone and with flesinoxan increased θ (4–8 Hz), α (8–12 Hz) and γ (30–50 Hz) power. Duloxetine had no effect on θ and γ, but decreased α power, while escitalopram produced no changes. Ondansetron and SB-269970 (≈31–35% occupancy) increased θ power. Flesinoxan (≈41% occupancy) increased θ and γ power. Conclusions and Implications Vortioxetine increased wakefulness and increased frontal cortical activity, most likely because of its 5-HT7 and 5-HT3 antagonism and 5-HT1A agonism. Vortioxetine differs from escitalopram and duloxetine by increasing cortical θ, α and γ oscillations. These preclinical findings suggest a role of vortioxetine in modulating cortical circuits known to be recruited during cognitive behaviours and warrant further investigation as to their clinical impact.
Collapse
Affiliation(s)
- S C Leiser
- Department of BioAnalysis & Physiology, Lundbeck Research USA, Inc., Paramus, NJ, USA
| | | | | | | |
Collapse
|