51
|
Liaqat M, Kankanamage RNT, Duan H, Shimogawa R, Sun J, Nielsen M, Shaaban E, Zhu Y, Gao P, Rusling JF, Frenkel AI, He J. Single-Atom Cobalt Catalysts Coupled with Peroxidase Biocatalysis for C-H Bond Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40343-40354. [PMID: 37590263 DOI: 10.1021/acsami.3c03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
This paper reports a robust strategy to catalyze in situ C-H oxidation by combining cobalt (Co) single-atom catalysts (SACs) and horseradish peroxidase (HRP). Co SACs were synthesized using the complex of Co phthalocyanine with 3-propanol pyridine at the two axial positions as the Co source to tune the coordination environment of Co by the stepwise removal of axial pyridine moieties under thermal annealing. These structural features of Co sites, as confirmed by infrared and X-ray absorption spectroscopy, were strongly correlated to their reactivity. All Co catalysts synthesized below 300 °C were inactive due to the full coordination of Co sites in octahedral geometry. Increasing the calcination temperature led to an improvement in catalytic activity for reducing O2, although molecular Co species with square planar coordination obtained below 600 °C were less selective to reduce O2 to H2O2 through the two-electron pathway. Co SACs obtained at 800 °C showed superior activity in producing H2O2 with a selectivity of 82-85% in a broad potential range. In situ production of H2O2 was further coupled with HRP to drive the selective C-H bond oxidation in 2-naphthol. Our strategy provides new insights into the design of highly effective, stable SACs for selective C-H bond activation when coupled with natural enzymes.
Collapse
Affiliation(s)
- Maham Liaqat
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | | | - Hanyi Duan
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ryuichi Shimogawa
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11790, United States
| | - Jiyu Sun
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Monia Nielsen
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ehab Shaaban
- Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Yuanyuan Zhu
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Puxian Gao
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Surgery and Neag Cancer Center, Uconn Health, Farmington, Connecticut 06030, United States
- School of Chemistry, National University of Ireland at Galway, Galway H91 TK33, Ireland
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11790, United States
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
52
|
Juthathan M, Chantarojsiri T, Chainok K, Butburee T, Thamyongkit P, Tuntulani T, Leeladee P. Molecularly dispersed nickel complexes on N-doped graphene for electrochemical CO 2 reduction. Dalton Trans 2023; 52:11407-11418. [PMID: 37283196 DOI: 10.1039/d3dt00878a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, new hybrid catalysts based on molecularly dispersed nickel complexes on N-doped graphene were developed for electrochemical CO2 reduction (ECR). Nickel(II) complexes (1-Ni, 2-Ni), and a new crystal structure ([2-Ni]Me), featuring N4-Schiff base macrocycles, were synthesized and investigated for their potential in ECR. Cyclic voltammetry (CV) in NBu4PF6/CH3CN solution demonstrated that the nickel complexes bearing N-H groups (1-Ni and 2-Ni) showed a substantial current enhancement in the presence of CO2, while the absence of N-H groups ([2-Ni]Me) resulted in an almost unchanged voltammogram. This indicated the necessity of the N-H functionality towards ECR in aprotic media. All three nickel complexes were successfully immobilized on nitrogen-doped graphene (NG) via non-covalent interactions. All three Ni@NG catalysts exhibited satisfactory CO2-to-CO reduction in aqueous NaHCO3 solution with the faradaic efficiency (FE) of 60-80% at the overpotential of 0.56 V vs. RHE. The ECR activity of [2-Ni]Me@NG also suggested that the N-H moiety from the ligand is less important in the heterogeneous aqueous system owing to viable hydrogen-bond formation and proton donors from water and bicarbonate ions. This finding could pave the way for understanding the effects of modifying the ligand framework at the N-H position toward fine tuning the reactivity of hybrid catalysts through molecular-level modulation.
Collapse
Affiliation(s)
- Methasit Juthathan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Thailand.
| | - Teera Chantarojsiri
- Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University, Thailand
| | - Teera Butburee
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Thailand
| | | | - Thawatchai Tuntulani
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Thailand.
| | - Pannee Leeladee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Thailand.
| |
Collapse
|
53
|
Hutchison P, Kaminsky CJ, Surendranath Y, Hammes-Schiffer S. Concerted Proton-Coupled Electron Transfer to a Graphite Adsorbed Metalloporphyrin Occurs by Band to Bond Electron Redistribution. ACS CENTRAL SCIENCE 2023; 9:927-936. [PMID: 37252356 PMCID: PMC10214502 DOI: 10.1021/acscentsci.3c00186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 05/31/2023]
Abstract
Surface immobilized catalysts are highly promising candidates for a range of energy conversion reactions, and atomistic mechanistic understanding is essential for their rational design. Cobalt tetraphenylporphyrin (CoTPP) nonspecifically adsorbed on a graphitic surface has been shown to undergo concerted proton-coupled electron transfer (PCET) in aqueous solution. Herein, density functional theory calculations on both cluster and periodic models representing π-stacked interactions or axial ligation to a surface oxygenate are performed. As the electrode surface is charged due to applied potential, the adsorbed molecule experiences the electrical polarization of the interface and nearly the same electrostatic potential as the electrode, regardless of the adsorption mode. PCET occurs by electron abstraction from the surface to the CoTPP concerted with protonation to form a cobalt hydride, thereby circumventing Co(II/I) redox. Specifically, the Co(II) d-state localized orbital interacts with a proton from solution and an electron from the delocalized graphitic band states to produce a Co(III)-H bonding orbital below the Fermi level, corresponding to redistribution of electrons from the band states to the bonding states. These insights have broad implications for electrocatalysis by chemically modified electrodes and surface immobilized catalysts.
Collapse
Affiliation(s)
- Phillips Hutchison
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Corey J. Kaminsky
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Yogesh Surendranath
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
54
|
Zhu MN, Jiang H, Zhang BW, Gao M, Sui PF, Feng R, Shankar K, Bergens SH, Cheng GJ, Luo JL. Nanosecond Laser Confined Bismuth Moiety with Tunable Structures on Graphene for Carbon Dioxide Reduction. ACS NANO 2023; 17:8705-8716. [PMID: 37068128 DOI: 10.1021/acsnano.3c01897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Substrate-supported catalysts with atomically dispersed metal centers are promising for driving the carbon dioxide reduction reaction (CO2RR) to produce value-added chemicals; however, regulating the size of exposed catalysts and optimizing their coordination chemistry remain challenging. In this study, we have devised a simple and versatile high-energy pulsed laser method for the enrichment of a Bi "single atom" (SA) with a controlled first coordination sphere on a time scale of nanoseconds. We identify the mechanistic bifurcation routes over a Bi SA that selectively produce either formate or syngas when bound to C or N atoms, respectively. In particular, C-stabilized Bi (Bi-C) exhibits a maximum formate partial current density of -29.3 mA cm-2 alongside a TOF value of 2.64 s-1 at -1.05 V vs RHE, representing one of the best SA-based candidates for CO2-to-formate conversion. Our results demonstrate that the switchable selectivity arises from the different coupling states and metal-support interactions between the central Bi atom and adjacent atoms, which modify the hybridizations between the Bi center and *OCHO/*COOH intermediates, alter the energy barriers of the rate-determining steps, and ultimately trigger the branched reaction pathways after CO2 adsorption. This work demonstrates a practical and universal ultrafast laser approach to a wide range of metal-substrate materials for tailoring the fine structures and catalytic properties of the supported catalysts and provides atomic-level insights into the mechanisms of the CO2RR on ligand-modified Bi SAs, with potential applications in various fields.
Collapse
Affiliation(s)
| | - Haoqing Jiang
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | | | | | | | - Renfei Feng
- Canadian Light Source Inc., 44 Innovation Blvd, Saskatoon, Saskatchewan S7N 2V3, Canada
| | | | | | - Gary J Cheng
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Jing-Li Luo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
55
|
Zhu HL, Zhang L, Shui M, Li ZY, Ma JJ, Zheng YQ. A Novel Manner of Anchoring Cobalt Phthalocyanine on Edge-Defected Carbon for Highly Electrocatalytic CO 2 Reduction. J Phys Chem Lett 2023; 14:3844-3852. [PMID: 37067200 DOI: 10.1021/acs.jpclett.3c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cobalt phthalocyanine anchored on carbon material has attracted an enormous amount of attention due to its superior performance in electrocatalytic CO2 reduction. However, the interaction between cobalt phthalocyanine and the carbon substrate remains problematic, and the role of intrinsic carbon defects is unfortunately ignored in the anchoring of cobalt phthalocyanine on carbon. Herein, new interactions between the bridging N atoms of cobalt phthalocyanine and the edge defects of carbon have been discovered, which result in a novel model of anchoring of cobalt phthalocyanine on ketjen black carbon. Such anchored cobalt phthalocyanine has been found to be responsible for superior catalysis for electrochemical reduction of CO2 to CO with high selectivity and low overpotential.
Collapse
Affiliation(s)
- Hong-Lin Zhu
- Chemistry Institute for Synthesis and Green Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Li Zhang
- Chemistry Institute for Synthesis and Green Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Miao Shui
- Chemistry Institute for Synthesis and Green Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Zhong-Yi Li
- Chemistry Institute for Synthesis and Green Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Jing-Jing Ma
- Chemistry Institute for Synthesis and Green Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yue-Qing Zheng
- Chemistry Institute for Synthesis and Green Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
56
|
Akyüz D, Demirbaş Ü, Bekircan O. Metallo‐phthalocyanines Containing 1,3,4‐oxadiazole Substituents: Synthesis, Characterization, Electrochemical and Spectroelectrochemical Properties. ChemistrySelect 2023. [DOI: 10.1002/slct.202204598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Duygu Akyüz
- Department of Chemistry Faculty of Science Gebze Technical University Kocaeli Türkiye
| | - Ümit Demirbaş
- Department of Chemistry Faculty of Science Karadeniz Technical University Trabzon Türkiye
| | - Olcay Bekircan
- Department of Chemistry Faculty of Science Karadeniz Technical University Trabzon Türkiye
| |
Collapse
|
57
|
Chen F, Wiriyarattanakul A, Xie W, Shi L, Rungrotmongkol T, Jia R, Maitarad P. Quantitative Structure–Electrochemistry Relationship (QSER) Studies on Metal–Amino–Porphyrins for the Rational Design of CO2 Reduction Catalysts. Molecules 2023; 28:molecules28073105. [PMID: 37049867 PMCID: PMC10096077 DOI: 10.3390/molecules28073105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The quantitative structure–electrochemistry relationship (QSER) method was applied to a series of transition-metal-coordinated porphyrins to relate their structural properties to their electrochemical CO2 reduction activity. Since the reactions mainly occur within the core of the metalloporphyrin catalysts, the cluster model was used to calculate their structural and electronic properties using density functional theory with the M06L exchange–correlation functional. Three dependent variables were employed in this work: the Gibbs free energies of H*, C*OOH, and O*CHO. QSER, with the genetic algorithm combined with multiple linear regression (GA–MLR), was used to manipulate the mathematical models of all three Gibbs free energies. The obtained statistical values resulted in a good predictive ability (R2 value) greater than 0.945. Based on our QSER models, both the electronic properties (charges of the metal and porphyrin) and the structural properties (bond lengths between the metal center and the nitrogen atoms of the porphyrin) play a significant role in the three Gibbs free energies. This finding was further applied to estimate the CO2 reduction activities of the metal–monoamino–porphyrins, which will prove beneficial in further experimental developments.
Collapse
Affiliation(s)
- Furong Chen
- Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Amphawan Wiriyarattanakul
- Program in Chemistry, Faculty of Science and Technology, Uttaradit Rajabhat University, Uttaradit 53000, Thailand
| | - Wanting Xie
- Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Liyi Shi
- Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- Emerging Industries Institute Shanghai University, Jiaxing 314006, China
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.R.); (P.M.)
| | - Rongrong Jia
- Department of Physics, Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Phornphimon Maitarad
- Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- Correspondence: (T.R.); (P.M.)
| |
Collapse
|
58
|
Li M, Xu J, Qi F, Wang Y, Yan C, Xu J. Facile preparation of tetrafluoro-substituted cobalt phthalocyanine nanorods attached on carbon nanotubes for efficient electrocatalytic CO2 reduction. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
59
|
Deng Y, Zhao J, Wang S, Chen R, Ding J, Tsai HJ, Zeng WJ, Hung SF, Xu W, Wang J, Jaouen F, Li X, Huang Y, Liu B. Operando Spectroscopic Analysis of Axial Oxygen-Coordinated Single-Sn-Atom Sites for Electrochemical CO 2 Reduction. J Am Chem Soc 2023; 145:7242-7251. [PMID: 36877826 DOI: 10.1021/jacs.2c12952] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Sn-based materials have been demonstrated as promising catalysts for the selective electrochemical CO2 reduction reaction (CO2RR). However, the detailed structures of catalytic intermediates and the key surface species remain to be identified. In this work, a series of single-Sn-atom catalysts with well-defined structures is developed as model systems to explore their electrochemical reactivity toward CO2RR. The selectivity and activity of CO2 reduction to formic acid on Sn-single-atom sites are shown to be correlated with Sn(IV)-N4 moieties axially coordinated with oxygen (O-Sn-N4), reaching an optimal HCOOH Faradaic efficiency of 89.4% with a partial current density (jHCOOH) of 74.8 mA·cm-2 at -1.0 V vs reversible hydrogen electrode (RHE). Employing a combination of operando X-ray absorption spectroscopy, attenuated total reflectance surface-enhanced infrared absorption spectroscopy, Raman spectroscopy, and 119Sn Mössbauer spectroscopy, surface-bound bidentate tin carbonate species are captured during CO2RR. Moreover, the electronic and coordination structures of the single-Sn-atom species under reaction conditions are determined. Density functional theory (DFT) calculations further support the preferred formation of Sn-O-CO2 species over the O-Sn-N4 sites, which effectively modulates the adsorption configuration of the reactive intermediates and lowers the energy barrier for the hydrogenation of *OCHO species, as compared to the preferred formation of *COOH species over the Sn-N4 sites, thereby greatly facilitating CO2-to-HCOOH conversion.
Collapse
Affiliation(s)
- Yachen Deng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jian Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Shifu Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ruru Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jie Ding
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Hsin-Jung Tsai
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wen-Jing Zeng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wei Xu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Beijing 100049, P. R. China.,RICMASS, Rome International Center for Materials Science Superstripes, Rome 00185, Italy
| | - Junhu Wang
- Center for Advanced Mössbauer Spectroscopy, Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Frédéric Jaouen
- Institut Charles Gerhardt Montpellier, University of Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Xuning Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanqiang Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Bin Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
60
|
Chen S, Li X, Li H, Chen K, Luo T, Fu J, Liu K, Wang Q, Zhu M, Liu M. Proton Transfer Dynamics-Mediated CO 2 Electroreduction. CHEMSUSCHEM 2023:e202202251. [PMID: 36820747 DOI: 10.1002/cssc.202202251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR) is crucial to addressing environmental crises and producing chemicals. Proton activation and transfer are essential in CO2 RR. To date, few research reviews have focused on this process and its effect on catalytic performance. Recent studies have demonstrated ways to improve CO2 RR by regulating proton transfer dynamics. This Concept highlights the use of regulating proton transfer dynamics to enhance CO2 RR for the target product and discusses modulation strategies for proton transfer dynamics and operative mechanisms in typical systems, including single-atom catalysts, molecular catalysts, metal heterointerfaces, and organic-ligand modified metal catalysts. Characterization methods for proton transfer dynamics during CO2 RR are also discussed, providing powerful tools for the hydrogen-involving electrochemical study. This Concept offers new insights into the CO2 RR mechanism and guides the design of efficient CO2 RR systems.
Collapse
Affiliation(s)
- Shanyong Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, P. R. China
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, P. R. China
| | - Xiaoqing Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Kejun Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Tao Luo
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Qiyou Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, P. R. China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| |
Collapse
|
61
|
Jia X, Nedzbala HS, Bottum SR, Cahoon JF, Concepcion JJ, Donley CL, Gang A, Han Q, Hazari N, Kessinger MC, Lockett MR, Mayer JM, Mercado BQ, Meyer GJ, Pearce AJ, Rooney CL, Sampaio RN, Shang B, Wang H. Synthesis and Surface Attachment of Molecular Re(I) Complexes Supported by Functionalized Bipyridyl Ligands. Inorg Chem 2023; 62:2359-2375. [PMID: 36693077 DOI: 10.1021/acs.inorgchem.2c04137] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Eleven 2,2'-bipyridine (bpy) ligands functionalized with attachment groups for covalent immobilization on silicon surfaces were prepared. Five of the ligands feature silatrane functional groups for attachment to metal oxide coatings on the silicon surfaces, while six contain either alkene or alkyne functional groups for attachment to hydrogen-terminated silicon surfaces. The bpy ligands were coordinated to Re(CO)5Cl to form complexes of the type Re(bpy)(CO)3Cl, which are related to known catalysts for CO2 reduction. Six of the new complexes were characterized using X-ray crystallography. As proof of principle, four molecular Re complexes were immobilized on either a thin layer of TiO2 on silicon or hydrogen-terminated silicon. The surface-immobilized complexes were characterized using X-ray photoelectron spectroscopy, IR spectroscopy, and cyclic voltammetry (CV) in the dark and for one representative example in the light. The CO stretching frequencies of the attached complexes were similar to those of the pure molecular complexes, but the CVs were less analogous. For two of the complexes, comparison of the electrocatalytic CO2 reduction performance showed lower CO Faradaic efficiencies for the immobilized complexes than the same complex in solution under similar conditions. In particular, a complex containing a silatrane linked to bpy with an amide linker showed poor catalytic performance and control experiments suggest that amide linkers in conjugation with a redox-active ligand are not stable under highly reducing conditions and alkyl linkers are more stable. A conclusion of this work is that understanding the behavior of molecular Re catalysts attached to semiconducting silicon is more complicated than related complexes, which have previously been immobilized on metallic electrodes.
Collapse
Affiliation(s)
- Xiaofan Jia
- The Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut 06520, United States
| | - Hannah S Nedzbala
- The Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut 06520, United States
| | - Samuel R Bottum
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - James F Cahoon
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Javier J Concepcion
- Chemistry Division, Energy & Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Carrie L Donley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Albert Gang
- The Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut 06520, United States
| | - Qi Han
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nilay Hazari
- The Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut 06520, United States
| | - Matthew C Kessinger
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew R Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - James M Mayer
- The Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- The Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut 06520, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Adam J Pearce
- The Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut 06520, United States
| | - Conor L Rooney
- The Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut 06520, United States.,Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Renato N Sampaio
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bo Shang
- The Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut 06520, United States.,Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Hailiang Wang
- The Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut 06520, United States.,Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| |
Collapse
|
62
|
Wang M, Loiudice A, Okatenko V, Sharp ID, Buonsanti R. The spatial distribution of cobalt phthalocyanine and copper nanocubes controls the selectivity towards C 2 products in tandem electrocatalytic CO 2 reduction. Chem Sci 2023; 14:1097-1104. [PMID: 36756336 PMCID: PMC9891351 DOI: 10.1039/d2sc06359j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
The coupling of CO-generating molecular catalysts with copper electrodes in tandem schemes is a promising strategy to boost the formation of multi-carbon products in the electrocatalytic reduction of CO2. While the spatial distribution of the two components is important, this aspect remains underexplored for molecular-based tandem systems. Herein, we address this knowledge gap by studying tandem catalysts comprising Co-phthalocyanine (CoPc) and Cu nanocubes (Cucub). In particular, we identify the importance of the relative spatial distribution of the two components on the performance of the tandem catalyst by preparing CoPc-Cucub/C, wherein the CoPc and Cucub share an interface, and CoPc-C/Cucub, wherein the CoPc is loaded first on carbon black (C) before mixing with the Cucub. The electrocatalytic measurements of these two catalysts show that the faradaic efficiency towards C2 products almost doubles for the CoPc-Cucub/C, whereas it decreases by half for the CoPc-C/Cucub, compared to the Cucub/C. Our results highlight the importance of a direct contact between the CO-generating molecular catalyst and the Cu to promote C-C coupling, which hints at a surface transport mechanism of the CO intermediate between the two components of the tandem catalyst instead of a transfer via CO diffusion in the electrolyte followed by re-adsorption.
Collapse
Affiliation(s)
- Min Wang
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Anna Loiudice
- Walter Schottky Institute and Physics Department, Technische Universität MünchenAm Coulombwall 485748 GarchingGermany
| | - Valery Okatenko
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Ian D. Sharp
- Walter Schottky Institute and Physics Department, Technische Universität MünchenAm Coulombwall 485748 GarchingGermany
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| |
Collapse
|
63
|
Shang B, Rooney CL, Gallagher DJ, Wang BT, Krayev A, Shema H, Leitner O, Harmon NJ, Xiao L, Sheehan C, Bottum SR, Gross E, Cahoon JF, Mallouk TE, Wang H. Aqueous Photoelectrochemical CO 2 Reduction to CO and Methanol over a Silicon Photocathode Functionalized with a Cobalt Phthalocyanine Molecular Catalyst. Angew Chem Int Ed Engl 2023; 62:e202215213. [PMID: 36445830 DOI: 10.1002/anie.202215213] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
We report a precious-metal-free molecular catalyst-based photocathode that is active for aqueous CO2 reduction to CO and methanol. The photoelectrode is composed of cobalt phthalocyanine molecules anchored on graphene oxide which is integrated via a (3-aminopropyl)triethoxysilane linker to p-type silicon protected by a thin film of titanium dioxide. The photocathode reduces CO2 to CO with high selectivity at potentials as mild as 0 V versus the reversible hydrogen electrode (vs RHE). Methanol production is observed at an onset potential of -0.36 V vs RHE, and reaches a peak turnover frequency of 0.18 s-1 . To date, this is the only molecular catalyst-based photoelectrode that is active for the six-electron reduction of CO2 to methanol. This work puts forth a strategy for interfacing molecular catalysts to p-type semiconductors and demonstrates state-of-the-art performance for photoelectrochemical CO2 reduction to CO and methanol.
Collapse
Affiliation(s)
- Bo Shang
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Conor L Rooney
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - David J Gallagher
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Bernie T Wang
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Andrey Krayev
- HORIBA Instruments Inc., 359 Bel Marin Keys Blvd, Suite 18, Novato, CA 94949, USA
| | - Hadar Shema
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Oliver Leitner
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Nia J Harmon
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Langqiu Xiao
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Colton Sheehan
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samuel R Bottum
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Elad Gross
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - James F Cahoon
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hailiang Wang
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
64
|
Heterogenous Preparations of Solution-Processable Cobalt Phthalocyanines for Carbon Dioxide Reduction Electrocatalysis. INORGANICS 2023. [DOI: 10.3390/inorganics11010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The development and implementation of technology that can capture and transform carbon dioxide (CO2) is of ongoing interest. To that end, the integration of molecular electrocatalysts into devices is appealing because of the desirable features of molecules, such as the ability to modify active sites. Here, we explore how the identity of the aliphatic group in 1,4,8,11,15,18,22,25-octaalkoxyphthalocyanine cobalt(II) affects the catalytic behavior for heterogeneous CO2 reduction electrocatalysis. The alkyl R-groups correspond to n-butoxy, sec-butoxy, and 2-ethylhexoxy. All of the catalysts are soluble in organic solvents and are readily solution-processed. However, the larger 2-ethylhexoxy group showed solution aggregation behavior at concentrations ≥1 mM, and it was, in general, an inferior catalyst. The other two catalysts show comparable maximum currents, but the octa sec-butoxy-bearing catalyst showed larger CO2 reduction rate constants based on foot-of-the-wave analyses. This behavior is hypothesized to be due to the ability of the sec-butoxy groups to eliminate the ability of the alkoxy oxygen to block Co Sites via ligation. CO2 reduction activity is rationalized based on solid-state structures. Cobalt(II) phthalocyanine and its derivatives are known to be good CO2 reduction catalysts, but the results from this work suggest that straightforward incorporation of bulky groups can improve the processability and per site activity by discouraging aggregation.
Collapse
|
65
|
Gong YN, Cao CY, Shi WJ, Zhang JH, Deng JH, Lu TB, Zhong DC. Modulating the Electronic Structures of Dual-Atom Catalysts via Coordination Environment Engineering for Boosting CO 2 Electroreduction. Angew Chem Int Ed Engl 2022; 61:e202215187. [PMID: 36316808 DOI: 10.1002/anie.202215187] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Indexed: 11/24/2022]
Abstract
Dual-atom catalysts (DACs) have emerged as efficient electrocatalysts for CO2 reduction owing to the synergistic effect between the binary metal sites. However, rationally modulating the electronic structure of DACs to optimize the catalytic performance remains a great challenge. Herein, we report the electronic structure modulation of three Ni2 DACs (namely, Ni2 -N7 , Ni2 -N5 C2 and Ni2 -N3 C4 ) by the regulation of the coordination environments around the dual-atom Ni2 centres. As a result, Ni2 -N3 C4 exhibits significantly improved electrocatalytic activity for CO2 reduction, not only better than the corresponding single-atom Ni catalyst (Ni-N2 C2 ), but also higher than Ni2 -N7 and Ni2 -N5 C2 DACs. Density functional theory (DFT) calculations revealed that the high electrocatalytic activity of Ni2 -N3 C4 for CO2 reduction could be attributed to the electronic structure modulation to the Ni centre and the resulted proper binding energies to COOH* and CO* intermediates.
Collapse
Affiliation(s)
- Yun-Nan Gong
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, P. R. China
| | - Chang-Yu Cao
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, P. R. China
| | - Wen-Jie Shi
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, P. R. China
| | - Ji-Hong Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, P. R. China
| | - Ji-Hua Deng
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, 300384, Tianjin, P. R. China
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, P. R. China
| | - Di-Chang Zhong
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, P. R. China
| |
Collapse
|
66
|
Kong X, Liu G, Tian S, Bu S, Gao Q, Liu B, Lee CS, Wang P, Zhang W. Coupling Cobalt Phthalocyanine Molecules on 3D Nitrogen-Doped Vertical Graphene Arrays for Highly Efficient and Robust CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204615. [PMID: 36319471 DOI: 10.1002/smll.202204615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Metallic phthalocyanines (MePcs) have shown their potential as catalysts for CO2 reduction reactions (CO2 RR). However, their low conductivity, easy agglomeration, and poor stability enslave the further progress of their CO2 RR applications. Herein, an integrated heterogeneous molecular catalyst through anchoring CoPc molecules on 3D nitrogen-doped vertical graphene arrays (NVG) on carbon cloth (CC) is reported. The CoPc-NVG/CC electrodes exhibit superior performance for reducing CO2 to CO with a Faradic efficiency of above 97.5% over a wide potential range (99% at an optimal potential), a very high turnover frequency of 35800 h-1 , and decent stability. It is revealed that NVG interacts with CoPc to form highly efficient channels for electron transfer from NVG to CoPc, facilitating the Co(II)/Co(I) redox of CO2 reduction. The strong coupling effect between NVG and CoPc molecules not only endows CoPc with high intrinsic activity for CO2 RR, but also enhances the stability of electrocatalysts under high potentials. This work paves an efficient approach for developing high-performance heterogeneous catalysts by using rationally designed 3D integrated graphene arrays to host molecular metallic phthalocyanines so as to ameliorate their electronic structures and engineer stable active sites.
Collapse
Affiliation(s)
- Xin Kong
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Guiyang Liu
- Lab of New Materials for Power Sources, Honghe University, Mengzi, 661100, China
| | - Suan Tian
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Shuyu Bu
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Qili Gao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Bin Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100089, China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
67
|
Polyaniline Anchoring Environment Facilitates Highly Efficient CO2 Electroreduction of Cobalt Phthalocyanine over a Wide Potential Window. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
68
|
Wang Y, Zhou T, Ruan S, Feng H, Bi W, Hu J, Chen T, Liu H, Yuan B, Zhang N, Wang W, Zhang L, Chu W, Wu C, Xie Y. Directional Manipulation of Electron Transfer by Energy Level Engineering for Efficient Cathodic Oxygen Reduction. NANO LETTERS 2022; 22:6622-6630. [PMID: 35931416 DOI: 10.1021/acs.nanolett.2c01933] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electron transfer plays an important role in determining the energy conversion efficiency of energy devices. Nitrogen-coordinated single metal sites (M-N4) materials as electrocatalysts have exhibited great potential in devices. However, there are still great difficulties in how to directionally manipulate electron transfer in M-N4 catalysts for higher efficiency. Herein, we demonstrated the mechanism of electron transfer being affected by energy level structure based on classical iron phthalocyanine (FePc) molecule/carbon models and proposed an energy level engineering strategy to manipulate electron transfer, preparing high-performance ORR catalysts. Engineering molecular energy level via modulating FePc molecular structure with nitro induces a strong interfacial electronic coupling and efficient charge transfer from carbon to FePc-β-NO2 molecule. Consequently, the assembled zinc-air battery exhibits ultrahigh performance which is superior to most of M-N4 catalysts. Energy level engineering provides a universal approach for directionally manipulating electron transfer, bringing a new concept to design efficient and stable M-N4 electrocatalyst.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Tianpei Zhou
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Shanshan Ruan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Hu Feng
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Wentuan Bi
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230026, P. R. China
| | - Jun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Ting Chen
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Hongfei Liu
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Bingkai Yuan
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Nan Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Wenjie Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Lidong Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Wangsheng Chu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Changzheng Wu
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230026, P. R. China
| | - Yi Xie
- School of Chemistry and Materials Science, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
69
|
Yang J, Gao X, Liu H. Dispersion of copper phthalocyanine pigment nanoparticles by eco-friendly ethoxylated cardanol in aqueous solution. TENSIDE SURFACT DET 2022. [DOI: 10.1515/tsd-2022-2432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The environmentally friendly surfactant ethoxylated cardanol (EC) was investigated for dispersing copper phthalocyanine (CuPc) pigment nanoparticles into aqueous solution. The stability of the dispersion was investigated using UV-Vis spectra. The particle size was measured by optical microscopy, transmission electron microscopy and dynamic light scattering. The surface of the nanoparticles was characterised by measurements of the zeta potential and wettability. The coating application was investigated by incorporating CuPc blue pigment into resin and inorganic filler, and the colour strength of the coating film was compared. The results show that the EC can effectively wet and disperse the CuPc particles. The stabilisation of the particles is achieved by a steric mechanism in which the hydrophobic chains of the surfactant are adsorbed onto the surfaces of the CuPc nanoparticles and the ethylene oxide chains are dispersed in the aqueous phase. At EC concentrations greater than 0.1%, the CuPc nanoparticles appear to deagglomerate. The colour strength of CuPc nanoparticles present as dispersed pigment in resin can be increased in the presence of the EC surfactant.
Collapse
Affiliation(s)
- Jiang Yang
- School of Petrochemical Engineering , Liaoning Petrochemical University , Fushun , Liaoning 113001 , China
| | - Xiaoyan Gao
- School of Petrochemical Engineering , Liaoning Petrochemical University , Fushun , Liaoning 113001 , China
| | - Hailing Liu
- School of Petrochemical Engineering , Liaoning Petrochemical University , Fushun , Liaoning 113001 , China
| |
Collapse
|
70
|
Guo C, Guo Y, Shi Y, Lan X, Wang Y, Yu Y, Zhang B. Electrocatalytic Reduction of CO 2 to Ethanol at Close to Theoretical Potential via Engineering Abundant Electron-Donating Cu δ+ Species. Angew Chem Int Ed Engl 2022; 61:e202205909. [PMID: 35638153 DOI: 10.1002/anie.202205909] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 12/30/2022]
Abstract
Electrochemical CO2 reduction to liquid multi-carbon alcohols provides a promising way for intermittent renewable energy reservation and greenhouse effect mitigation. Cuδ+ (0<δ<1) species on Cu-based electrocatalysts can produce ethanol, but the in situ formed Cuδ+ is insufficient and easily reduced to Cu0 . Here a Cu2 S1-x catalyst with abundant Cuδ+ (0<δ<1) species is designedly synthesized and exhibited an ultralow overpotential of 0.19 V for ethanol production. The catalyst not only delivers an outstanding ethanol selectivity of 86.9 % and a Faradaic efficiency of 73.3 % but also provides a long-term stability of Cuδ+ , gaining an economic profit based on techno-economic analysis. The calculation and in situ spectroscopic results reveal that the abundant Cuδ+ sites display electron-donating ability, leading to the decrease of the reaction barrier in the potential-determining C-C coupling step and eventually making the applied potential close to the theoretical value.
Collapse
Affiliation(s)
- Chengying Guo
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yihe Guo
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yanmei Shi
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xianen Lan
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yuting Wang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yifu Yu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300072, China
| |
Collapse
|
71
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
72
|
Li J, Xu T, Gao J, Wang Z, Wang G, Chen W, Lu W. Efficient peroxymonosulfate activation by N-rich pyridyl-iron phthalocyanine derivative for the elimination of pharmaceutical contaminants under solar irradiation. CHEMOSPHERE 2022; 299:134464. [PMID: 35358552 DOI: 10.1016/j.chemosphere.2022.134464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
It is of great significance for improving electron transmission performance by changing of the outer ring structure of iron phthalocyanine. Herein, 4 (pyridine-2, 3-yl) iron phthalocyanine (FepyPc), as N-rich pyridyl-iron phthalocyanine derivative, was introduced to degrade pharmaceutical contaminants. The catalytic degradation of organic pollutants with FepyPc was studied by activating peroxymonosulfate (PMS) at room temperature. The results clarified that the removal rate of carbamazepine (CBZ) was close to 100% within 60 min and the calculated apparent rate constant was about 2 times larger than FePc, which proved that FepyPc had superior performance. Four active species were identified for the degradation of CBZ, including superoxide radical (•O2-), singlet oxygen (1O2), sulfate radical (SO4•-) and hydroxyl radical (•OH). In addition, the possible reaction mechanism was inferred in FepyPc/PMS/sunlight system for CBZ removal. Finally, the CBZ degradation pathway was proposed by using ultra-performance liquid chromatography and high definition mass spectrometry (UPLC/HDMS). This research provided a meaningful and efficient method for the elimination of pharmaceutical contaminants.
Collapse
Affiliation(s)
- Jingxuan Li
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tiefeng Xu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Junting Gao
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhendong Wang
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Gangqiang Wang
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenxing Chen
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
73
|
Zhang W, Wang L, Zhang L, Chen D, Zhang Y, Yang D, Yan N, Yu F. Creating Hybrid Coordination Environment in Fe-Based Single Atom Catalyst for Efficient Oxygen Reduction. CHEMSUSCHEM 2022; 15:e202200195. [PMID: 35244341 PMCID: PMC9311226 DOI: 10.1002/cssc.202200195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/02/2022] [Indexed: 05/28/2023]
Abstract
Tailoring the local chemistry environment to optimize the geometric and electronic properties of single atom catalysts has received much attention recently. Yet, most efforts have been devoted to establishing the preferable binding between the solid support and the single metal atom. In this work, a hybrid coordination environment was created for Fe-based single atom catalysts, comprising inorganic anchoring site from the support and organic ligands from the precursor. Using N,S co-doped graphene oxide as the support, Fe phthalocyanine was selectively anchored by the N/S sites, creating the unique N/S-Fe-N4 active sites as evidenced by extended X-ray absorption fine structure and Mössbauer spectrometry. Compared with other analogues with different metal centers or support, N/S-Fe-N4 showed much improved activity in oxygen reduction reaction, delivering onset and half-wave potentials of 1.02 and 0.94 V. This was superior over the state-of-the-art 20 wt % Pt/C and the classic Fe-N4 carbon catalysts. Density functional theory calculations revealed that the interaction between phthalocyanine ligands and heteroatom dopant from the support pushed electrons of Fe site to para-position, facilitating O2 adsorption and activation. This work shows the exciting opportunities of creating a hybrid coordination environment in single atom catalysts and paves a new avenue of improving their catalytic performance.
Collapse
Affiliation(s)
- Wenlin Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of Technology300130TianjinP. R. China
| | - Lei Wang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of Technology300130TianjinP. R. China
| | - Lu‐Hua Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of Technology300130TianjinP. R. China
| | - Datong Chen
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of Technology300130TianjinP. R. China
| | - Yongkang Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of Technology300130TianjinP. R. China
| | - Dexin Yang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of Technology300130TianjinP. R. China
| | - Ning Yan
- Van‘t Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam1098XHAmsterdamThe Netherlands
| | - Fengshou Yu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of Technology300130TianjinP. R. China
| |
Collapse
|
74
|
Guo C, Guo Y, Shi Y, Lan X, Wang Y, Yu Y, Zhang B. Electrocatalytic Reduction of CO
2
to Ethanol at Close to Theoretical Potential via Engineering Abundant Electron‐Donating Cu
δ
+
Species. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chengying Guo
- Institute of Molecular Plus Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Yihe Guo
- College of Chemistry Nankai University Tianjin 300071 China
| | - Yanmei Shi
- Institute of Molecular Plus Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Xianen Lan
- Institute of Molecular Plus Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Yuting Wang
- Institute of Molecular Plus Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Yifu Yu
- Institute of Molecular Plus Department of Chemistry School of Science Tianjin University Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| | - Bin Zhang
- Institute of Molecular Plus Department of Chemistry School of Science Tianjin University Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Key Laboratory of Systems Bioengineering Ministry of Education Tianjin 300072 China
| |
Collapse
|
75
|
Lyu F, Hua W, Wu H, Sun H, Deng Z, Peng Y. Structural and interfacial engineering of well-defined metal-organic ensembles for electrocatalytic carbon dioxide reduction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63980-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
76
|
|
77
|
Lei K, Yu Xia B. Electrocatalytic CO
2
Reduction: from Discrete Molecular Catalysts to Their Integrated Catalytic Materials. Chemistry 2022; 28:e202200141. [DOI: 10.1002/chem.202200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Kai Lei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
78
|
Nazeri MT, Javanbakht S, Nabi M, Shaabani A. Copper phthalocyanine-conjugated pectin via the Ugi four-component reaction: An efficient catalyst for CO2 fixation. Carbohydr Polym 2022; 283:119144. [DOI: 10.1016/j.carbpol.2022.119144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/02/2022]
|
79
|
Dudkin SV, Chuprin AS, Belova SA, Vologzhanina AV, Zubavichus YV, Kaletina PM, Shundrina IK, Bagryanskaya EG, Voloshin YZ. Hybrid iron(II) phthalocyaninatoclathrochelates with a terminal reactive vinyl group and their organo-inorganic polymeric derivatives: synthetic approaches, X-ray structures and copolymerization with styrene. Dalton Trans 2022; 51:5645-5659. [PMID: 35322826 DOI: 10.1039/d1dt04187h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hybrid metallo(IV)phthalocyaninate-capped tris-dioximate iron(II) complexes (termed as "phthalocyaninatoclathrochelates") with non-equivalent apical fragments and functionalized with one terminal reactive vinyl group were prepared for the first time using three different synthetic approaches: (i) transmetallation (capping group exchange) of the appropriate labile boron,antimony-capped cage precursors, (ii) capping of the initially isolated reactive semiclathrochelate intermediate, and (iii) direct one-pot template condensation of their ligand synthons on the iron(II) ion as a matrix. The obtained polytopic cage complexes were characterized using elemental analysis, 1H NMR, MALDI-TOF MS and UV-vis spectra, and the single-crystal X-ray diffraction experiments. One of the obtained vinyl-terminated iron(II) phthalocyaninatoclathrochelates and its semiclathrochelate precursor were tested as monomers in a copolymerization reaction with styrene as the main component. These vinyl-terminated (semi)clathrochelate iron(II) complexes were found to be successfully copolymerized with this industrially important monomer, affording the intensely colored copolymer products. Because of a low solubility of the tested zirconium(IV) phthalocyaninate-capped tris-nioximate monomer in styrene as a solvent, a molar ratio of 1 : 500 was used. The obtained copolymer products and the kinetics of their formation were studied using GPC, FTIR, UV-vis, TGA and DSC methods. Even at such a low concentration of the Fe,Zr-binuclear metallocomplex component, an increase in the rate of the UV-light degradation of the organo-inorganic products, as well as in their thermal stability, was observed.
Collapse
Affiliation(s)
- Semyon V Dudkin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia.
| | - Alexander S Chuprin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia.
| | - Svetlana A Belova
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia.
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia.
| | - Yan V Zubavichus
- Synchrotron Radiation Facility SKIF, Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences, 1 Nikolskii pr., 6305590 Koltsovo, Russia
| | - Polina M Kaletina
- Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of Russian Academy of Sciences, 9 Lavrentiev pr., 630090 Novosibirsk, Russia
| | - Inna K Shundrina
- Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of Russian Academy of Sciences, 9 Lavrentiev pr., 630090 Novosibirsk, Russia
| | - Elena G Bagryanskaya
- Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of Russian Academy of Sciences, 9 Lavrentiev pr., 630090 Novosibirsk, Russia
| | - Yan Z Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia. .,Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| |
Collapse
|
80
|
Sun Y, Yu L, Xu S, Xie S, Jiang L, Duan J, Zhu J, Chen S. Battery-Driven N 2 Electrolysis Enabled by High-Entropy Catalysts: From Theoretical Prediction to Prototype Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106358. [PMID: 35001481 DOI: 10.1002/smll.202106358] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/29/2021] [Indexed: 06/14/2023]
Abstract
A small-scale standalone device of nitrogen (N2 ) splitting holds great promise for producing ammonia (NH3 ) in a decentralized manner as the compensation or replacement of centralized Haber-Bosch process. However, the design of such a device has been impeded by sluggish kinetics of its half reactions, i.e., cathodic N2 reduction reaction (NRR) and anodic oxygen evolution reaction (OER). Here, it is predicted from density function theory that high-entropy oxides (HEOs) are potential catalysts for promoting NRR and OER, and subsequently develop a facile procedure to synthesize HEOs in the morphology of sea urchin-shaped hollow nanospheres assembled from ultrathin nanosheets. The excellent electrocatalytic activities of HEOs for both NRR (NH3 yield rate: 47.58 µg h-1 mg-1 and Faradaic efficiency (FE): 10.74%) and OER (215 mV @10 mA cm-2 ) are demonstrated. Consequently, a prototype device of N2 electrolysis driven by commercial batteries is constructed, which can operate smoothly and deliver remarkable NH3 yield rate (41.11 µg h-1 mg-1 ) and FE (14.14%). Further mechanism study has attributed the excellent catalytic performances of HEOs to their unique electronic structures originated from multi-metal synergistic effects and entropy increase effects. The work will provide new clues for designing versatile catalysts and devices for large-scale industrialization.
Collapse
Affiliation(s)
- Yuntong Sun
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lei Yu
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shuaishuai Xu
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Sicong Xie
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lili Jiang
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jingjing Duan
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Junwu Zhu
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Sheng Chen
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
81
|
Chuprin AS, Dudkin SV, Belova SA, Lebed EG, Dorovatovskii PV, Vologzhanina AV, Voloshin YZ. Synthesis and reactivity of the apically functionalized (pseudo)macrobicyclic iron( ii) tris-dioximates and their hybrid phthalocyaninatoclathrochelate derivatives comprising reactive and vector terminal groups. NEW J CHEM 2022. [DOI: 10.1039/d2nj01560a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron(ii) phthalocyaninatoclathrochelates functionalized with terminal reactive formyl group were prepared. Their post-synthetic functionalization gave those with vector pharmacophoric fragment.
Collapse
Affiliation(s)
- Alexander S. Chuprin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia
| | - Semyon V. Dudkin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia
| | - Svetlana A. Belova
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Ekaterina G. Lebed
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Pavel V. Dorovatovskii
- National Research Center “Kurchatov Institute”, 1 Acad. Kurchatov Sq., 123182 Moscow, Russian Federation
| | - Anna V. Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia
| | - Yan Z. Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilova st., 119991 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| |
Collapse
|
82
|
|