51
|
Xu P, Wen C, Gao C, Liu H, Li Y, Guo X, Shen XC, Liang H. Near-Infrared-II-Activatable Self-Assembled Manganese Porphyrin-Gold Heterostructures for Photoacoustic Imaging-Guided Sonodynamic-Augmented Photothermal/Photodynamic Therapy. ACS NANO 2024; 18:713-727. [PMID: 38117769 DOI: 10.1021/acsnano.3c09011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Porphyrins and their derivatives are widely used as photosensitizers and sonosensitizers in tumor treatment. Nevertheless, their poor water solubility and low chemical stability reduce their singlet oxygen (1O2) yield and, consequently, their photodynamic therapy (PDT) and sonodynamic therapy (SDT) efficiency. Although strategies for porphyrin molecule assembly have been developed to augment 1O2 generation, there is scope for further improving PDT and SDT efficiencies. Herein, we synthesized ordered manganese porphyrin (SM) nanoparticles with well-defined self-assembled metalloporphyrin networks that enabled efficient energy transfer for enhanced photocatalytic and sonocatalytic activity in 1O2 production. Subsequently, Au nanoparticles were grown in situ on the SM surface by anchoring the terminal alkynyl of porphyrin to form plasmonic SMA heterostructures, which showed the excellent near-infrared-II (NIR-II) region absorption and photothermal properties, and facilitated electron-hole pair separation and transfer. With the modification of hyaluronic acid (HA), SMAH heterostructure nanocomposites exhibited good water solubility and were actively targeted to cancer cells. Under NIR-II light and ultrasound (US) irradiation, the SMAH generates hyperthermia, and a large amount of 1O2, inducing cancer cell damage. Both in vitro and in vivo studies confirmed that the SMAH nanocomposites effectively suppressed tumor growth by decreasing GSH levels in SDT-augmented PDT/PTT. Moreover, by utilizing the strong absorption in the NIR-II window, SMAH nanocomposites can achieve NIR-II photoacoustic imaging-guided combined cancer treatment. This work provides a paradigm for enhancing the 1O2 yield of metalloporphyrins to improve the synergistic therapeutic effect of SDT/PDT/PTT.
Collapse
Affiliation(s)
- Peijing Xu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Changchun Wen
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Cunji Gao
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Huihui Liu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Yingshu Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Xiaolu Guo
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Xing-Can Shen
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Hong Liang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
52
|
Zhang WY, Li GC, Fan Y, Sun XQ, Wang B, Zhang CY, Feng XX, Xu WB, Liu JC. Synthesis of three cisplatin-conjugated asymmetric porphyrin photosensitizers for photodynamic therapy. Dalton Trans 2024; 53:582-590. [PMID: 38059743 DOI: 10.1039/d3dt02900j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Photodynamic therapy provides a promising solution for treating various cancer types. In this study, three distinct asymmetric porphyrin-cisplatin complex photosensitizers (ZnPt-P1, ZnPt-P2, and ZnPt-P3) were synthesized, each having unique side chains. Through a set of experiments involving singlet oxygen detection and density functional theory, ZnPt-P1 was demonstrated to have excellent efficacy, exceeding that of ZnPt-P2 and ZnPt-P3. Notably, ZnPt-1 showed significant phototoxicity while maintaining low dark toxicity when tested on HepG2 cells. Additionally, further examination revealed that ZnPt-P1 had the capability to generate reactive oxygen species within cancer cells when exposed to light irradiation. Taken together, these results highlight the potential of ZnPt-P1 as a photosensitizer for use in photodynamic therapy. This study contributes to enhancing cancer treatment methodologies and provides insights for the future development of innovative drugs for photosensitization.
Collapse
Affiliation(s)
- Wen-Yuan Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Gui-Chen Li
- State Key Laboratory of Aridland Crop Science, Gansu Agriculture University, Lanzhou, 730000, P. R. China
| | - Yan Fan
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Xue-Qin Sun
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Bo Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Chun-Yan Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Xiao-Xia Feng
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Wei-Bing Xu
- State Key Laboratory of Aridland Crop Science, Gansu Agriculture University, Lanzhou, 730000, P. R. China
| | - Jia-Cheng Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
53
|
Xu W, Wu Y, Gu W, Du D, Lin Y, Zhu C. Atomic-level design of metalloenzyme-like active pockets in metal-organic frameworks for bioinspired catalysis. Chem Soc Rev 2024; 53:137-162. [PMID: 38018371 DOI: 10.1039/d3cs00767g] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Natural metalloenzymes with astonishing reaction activity and specificity underpin essential life transformations. Nevertheless, enzymes only operate under mild conditions to keep sophisticated structures active, limiting their potential applications. Artificial metalloenzymes that recapitulate the catalytic activity of enzymes can not only circumvent the enzymatic fragility but also bring versatile functions into practice. Among them, metal-organic frameworks (MOFs) featuring diverse and site-isolated metal sites and supramolecular structures have emerged as promising candidates for metalloenzymes to move toward unparalleled properties and behaviour of enzymes. In this review, we systematically summarize the significant advances in MOF-based metalloenzyme mimics with a special emphasis on active pocket engineering at the atomic level, including primary catalytic sites and secondary coordination spheres. Then, the deep understanding of catalytic mechanisms and their advanced applications are discussed. Finally, a perspective on this emerging frontier research is provided to advance bioinspired catalysis.
Collapse
Affiliation(s)
- Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Yu Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
54
|
Qi Y, Ayinla M, Clifford S, Ramström O. Spontaneous and Selective Macrocyclization in Nitroaldol Reaction Systems. J Org Chem 2023. [PMID: 38154053 DOI: 10.1021/acs.joc.3c02148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Through a dynamic polymerization and self-sorting process, a range of lowellane macrocycles have been efficiently generated in nitroaldol systems composed of aromatic dialdehydes and aliphatic or aromatic dinitroalkanes. All identified macrocycles show a composition of two repeating units, resulting in tetra-β-nitroalcohols of different structures. The effects of the building block structure on the macrocyclization process have been demonstrated, and the influence from the solvent has been explored. In general, the formation of the lowellanes was amplified in response to phase-change effects, although solution-phase structures were, in some cases, favored.
Collapse
Affiliation(s)
- Yunchuan Qi
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
| | - Mubarak Ayinla
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
| | - Stephen Clifford
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| |
Collapse
|
55
|
Wang Q, Xia G, Li J, Yuan L, Yu S, Li D, Yang N, Fan Z, Li J. Multifunctional Nanoplatform for NIR-II Imaging-Guided Synergistic Oncotherapy. Int J Mol Sci 2023; 24:16949. [PMID: 38069279 PMCID: PMC10707236 DOI: 10.3390/ijms242316949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Tumors are a major public health issue of concern to humans, seriously threatening the safety of people's lives and property. With the increasing demand for early and accurate diagnosis and efficient treatment of tumors, noninvasive optical imaging (including fluorescence imaging and photoacoustic imaging) and tumor synergistic therapies (phototherapy synergistic with chemotherapy, phototherapy synergistic with immunotherapy, etc.) have received increasing attention. In particular, light in the near-infrared second region (NIR-II) has triggered great research interest due to its penetration depth, minimal tissue autofluorescence, and reduced tissue absorption and scattering. Nanomaterials with many advantages, such as high brightness, great photostability, tunable photophysical properties, and excellent biosafety offer unlimited possibilities and are being investigated for NIR-II tumor imaging-guided synergistic oncotherapy. In recent years, many researchers have tried various approaches to investigate nanomaterials, including gold nanomaterials, two-dimensional materials, metal sulfide oxides, polymers, carbon nanomaterials, NIR-II dyes, and other nanomaterials for tumor diagnostic and therapeutic integrated nanoplatform construction. In this paper, the application of multifunctional nanomaterials in tumor NIR-II imaging and collaborative therapy in the past three years is briefly reviewed, and the current research status is summarized and prospected, with a view to contributing to future tumor therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhongxiong Fan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology & Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Q.W.); (G.X.); (J.L.); (L.Y.); (S.Y.); (D.L.); (N.Y.)
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology & Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Q.W.); (G.X.); (J.L.); (L.Y.); (S.Y.); (D.L.); (N.Y.)
| |
Collapse
|
56
|
Lee JH, Park H, Kim Y, Yim D, Kim T, Choi J, Lee Y, Jang WD. Retention of Intrinsic Photophysical Properties of Porphyrin Building Blocks in 3D Organic Frameworks through Magic Angle Alignment. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38014872 DOI: 10.1021/acsami.3c13046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Construction of three-dimensional (3D) frameworks maintaining intrinsic photophysical properties of monomeric building blocks is difficult and challenging due to the existence of various molecular interactions, such as metal-organic and π-π interactions. A 3D hydrogen-bonded organic framework (YSH-1Zn) with permanent porosity was constructed using a porphyrin having six carboxylic acid groups (1Zn). Brunauer-Emmett-Teller surface area measurement indicated that YSH-1Zn has a porous structure with a surface area of 392 m2/g. Single-crystal X-ray diffraction analysis revealed that 1Zn creates a 5-fold interwoven 3D network structure adopting a monoclinic system with a space group of P21/c. Each 1Zn within a single crystal exhibits parallel alignment with a slip-stack angle of 54.6°, in good agreement with the magic angle. Although the center-to-center distance of the nearest zinc atoms in YSH-1Zn is only 5.181 Å, the UV/vis absorption and fluorescence emission of YSH-1Zn are not different from those of 1Zn, indicating the absence of an interaction between excitons. Due to the magic angle alignment of 1Zn, the fluorescence lifetime, decay profiles, and quantum yield remained uniform even in the solid state.
Collapse
Affiliation(s)
- Jeong Heon Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Hyunjun Park
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Younghun Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Dajeong Yim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Taehee Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Jinhyuk Choi
- Department of Earth System Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Yongjae Lee
- Department of Earth System Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
57
|
Monteiro CJP, Faustino MAF, Serpa C. Porphyrin-Based Compounds: Synthesis and Application. Molecules 2023; 28:7108. [PMID: 37894586 PMCID: PMC10608992 DOI: 10.3390/molecules28207108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Porphyrin-based compounds are an attractive and versatile class of molecules that have attracted significant attention across different scientific disciplines [...].
Collapse
Affiliation(s)
- Carlos J. P. Monteiro
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M. Amparo F. Faustino
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos Serpa
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| |
Collapse
|
58
|
Fibriani A, Taharuddin AAP, Yamahoki N, Stephanie R, Laurelia J, Agustiyanti DF, Wisnuwardhani PH, Angelina M, Rubiyana Y, Ningrum RA, Wardiana A, Desriani D, Iskandar F, Permatasari FA, Giri-Rachman EA. Porphyrin-derived carbon dots for an enhanced antiviral activity targeting the CTD of SARS-CoV-2 nucleocapsid. J Genet Eng Biotechnol 2023; 21:93. [PMID: 37801271 PMCID: PMC10558421 DOI: 10.1186/s43141-023-00548-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Since effective antiviral drugs for COVID-19 are still limited in number, the exploration of compounds that have antiviral activity against SARS-CoV-2 is in high demand. Porphyrin is potentially developed as a COVID-19 antiviral drug. However, its low solubility in water restricts its clinical application. Reconstruction of porphyrin into carbon dots is expected to possess better solubility and bioavailability as well as lower biotoxicity. METHODS AND RESULTS In this study, we investigated the antiviral activity of porphyrin and porphyrin-derived carbon dots against SARS-CoV-2. Through the in silico analysis and assessment using a novel drug screening platform, namely dimer-based screening system, we demonstrated the capability of the antivirus candidates in inhibiting the dimerization of the C-terminal domain of SARS-CoV-2 Nucleocapsid. It was shown that porphyrin-derived carbon dots possessed lower cytotoxicity on Vero E6 cells than porphyrin. Furthermore, we also assessed their antiviral activity on the SARS-CoV-2-infected Vero E6 cells. The transformation of porphyrin into carbon dots substantially augmented its performance in disrupting SARS-CoV-2 propagation in vitro. CONCLUSIONS Therefore, this study comprehensively demonstrated the potential of porphyrin-derived carbon dots to be developed further as a promisingly safe and effective COVID-19 antiviral drug.
Collapse
Affiliation(s)
- Azzania Fibriani
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
| | | | - Nicholas Yamahoki
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Rebecca Stephanie
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Jessica Laurelia
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Dian Fitria Agustiyanti
- Research Center for Genetic Engineering, Indonesian National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Popi Hadi Wisnuwardhani
- Research Center for Genetic Engineering, Indonesian National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Marissa Angelina
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, Indonesian National Research and Innovation Agency (BRIN), Serpong, 15314, Indonesia
| | - Yana Rubiyana
- Research Center for Genetic Engineering, Indonesian National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Ratih Asmana Ningrum
- Research Center for Genetic Engineering, Indonesian National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Andri Wardiana
- Research Center for Genetic Engineering, Indonesian National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Desriani Desriani
- Research Center for Genetic Engineering, Indonesian National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Ferry Iskandar
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Collaboration Research Center for Advanced Energy Materials, National Research and Innovation Agency-Institut Teknologi, Bandung, Bandung, 40132, Indonesia
| | - Fitri Aulia Permatasari
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Collaboration Research Center for Advanced Energy Materials, National Research and Innovation Agency-Institut Teknologi, Bandung, Bandung, 40132, Indonesia
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Serpong, 15314, Indonesia
| | - Ernawati Arifin Giri-Rachman
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| |
Collapse
|
59
|
Dognini P, Chaudhry T, Scagnetti G, Assante M, Hanson GSM, Ross K, Giuntini F, Coxon CR. 5,10,15,20-Tetrakis(pentafluorophenyl)porphyrin as a Functional Platform for Peptide Stapling and Multicyclisation. Chemistry 2023; 29:e202301410. [PMID: 37402229 PMCID: PMC10946732 DOI: 10.1002/chem.202301410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
Polyfluorinated aromatic reagents readily react with thiolates via nucleophilic aromatic substitution (SN Ar) and provide excellent scaffolds for peptide cyclisation. Here we report a robust and versatile platform for peptide stapling and multicyclisation templated by 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin, opening the door to the next generation of functional scaffolds for 3D peptide architectures. We demonstrate that stapling and multicyclisation occurs with a range of non-protected peptides under peptide-compatible conditions, exhibiting chemoselectivity and wide-applicability. Peptides containing two cysteine residues are readily stapled, and the remaining perfluoroaryl groups permit the introduction of a second peptide in a modular fashion to access bicyclic peptides. Similarly, peptides with more than two cysteine residues can afford multicyclic products containing up to three peptide 'loops'. Finally, we demonstrate that a porphyrin-templated stapled peptide containing the Skin Penetrating and Cell Entering (SPACE) peptide affords a skin cell penetrating conjugate with intrinsic fluorescence.
Collapse
Affiliation(s)
- Paolo Dognini
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom Street CampusL3 3AFLiverpoolUK
| | - Talhat Chaudhry
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom Street CampusL3 3AFLiverpoolUK
| | - Giulia Scagnetti
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom Street CampusL3 3AFLiverpoolUK
| | - Michele Assante
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom Street CampusL3 3AFLiverpoolUK
| | - George S. M. Hanson
- EaStCHEMSchool of ChemistryThe University of EdinburghJoseph Black Building, David Brewster RoadEH9 3FJEdinburghUK
| | - Kehinde Ross
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom Street CampusL3 3AFLiverpoolUK
| | - Francesca Giuntini
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom Street CampusL3 3AFLiverpoolUK
| | - Christopher R. Coxon
- EaStCHEMSchool of ChemistryThe University of EdinburghJoseph Black Building, David Brewster RoadEH9 3FJEdinburghUK
| |
Collapse
|
60
|
Lv F, Feng E, Lv S, Liu D, Song F. Metal-Coordination-Mediated H-Aggregates of Cyanine Dyes for Effective Photothermal Therapy. Chemistry 2023; 29:e202301483. [PMID: 37407428 DOI: 10.1002/chem.202301483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
Integration of cyanine dyes and metal ions into one nanoplatform via metal-coordination interactions is an effective strategy to build multimodality phototheranostics. The multifunctionalities of the formed nanoscale metal-organic particles (NMOPs) have been widely explored. However, the effect of metal-coordination interaction on the aggregation behavior of cyanine dyes is rarely reported. Herein, we reported the H-aggregation behavior of cyanine dye Cy-3COOH induced by different metal ions M (Fe2+ or Mn2+ ). Moreover, the extent of H-aggregates varied with different metal-coordination interactions. Upon NIR irradiation, H-aggregates of Cy-3COOH remarkably promoted photothermal conversion efficiency. Interestingly, we also find that H-aggregates of Cy-3COOH induced by metal ions can generate the reactive oxygen species (ROS) involving singlet oxygen (1 O2 ) and superoxide anion radical (O2 - ⋅) upon light irradiation. In addition, the ROS efficiency varies depending on the extent of H-aggregates. Additionally, the photoinduced ROS could disassemble aggregates and decompose cyanine dye Cy-3COOH, which limits the photothermal capability of Cy-3COOH/M NPs. Therefore, the photothermal performance of Cy-3COOH/M NPs could be manipulated by the degree of H-aggregation. This would provide a new insight to develop efficient phototheranostics NMOPs for cancer treatment.
Collapse
Affiliation(s)
- Fangyuan Lv
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of, Shenzhen, 518057, China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Erting Feng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
- State Key Laboratory of Fine Chemical, Dalian University of Technology, No. 2 Linggong Road, High-tech District, Dalian, China
| | - Shibo Lv
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Dapeng Liu
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of, Shenzhen, 518057, China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Fengling Song
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
- State Key Laboratory of Fine Chemical, Dalian University of Technology, No. 2 Linggong Road, High-tech District, Dalian, China
| |
Collapse
|
61
|
Singh S, Rai N, Tiwari H, Gupta P, Verma A, Kumar R, Kailashiya V, Salvi P, Gautam V. Recent Advancements in the Formulation of Nanomaterials-Based Nanozymes, Their Catalytic Activity, and Biomedical Applications. ACS APPLIED BIO MATERIALS 2023; 6:3577-3599. [PMID: 37590090 DOI: 10.1021/acsabm.3c00253] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Nanozymes are nanoparticles with intrinsic enzyme-mimicking properties that have become more prevalent because of their ability to outperform conventional enzymes by overcoming their drawbacks related to stability, cost, and storage. Nanozymes have the potential to manipulate active sites of natural enzymes, which is why they are considered promising candidates to function as enzyme mimetics. Several microscopy- and spectroscopy-based techniques have been used for the characterization of nanozymes. To date, a wide range of nanozymes, including catalase, oxidase, peroxidase, and superoxide dismutase, have been designed to effectively mimic natural enzymes. The activity of nanozymes can be controlled by regulating the structural and morphological aspects of the nanozymes. Nanozymes have multifaceted benefits, which is why they are exploited on a large scale for their application in the biomedical sector. The versatility of nanozymes aids in monitoring and treating cancer, other neurodegenerative diseases, and metabolic disorders. Due to the compelling advantages of nanozymes, significant research advancements have been made in this area. Although a wide range of nanozymes act as potent mimetics of natural enzymes, their activity and specificities are suboptimal, and there is still room for their diversification for analytical purposes. Designing diverse nanozyme systems that are sensitive to one or more substrates through specialized techniques has been the subject of an in-depth study. Hence, we believe that stimuli-responsive nanozymes may open avenues for diagnosis and treatment by fusing the catalytic activity and intrinsic nanomaterial properties of nanozyme systems.
Collapse
Affiliation(s)
- Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vikas Kailashiya
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Prafull Salvi
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar 140306, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
62
|
Chen J, Zhang Y. Hyperbranched Polymers: Recent Advances in Photodynamic Therapy against Cancer. Pharmaceutics 2023; 15:2222. [PMID: 37765191 PMCID: PMC10536223 DOI: 10.3390/pharmaceutics15092222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Hyperbranched polymers are a class of three-dimensional dendritic polymers with highly branched architectures. Their unique structural features endow them with promising physical and chemical properties, such as abundant surface functional groups, intramolecular cavities, and low viscosity. Therefore, hyperbranched-polymer-constructed cargo delivery carriers have drawn increasing interest and are being utilized in many biomedical applications. When applied for photodynamic therapy, photosensitizers are encapsulated in or covalently incorporated into hyperbranched polymers to improve their solubility, stability, and targeting efficiency and promote the therapeutic efficacy. This review will focus on the state-of-the-art studies concerning recent progress in hyperbranched-polymer-fabricated phototherapeutic nanomaterials with emphases on the building-block structures, synthetic strategies, and their combination with the codelivered diagnostics and synergistic therapeutics. We expect to bring our demonstration to the field to increase the understanding of the structure-property relationships and promote the further development of advanced photodynamic-therapy nanosystems.
Collapse
Affiliation(s)
| | - Yichuan Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| |
Collapse
|
63
|
Espitia-Almeida F, Valle-Molinares R, Navarro Quiroz E, Pacheco-Londoño LC, Galán-Freyle NJ. Photodynamic Antimicrobial Activity of a Novel 5,10,15,20-Tetrakis (4-Ethylphenyl) Porphyrin against Clinically Important Bacteria. Pharmaceuticals (Basel) 2023; 16:1059. [PMID: 37630978 PMCID: PMC10459089 DOI: 10.3390/ph16081059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
The growing emergence of microbes resistant to commercially available antibiotic therapies poses a threat to healthcare systems worldwide. Multiple factors have been associated with the increasing incidence of hospital-acquired infections caused by antibiotic-resistant pathogens, including the indiscriminate use of broad-spectrum antibiotics, the massive application of antibiotics in hospitals as a prophylactic measure, self-medication, and nonadherence to pharmacological therapies by patients. In this study, we developed a novel treatment to mitigate the impact of microbial resistance. We synthesized a benzoporphyrin derivative, 5,10,15,20-tetrakis (4-ethylphenyl) porphyrin (TEtPP), with a reaction yield close to 50%. TEtPP exhibited excellent photophysical properties (Φf = 0.12 ± 0.04 and ΦΔ = 0.81 ± 0.23) and was thereby assessed as a potential agent for antibacterial photodynamic therapy. The photophysical properties of the synthesized porphyrin derivative were correlated with the assayed antimicrobial activity. TEtPP showed higher activity against the MRSA strain under irradiation than in the absence of irradiation (minimum inhibitory concentration (MIC) = 69.42 µg/mL vs. MIC = 109.30 µg/mL, p < 0.0001). Similar behavior was observed against P. aeruginosa (irradiated MIC = 54.71 µg/mL vs. nonirradiated MIC = 402.90 µg/mL, p < 0.0001). TEtPP exhibited high activity against S. aureus in both the irradiated and nonirradiated assays (MIC = 67.68 µg/mL vs. MIC = 58.26 µg/mL, p = 0.87).
Collapse
Affiliation(s)
- Fabián Espitia-Almeida
- Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia (N.J.G.-F.)
- Faculty of Basic and Biomedical Sciences, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Faculty of Basic Sciences, Biology Program, Universidad del Atlántico, Puerto Colombia 081001, Colombia
| | - Roger Valle-Molinares
- Faculty of Basic Sciences, Biology Program, Universidad del Atlántico, Puerto Colombia 081001, Colombia
| | - Elkin Navarro Quiroz
- Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia (N.J.G.-F.)
| | | | - Nataly J. Galán-Freyle
- Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia (N.J.G.-F.)
| |
Collapse
|
64
|
Gara R, Zouaghi MO, Arfaoui Y. Porphyrin and phthalocyanine heavy metal removal: overview of theoretical investigation for heterojunction organic solar cell applications. J Mol Model 2023; 29:259. [PMID: 37470876 DOI: 10.1007/s00894-023-05659-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
CONTEXT Heavy metals are highly noxious, and their presence can cause diverse effects on living organisms and the environment. Crown ether porphyrins and phthalocyanines are known to effectively extract these pollutants and are also used in photovoltaic devices. This study aims to evaluate various factors that govern intramolecular charge transfer (ICT) and photo-injection processes, including maximum absorption wavelength (λmax), density of states (DOS), charge transfer dipole (μCT), light harvesting efficiency (LHE), open-circuit voltage (Voc), and free energy change of electron injection (ΔGinj) in order to investigate the performance of different compounds designed from metalloporphyrins for bulk-heterojunction organic solar cell (BHJ-OSC) applications. The porphyrin complex showed the best optoelectronic properties, with remarkable LHE values and CT amounts compared to phthalocyanine derivatives. The central metal played a significant role in optimizing the optical properties of the materials for use in solar cells. HgPr4O and CdPr4O were found to have optimal Voc values, resulting in effective injection, high electron, and hole mobilities, making them ideal materials for highly efficient BHJ-OSC devices. METHODS Density functional theory (DFT) approach was employed with the B3LYP functional and the def2TZVP basis set as implemented in the Gaussian 16 revision C.01 program to investigate the designed complexes and to compute geometrical parameters, frontier molecular orbitals (FMOs), and natural bond orbital (NBO). Furthermore, the time-dependent density functional theory (TD-DFT) method was used to analyze the optical properties and photovoltaic characteristics of selected metalloporphyrins by examining the UV-Vis spectra. In summary, the study presents a thorough description of the structural and electronic properties of the investigated complexes and provides insights into their potential use in photovoltaic applications.
Collapse
Affiliation(s)
- Rayene Gara
- Laboratory of Characterizations, Applications & Modeling of Materials (LR18ES08), Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Mohamed Oussama Zouaghi
- Laboratory of Characterizations, Applications & Modeling of Materials (LR18ES08), Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Youssef Arfaoui
- Laboratory of Characterizations, Applications & Modeling of Materials (LR18ES08), Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.
| |
Collapse
|
65
|
Lima E, Reis LV. Photodynamic Therapy: From the Basics to the Current Progress of N-Heterocyclic-Bearing Dyes as Effective Photosensitizers. Molecules 2023; 28:5092. [PMID: 37446758 DOI: 10.3390/molecules28135092] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Photodynamic therapy, an alternative that has gained weight and popularity compared to current conventional therapies in the treatment of cancer, is a minimally invasive therapeutic strategy that generally results from the simultaneous action of three factors: a molecule with high sensitivity to light, the photosensitizer, molecular oxygen in the triplet state, and light energy. There is much to be said about each of these three elements; however, the efficacy of the photosensitizer is the most determining factor for the success of this therapeutic modality. Porphyrins, chlorins, phthalocyanines, boron-dipyrromethenes, and cyanines are some of the N-heterocycle-bearing dyes' classes with high biological promise. In this review, a concise approach is taken to these and other families of potential photosensitizers and the molecular modifications that have recently appeared in the literature within the scope of their photodynamic application, as well as how these compounds and their formulations may eventually overcome the deficiencies of the molecules currently clinically used and revolutionize the therapies to eradicate or delay the growth of tumor cells.
Collapse
Affiliation(s)
- Eurico Lima
- CQ-VR-Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Lucinda V Reis
- CQ-VR-Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| |
Collapse
|
66
|
Leone L, Muñoz-García AB, D'Alonzo D, Pavone V, Nastri F, Lombardi A. Peptide-based metalloporphyrin catalysts: unveiling the role of the metal ion in indole oxidation. J Inorg Biochem 2023; 246:112298. [PMID: 37379767 DOI: 10.1016/j.jinorgbio.2023.112298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Over the last decades, much effort has been devoted to the construction of protein and peptide-based metalloporphyrin catalysts capable of promoting difficult transformations with high selectivity. In this context, mechanistic studies are fundamental to elucidate all the factors that contribute to catalytic performances and product selectivity. In our previous work, we selected the synthetic peptide-porphyrin conjugate MnMC6*a as a proficient catalyst for indole oxidation, promoting the formation of a 3-oxindole derivative with unprecedented selectivity. In this work, we have evaluated the role of the metal ion in affecting reaction outcome, by replacing manganese with iron in the MC6*a scaffold. Even though product selectivity is not altered upon metal substitution, FeMC6*a shows a lower substrate conversion and prolonged reaction times with respect to its manganese analogue. Experimental and theoretical studies have enabled us to delineate the reaction free energy profiles for both catalysts, indicating different thermodynamic limiting steps, depending on the nature of the metal ion.
Collapse
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Ana Belén Muñoz-García
- Department of Physics "Ettore Pancini", University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Daniele D'Alonzo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy.
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy.
| |
Collapse
|
67
|
Zhang Y, Wang Y, Chen T, Han Y, Yan C, Wang J, Lu B, Ma L, Ding Y, Yao Y. Pillar[5]arene based water-soluble [3]pseudorotaxane with enhanced fluorescence emission for cell imaging and both type I and II photodynamic cancer therapy. Chem Commun (Camb) 2023. [PMID: 37314502 DOI: 10.1039/d3cc01929b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Water-soluble [3]pseudorotaxane with enhanced fluorescence emission was successfully constructed and applied in cell imaging and photodynamic cancer therapy.
Collapse
Affiliation(s)
- Yue Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Ying Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China.
| | - Chaoguo Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China.
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Longtao Ma
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China.
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
68
|
Yang F, Xu M, Chen X, Luo Y. Spotlight on porphyrins: Classifications, mechanisms and medical applications. Biomed Pharmacother 2023; 164:114933. [PMID: 37236030 DOI: 10.1016/j.biopha.2023.114933] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023] Open
Abstract
Photodynamic therapy (PDT) and sonodynamic therapy (SDT) are non-invasive treatment methods with obvious inhibitory effect on tumors and have few side effects, which have been widely concerned and explored by researchers. Sensitizer is the main factor in determining the therapeutic effect of PDT and SDT. Porphyrins, a group of organic compounds widespread in nature, can be activated by light or ultrasound and produce reactive oxygen species. Therefore, porphyrins as sensitizers in PDT have been widely explored and investigated for many years. Herein, we summarize the classical porphyrin compounds and their applications and mechanisms in PDT and SDT. The application of porphyrin in clinical diagnosis and imaging is also discussed. In conclusion, porphyrins have good application prospects in disease treatment as an important part of PDT or SDT, and in clinical diagnosis and imaging.
Collapse
Affiliation(s)
- Fuyu Yang
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, China
| | - Meiqi Xu
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, China
| | - Xiaoyu Chen
- Department of Neonatal, The Fourth Hospital of Harbin Medical University, Harbin
| | - Yakun Luo
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
69
|
Wang X, Zhou W, Xu R, Xu Y, Song H, Li H, Wang J. Photo-induced energy transfer within donor-acceptor dipeptides: Towards an artificial light-harvesting hydrogel system. J Colloid Interface Sci 2023; 645:466-471. [PMID: 37156155 DOI: 10.1016/j.jcis.2023.04.138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Well-defined relative orientations and distances between chromophores are prerequisites for high-efficiency energy transfer, which can generally be realized by regularly assembling short peptide compounds with different absorption wavelengths and luminescence positions. Herein, a series of dipeptides are designed and synthesized, where the dipeptides contain different chromophores with several absorption bands. A co-self-assembled peptide hydrogel is prepared for artificial light-harvesting systems. The photophysical properties and assembly behavior of these dipeptide-chromophore conjugates in solution and hydrogel are systematically studied. As a result of the three-dimensional (3-D) self-assembly feature, effective energy transfer between donor and acceptor in the hydrogel system is achieved. These systems exhibit high antenna effect at a high donor/acceptor ratio (2564:1), which is characterized by an increase in the fluorescence intensity. Further, multiple molecules with different absorption wavelengths can be co-assembled as energy donors in order to achieve a wide spectrum of absorption. The method allows flexible light-harvesting systems to be realized. The ratio of energy donors to acceptors can be adjusted arbitrarily, and constructive motifs can be selected based on the application.
Collapse
Affiliation(s)
- Xinxin Wang
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China.
| | - Wenyuan Zhou
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Rou Xu
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yiping Xu
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Hui Song
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Hongyi Li
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Jinshu Wang
- Key Laboratory of Advanced Functional Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
70
|
Zhao M, Zhuang H, Li B, Chen M, Chen X. In Situ Transformable Nanoplatforms with Supramolecular Cross-Linking Triggered Complementary Function for Enhanced Cancer Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209944. [PMID: 36856448 DOI: 10.1002/adma.202209944] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/29/2023] [Indexed: 05/19/2023]
Abstract
In vivo cross-linking of nanoparticles is widely used to increase accumulation of therapeutic agents at tumor site for enhanced therapy. However, the components in nanoplatforms usually only play for one role and are independent of each other, unable to amplify their biofunctions. Herein, a complementary functioning tumor microenvironment triggered, supramolecular coordination-induced nanoparticle cross-linking strategy is constructed for enhanced photodynamic therapy. Manganese oxide (MnOx ) and polyhydroxy photosensitizer hypericin (Hyp) are coated and loaded onto lanthanide-doped upconversion nanoparticles (UCNPs) to form transformable UCNP@MnOx -Hyp. In CT26 mouse colon cancer cells and xenograft tumors, UCNP@MnOx -Hyp is reduced by glutathione and H2 O2 , releasing Mn2+ and Hyp for in situ cross-linking to transform to UCNP@Mn2+ -Hyp. Compared to the simple photosensitizer-loaded UCNP@PEI-Hyp, the Mn2+ -Hyp coordination redshifts absorbance of Hyp and improves the energy transfer efficiency from UCNPs to Hyp (5.6-fold). In turn, the supramolecular coordination-induced UCNPs cross-linking exhibits enhanced luminescence recovery and increased intracellular accumulation of both UCNPs and Hyp, thus enhancing the photodynamic therapy efficacy both at cellular level (2.1-fold) and in vivo, realizing the function amplification of each component after responsive transformation and offering a new avenue for enhanced cancer therapy.
Collapse
Affiliation(s)
- Mengyao Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Hongjun Zhuang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Material, Fudan University, Shanghai, 200433, China
| | - Benhao Li
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
71
|
Zheng M, Yang Q, Lu C, Wu X, Yan W, Liu D. Nanostructured organic photosensitizer aggregates in disease phototheranostics. Drug Discov Today 2023; 28:103598. [PMID: 37116827 DOI: 10.1016/j.drudis.2023.103598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/31/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Aggregate science provides promising opportunities for the discovery of novel disease phototheranostics. Under the guidance of aggregology and the Jablonski energy level diagram, photosensitizer aggregates with tunable photophysical properties can consequently result in tailorable diagnosis and treatment modalities. This review summarizes recent advances in the formation of nanostructured organic photosensitizer aggregates, their photophysical processes (e.g., radiative emission, vibrational relaxation, and intersystem crossing), and particularly, their applications in disease phototheranostics such as fluorescence imaging and sensing, photothermal therapy, photoacoustic imaging, and photodynamic therapy. It is expected that this comprehensive summary will provide guidance for the construction of nanostructured organic photosensitizer aggregates, for establishment of aggregation-photophysical property relationships and the development of novel disease phototheranostic nanomedicines. Teaser: This article reviews the electron-delocalized π system-caused formation of nanostructured organic photosensitizer aggregates, which undergo radiative emission, vibrational relaxation, or intersystem crossing pathways to achieve fluorescence imaging and sensing, photothermal therapy, photoacoustic imaging, and photodynamic therapy.
Collapse
Affiliation(s)
- Maochao Zheng
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310022, China.
| | - Qianqian Yang
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310022, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaolei Wu
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Wei Yan
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Daojun Liu
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, China; Plastic Surgery Institute of Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
72
|
Frant MP, Trytek M, Deryło K, Kutyła M, Paduch R. Cellular Localization of Selected Porphyrins and Their Effect on the In Vitro Motility of Human Colon Tumors and Normal Cells. Molecules 2023; 28:molecules28072907. [PMID: 37049670 PMCID: PMC10096141 DOI: 10.3390/molecules28072907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Standard therapies for colorectal cancer cannot eliminate or sufficiently reduce the metastasis process. Photodynamic therapy (PDT) may be an alternative to minimizing this problem. Here, we examined the cellular localization of selected porphyrins and determined whether free-base and manganese (III) metallated porphyrins may limit colon cancer cells' (HT29) or normal colon epithelial cells' (CCD 841 CoTr) motility in vitro. White light irradiation was used to initiate the photodynamic effect. Porphyrin uptake by the cells was determined by porphyrin fluorescence measurements through the use of confocal microscopy. Free-base porphyrin was found in cells, where it initially localized at the edge of the cytoplasm and later in the perinuclear area. The concentrations of porphyrins had no effect on cancer cell migration but had a significant effect on normal cell motility. Due to the low concentrations of porphyrins used, no changes in F-actin filaments of the cellular cytoskeleton were detected. Signal transmission via connexons between neighbouring cells was limited to a maximum of 40 µm for HT29 and 30 µm for CCD 841 CoTr cells. The tested porphyrins differed in their activity against the tumor and normal cells' migration capacity. Depending on the porphyrin used and the type of cells, their migration changed in relation to the control sample. The use of white light may change the activity of the porphyrins relative to the migratory capacity of the cells. The aim of the present study was to analyse the intracellular localization of tested porphyrins and their influence on the mobility of cells after irradiation with harmless white light.
Collapse
Affiliation(s)
- Maciej P Frant
- Department of Swine Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland
| | - Mariusz Trytek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Kamil Deryło
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Mateusz Kutyła
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland
| |
Collapse
|
73
|
Abstract
Porphyrin derivatives are ubiquitous in bio-organisms and are associated with proteins that play important biological roles, such as oxygen transport, photosynthesis, and catalysis. Porphyrins are very fascinating research objects for chemists, physicists, and biologists owing to their versatile chemical and physical properties. Porphyrin derivatives are actively used in various fields, such as molecular recognition, energy conversion, sensors, biomedicine, and catalysts. Porphyrin derivatives can be used as building blocks for supramolecular polymers because their primitive structures have C4 symmetry, which allows for the symmetrical introduction of self-assembling motifs. This review describes the fabrication of porphyrin-based supramolecular polymers and novel discoveries in supramolecular polymer growth. First, we summarise the (i) design concepts, (ii) growth mechanism and (iii) analytical methods of porphyrin-based supramolecular polymers. Then, the examples of porphyrin-based supramolecular polymers formed by (iv) hydrogen bonding, (v) metal coordination-based interaction, (vi) host-guest complex formation, and (vii) others are summarised. Finally, (viii) applications and perspectives are discussed. Although supramolecular polymers, in a broad sense, can include either two-dimensional (2D) networks or three-dimensional (3D) porous polymer structures; this review mainly focuses on one-dimensional (1D) fibrous supramolecular polymer structures.
Collapse
Affiliation(s)
- Hosoowi Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| | - Hyunjun Park
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| |
Collapse
|
74
|
Abstract
Ferric heme b (= ferric protoporphyrin IX = hemin) is an important prosthetic group of different types of enzymes, including the intensively investigated and widely applied horseradish peroxidase (HRP). In HRP, hemin is present in monomeric form in a hydrophobic pocket containing among other amino acid side chains the two imidazoyl groups of His170 and His42. Both amino acids are important for the peroxidase activity of HRP as an axial ligand of hemin (proximal His170) and as an acid/base catalyst (distal His42). A key feature of the peroxidase mechanism of HRP is the initial formation of compound I under heterolytic cleavage of added hydrogen peroxide as a terminal oxidant. Investigations of free hemin dispersed in aqueous solution showed that different types of hemin dimers can form, depending on the experimental conditions, possibly resulting in hemin crystallization. Although it has been recognized already in the 1970s that hemin aggregation can be prevented in aqueous solution by using micelle-forming amphiphiles, it remains a challenge to prepare hemin-containing micellar and vesicular systems with peroxidase-like activities. Such systems are of interest as cheap HRP-mimicking catalysts for analytical and synthetic applications. Some of the key concepts on which research in this fascinating and interdisciplinary field is based are summarized, along with major accomplishments and possible directions for further improvement. A systematic analysis of the physico-chemical properties of hemin in aqueous micellar solutions and vesicular dispersions must be combined with a reliable evaluation of its catalytic activity. Future studies should show how well the molecular complexity around hemin in HRP can be mimicked by using micelles or vesicles. Because of the importance of heme b in virtually all biological systems and the fact that porphyrins and hemes can be obtained under potentially prebiotic conditions, ideas exist about the possible role of heme-containing micellar and vesicular systems in prebiotic times.
Collapse
|
75
|
Castillo O, Mancillas J, Hughes W, Brancaleon L. Characterization of the interaction of metal-protoporphyrins photosensitizers with β- lactoglobulin. Biophys Chem 2023; 292:106918. [PMID: 36399946 DOI: 10.1016/j.bpc.2022.106918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Abstract
We investigated the interaction of a series of metal-protoporphyrins (PPIXs) with bovine β- lactoglobulin (BLG) using a combination of optical spectroscopy and computational simulations. Unlike other studies, the simulations were not merely used to rationalize the experimental data but were employed to refine the experimental data itself. The study was carried out at two pH values, 5 and 9, where BLG is known to have different conformation dictated by the so-called Tanford transition which occurs near pH 7.5. The transition is postulated to regulate access to the interior binding cavity of the protein, thus the pH variation was used as a parameter to investigate whether PPIXs access the central cavity of BLG. The results of our study show that indeed binding increases significantly at alkaline pH, however, the increased affinity is not due to the accessibility of the central cavity. Instead, binding appears to be determined by the tendency of PPIXs to form large inhomogeneous aggregates at acidic pH which hinders interactions with proteins. The binding site determined through a combination of experimental and computational methods is located at the interface between two BLG monomers where the long α-helix segment of the protein face each other. This region is rich in positively charged Lys residues that interact with the propionic acid chains of the protoporphyrins. Establishing the modality of binding between protoporphyrins and BLG would have important consequences for the use of BLG:PPIX complexes in applications such as artificial photoreceptors, artificial metallo-enzymes, delivery of photosensitizers for phototherapy and even solar energy conversion.
Collapse
Affiliation(s)
- Omar Castillo
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - James Mancillas
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - William Hughes
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Lorenzo Brancaleon
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
76
|
Switchable Nanozyme Activity of Porphyrins Intercalated in Layered Gadolinium Hydroxide. Int J Mol Sci 2022; 23:ijms232315373. [PMID: 36499698 PMCID: PMC9736057 DOI: 10.3390/ijms232315373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, organo-inorganic nanohybrids LHGd-MTSPP with enzyme-like activity were prepared by in situ intercalation of anionic 5,10,15,20-tetrakis-(4-sulfonatophenyl)porphyrin and its complexes with Zn(II) and Pd(II) (MTSPP, M = 2H, Zn(II) and Pd(II)) into gadolinium layered hydroxide (LHGd). The combination of powder XRD, CHNS analysis, FT-IR, EDX, and TG confirmed the layered structure of the reaction products. The basal interplanar distances in LHGd-MTSPP samples were 22.3-22.6 Å, corresponding to the size of an intercalated tetrapyrrole molecule. According to SEM data, LHGd-MTSPP hybrids consisted of individual lamellar nanoparticles 20-50 nm in thickness. The enzyme-like activity of individual constituents, LHGd-Cl and sulfoporphyrins TSPP, ZnTSPP and PdTSPP, and hybrid LHGd-MTSPP materials, was studied by chemiluminescence analysis using the ABAP/luminol system in phosphate buffer solution. All the individual porphyrins exhibited dose-dependent antioxidant properties with respect to alkylperoxyl radicals at pH 7.4. The intercalation of free base TSPP porphyrin into the LHGd preserved the radical scavenging properties of the product. Conversely, in LHGd-MTSPP samples containing Zn(II) and Pd(II) complexes, the antioxidant properties of the porphyrins changed to dose-dependent prooxidant activity. Thus, an efficient approach to the design and synthesis of advanced LHGd-MTSPP materials with switchable enzyme-like activity was developed.
Collapse
|
77
|
Wei H, Min J, Wang Y, Shen Y, Du Y, Su R, Qi W. Bioinspired porphyrin-peptide supramolecular assemblies and their applications. J Mater Chem B 2022; 10:9334-9348. [PMID: 36373597 DOI: 10.1039/d2tb01660e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Inspired by the hierarchical chiral assembly of porphyrin-proteins in photosynthetic systems, the hierarchical self-assembly of porphyrin-amino acids/peptides provides a novel strategy for constructing functional materials. How to artificially simulate the assembly of porphyrins, proteins, and other cofactors in the photosynthesis system to obtain persistent strong light capture, charge separation and catalytic reactions has become an important concern in the construction of biomimetic photosynthesis systems. This paper summarizes the different assembly strategies adopted in recent years, the effects of driving forces on self-assembly, and the application of porphyrin-peptides in catalysis and biomedicine, and briefly discusses the challenges and prospects for future research.
Collapse
Affiliation(s)
- Hao Wei
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Jiwei Min
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China. .,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yuhe Shen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Yaohui Du
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
78
|
Kanzaki C, Yoneda H, Nomura S, Maeda T, Numata M. Ionic supramolecular polymerization of water-soluble porphyrins: balancing ionic attraction and steric repulsion to govern stacking. RSC Adv 2022; 12:30670-30681. [PMID: 36337941 PMCID: PMC9597584 DOI: 10.1039/d2ra05542b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
We have synthesized novel water-soluble anionic porphyrin monomers that undergo pH-regulated ionic supramolecular polymerization in aqueous media. By tuning the total charge of the monomer, we selectively produced two different supramolecular polymers: J- and H-stacked. The main driving force toward the J-aggregated supramolecular polymers was the ionic interactions between the sulfonate and protonated pyrrole groups, ultimately affording neutral supramolecular polymers. In these J-aggregated supramolecular polymers, amide groups were aligned regularly along polymer wedges, which further assembled in an edge-to-edge manner to afford nanosheets. In contrast, the H-aggregated supramolecular polymers remained anionic, with their amide NH moieties acting as anion receptors along the polymer chains, thereby minimizing repulsion. For both polymers, varying the steric bulk of the peripheral ethylene glycol (EG) units controlled the rates of self-assembly as well as the degrees of polymerization. This steric effect was further tunable, depending on the solvation state of the EG chains. Accordingly, this new family of supramolecular polymers was created by taking advantage of unique driving forces that depended on both the pH and solvent.
Collapse
Affiliation(s)
- Chisako Kanzaki
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University Shimogamo, Sakyo-ku Kyoto 606-8522 Japan +81-75-703-5132
| | - Hiroshi Yoneda
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University Shimogamo, Sakyo-ku Kyoto 606-8522 Japan +81-75-703-5132
| | - Shota Nomura
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University Shimogamo, Sakyo-ku Kyoto 606-8522 Japan +81-75-703-5132
| | - Takato Maeda
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University Shimogamo, Sakyo-ku Kyoto 606-8522 Japan +81-75-703-5132
| | - Munenori Numata
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University Shimogamo, Sakyo-ku Kyoto 606-8522 Japan +81-75-703-5132
| |
Collapse
|
79
|
Cai F, Ye K, Chen M, Tian Y, Chen P, Lin H, Chen T, Ma L. High-dimensional zinc porphyrin nanoframeworks as efficient radiosensitizers for cervical cancer. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
80
|
Zatsikha YV, Schrage BR, Blesener TS, Harrison LA, Ziegler CJ, Nemykin VN. Meso
‐Carbon Atom Nucleophilic Attack Susceptibility in the Sterically Strained Antiaromatic Bis‐BODIPY Macrocycle and Extended Electron‐Deficient BODIPY Precursor**. Chemistry 2022; 28:e202201261. [DOI: 10.1002/chem.202201261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yuriy V. Zatsikha
- Department of Chemistry University of Manitoba Winnipeg MB R3T 2N2 Canada
- Enamine Ltd Chervonotkatska Street 78 Kyiv 02094 Ukraine
| | - Briana R. Schrage
- Department of Chemistry University of Tennessee – Knoxville Knoxville TN 37996 USA
| | - Tanner S. Blesener
- Department of Chemistry University of Tennessee – Knoxville Knoxville TN 37996 USA
| | - Laurel A. Harrison
- Department of Chemistry University of Tennessee – Knoxville Knoxville TN 37996 USA
| | | | - Victor N. Nemykin
- Department of Chemistry University of Tennessee – Knoxville Knoxville TN 37996 USA
| |
Collapse
|
81
|
Liu Y, Hu X, Liang F, Cao Y. A FRET sensor based on quantum dots-porphyrin assembly for Fe(III) detection with ultra-sensitivity and accuracy. Anal Bioanal Chem 2022; 414:7741-7751. [PMID: 36056266 DOI: 10.1007/s00216-022-04305-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/01/2022]
Abstract
Exploring sensors based on Förster resonance energy transfer (FRET) systems enables the continuous development of biological sensing technologies. Herein, we report the construction of a FRET sensor with dual-emissive quantum dots (QDs) and meso-tetra(4-sulfonatophenyl) porphine (TSPP). The sensor is composed of mesial green-emissive QDs with a thick silica shell (gQD@SiO2) and circumjacent blue-emissive QDs coated with ultra-thin silica spacer, on which is linked TSPP (bQD@SiO2-TSPP). The gQD@SiO2 endows the sensor with a fluorescent background. Due to the ultra-thin silica spacing, coupled with the superior resonance effect of bQD fluorescence and the Soret-band absorption of TSPP, the FRET efficiency is highly sensitive to the chelation state of TSPP. Relying on the absorbance transition of TSPP complexed with Fe(III), the FRET sensor is applied for ultra-sensitive Fe(III) detection. In aqueous solution, the sensor is demonstrated to linearly detect Fe(III) in the range of 0-1 μM, with a limit of detection (LOD) of 40 nM. More importantly, reliable Fe(III) detection can be achieved via the specific complexation of Fe(III) by TSPP and the ratiometric fluorescent response. As such, the inter-/intra-day precisions in standard samples, as well as the recovery rate in biological matrices, are fully validated. The excellent analytical performance, in combination with the excellent biocompatibility of the FRET sensor, allows semi-quantitative Fe(III) imaging in living cells.
Collapse
Affiliation(s)
- Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Xianyun Hu
- State Key Laboratory of Functions and Applications of Medical Plants, Guizhou Medical University, Guiyang, 550014, China.,Qiannan Medical College for Nationalities, Duyun, 558000, China
| | - Fangyuan Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yajing Cao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
82
|
O'Neill JS, Kearney L, Brandon MP, Pryce MT. Design components of porphyrin-based photocatalytic hydrogen evolution systems: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
83
|
Trytek M, Buczek K, Zdybicka-Barabas A, Wojda I, Borsuk G, Cytryńska M, Lipke A, Gryko D. Effect of amide protoporphyrin derivatives on immune response in Apis mellifera. Sci Rep 2022; 12:14406. [PMID: 36002552 PMCID: PMC9402574 DOI: 10.1038/s41598-022-18534-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/16/2022] [Indexed: 12/29/2022] Open
Abstract
The intracellular microsporidian parasite Nosema ceranae is known to compromise bee health by induction of energetic stress and downregulation of the immune system. Porphyrins are candidate therapeutic agents for controlling Nosema infection without adverse effects on honeybees. In the present work, the impact of two protoporphyrin IX derivatives, i.e. PP[Asp]2 and PP[Lys]2, on Apis mellifera humoral immune response has been investigated in laboratory conditions in non-infected and N. ceranae-infected honeybees. Fluorescence spectroscopy analysis of hemolymph showed for the first time that porphyrin molecules penetrate into the hemocoel of honeybees. Phenoloxidase (PO) activity and the expression of genes encoding antimicrobial peptides (AMPs: abaecin, defensin, and hymenoptaecin) were assessed. Porphyrins significantly increased the phenoloxidase activity in healthy honeybees but did not increase the expression of AMP genes. Compared with the control bees, the hemolymph of non-infected bees treated with porphyrins had an 11.3- and 6.1-fold higher level of PO activity after the 24- and 48-h porphyrin administration, respectively. Notably, there was a significant inverse correlation between the PO activity and the AMP gene expression level (r = - 0.61696, p = 0.0143). The PO activity profile in the infected bees was completely opposite to that in the healthy bees (r = - 0.5118, p = 0.000), which was related to the changing load of N. ceranae spores in the porphyrin treated-bees. On day 12 post-infection, the spore loads in the infected porphyrin-fed individuals significantly decreased by 74%, compared with the control bees. Our findings show involvement of the honeybee immune system in the porphyrin-based control of Nosema infection. This allows the infected bees to improve their lifespan considerably by choosing an optimal PO activity/AMP expression variant to cope with the varying level of N. ceranae infection.
Collapse
Affiliation(s)
- Mariusz Trytek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Katarzyna Buczek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Iwona Wojda
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Grzegorz Borsuk
- Institute of Biological Basis of Animal Production, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Agnieszka Lipke
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Curie Skłodowska Sq. 2, 20-031, Lublin, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
84
|
Chen D, Zhao H, Shao T, Lu X, Fang Z, Cao H, Tian Y, Tian X. A cyclometallated iridium(III) complex with multi-photon absorption properties as an imaging-guided photosensitizer. J Mater Chem B 2022; 10:5765-5773. [PMID: 35856855 DOI: 10.1039/d2tb01023b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Conventional photosensitizers (PSs) often have shorter excitation wavelengths and poor cancer cell targeting, resulting in a limited tissue penetration depth and increased biotoxicity, which are significant barriers to ensuring effective photodynamic therapy (PDT) in vivo. In this work, a cyclometallated iridium(III) complex (Ir-Biotin) with a long excitation wavelength and effective cancer cell targeting was designed and synthesized. The initial in vitro assessment indicated that Ir-Biotin shows excellent PDT activity with a high singlet-oxygen (1O2) generation yield (0.19) due to the facilitated intersystem crossing process. Further study shows that Ir-Biotin shows good biocompatibility, has specific selectivity for cancer cells, and can induce apoptosis under laser irradiation. Furthermore, Ir-Biotin can be applied for imaging-guided PDT using an in vivo imaging system, and showed significant anti-tumour effects (tumour growth inhibition value: 87.66%). These results reveal the importance of long excitation wavelengths of photosensitizers for efficient PDT and suggest a promising strategy for developing effective photosensitizers.
Collapse
Affiliation(s)
- Dandan Chen
- Anhui University, School of Life Science, Hefei, Anhui Province, China
| | - Hongqing Zhao
- Anhui University, Institutes of Physical Science and Information Technology, Hefei, Anhui Province, China
| | - Tao Shao
- Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Xi'an, Shanxi Province, China
| | - Xin Lu
- Anhui University, Department of Chemistry, Hefei, Anhui Province, China
| | - Zhiyun Fang
- Anhui University, Department of Chemistry, Hefei, Anhui Province, China
| | - Hongzhi Cao
- Anhui University, School of Life Science, Hefei, Anhui Province, China.,West China Hospital of Sichuan University, Huaxi MR Research Centre (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology and National Clinical Research Center for Geriatrics, Chengdu, Sichuan Province, China
| | - Yupeng Tian
- Anhui University, Department of Chemistry, Hefei, Anhui Province, China
| | - Xiaohe Tian
- Anhui University, School of Life Science, Hefei, Anhui Province, China.,West China Hospital of Sichuan University, Huaxi MR Research Centre (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology and National Clinical Research Center for Geriatrics, Chengdu, Sichuan Province, China
| |
Collapse
|
85
|
Kashapov RR, Razuvayeva YS, Lukashenko SS, Amerhanova SK, Lyubina AP, Voloshina AD, Syakaev VV, Salnikov VV, Zakharova LY. Supramolecular Self-Assembly of Porphyrin and Metallosurfactant as a Drug Nanocontainer Design. NANOMATERIALS 2022; 12:nano12121986. [PMID: 35745324 PMCID: PMC9228287 DOI: 10.3390/nano12121986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022]
Abstract
The combined method of treating malignant neoplasms using photodynamic therapy and chemotherapy is undoubtedly a promising and highly effective treatment method. The development and establishment of photodynamic cancer therapy is closely related to the creation of sensitizers based on porphyrins. The present study is devoted to the investigation of the spectroscopic, aggregation, and solubilization properties of the supramolecular system based on 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TSPP) and lanthanum-containing surfactant (LaSurf) in an aqueous medium. The latter is a complex of lanthanum nitrate and two cationic amphiphilic molecules of 4-aza-1-hexadecylazoniabicyclo[2.2.2]octane bromide. The mixed TSPP–LaSurf complexes can spontaneously assemble into various nanostructures capable of binding the anticancer drug cisplatin. Morphological behavior, stability, and ability to drug binding of nanostructures can be tailored by varying the molar ratio and the concentration of components. The guest binding is shown to be additional factor controlling structural rearrangements and properties of the supramolecular TSPP–LaSurf complexes.
Collapse
Affiliation(s)
- Ruslan R. Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (Y.S.R.); (S.S.L.); (S.K.A.); (A.P.L.); (A.D.V.); (V.V.S.); (L.Y.Z.)
- Correspondence: ; Tel.: +7-(843)-273-22-93
| | - Yuliya S. Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (Y.S.R.); (S.S.L.); (S.K.A.); (A.P.L.); (A.D.V.); (V.V.S.); (L.Y.Z.)
| | - Svetlana S. Lukashenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (Y.S.R.); (S.S.L.); (S.K.A.); (A.P.L.); (A.D.V.); (V.V.S.); (L.Y.Z.)
| | - Syumbelya K. Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (Y.S.R.); (S.S.L.); (S.K.A.); (A.P.L.); (A.D.V.); (V.V.S.); (L.Y.Z.)
| | - Anna P. Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (Y.S.R.); (S.S.L.); (S.K.A.); (A.P.L.); (A.D.V.); (V.V.S.); (L.Y.Z.)
| | - Alexandra D. Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (Y.S.R.); (S.S.L.); (S.K.A.); (A.P.L.); (A.D.V.); (V.V.S.); (L.Y.Z.)
| | - Victor V. Syakaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (Y.S.R.); (S.S.L.); (S.K.A.); (A.P.L.); (A.D.V.); (V.V.S.); (L.Y.Z.)
| | - Vadim V. Salnikov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia;
| | - Lucia Y. Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia; (Y.S.R.); (S.S.L.); (S.K.A.); (A.P.L.); (A.D.V.); (V.V.S.); (L.Y.Z.)
| |
Collapse
|
86
|
Sakr MA, Saad MA. Spectroscopic investigation, DFT, NBO and TD-DFT calculation for porphyrin (PP) and porphyrin-based materials (PPBMs). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
87
|
Koifman OI, Ageeva TA. Main Strategies for the Synthesis of meso-Arylporphyrins. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [PMCID: PMC9156840 DOI: 10.1134/s1070428022040017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
meso-Arylporphyrins as most accessible tetrapyrrole macroheterocycles have always been the focus of attention from researchers concerned with practically useful properties of these compounds. The first syntheses of meso-arylporphyrins date back to about 90 years ago. Up to now, the yields of these compounds have been improved from 5 to 80%. The present review analyzes different ways and strategies for the synthesis of meso-aryl-substituted porphyrins. The most efficient methods that can be scaled up to an industrial level have been identified.
Collapse
Affiliation(s)
- O. I. Koifman
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| | - T. A. Ageeva
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| |
Collapse
|
88
|
Yang J, Jing J, Li W, Zhu Y. Electron Donor-Acceptor Interface of TPPS/PDI Boosting Charge Transfer for Efficient Photocatalytic Hydrogen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201134. [PMID: 35404517 PMCID: PMC9189676 DOI: 10.1002/advs.202201134] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/20/2022] [Indexed: 05/11/2023]
Abstract
Charge separation efficiency of photocatalysts is still the key scientific issue for solar-to-chemical energy conversion. In this work, an electron donor-acceptor (D-A) interface with high charge separation between TPPS (tetra(4-sulfonatophenyl)porphyrin) and PDI (perylene diimide) is successfully constructed for boosting photocatalytic H2 evolution. The TPPS/PDI with D-A interface shows excellent photocatalytic H2 evolution rate of 546.54 µmol h-1 (30.36 mmol h-1 g-1 ), which is 9.95 and 9.41 times higher than that of pure TPPS and PDI, respectively. The TPPS/PDI has a markedly stronger internal electric field, which is respectively 3.76 and 3.01 times higher than that of pure PDI and TPPS. The D-A interface with giant internal electric field efficiently facilitates charge separation and urges TPPS/PDI to have a longer excited state lifetime than single component. The work provides entirely new ideas for designing materials with D-A interface to realize high photocatalytic activity.
Collapse
Affiliation(s)
- Jun Yang
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Jianfang Jing
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Wenlu Li
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Yongfa Zhu
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
89
|
Jin L, Miao Y, Liu D, Song F. Fe/Mn‐Porphyrin Coordination Polymer Nanoparticles for Magnetic Resonance Imaging (MRI) Guided‐Combination Therapy between Photodynamic Therapy and Chemodynamic Therapy. ChemistrySelect 2022. [DOI: 10.1002/slct.202104366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lin Jin
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao Shandong 266237 China
| | - Yuyang Miao
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao Shandong 266237 China
| | - Dapeng Liu
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao Shandong 266237 China
| | - Fengling Song
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao Shandong 266237 China
| |
Collapse
|
90
|
Duan W, Li B, Zhang W, Li J, Yao X, Tian Y, Zheng J, Li D. Two-photon responsive porphyrinic metal-organic framework involving Fenton-like reaction for enhanced photodynamic and sonodynamic therapy. J Nanobiotechnology 2022; 20:217. [PMID: 35524276 PMCID: PMC9074235 DOI: 10.1186/s12951-022-01436-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022] Open
Abstract
Designing new oxygenation nanomaterials by oxygen-generating or oxygen-carrying strategies in hypoxia-associated anti-tumor therapy is a high priority target yet challenge. In this work, we fabricated a nanoplatform involving Fenton-like reaction, Pd@MOF-525@HA, to relieve tumor hypoxia via oxygen-generating strategy for enhanced oxygen-dependent anti-tumor therapy. Thereinto, the porphyrinic MOF-525 can produce singlet oxygen (1O2) via light or ultrasonic irradiation for photodynamic and sonodynamic therapy. Notably, the well-dispersed Pd nanocubes within MOF-525 can convert H2O2 into O2 to mitigate the hypoxic environment for enhanced therapy outcome. Moreover, the two-photon activity and cancer cell specific targeting capability of Pd@MOF-525@HA gave rise to deeper tissue penetration and near-infrared light-induced fluorescence imaging to achieve precise guidance for cancer therapy. This work provides a feasible way in designing new oxygenation nanomaterials to relieve tumor hypoxia for enhanced cancer treatment.
Collapse
Affiliation(s)
- Wenyao Duan
- Institutes of Physics Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, People's Republic of China
| | - Bo Li
- Institutes of Physics Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, People's Republic of China
| | - Wen Zhang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, People's Republic of China
| | - Jiaqi Li
- Institutes of Physics Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, People's Republic of China
| | - Xin Yao
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, People's Republic of China
| | - Yupeng Tian
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, People's Republic of China
| | - Jun Zheng
- Institutes of Physics Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, People's Republic of China.
| | - Dandan Li
- Institutes of Physics Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, People's Republic of China. .,Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, People's Republic of China.
| |
Collapse
|
91
|
Fathalla M. Porphyrin-Bodipy light harvesting [3]rotaxane. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
92
|
Frant MP, Trytek M, Paduch R. Assessing the In Vitro Activity of Selected Porphyrins in Human Colorectal Cancer Cells. Molecules 2022; 27:molecules27062006. [PMID: 35335367 PMCID: PMC8955395 DOI: 10.3390/molecules27062006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Standard in vitro analyses determining the activity of different compounds included in the chemotherapy of colon cancer are currently insufficient. New ideas, such as photodynamic therapy (PDT), may bring tangible benefits. The aim of this study was to show that the biological activity of selected free-base and manganese (III) metallated porphyrins differs in the limitation of colon cancer cell growth in vitro. White light irradiation was also hypothesized to initiate a photodynamic effect on tested porphyrins. Manganese porphyrin (>1 μM) significantly decreased the viability of the colon tumor and normal colon epithelial cells, both in light/lack of light conditions, while decreasing a free-base porphyrin after only 3 min of white light irradiation. Both porphyrins interacted with cytostatics in an antagonistic manner. The manganese porphyrin mainly induced apoptosis and necrosis in the tumor, and apoptosis in the normal cells, regardless of light exposure conditions. The free-base porphyrin conducted mainly apoptosis and autophagy. Normal and tumor cells released low levels of IL-1β and IL-10. Tumor cells released a low level of IL-6. Light conditions and porphyrins were influenced at the cytokine level. Tested manganese (III) metallated and free-base porphyrins differ in their activity against human colon cancer cells. The first showed no photodynamic, but a toxic activity, whereas the second expressed high photodynamic action. White light use may induce a photodynamic effect associated with porphyrins.
Collapse
Affiliation(s)
- Maciej Piotr Frant
- Department of Swine Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland;
| | - Mariusz Trytek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland;
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland
- Correspondence: or
| |
Collapse
|
93
|
Keum H, Yoo D, Jon S. Photomedicine based on heme-derived compounds. Adv Drug Deliv Rev 2022; 182:114134. [PMID: 35122881 DOI: 10.1016/j.addr.2022.114134] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/16/2021] [Accepted: 01/30/2022] [Indexed: 02/08/2023]
Abstract
Photoimaging and phototherapy have become major platforms for the diagnosis and treatment of various health complications. These applications require a photosensitizer (PS) that is capable of absorbing light from a source and converting it into other energy forms for detection and therapy. While synthetic inorganic materials such as quantum dots and gold nanorods have been widely explored for their medical diagnosis and photodynamic (PDT) and photothermal (PTT) therapy capabilities, translation of these technologies has lagged, primarily owing to potential cytotoxicity and immunogenicity issues. Of the various photoreactive molecules, the naturally occurring endogenous compound heme, a constituent of red blood cells, and its derivatives, porphyrin, biliverdin and bilirubin, have shown immense potential as noteworthy candidates for clinically translatable photoreactive agents, as evidenced by previous reports. While porphyrin-based photomedicines have attracted significant attention and are well documented, research on photomedicines based on two other heme-derived compounds, biliverdin and bilirubin, has been relatively lacking. In this review, we summarize the unique photoproperties of heme-derived compounds and outline recent efforts to use them in biomedical imaging and phototherapy applications.
Collapse
|
94
|
Cp*Ir complex with mesobiliverdin ligand isolated from Thermoleptolyngbya sp. O-77. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
95
|
Vonlanthen M, Cuétara-Guadarrama F, Porcu P, Sorroza-Martínez K, González-Méndez I, Rivera E. Dendronized Porphyrins: Molecular Design and Synthesis. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220126121801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
In this review, we report different methods and strategies to synthesize flexible and rigid dendronized porphyrins. We will focus on porphyrin dendrimers that have been reported in the last 10 years. Particularly, in our research group, we have designed and synthesized different series of dendronized porphyrins (free base and metallated) with pyrene units at the periphery and Fréchet-type dendritic arms. The Lindsey methodology has allowed the synthesis of meso-substituted porphyrins with various substitution patterns, such as symmetric, dissymmetric, or unsymmetric. Porphyrin dendrimers have been prepared by different synthetic methodologies; one of the most reported being the convergent method, where the dendrons are first prepared and further linked to a meso-substituted functionalized porphyrin unit, which will constitute the core of the dendrimer. Another interesting synthetic approach is the use of a reactive dendron bearing a terminal aldehyde functional group to form the final porphyrin core. In this way, a two-armed dendronized dissymmetric porphyrin core can be prepared from a dendritic precursor and a dipyrromethene derivative. This strategy is very convenient to prepare low-generation dendritic porphyrins. The divergent approach is another well-known methodology for porphyrin dendrimer synthesis, mostly used for the obtainment of high-generation dendrimers. Click chemistry reaction has been advantageous for the development of more complex porphyrin dendritic structures. This reaction presents important advantages, such as high yields and mild reaction conditions which permit the assembly of different multiporphyrin dendritic structures. In the constructs presented in this review, the emission of the porphyrin moiety has been observed, leading to potential applications in artificial photosynthesis, sensing, nanomedicine, and biological sciences.
Collapse
Affiliation(s)
- Mireille Vonlanthen
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| | - Fabián Cuétara-Guadarrama
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| | - Pasquale Porcu
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| | - Kendra Sorroza-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| | - Israel González-Méndez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| | - Ernesto Rivera
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| |
Collapse
|
96
|
Zhang H, Yu D, Liu S, Liu C, Liu Z, Ren J, Qu X. NIR-II Hydrogen-Bonded Organic Frameworks (HOFs) Used for Target-Specific Amyloid-β Photooxygenation in an Alzheimer's Disease Model. Angew Chem Int Ed Engl 2022; 61:e202109068. [PMID: 34735035 DOI: 10.1002/anie.202109068] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 11/12/2022]
Abstract
Phototherapy has emerged as a powerful approach for interrupting β-amyloid (Aβ) self-assembly. However, deeper tissue penetration and safer photosensitizers are urgent to be exploited for avoiding damaging nearby normal tissues and improving therapeutic effectiveness. A hydrogen-bonded organic framework (HOF)-based NIR-II photooxygenation catalyst is presented here to settle the abovementioned challenges. By encapsulating the pyridinium hemicyanine dye DSM with a large two-photon absorption (TPA) cross-section in NIR-II window into the porphyrin-based HOF, the resultant DSM@n-HOF-6 exhibits significant two-photon NIR-II-excited Fluorescence Resonance Energy Transfer (FRET) to generate singlet oxygen (1 O2 ) for Aβ oxidation. Further, the target peptides of KLVFFAED (KD8) are covalently grafted on DSM@n-HOF-6 to enhance the blood-brain barrier (BBB) permeability and Aβ selectivity. The HOF-based photooxygenation catalyst shows an outstanding inhibitory effect of Aβ aggregation upon the NIR-II irradiation. Further in vivo studies demonstrate the obvious decrease of craniocerebral Aβ plaques and recovery of memory deficits in triple-transgenic AD (3×Tg-AD) model mice.
Collapse
Affiliation(s)
- Haochen Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dongqin Yu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shuting Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
97
|
Zhang H, Yu D, Liu S, Liu C, Liu Z, Ren J, Qu X. NIR‐II Hydrogen‐Bonded Organic Frameworks (HOFs) Used for Target‐Specific Amyloid‐β Photooxygenation in an Alzheimer's Disease Model. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Haochen Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Dongqin Yu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Shuting Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
98
|
Hou M, Chen W, Zhao J, Dai D, Yang M, Yi C. Facile synthesis and in vivo bioimaging applications of porphyrin derivative-encapsulated polymer nanoparticles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
99
|
Cheng Y, Zhang Z, Duan X, Zhang M. cis-Dipyridyl porphyrin-based multicomponent organoplatinum( ii) bismetallacycles for photocatalytic oxidation. Dalton Trans 2022; 51:16517-16521. [DOI: 10.1039/d2dt02197h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three organoplatinum(ii) bismetallacycles were prepared with good singlet oxygen generation efficiency, which were used for the photocatalytic oxidation reaction.
Collapse
Affiliation(s)
- Ying Cheng
- Second Department of General Surgery, Shaanxi Provincial People's Hospital and Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710068, P. R. China
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zeyuan Zhang
- Second Department of General Surgery, Shaanxi Provincial People's Hospital and Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710068, P. R. China
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xianglong Duan
- Second Department of General Surgery, Shaanxi Provincial People's Hospital and Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710068, P. R. China
| | - Mingming Zhang
- Second Department of General Surgery, Shaanxi Provincial People's Hospital and Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710068, P. R. China
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
100
|
Qindeel M, Sargazi S, Hosseinikhah SM, Rahdar A, Barani M, Thakur VK, Pandey S, Mirsafaei R. Porphyrin‐Based Nanostructures for Cancer Theranostics: Chemistry, Fundamentals and Recent Advances. ChemistrySelect 2021. [DOI: 10.1002/slct.202103418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maimoona Qindeel
- Hamdard Institute of Pharmaceutical Sciences Hamdard University Islamabad Campus Islamabad Pakistan
- Department of Pharmacy Quaid-i-Azam University Islamabad Pakistan
| | - Saman Sargazi
- Cellular and Molecular Research Center Research Institute of Cellular and Molecular Sciences in Infectious Diseases Zahedan University of Medical Sciences Zahedan 9816743463 Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Abbas Rahdar
- Department of Physics Faculty of Science University of Zabol Zabol Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center Kerman University of Medical Sciences Kerman 7616913555 Iran
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre Scotland's Rural College Scotland Edinburgh EH9 3JG United Kingdom
- School of Engineering University of Petroleum & Energy Studies (UPES) Dehradun 248007 Uttarakhand India
| | - Sadanand Pandey
- Particulate Matter Research Center Research Institute of Industrial Science & Technology (RIST) 187-12, Geumho-ro Gwangyang-si Jeollanam-do 57801, Republic of Korea
| | - Razieh Mirsafaei
- Novel Drug Delivery Systems Research Centre and Department of Pharmaceutics School of Pharmacy Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|