51
|
Sun J, Liu L, Yang F. Electro-enhanced chlorine-mediated ammonium nitrogen removal triggered by an optimized catalytic anode for sustainable saline wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:146035. [PMID: 33652320 DOI: 10.1016/j.scitotenv.2021.146035] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Electrochemical technology has unique superiorities in chlorine-mediated pollutant oxidation, but has limited application in saline wastewater treatment due to inadequate efficiency and high energy consumption. To promote electrochemical oxidation capacity, a novel but low-cost electrode containing TiO2/Co-WO3/SiC was prepared and optimized, achieving highly efficient chlorine-mediated ammonium nitrogen oxidation (98.3 ± 2.2% in 120 min, with initial NH4+-N of 10.2 ± 0.5 mg L-1) in a simple electrochemical system with supplied current density only at 1.00 mA cm-2. Comparing with unmodified carbon fiber cloth, the catalytic anode achieved 96.0% nitrogen selectivity, enhanced the system current efficiency by 20.6% and reduced the energy consumption by 54.4%, making the treatment of simulated mariculture wastewater both energy-saving (36.5 ± 2.8 kWh kg-1 NH4+-N) and cost-effective (1.45 US$ m-3), comparing with previously reported electrochemical processes (54-622 kWh kg-1 NH4+-N). The nitrogen content (<1 mg L-1) in the treated wastewater, containing only 0.18 mg L-1 NH4+-N, meets the discharge standard of mariculture wastewater. The promoted electrochemical oxidation should be attributed to the chloride derived species (HOCl and ClO-) and related active species (Cl, ClO, OH, etc.). This easily prepared and reusable catalytic electrode is a promising alternative to conventional anode materials in sustainable electrochemical treatment of saline wastewater.
Collapse
Affiliation(s)
- Jiaqi Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science & Technology, Dalian University of Technology, Dalian 116024, China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science & Technology, Dalian University of Technology, Dalian 116024, China; School of Ocean Science and Technology, Dalian University of Technology, Panjin, China.
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science & Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
52
|
Wang H, Li Z, Zhang F, Wang Y, Zhang X, Wang J, He X. Comparison of Ti/Ti4O7, Ti/Ti4O7-PbO2-Ce, and Ti/Ti4O7 nanotube array anodes for electro-oxidation of p-nitrophenol and real wastewater. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118600] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
53
|
A Review on the Treatment of Petroleum Refinery Wastewater Using Advanced Oxidation Processes. Catalysts 2021. [DOI: 10.3390/catal11070782] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The petroleum industry is one of the most rapidly developing industries and is projected to grow faster in the coming years. The recent environmental activities and global requirements for cleaner methods are pushing the petroleum refining industries for the use of green techniques and industrial wastewater treatment. Petroleum industry wastewater contains a broad diversity of contaminants such as petroleum hydrocarbons, oil and grease, phenol, ammonia, sulfides, and other organic composites, etc. All of these compounds within discharged water from the petroleum industry exist in an extremely complicated form, which is unsafe for the environment. Conventional treatment systems treating refinery wastewater have shown major drawbacks including low efficiency, high capital and operating cost, and sensitivity to low biodegradability and toxicity. The advanced oxidation process (AOP) method is one of the methods applied for petroleum refinery wastewater treatment. The objective of this work is to review the current application of AOP technologies in the treatment of petroleum industry wastewater. The petroleum wastewater treatment using AOP methods includes Fenton and photo-Fenton, H2O2/UV, photocatalysis, ozonation, and biological processes. This review reports that the treatment efficiencies strongly depend on the chosen AOP type, the physical and chemical properties of target contaminants, and the operating conditions. It is reported that other mechanisms, as well as hydroxyl radical oxidation, might occur throughout the AOP treatment and donate to the decrease in target contaminants. Mainly, the recent advances in the AOP treatment of petroleum wastewater are discussed. Moreover, the review identifies scientific literature on knowledge gaps, and future research ways are provided to assess the effects of these technologies in the treatment of petroleum wastewater.
Collapse
|
54
|
Pseudocapacitive Ti/RuO2-IrO2-RhOx electrodes with high bipolar stability for phenol degradation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
55
|
Liu X, Yu X, Sha L, Wang Y, Zhou Z, Zhang S. The preparation of black titanium oxide nanoarray via coking fluorinated wastewater and application on coking wastewater treatment. CHEMOSPHERE 2021; 270:128609. [PMID: 33092823 DOI: 10.1016/j.chemosphere.2020.128609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Coking wastewater is extremely toxic with poor biodegradability owing to the presence of refractory organics. Black titanium oxide nanotube array (BTN), not only photocatalyst but also electrocatalyst, is with definite potentiality in organic wastewater treatment. Here, we firstly developed an electrochemical method, using fluorinated coking wastewater as electrolyte rather than traditional fluorinated ethylene glycol, to prepare titanium oxide nanoarray economically. Unexpectedly, suspended pollutants and ammonia nitrogen in coking wastewater were removed in BTN preparation. Moreover, the as-prepared BTN could be further employed as photocatalyst or electrocatalyst to degrade dissolved organic matter in coking wastewater. As an electrocatalyst, BTN possessed the comparable •OH production activity about 9.9 × 10-15 M S-1 to boron-doped diamond, high oxygen evolution potential around 2.75 V, and high selectivity of chlorine production. Moreover, the biodegradability of treated coking wastewater could be effectively improved by using BTN as electrocatalyst in electrochemical oxidation, and the BOD/COD was from 0.19 to above 0.3 in 4 h at current density of 2 mA cm-2. The energy consumption was about 63-68 kWh kgCOD-1, lower than that of various reported electrodes. This study provided an economical and environmentally friendly method to prepare BTN, which was with positive application prospect in the field of coking wastewater treatment.
Collapse
Affiliation(s)
- Xingxin Liu
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Xiaoyan Yu
- Department of Environmental and Safety Engineering, Taiyuan Institute of Technology, Taiyuan, 030008, China
| | - Li Sha
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yuqian Wang
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Zhuo Zhou
- School of Materials Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Shuting Zhang
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
56
|
Lee T, Lee W, Kim S, Lee C, Cho K, Kim C, Yoon J. High chlorine evolution performance of electrochemically reduced TiO 2 nanotube array coated with a thin RuO 2 layer by the self-synthetic method. RSC Adv 2021; 11:12107-12116. [PMID: 35423728 PMCID: PMC8696594 DOI: 10.1039/d0ra09623g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/15/2021] [Indexed: 11/21/2022] Open
Abstract
Recently, reduced TiO2 nanotube arrays via electrochemical self-doping (r-TiO2) are emerging as a good alternative to conventional dimensionally stable anodes (DSAs) due to their comparable performance and low-cost. However, compared with conventional DSAs, they suffer from poor stability, low current efficiency, and high energy consumption. Therefore, this study aims to advance the electrochemical performances in the chlorine evolution of r-TiO2 with a thin RuO2 layer coating on the nanotube structure (RuO2@r-TiO2). The RuO2 thin layer was successfully coated on the surface of r-TiO2. This was accomplished with a self-synthesized layer of ruthenium precursor originating from a spontaneous redox reaction between Ti3+ and metal ions on the r-TiO2 surface and thermal treatment. The thickness of the thin RuO2 layer was approximately 30 nm on the nanotube surface of RuO2@r-TiO2 without severe pore blocking. In chlorine production, RuO2@r-TiO2 exhibited higher current efficiency (∼81.0%) and lower energy consumption (∼3.0 W h g-1) than the r-TiO2 (current efficiency of ∼64.7% of and energy consumption of ∼5.2 W h g-1). In addition, the stability (ca. 22 h) was around 20-fold enhancement in RuO2@r-TiO2 compared with r-TiO2 (ca. 1.2 h). The results suggest a new route to provide a thin layer coating on r-TiO2 and to synthesize a high performance oxidant-generating anode.
Collapse
Affiliation(s)
- Teayoung Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Woonghee Lee
- Division of Environmental Science & Engineering, POSTECH 77 Chungam-ro, Nam-gu Pohang 37673 Republic of Korea
| | - Seongsoo Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Kangwoo Cho
- Division of Environmental Science & Engineering, POSTECH 77 Chungam-ro, Nam-gu Pohang 37673 Republic of Korea
| | - Choonsoo Kim
- Department of Environmental Engineering, Institute of Energy/Environment Convergence Technologies, Kongju National University 1223-24, Cheonan-daero Cheonan-si 31080 Republic of Korea
| | - Jeyong Yoon
- School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
- Korea Environment Institute 370 Sicheong-daero Sejong-si 30147 Republic of Korea
| |
Collapse
|
57
|
Liu F, Chen H, Xu C, Wang L, Qiu P, Gao S, Zhu J, Zhang S, Guo Z. Monoclinic dibismuth tetraoxide (m-Bi 2O 4) for piezocatalysis: new use for neglected materials. Chem Commun (Camb) 2021; 57:2740-2743. [PMID: 33594998 DOI: 10.1039/d0cc07064e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Piezocatalysis is a promising approach for environmental pollutant removal. Monoclinic dibismuth tetraoxide (m-Bi2O4) was first applied to piezocatalyze organics under ultrasonic vibration. The built-in electric field with ultrasonic stress drives the separation of holes and electrons in m-Bi2O4. Its excellent piezocatalytic activity, reusability and chemical stability make m-Bi2O4 a new candidate of piezocatalysis.
Collapse
Affiliation(s)
- Fengling Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Wang S, Yang S, Quispe E, Yang H, Sanfiorenzo C, Rogers SW, Wang K, Yang Y, Hoffmann MR. Removal of Antibiotic Resistant Bacteria and Genes by UV-Assisted Electrochemical Oxidation on Degenerative TiO 2 Nanotube Arrays. ACS ES&T ENGINEERING 2021; 1:612-622. [PMID: 39605952 PMCID: PMC11601983 DOI: 10.1021/acsestengg.1c00011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Antibiotic resistance has become a global crisis in recent years, while wastewater treatment plants (WWTPs) have been identified as a significant source of both antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, commonly used disinfectants have been shown to be ineffective for the elimination of ARGs. With the goal of upgrading the conventional UV disinfection unit with stronger capability to combat ARB and ARGs, we developed a UV-assisted electrochemical oxidation (UV-EO) process that employs blue TiO2 nanotube arrays (BNTAs) as photoanodes. Inactivation of tetracycline- and sulfamethoxazole-resistant E. coli along with degradation of the corresponding plasmid coded genes (tetA and sul1) is measured by plate counting on selective agar and qPCR, respectively. In comparison with UV254 irradiation alone, enhanced ARB inactivation and ARG degradation is achieved by UV-EO. Chloride significantly promotes the inactivation efficiency due to the electrochemical production of free chlorine and the subsequent UV/chlorine photoreactions. The fluence-based first-order kinetic rate coefficients of UV-EO in Cl- are larger than those of UV254 irradiation alone by a factor of 2.1-2.3 and 1.3-1.8 for the long and short target genes, respectively. The mechanism of plasmid DNA damage by different radical species is further explored using gel electrophoresis and computational kinetic modeling. The process can effectively eliminate ARB and ARGs in latrine wastewater, though the kinetics were retarded.
Collapse
Affiliation(s)
- Siwen Wang
- Linde+Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, United States
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Shasha Yang
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Estefanny Quispe
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Hannah Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Charles Sanfiorenzo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Shane W Rogers
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Kaihang Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yang Yang
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Michael R Hoffmann
- Linde+Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
59
|
Fabrication of sulfur-doped TiO2 nanotube array as a conductive interlayer of PbO2 anode for efficient electrochemical oxidation of organic pollutants. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118035] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
60
|
Jiang Y, Zhao H, Liang J, Yue L, Li T, Luo Y, Liu Q, Lu S, Asiri AM, Gong Z, Sun X. Anodic oxidation for the degradation of organic pollutants: Anode materials, operating conditions and mechanisms. A mini review. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2020.106912] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
61
|
Xu L, Niu J, Xie H, Ma X, Zhu Y, Crittenden J. Effective degradation of aqueous carbamazepine on a novel blue-colored TiO 2 nanotube arrays membrane filter anode. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123530. [PMID: 33254736 DOI: 10.1016/j.jhazmat.2020.123530] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 06/12/2023]
Abstract
The effective electrochemical oxidation of aqueous carbamazepine (CBZ) using a novel blue-colored TiO2 nanotube arrays (BC-TiO2NTA) membrane filter anode was studied. The BC-TiO2NTA was characterized using SEM, TEM, BET, mercury intrusion porosimetry, XPS, XRD, CV, and LSV. The BC-TiO2NTA had reserved pore structure, formed mesopores, specific and electroactive surface areas of 2.01 m2 g-1 and 9.32 cm2 cm-2, respectively. The oxygen evolution potential was 2.61 V vs. SCE. CBZ could be degraded by OH, SO4- and O2- on BC-TiO2NTA in accordance to pseudo-first-order kinetic, which was greatly enhanced in flow-through mode. The optimal kinetic rate constant of CBZ degradation of 0.403 min-1 was achieved at 3 mA cm-2, while energy consumption per order was 0.086 kW h m-3. The mineralization efficiency and mineralization current efficiency were 50.8 % and 9.5 % at 180 min, respectively. The presence of Cl- (0.3-3 mM) accelerated electrochemical degradation of CBZ, while NO3- (0.1-2 mM) inhibited the reaction. Based on density functional theory calculation and UPLC-Orbitrap-MS/MS measurement, we found that electrochemical degradation of CBZ was initialized by cleavage of -CONH2 group and attack of OH on the olefinic double bond of the central heterocyclic ring.
Collapse
Affiliation(s)
- Lei Xu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Junfeng Niu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Hongbin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental and Technology, Dalian University of Technology, Dalian, 116023, China
| | - Xiao Ma
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Yunqing Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - John Crittenden
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| |
Collapse
|
62
|
Yu D, Zhang Y, Wang F, Dai J. Preparation of ZnO/two-layer self-doped black TiO 2 nanotube arrays and their enhanced photochemical properties. RSC Adv 2021; 11:2307-2314. [PMID: 35424155 PMCID: PMC8693676 DOI: 10.1039/d0ra09099a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/28/2020] [Indexed: 11/29/2022] Open
Abstract
Highly efficient TiO2 photoanodes can be achieved by enhancing electrical conductivity and improving charge separation and transfer. In this paper, Ti foils were used to fabricate TiO2 nanotubes by anodic oxidation and ZnO/two-layer self-doped black TiO2 nanotubes were prepared by electrochemical reduction and a hydrothermal method. The formed black TiO2 nanotubes have a better photoconversion efficiency and the maximum photoconversion efficiency increased by 59% compared with the pure nanotubes. The deposition of ZnO further improves the maximum photoconversion efficiency to 456% based on black TiO2. The photocurrent responses also increase by about 5 times in our results. This work is instructive for the development of highly robust and efficient photoanode materials in fields including photoelectrochemistry and photocatalysis. Highly efficient TiO2 photoanodes can be achieved by enhancing electrical conductivity and improving charge separation and transfer.![]()
Collapse
Affiliation(s)
- Dengji Yu
- Department of Physics, School of Science, Jiangsu University of Science and Technology Zhenjiang 212003 China
| | - Yunfang Zhang
- Department of Physics, School of Science, Jiangsu University of Science and Technology Zhenjiang 212003 China
| | - Fang Wang
- Department of Physics, School of Science, Jiangsu University of Science and Technology Zhenjiang 212003 China
| | - Jun Dai
- Department of Physics, School of Science, Jiangsu University of Science and Technology Zhenjiang 212003 China
| |
Collapse
|
63
|
Chen M, Zhao X, Wang C, Pan S, Zhang C, Wang Y. Electrochemical oxidation of reverse osmosis concentrates using macroporous Ti-ENTA/SnO 2-Sb flow-through anode: Degradation performance, energy efficiency and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123295. [PMID: 32659574 DOI: 10.1016/j.jhazmat.2020.123295] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/04/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Due to poor mass transfer performance and high energy consumption of the traditional electrochemical flow-by mode, this study developed a high-efficiency electrochemical oxidation system in flow-through mode based on three-dimensional macroporous enhanced TiO2 nanotube array/SnO2-Sb (MP-Ti-ENTA/SnO2-Sb) anode. The effects of initial pH, current density and flow rate on the COD degradation of reverse osmosis concentrates (ROCs) from reclaimed wastewater plant were investigated. Besides, the energy efficiency, biodegradability and acute biotoxicity were studied during electrochemical flow-through process. Compared with the flow-by mode, the flow-through mode based on the MP-Ti-ENTA/SnO2-Sb anode had a COD removal rate of 0.38 mg min-1 (current density: 5 mA cm-2) and an electrical efficiency per order (EE/O) of 5.3 kW h m-3. The three-dimensional fluorescence spectrum showed that the fulvic acids, humic acids and soluble microbial metabolites of ROCs could be effectively removed by the flow-through anode. In addition, the luminescence inhibition rate of the effluent was 22.4 %, indicating that the acute biotoxicity was reduced by more than 40 %. The electrochemical flow-through process of ROCs treatment required relatively low energy consumption without extra chemical agent addition, showing a broader application prospect.
Collapse
Affiliation(s)
- Min Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China.
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China.
| | - Shuang Pan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Cong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Yingcai Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| |
Collapse
|
64
|
Cai J, Zhou M, Du X, Xu X. Enhanced mechanism of 2,4-dichlorophenoxyacetic acid degradation by electrochemical activation of persulfate on Blue-TiO2 nanotubes anode. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117560] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
65
|
Ahmadi A, Wu T. Towards full cell potential utilization during water purification using Co/Bi/TiO2 nanotube electrodes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
66
|
Cai J, Zhou M, Xu X, Du X. Stable boron and cobalt co-doped TiO 2 nanotubes anode for efficient degradation of organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122723. [PMID: 32344364 DOI: 10.1016/j.jhazmat.2020.122723] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Anode materials are crucial to anodic oxidation for wastewater treatment. In this regard, stable boron and cobalt co-doped TiO2 nanotube (B, Co-TNT) was prepared for the first time, and its lifetime was found increased significantly while electrocatalytic activity decreased with the increase of Co(NO3)2 in preparation from 1 to 10 mM. Characterized by scanning electron microscope (SEM), X-Ray Diffraction (XRD) and X-ray Photo-electronic Spectroscopy (XPS), B and Co content were optimized and successfully doped on TNT, which was more smooth without ripple with Co content of 0.038 mg/cm2 in a valence of +2, and B atomic content of 2.17 at.% in form of Ti-B-O. This optimized anode enhanced electrode lifetime 122.8 times while the electrochemical activity decreased slightly when compared to the undoped TNT. The effects of current density, initial pH and initial 2,4-dichlorophenoxyacetic acid (2,4-D) concentration were investigated, and the mainly responsible radical for degradation was confirmed to be the surface OH on B, Co-TNT anode. This anode had better performance on the TOC removal, mineralization current density (MCE) and energy consumption (Ec) when compared with BDD, PbO2, DSA and Pt anodes, and it also presented a very stable degradation for 10 cycles oxidation of 20 mg/L 2,4-D with allowable Co leaching. Therefore, B, Co-TNT anode is a promising, stable, safety and cost-effective anode for application in electrochemical advanced oxidation processes (EAOPs).
Collapse
Affiliation(s)
- Jingju Cai
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Xin Xu
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuedong Du
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
67
|
Denisov N, Qin S, Cha G, Yoo J, Schmuki P. Photoelectrochemical properties of “increasingly dark” TiO2 nanotube arrays. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
68
|
Liu Y, Sun T, Su Q, Tang Y, Xu X, Akram M, Jiang B. Highly efficient and mild electrochemical degradation of bentazon by nano-diamond doped PbO2 anode with reduced Ti nanotube as the interlayer. J Colloid Interface Sci 2020; 575:254-264. [DOI: 10.1016/j.jcis.2020.04.092] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/29/2020] [Accepted: 04/22/2020] [Indexed: 12/19/2022]
|
69
|
Rodríguez-González V, Obregón S, Patrón-Soberano OA, Terashima C, Fujishima A. An approach to the photocatalytic mechanism in the TiO 2-nanomaterials microorganism interface for the control of infectious processes. APPLIED CATALYSIS. B, ENVIRONMENTAL 2020; 270:118853. [PMID: 32292243 DOI: 10.1016/j.apcatb.2020.118857] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 05/21/2023]
Abstract
The approach of this timely review considers the current literature that is focused on the interface nanostructure/cell-wall microorganism to understand the annihilation mechanism. Morphological studies use optical and electronic microscopes to determine the physical damage on the cell-wall and the possible cell lysis that confirms the viability and microorganism death. The key parameters of the tailoring the surface of the photoactive nanostructures such as the metal functionalization with bacteriostatic properties, hydrophilicity, textural porosity, morphology and the formation of heterojunction systems, can achieve the effective eradication of the microorganisms under natural conditions, ranging from practical to applications in environment, agriculture, and so on. However, to our knowledge, a comprehensive review of the microorganism/nanomaterial interface approach has rarely been conducted. The final remarks point the ideal photocatalytic way for the effective prevention/eradication of microorganisms, considering the resistance that the microorganism could develop without the appropriate regulatory aspects for human and ecosystem safety.
Collapse
Affiliation(s)
- Vicente Rodríguez-González
- Photocatalysis International Research Center, Research Institute for Science & Technology, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), División de Materiales Avanzados, Camino a la Presa San José 2055, Lomas 4a, Sección, 78216, San Luis Potosí, Mexico
| | - Sergio Obregón
- Universidad Autónoma de Nuevo León, UANL, CICFIM-Facultad de Ciencias Físico Matemáticas, Av. Universidad S/N, San Nicolás de los Garza, 66455, Nuevo León, Mexico
| | - Olga A Patrón-Soberano
- Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), División de Biología Molecular, Camino a la Presa San José 2055, Lomas 4a, Sección, 78216, San Luis Potosí, Mexico
| | - Chiaki Terashima
- Photocatalysis International Research Center, Research Institute for Science & Technology, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Akira Fujishima
- Photocatalysis International Research Center, Research Institute for Science & Technology, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
70
|
Moura de Salles Pupo M, Albahaca Oliva JM, Barrios Eguiluz KI, Salazar-Banda GR, Radjenovic J. Characterization and comparison of Ti/TiO 2-NT/SnO 2-SbBi, Ti/SnO 2-SbBi and BDD anode for the removal of persistent iodinated contrast media (ICM). CHEMOSPHERE 2020; 253:126701. [PMID: 32302902 DOI: 10.1016/j.chemosphere.2020.126701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
In this study, we investigated the impact of a TiO2 nanotube (NT) interlayer on the electrochemical performance and service life of Sb and Bi-doped SnO2-coatings synthesized on a titanium mesh. Ti/SnO2-SbBi electrode was synthetized by a thermal decomposition method using ionic liquid as a precursor solvent. Ti/TiO2-NT/SnO2-SbBi electrode was obtained by a two-step electrochemical anodization, followed by the same process of thermal decomposition. The synthesized electrodes were electrochemically characterized and analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy. Terephthalic acid (TA) experiments showed that Ti/SnO2-SbBi and Ti/TiO2-NT/SnO2-SbBi electrodes formed somewhat higher amounts of hydroxyl radicals (HO) compared with the mesh boron doped diamond (BDD) anode. Electrochemical oxidation experiments were performed using iodinated contrast media (ICM) as model organic contaminants persistent to oxidation. At current density of 50 A m-2, BDD clearly outperformed the synthesized mixed metal oxide (MMO) electrodes, with 2 to 3-fold higher oxidation rates observed for ICM. However, at 100 and 150 A m-2, Ti/SnO2-SbBi had similar performance to BDD, whereas Ti/TiO2-NT/SnO2-SbBi yielded even higher oxidation rates. Disappearance of the target ICM was followed by up to 80% removal of adsorbable organic iodide (AOI) for all three materials, further demonstrating iodine cleavage and thus oxidative degradation of ICM mediated by HO. The presence of a TiO2 NT interlayer yielded nearly 4-fold increase in anode stability and dislocated the oxygen evolution reaction by +0.2 V. Thus, TiO2 NT interlayer enhanced electrode stability and service life, and the electrocatalytic activity for the degradation of persistent organic contaminants.
Collapse
Affiliation(s)
- Marilia Moura de Salles Pupo
- Process Engineering Post-Graduation Program, Universidade Tiradentes, Av. Murilo Dantas, s/n, Aracaju, SE, Brazil; Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, s/n, Aracaju, SE, Brazil
| | - José Miguel Albahaca Oliva
- Catalan Institute of Water Research, c/Emili Grahit, 101, Girona, Spain; University of Girona, Girona, Spain
| | - Katlin Ivon Barrios Eguiluz
- Process Engineering Post-Graduation Program, Universidade Tiradentes, Av. Murilo Dantas, s/n, Aracaju, SE, Brazil; Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, s/n, Aracaju, SE, Brazil
| | - Giancarlo Richard Salazar-Banda
- Process Engineering Post-Graduation Program, Universidade Tiradentes, Av. Murilo Dantas, s/n, Aracaju, SE, Brazil; Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, s/n, Aracaju, SE, Brazil
| | - Jelena Radjenovic
- Catalan Institute of Water Research, c/Emili Grahit, 101, Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
71
|
Yang L, Shu XP, Fu MY, Wang HY, Zhu QY, Dai J. Molybdenum-titanium oxo-cluster, an efficient electrochemical catalyst for the facile preparation of black titanium dioxide film. Dalton Trans 2020; 49:10516-10522. [PMID: 32691817 DOI: 10.1039/d0dt01959c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Black-TiO2 has become increasingly interesting as a promising photoactive material. Most of the preparations for black-TiO2 involve either high temperature calcination, plasma, lengthy chemical reactions or dealing with dangerous or toxic chemicals. We found, by accident, that Mo-Ti oxo-clusters are efficient catalysts for the hydrogenation of a TiO2 electrode to black-TiO2 at room temperature. A series of Mo-Ti oxo-clusters, [Ti4Mo4O10(OR)14(X-BA)2] (BA = benzoate, X = H (1), F (2), Cl (3), and Br (4)), were prepared and were characterized by crystallography. They have a Mo4Ti4 structure with Mo(v)-Mo(v) metal-metal interactions. The activated hydrogen (H*) generated by electrochemically catalytic water splitting turns the TiO2 electrode to black-TiO2 at room temperature, due to the reduction of Ti(iv) to H+Ti(iii). The potentials applied for water reduction must generally be higher than the overpotential at the TiO2 electrode (-1.0 V vs. RHE). In this work, the onset potential of hydrogen evolution significantly decreased to -0.1 V vs. RHE. Using this blackened 1-TiO2 electrode, the effective electrochemical catalytic degradation of a dye was examined in comparison with the degradation using the white TiO2 electrode. This work provides a method for the facile preparation of a black-TiO2 film, and is a step forward in black-TiO2 research.
Collapse
Affiliation(s)
- Lei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
72
|
Chen M, Wang C, Zhao X, Wang Y, Zhang W, Chen Z, Meng X, Luo J, Crittenden J. Development of a highly efficient electrochemical flow-through anode based on inner in-site enhanced TiO 2-nanotubes array. ENVIRONMENT INTERNATIONAL 2020; 140:105813. [PMID: 32480113 DOI: 10.1016/j.envint.2020.105813] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
This paper reports on the development of macroporous flow-through anodes. The anodes comprised an enhanced TiO2 nanotube array (ENTA) that was grown on three macroporous titanium substrates (MP-Ti) with nominal pore sizes of 10, 20, and 50 µm. The ENTA was then covered with SnO2-Sb2O3. We refer to this anode as the MP-Ti-ENTA/SnO2-Sb2O3 anode. The morphology, pore structure, and electrochemical properties of the anode were characterized. Compared with the traditional NTA layer, we found that the MP-Ti-ENTA/SnO2-Sb2O3 anode has a service lifetime that was 1.56 times larger than that of MP-Ti-NTA/SnO2-Sb2O3. We used 2-methyl-4-isothiazolin-3-one (MIT), a common biocide, as the target pollutant. We evaluated the impact of the operating parameters on energy efficiency and the oxidation rate of MIT. Furthermore, the apparent rate constants were 0.38, 1.63, and 1.24 min-1 for the 10, 20, and 50 μm nominal pore sizes of the MP-Ti substrates, respectively, demonstrating the different coating-loading mechanisms for the porous substrate. We found that hydroxyl radicals were the dominant species in the MIT oxidation in the HO radical scavenging experiments. The radical and nonradical oxidation contributions to the MIT degradation for different current densities were quantitatively determined as 72.1%-74.8% and 25.2%-27.9%, respectively. Finally, we summarized the oxidation performance for MIT destruction for (1) the published literature on various advanced oxidation technologies, (2) the published literature on various anodes, and (3) our flow-by and -through anodes. Accordingly, we found that our flow-through anode has a much lower electrical efficiency per order value (0.58 kWh m-3) than the flow-by anodes (6.85 kWh m-3).
Collapse
Affiliation(s)
- Min Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China; Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| | - Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China.
| | - Yingcai Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Weiqiu Zhang
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Zefang Chen
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Xiaoyang Meng
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Jinming Luo
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - John Crittenden
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|
73
|
Zhi D, Zhang J, Wang J, Luo L, Zhou Y, Zhou Y. Electrochemical treatments of coking wastewater and coal gasification wastewater with Ti/Ti 4O 7 and Ti/RuO 2-IrO 2 anodes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110571. [PMID: 32421562 DOI: 10.1016/j.jenvman.2020.110571] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/02/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Electrochemical treatments of coking wastewater (CW) and coal gasification wastewater (CGW) were conducted with Ti/Ti4O7 and Ti/RuO2-IrO2 anodes. The performances of Ti/Ti4O7 and Ti/RuO2-IrO2 anodes were investigated by analyzing the effects of five key influencing factors including anodes material, current density, anode-cathode distance, initial pH value, and electrolyte type. The removal efficiencies of total organic carbon (TOC) were analyzed during the processes of CW and CGW electro-oxidation. The removal efficiencies of sixteen polynuclear aromatic hydrocarbons (PAHs) in CW and CGW by electro-oxidation were also explored to further assess the electrochemical activities of Ti/Ti4O7 and Ti/RuO2-IrO2 anodes. The Ti/Ti4O7 anode achieved 78.7% COD removal efficiency of CW, 85.8% COD removal efficiency of CGW, 50.3% TOC removal efficiency of CW, and 54.8% TOC removal efficiency of CGW, higher than the Ti/RuO2-IrO2 anode (76.7%, 78.1%, 44.8% and 46.8%). The COD removal efficiencies increased with the applied current density, decreased with the increase of the anode-cathode distance, and slightly decreased with the increase of the initial pH value. Meanwhile, the removal efficiencies of sixteen PAHs by the Ti/Ti4O7 anode were mostly higher than those by the Ti/RuO2-IrO2 anode. By comprehensively analyzing the performances of Ti/Ti4O7 and Ti/RuO2-IrO2 anodes on electrochemical treatments of CW and CGW, this study may supply insights into the application potentials of these anodes to the electrochemical treatments of real wastewater.
Collapse
Affiliation(s)
- Dan Zhi
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Jia Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Jianbing Wang
- School of Chemical and Environmental Engineering, Beijing Campus, China University of Mining and Technology, Beijing, 100083, PR China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China.
| | - Yuzhou Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China.
| |
Collapse
|
74
|
Wang K, Li Y, Huang J, Xu L, Yin L, Ji Y, Wang C, Xu Z, Niu J. Insights into electrochemical decomposition mechanism of lipopolysaccharide using TiO 2 nanotubes arrays electrode. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122259. [PMID: 32062543 DOI: 10.1016/j.jhazmat.2020.122259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Electrochemical decomposition of lipopolysaccharide (LPS) was firstly investigated over titania nanotubes (TNTs) arrays electrode. The TNTs layer of this electrode consisted of numerous tubular structures which arranged tightly, and the average diameter of each nanotube is 100 ± 5 nm. The degradation of LPS and polysaccharides followed pseudo-first-order kinetics. The optimal LPS removal ratio was nearly 80 %. The endotoxin toxicity of LPS steadily decreased during the electrolysis process. The acute toxicity of the intermediates increased suddenly at the beginning of electrochemical degradation process (< 5 min), then maintained high inhibition ratio (> 95 %) for about 150 min, and decreased significantly (< 10 %) after electrolysis for 240 min. After 20 min of electrolysis, LPS with molecular weight of 116,854 Da was transformed into small molecular compounds with molecular weights of 59,312 - 12,209 Da. Possible degradation and detoxification mechanisms of LPS including electric-field-force-driving accumulation, adsorption and direct electron transfer on TNTs arrays electrode, and •OH oxidation were proposed. This study underscores that electrochemical technique can be applied to eliminate and decrease the toxicity of LPS from contaminated water.
Collapse
Affiliation(s)
- Kaixuan Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, PR China; Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Junxiong Huang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Lei Xu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, PR China
| | - Lifeng Yin
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yangyuan Ji
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Chong Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Zesheng Xu
- Chinese Academy for Environmental Planning, Beijing 100012, PR China
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, PR China.
| |
Collapse
|
75
|
Huo ZY, Du Y, Chen Z, Wu YH, Hu HY. Evaluation and prospects of nanomaterial-enabled innovative processes and devices for water disinfection: A state-of-the-art review. WATER RESEARCH 2020; 173:115581. [PMID: 32058153 DOI: 10.1016/j.watres.2020.115581] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/13/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
This study provided an overview of established and emerging nanomaterial (NM)-enabled processes and devices for water disinfection for both centralized and decentralized systems. In addition to a discussion of major disinfection mechanisms, data on disinfection performance (shortest contact time for complete disinfection) and energy efficiency (electrical energy per order; EEO) were collected enabling assessments firstly for disinfection processes and then for disinfection devices. The NM-enabled electro-based disinfection process gained the highest disinfection efficiency with the lowest energy consumption compared with physical-based, peroxy-based, and photo-based disinfection processes owing to the unique disinfection mechanism and the direct mean of translating energy input to microbes. Among the established disinfection devices (e.g., the stirred, the plug-flow, and the flow-through reactor), the flow-through reactor with mesh/membrane or 3-dimensional porous electrodes showed the highest disinfection performance and energy efficiency attributed to its highest mass transfer efficiency. Additionally, we also summarized recent knowledge about current and potential NMs separation and recovery methods as well as electrode strengthening and optimization strategies. Magnetic separation and robust immobilization (anchoring and coating) are feasible strategies to prompt the practical application of NM-enabled disinfection devices. Magnetic separation effectively solved the problem for the separation of evenly distributed particle-sized NMs from microbial solution and robust immobilization increased the stability of NM-modified electrodes and prevented these electrodes from degradation by hydraulic detachment and/or electrochemical dissolution. Furthermore, the study of computational fluid dynamics (CFD) was capable of simulating NM-enabled devices, which showed great potential for system optimization and reactor expansion. In this overview, we stressed the need to concern not only the treatment performance and energy efficiency of NM-enabled disinfection processes and devices but also the overall feasibility of system construction and operation for practical application.
Collapse
Affiliation(s)
- Zheng-Yang Huo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ye Du
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, PR China
| |
Collapse
|
76
|
Wang S, Zhu Y, Yang Y, Li J, Hoffmann MR. Electrochemical cell lysis of gram-positive and gram-negative bacteria: DNA extraction from environmental water samples. Electrochim Acta 2020; 338:135864. [PMID: 32255836 PMCID: PMC7063685 DOI: 10.1016/j.electacta.2020.135864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 11/17/2022]
Abstract
Cell lysis is an essential step for the nucleic acid-based surveillance of bacteriological water quality. Recently, electrochemical cell lysis (ECL), which is based on the local generation of hydroxide at a cathode surface, has been reported to be a rapid and reagent-free method for cell lysis. Herein, we describe the development of a milliliter-output ECL device and its performance characterization with respect to the DNA extraction efficiency for gram-negative bacteria (Escherichia coli and Salmonella Typhi) and gram-positive bacteria (Enterococcus durans and Bacillus subtilis). Both gram-negative and gram-positive bacteria were successfully lysed within a short but optimal duration of 1 min at a low voltage of ∼5 V. The ECL method described herein, is demonstrated to be applicable to various environmental water sample types, including pond water, treated wastewater, and untreated wastewater with DNA extraction efficiencies similar to a commercial DNA extraction kit. The ECL system outperformed homogeneous chemical lysis in terms of reaction times and DNA extraction efficiencies, due in part to the high pH generated at the cathode surface, which was predicted by simulations of the hydroxide transport in the cathodic chamber. Our work indicates that the ECL method for DNA extraction is rapid, simplified and low-cost with no need for complex instrumentation. It has demonstrable potential as a prelude to PCR analyses of waterborne bacteria in the field, especially for the gram-negative ones.
Collapse
Affiliation(s)
| | | | | | | | - Michael R. Hoffmann
- Linde+Robinson Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
77
|
Zhang J, Tian Y, Zhang T, Li Z, She X, Wu Y, Wang Y, Wu J. Confinement of Intermediates in Blue TiO
2
Nanotube Arrays Boosts Reaction Rate of Nitrogen Electrocatalysis. ChemCatChem 2020. [DOI: 10.1002/cctc.202000006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jianfang Zhang
- Department of Chemical and Environmental Engineering University of Cincinnati Cincinnati OH 45221 USA
- School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Yujing Tian
- Department of Chemical and Environmental Engineering University of Cincinnati Cincinnati OH 45221 USA
| | - Tianyu Zhang
- Department of Chemical and Environmental Engineering University of Cincinnati Cincinnati OH 45221 USA
| | - Zhengyuan Li
- Department of Chemical and Environmental Engineering University of Cincinnati Cincinnati OH 45221 USA
| | - Xiaojie She
- Department of Chemical and Environmental Engineering University of Cincinnati Cincinnati OH 45221 USA
| | - Yucheng Wu
- School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Yan Wang
- School of Materials Science and Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Jingjie Wu
- Department of Chemical and Environmental Engineering University of Cincinnati Cincinnati OH 45221 USA
| |
Collapse
|
78
|
Electrochemical Oxidation of an Organic Dye Adsorbed on Tin Oxide and Antimony Doped Tin Oxide Graphene Composites. Catalysts 2020. [DOI: 10.3390/catal10020263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Electrochemical regeneration suffers from low regeneration efficiency due to side reactions like oxygen evolution, as well as oxidation of the adsorbent. In this study, electrically conducting nanocomposites, including graphene/SnO2 (G/SnO2) and graphene/Sb-SnO2 (G/Sb-SnO2) were successfully synthesized and characterized using nitrogen adsorption, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. Thereafter, the adsorption and electrochemical regeneration performance of the nanocomposites were tested using methylene blue as a model contaminant. Compared to bare graphene, the adsorption capacity of the new composites was ≥40% higher, with similar isotherm behavior. The adsorption capacity of G/SnO2 and G/Sb-SnO2 were effectively regenerated in both NaCl and Na2SO4 electrolytes, requiring as little charge as 21 C mg−1 of adsorbate for complete regeneration, compared to >35 C mg−1 for bare graphene. Consecutive loading and anodic electrochemical regeneration cycles of the nanocomposites were carried out in both NaCl and Na2SO4 electrolytes without loss of the nanocomposite, attaining high regeneration efficiencies (ca. 100%).
Collapse
|
79
|
Sharif F, Roberts EPL. Anodic electrochemical regeneration of a graphene/titanium dioxide composite adsorbent loaded with an organic dye. CHEMOSPHERE 2020; 241:125020. [PMID: 31614314 DOI: 10.1016/j.chemosphere.2019.125020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/25/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
A nanocomposite of graphene and titanium dioxide (G/TiO2) was prepared using the sol-gel method for use in an electrochemical adsorption/regeneration process. The effect of annealing temperature on electrochemical characteristics of the nanocomposites was investigated by cyclic voltammetry and constant current electrochemical regeneration, using methylene blue (MB) as the adsorbate. The G/TiO2 could be regenerated more rapidly and with less corrosion than the bare graphene. The G/TiO2 annealed at 400 °C had a higher proportion of anatase phase TiO2 (ca. 7% rutile TiO2) compared to that annealed at 500 °C (ca. 40% rutile TiO2). Cyclic voltammetry indicated that the G/TiO2 annealed at 400 °C had a higher activity for MB oxidation than the nanocomposite annealed at 500 °C. Similarly, the regeneration of MB loaded G/TiO2 annealed at 400 °C was much faster than for the nanocomposite annealed at 500 °C. Complete regeneration of the G/TiO2 annealed at 400 °C was obtained after an electrochemical charge of 21 C per mg of adsorbate. The G/TiO2 annealed at 400 °C was regenerated in half the time required for the bare graphene. TEM studies showed that the bare graphene was rapidly corroded, while corrosion was not observed for the G/TiO2 nanocomposites.
Collapse
Affiliation(s)
- Farbod Sharif
- University of Calgary, Department of Chemical and Petroleum Engineering, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Edward P L Roberts
- University of Calgary, Department of Chemical and Petroleum Engineering, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
80
|
Xu X, Cai J, Zhou M, Du X, Zhang Y. Photoelectrochemical degradation of 2,4-dichlorophenoxyacetic acid using electrochemically self-doped Blue TiO 2 nanotube arrays with formic acid as electrolyte. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121096. [PMID: 31491666 DOI: 10.1016/j.jhazmat.2019.121096] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Blue TiO2 nanotube arrays (Blue-TNTs) were fabricated via an electrochemical reduction method with formic acid as the electrolyte. The optimum reduction conditions were obtained as bias potential of -1.3 V, reduction time of 5 min and formic acid of 3 M. Blue-TNTs were remarkably corroded compared with the intact TNTs. Similar crystal structures of the two catalysts were observed using X-ray diffraction, while red-shift was observed for Blue-TNTs using Raman spectra. X-ray photoelectron spectroscopy indicated of the presence of Ti3+ in Blue-TNTs that resulted from the reduction of Ti4+ and reduced the resistance of the catalyst. Blue-TNTs exhibited much stronger light-absorption than intact TNTs over the entire ultraviolet-visible region, especially in the visible region. The catalyst was used toward the photoelectrochemical oxidation of 2,4-dichlorophenoxyacetic acid (2,4-D) for the first time where the influencing factors were studied. Photoelectrocatalysis with Blue-TNTs presented a 2,4-D degradation rate constant (0.0295 min-1) more than twice the sum of that of electrocatalysis (0.0055 min-1) and photocatalysis (0.0089 min-1). Blue-TNTs fabricated in formic acid showed a better photoelectrocatalytic performance for 2,4-D removal compared with that prepared in ethylene glycol, Na2SO4 and NaNO3 solution. Blue-TNTs is considered to be a promising photoelectric anode for contaminant degradation.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingju Cai
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Xuedong Du
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ying Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
81
|
Heo SE, Lim HW, Cho DK, Park IJ, Kim H, Lee CW, Ahn SH, Kim JY. Anomalous potential dependence of conducting property in black titania nanotube arrays for electrocatalytic chlorine evolution. J Catal 2020. [DOI: 10.1016/j.jcat.2019.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
82
|
Meng X, Chen Z, Wang C, Zhang W, Zhang K, Zhou S, Luo J, Liu N, Zhou D, Li D, Crittenden J. Development of a Three-Dimensional Electrochemical System Using a Blue TiO 2/SnO 2-Sb 2O 3 Anode for Treating Low-Ionic-Strength Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13784-13793. [PMID: 31687808 DOI: 10.1021/acs.est.9b05488] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reducing energy use is crucial to commercialize electrochemical oxidation technologies. We developed a three-dimensional (3-D) electrochemical system that can significantly reduce the applied voltage and effectively degrade organic contaminants in low-ionic-strength wastewaters. The 3-D system consisted of a composite wire mesh anode (composed of blue TiO2 nanotubes covered with SnO2-Sb2O3), a proton exchange membrane, and a stainless-steel wire mesh cathode, which were compressed firmly together. For the 3-D system, we placed the anode of a 3-D electrode toward the wastewater that flowed past the anode. Both the two-dimensional (2-D) and 3-D systems had the same anode and cathode. We found that the 3-D system could reduce the applied voltage by 75.7% and reduce the electrical efficiency per log order reduction (EE/O) by 73% for 0.001 M Na2SO4. For Na2SO4 concentrations greater than 0.05 M, the 2-D system had a slightly lower EE/O. We also compared the EE/O of electrochemical advanced oxidation processes (EAOPs) with that of other advanced oxidation processes (UV/H2O2, UV/persulfate, O3/H2O2, UV/ TiO2, and UV/chlorine). We found that EAOPs have a much higher EE/O for low BA concentrations (20 mg/L) and a much lower EE/O for high BA concentrations (2000 mg/L).
Collapse
Affiliation(s)
| | | | - Can Wang
- School of Environmental Science and Engineering , Tianjin University , Tianjin 300350 , China
| | | | | | - Shiqing Zhou
- Department of Water Engineering and Science, College of Civil Engineering , Hunan University , Changsha , Hunan 410082 , China
| | | | | | - Dandan Zhou
- School of Environment , Northeast Normal University , Changchun 130117 , China
| | - Duo Li
- Tech-First , C-305, Building E, Wangjing High-tech Park, LizezhongEr Road , Chaoyang District, Beijing 100102 , China
| | | |
Collapse
|
83
|
Electrochemical Engineering of Nanoporous Materials for Photocatalysis: Fundamentals, Advances, and Perspectives. Catalysts 2019. [DOI: 10.3390/catal9120988] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Photocatalysis comprises a variety of light-driven processes in which solar energy is converted into green chemical energy to drive reactions such as water splitting for hydrogen energy generation, degradation of environmental pollutants, CO2 reduction and NH3 production. Electrochemically engineered nanoporous materials are attractive photocatalyst platforms for a plethora of applications due to their large effective surface area, highly controllable and tuneable light-harvesting capabilities, efficient charge carrier separation and enhanced diffusion of reactive species. Such tailor-made nanoporous substrates with rational chemical and structural designs provide new exciting opportunities to develop advanced optical semiconductor structures capable of performing precise and versatile control over light–matter interactions to harness electromagnetic waves with unprecedented high efficiency and selectivity for photocatalysis. This review introduces fundamental developments and recent advances of electrochemically engineered nanoporous materials and their application as platforms for photocatalysis, with a final prospective outlook about this dynamic field.
Collapse
|
84
|
A short review on electrochemically self-doped TiO2 nanotube arrays: Synthesis and applications. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0365-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
85
|
Chen M, Wang C, Wang Y, Meng X, Chen Z, Zhang W, Tan G. Kinetic, mechanism and mass transfer impact on electrochemical oxidation of MIT using Ti-enhanced nanotube arrays/SnO2-Sb anode. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134779] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
86
|
Liu D, Bi YG. Controllable fabrication of hollow TiO2 spheres as sustained release drug carrier. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.06.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
87
|
Duan W, Li G, Lei Z, Zhu T, Xue Y, Wei C, Feng C. Highly active and durable carbon electrocatalyst for nitrate reduction reaction. WATER RESEARCH 2019; 161:126-135. [PMID: 31185375 DOI: 10.1016/j.watres.2019.05.104] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
The development of a new class of carbon electrocatalysts for nitrate reduction reaction (NRR) that have high activity and durability is extremely important, as currently reported metallic electrocatalysts show a main drawback of low stability owing to leaching and oxidation. Herein, we demonstrate that a unique N-doped graphitic carbon-encapsulated iron nanoparticles can be utilized as a promising NRR electrocatalyst. The resulting Fe(20%)@N-C achieves a better nitrate removal proportion of 83.0% (attained in the first running cycle) compared to the efficiencies of other reference catalysts, including those with lower entrapped Fe content. The nitrogen selectivity is 25.0% in the absence of Cl- and increases to 100% when supplemented with 1.0 g L-1 NaCl. More importantly, there is no statistically significant difference (at a 95% confidence interval) regarding the removal percentage recorded over 20 cycles for the Fe(20%)@N-C cathode. We propose that the iron nanoparticles could attenuate the work function on the neighboring carbon atoms, which are the reactive sites for NRR, and that the graphitic shells hinder the access of the electrolyte, thus protecting the iron particles from dissolution and oxidation. Testing with the real industrial wastewater further demonstrates the superiority of Fe(20%)@N-C cathode towards NRR, as evidenced by efficient removal of nitrate available in the biological effluent from a local coking wastewater treatment plant.
Collapse
Affiliation(s)
- Weijian Duan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Ge Li
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhenchao Lei
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Tonghe Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Yuzhou Xue
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Chaohai Wei
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
88
|
Liu C, Zhang AY, Si Y, Pei DN, Yu HQ. Photochemical Protection of Reactive Sites on Defective TiO 2- x Surface for Electrochemical Water Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7641-7652. [PMID: 31150211 DOI: 10.1021/acs.est.9b01307] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The electrode is the key in electrochemical process for water and wastewater treatment. Many nonstoichiometric metal oxides are active electrode materials but have poor stability under strong anodic polarization due to their susceptible nature of the oxygen vacancies on surface and subsurface as defective reactive sites. In this work, a novel photochemical protecting strategy is proposed to stabilize the defective reactive sites on the TiO2- x surface and subsurface for long-term anodic oxidation of pollutants. With this strategy, a novel photoassisted electrochemical system at low anodic bias is further constructed. Such a system exhibits a high protecting capacity at a low operation cost for electrochemical degradation of bisphenol A (BPA), a typical persistent organic pollutant. Its excellent photochemical protecting capacity is found to be mainly attributed to the mild non-band-gap excitation pathways on the defective TiO2- x electrode under both visible-light irradiation and moderate anodic polarization. Under real sunlight irradiation, a 20 run cyclic test for BPA degradation demonstrates the excellent performance and stability of the constructed system at low bias without significant oxygen evolution. Our work provides a new opportunity to utilize the defective and reactive TiO2- x for efficient, stable, and cost-effective electrochemical water treatment with the aid of its photo- and electrochemical bifunctional properties.
Collapse
Affiliation(s)
- Chang Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei , 230026 , China
| | - Ai-Yong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei , 230026 , China
- Department of Municipal Engineering , Hefei University of Technology , Hefei , 230009 , China
| | - Yang Si
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei , 230026 , China
| | - Dan-Ni Pei
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei , 230026 , China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei , 230026 , China
| |
Collapse
|
89
|
Gan L, Wu Y, Song H, Lu C, Zhang S, Li A. Self-doped TiO 2 nanotube arrays for electrochemical mineralization of phenols. CHEMOSPHERE 2019; 226:329-339. [PMID: 30939372 DOI: 10.1016/j.chemosphere.2019.03.135] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Self-doped TiO2 nanotube arrays (DNTA) were prepared for the electrooxidation of resistant organics. The anatase TiO2 NTAs had an improved carrier density and conductivity from Ti3+ doping, and the oxygen-evolution potential remained at a high value of 2.48 V versus the standard hydrogen electrode, and thus, achieved a highly enhanced removal efficiency of phenol. The second anodization could stabilize Ti3+ and improve the performance by removing surface TiO2 particles. Improper preparation parameters (i.e., a short anodization time, a high calcination temperature and cathodization current density) harmed the electrooxidation activity. Although boron-doped diamond (BDD) anodes performed best in removing phenol, DNTA exhibited a higher mineralization of phenol than Pt/Ti and BDD at 120 min because intermediates were oxidized once they are produced with DNTA. Mechanism investigations using reagents such as tert-butanol, oxalic acid, terephthalic acid, and coumarin showed that the DNTA mineralization resulted mainly from surface-bound OH, and the DNTA produced more than twice the amount of OH compared with BDD. The free OH on the BDD electrode was more conducive to initial substrate oxidation, whereas the adsorbed OH on the DNTA electrode mineralized the organics in situ. The preferential removal of p-substituted phenols on DNTA was attributed mainly to their electromigration and the aromatic intermediates that are hydrophobic were beneficial to mineralization.
Collapse
Affiliation(s)
- Ling Gan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yifan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Haiou Song
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; School of the Environment, Nanjing Normal University, Nanjing 210023, PR China; School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| | - Chang Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Shupeng Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China; Nanjing University & Yancheng Academy of Environmental Protection Technology and Engineering, Yancheng 210009, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Nanjing University & Yancheng Academy of Environmental Protection Technology and Engineering, Yancheng 210009, PR China.
| |
Collapse
|
90
|
Lim J, Yang Y, Hoffmann MR. Activation of Peroxymonosulfate by Oxygen Vacancies-Enriched Cobalt-Doped Black TiO 2 Nanotubes for the Removal of Organic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6972-6980. [PMID: 31091080 PMCID: PMC6587153 DOI: 10.1021/acs.est.9b01449] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 05/23/2023]
Abstract
Cobalt-mediated activation of peroxymonosulfate (PMS) has been widely investigated for the oxidation of organic pollutants. Herein, we employ cobalt-doped Black TiO2 nanotubes (Co-Black TNT) for the efficient, stable, and reusable activator of PMS for the degradation of organic pollutants. Co-Black TNTs induce the activation of PMS by itself and stabilized oxygen vacancies that enhance the bonding with PMS and provide catalytic active sites for PMS activation. A relatively high electronic conductivity associated with the coexistence of Ti4+ and Ti3+ in Co-Black TNT enables an efficient electron transfer between PMS and the catalyst. As a result, Co-Black TNT is an effective catalyst for PMS activation, leading to the degradation of selected organic pollutants when compared to other TNTs (TNT, Co-TNT, and Black TNT) and other Co-based materials (Co3O4, Co-TiO2, CoFe2O4, and Co3O4/rGO). The observed organic compound degradation kinetics are retarded in the presence of methanol and natural organic matter as sulfate radical scavengers. These results demonstrate that sulfate radical is the primary oxidant generated via PMS activation on Co-Black TNT. The strong interaction between Co and TiO2 through Co-O-Ti bonds and rapid redox cycle of Co2+/Co3+ in Co-Black TNT prevents cobalt leaching and enhances catalyst stability over a wide pH range and repetitive uses of the catalyst. Electrode-supported Co-Black TNT facilitates the recovery of the catalyst from the treated water.
Collapse
Affiliation(s)
- Jonghun Lim
- Linde + Robinson Laboratories, California
Institute of Technology, Pasadena, California 91125, United States
| | - Yang Yang
- Linde + Robinson Laboratories, California
Institute of Technology, Pasadena, California 91125, United States
| | - Michael R. Hoffmann
- Linde + Robinson Laboratories, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
91
|
Pei S, Shen C, Zhang C, Ren N, You S. Characterization of the Interfacial Joule Heating Effect in the Electrochemical Advanced Oxidation Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4406-4415. [PMID: 30884230 DOI: 10.1021/acs.est.8b06773] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The electrochemical advanced oxidation process (EAOP) has gained popularity in the field of water purification. During the EAOP, it is in the boundary layer of the anode-solution interface that organic pollutants are oxidized by hydroxyl radicals (•OH) produced from water oxidation. Applying current to an anode dissipates heat to the surroundings according to Joule's law, leading to an interfacial temperature that is much higher than that of the bulk solution, which is known as the "interfacial Joule heating" (IJH) effect. The modeling and experimental results show that the IJH effect had an inevitable consequence for the activity of •OH, rate constants, and mass transport within the boundary layer. The interfacial temperature could be increased from 25 to 70.2 °C, a value mostly doubling that of the bulk solution (33.6 °C) at the end of a 120 min electrolysis (10 mA cm-2). Correspondingly, the •OH concentration available for oxidation of organic pollutants was much lower than that calculated at a constant temperature of 25 °C probably due to H2O2 formation via •OH dimerization. The enhanced •OH diffusion resulting from strengthened molecular thermodynamic movement and decreased kinematic viscosity of the solution also drove •OH to move far from the anode surface and thus extended the maximum thickness of the boundary layer. The oxidation rate was positively correlated to the interfacial temperature, the activation energy, and the number of activated molecules, indicated by a 1.57-2.28-fold increase depending on the target organic compounds. The finding of the IJH effect prompts a re-examination of the literature based on a realistic rather than a constant temperature (e.g., 20-30 °C), the case reflected in a number of prior studies that does not exist virtually, and reconsideration of behaviors that can be attributed to the change in temperature during EAOP.
Collapse
Affiliation(s)
- Shuzhao Pei
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , P. R. China
| | - Chao Shen
- Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, School of Architecture , Harbin Institute of Technology , Harbin 150006 , P. R. China
| | - Chenghu Zhang
- Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, School of Architecture , Harbin Institute of Technology , Harbin 150006 , P. R. China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , P. R. China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , P. R. China
| |
Collapse
|
92
|
Evidences of the Electrochemical Production of Sulfate Radicals at Cathodically Polarized TiO2 Nanotubes Electrodes. Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-00525-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
93
|
Mo C, Wei H, Wang T. Fabrication of a self‐doped TiO
2
nanotube array electrode for electrochemical degradation of methyl orange. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chenghao Mo
- School of Chemical and Material Engineering, The Key Laboratory of Synthetic and Biotechnological Colloids, Ministry of EducationJiangnan University Wuxi Jiangsu People's Republic of China
| | - Huixian Wei
- School of Chemical and Material Engineering, The Key Laboratory of Synthetic and Biotechnological Colloids, Ministry of EducationJiangnan University Wuxi Jiangsu People's Republic of China
| | - Tongjun Wang
- School of Chemical and Material Engineering, The Key Laboratory of Synthetic and Biotechnological Colloids, Ministry of EducationJiangnan University Wuxi Jiangsu People's Republic of China
| |
Collapse
|
94
|
Chatzitakis A, Sartori S. Recent Advances in the Use of Black TiO 2 for Production of Hydrogen and Other Solar Fuels. Chemphyschem 2019; 20:1272-1281. [PMID: 30633840 DOI: 10.1002/cphc.201801094] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/11/2019] [Indexed: 12/20/2022]
Abstract
Black TiO2 has emerged as one of the most promising photocatalysts recently discovered. The reason behind its catalytic activity is considered to be due to the presence of defects and Ti3+ species at the surface of black TiO2 nanostructures, which are crucial for its diverse applications. Moreover, disordered/crystalline surface layers and bulk regions have been identified and appear to influence the intrinsic properties of the material. Here, we present the latest studies on the use of black TiO2 for metal free hydrogen production, as well as for CO2 photoreduction and N2 photofixation. After highlighting the structure/property relations, we conclude with some critical questions and suggest further topics of research in order to better understand the underlying mechanisms of light absorption in black TiO2 , especially towards solar fuels production.
Collapse
Affiliation(s)
- Athanasios Chatzitakis
- Department of Chemistry, University of Oslo, Centre for Materials Science and Nanotechnology, FERMiO, Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Sabrina Sartori
- Associate Professor S. Sartori, Department of Technology Systems, University of Oslo, NO-2027, Kjeller, Norway
| |
Collapse
|
95
|
Li P, Bao Z, Wang G, Xu P, Wang X, Liu Z, Guo Y, Deng J, Zhang W. Ternary semiconductor metal oxide blends grafted Ag@AgCl hybrid as dimensionally stable anode active layer for photoelectrochemical oxidation of organic compounds: Design strategies and photoelectric synergistic mechanism. JOURNAL OF HAZARDOUS MATERIALS 2019; 362:336-347. [PMID: 30243257 DOI: 10.1016/j.jhazmat.2018.09.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
The development of ultra-efficient, sustainable, and easily accessible anode with relative non-precious semiconducting metal oxides is highly significant for application in the practical treatment of organically polluted water. Herein, we report SnO2, TiO2, and Ag2O ternary semiconductor metal oxide blend grafted Ag@AgCl hybrids, prepared with the one-step sol-gel method and applied as a dimensionally stable anode (DSA)-active layer on a SnO2-Sb/Ti electrode. Factors affecting crystal formation, including the presence or absence of O2 during calcination, the calcination temperature, and Ag@AgCl additive dosage were discussed. The micromorphology, phase composition, and photoelectrochemical activity of the newly designed anode were comprehensively characterized. The optimized preparation, which yielded a solid-solution structure with flat and smooth surface and well-crystallized lattice configuration, occurred in the absence of O2 during calcination at 550 ℃ with an Ag@AgCl additive dosage of 0.2 g in the sol-gel precursor. The newly designed DSA displayed improved electrocatalysis (EC) and photoelectrical catalysis (PEC) capacity. The phenol and its TOC removal efficiency reached 90.65% and 58.17% for 10 mA/cm2 current density with a metal halide lamp in 3 h. The lifespan was four times that of SnO2-Sb/Ti electrode. This proposed DSA construction strategy may support improved EC and PEC reactivities toward the decomposition of organic pollutants.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang City, Jiangxi 330013, PR China; School of Water Resource & Environmental Engineering, East China University of Technology, Nanchang City, Jiangxi 330013, PR China.
| | - Zhun Bao
- School of Water Resource & Environmental Engineering, East China University of Technology, Nanchang City, Jiangxi 330013, PR China
| | - Guanghui Wang
- State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang City, Jiangxi 330013, PR China; School of Water Resource & Environmental Engineering, East China University of Technology, Nanchang City, Jiangxi 330013, PR China.
| | - Pengfei Xu
- School of Water Resource & Environmental Engineering, East China University of Technology, Nanchang City, Jiangxi 330013, PR China
| | - Xuegang Wang
- State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang City, Jiangxi 330013, PR China; School of Water Resource & Environmental Engineering, East China University of Technology, Nanchang City, Jiangxi 330013, PR China
| | - Zhipeng Liu
- School of Water Resource & Environmental Engineering, East China University of Technology, Nanchang City, Jiangxi 330013, PR China
| | - Yadan Guo
- State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang City, Jiangxi 330013, PR China; School of Water Resource & Environmental Engineering, East China University of Technology, Nanchang City, Jiangxi 330013, PR China
| | - Jing Deng
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Weimin Zhang
- State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang City, Jiangxi 330013, PR China; School of Water Resource & Environmental Engineering, East China University of Technology, Nanchang City, Jiangxi 330013, PR China
| |
Collapse
|
96
|
Finke CE, Omelchenko ST, Jasper JT, Lichterman MF, Read CG, Lewis NS, Hoffmann MR. Enhancing the activity of oxygen-evolution and chlorine-evolution electrocatalysts by atomic layer deposition of TiO 2. ENERGY & ENVIRONMENTAL SCIENCE 2018; 12:358-365. [PMID: 33312227 PMCID: PMC7680952 DOI: 10.1039/c8ee02351d] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/26/2018] [Indexed: 05/29/2023]
Abstract
We report that TiO2 coatings formed via atomic layer deposition (ALD) may tune the activity of IrO2, RuO2, and FTO for the oxygen-evolution and chlorine-evolution reactions (OER and CER). Electrocatalysts exposed to ~3-30 ALD cycles of TiO2 exhibited overpotentials at 10 mA cm-2 of geometric current density that were several hundred millivolts lower than uncoated catalysts, with correspondingly higher specific activities. For example, the deposition of TiO2 onto IrO2 yielded a 9-fold increase in the OER-specific activity in 1.0 M H2SO4 (0.1 to 0.9 mA cmECSA -2 at 350 mV overpotential). The oxidation state of titanium and the potential of zero charge were also a function of the number of ALD cycles, indicating a correlation between oxidation state, potential of zero charge, and activity of the tuned electrocatalysts.
Collapse
Affiliation(s)
- Cody E. Finke
- The Linde Center for Global Environmental Science, Caltech, Caltech, Pasadena, CA 91125, USA
- The Resnick Sustainability Institute, Caltech, Caltech, Pasadena, CA 91125, USA
- Division of Engineering and Applied Science, Caltech, Caltech, Pasadena, CA 91125, USA
| | - Stefan T. Omelchenko
- Division of Engineering and Applied Science, Caltech, Caltech, Pasadena, CA 91125, USA
| | - Justin T. Jasper
- The Linde Center for Global Environmental Science, Caltech, Caltech, Pasadena, CA 91125, USA
- The Resnick Sustainability Institute, Caltech, Caltech, Pasadena, CA 91125, USA
- Division of Engineering and Applied Science, Caltech, Caltech, Pasadena, CA 91125, USA
| | - Michael F. Lichterman
- The Linde Center for Global Environmental Science, Caltech, Caltech, Pasadena, CA 91125, USA
| | - Carlos G. Read
- The Resnick Sustainability Institute, Caltech, Caltech, Pasadena, CA 91125, USA
- Division of Chemistry and Chemical Engineering, Caltech, Caltech, Pasadena, CA 91125, USA
| | - Nathan S. Lewis
- Division of Chemistry and Chemical Engineering, Caltech, Caltech, Pasadena, CA 91125, USA
| | - Michael R. Hoffmann
- The Linde Center for Global Environmental Science, Caltech, Caltech, Pasadena, CA 91125, USA
- The Resnick Sustainability Institute, Caltech, Caltech, Pasadena, CA 91125, USA
- Division of Engineering and Applied Science, Caltech, Caltech, Pasadena, CA 91125, USA
| |
Collapse
|
97
|
Alvarez PJJ, Chan CK, Elimelech M, Halas NJ, Villagrán D. Emerging opportunities for nanotechnology to enhance water security. NATURE NANOTECHNOLOGY 2018; 13:634-641. [PMID: 30082804 DOI: 10.1038/s41565-018-0203-2] [Citation(s) in RCA: 338] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/09/2018] [Accepted: 06/15/2018] [Indexed: 05/12/2023]
Abstract
No other resource is as necessary for life as water, and providing it universally in a safe, reliable and affordable manner is one of the greatest challenges of the twenty-first century. Here, we consider new opportunities and approaches for the application of nanotechnology to enhance the efficiency and affordability of water treatment and wastewater reuse. Potential development and implementation barriers are discussed along with research needs to overcome them and enhance water security.
Collapse
Affiliation(s)
- Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA.
| | - Candace K Chan
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Naomi J Halas
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Dino Villagrán
- Department of Chemistry, University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
98
|
Wang J, Zhi D, Zhou H, He X, Zhang D. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti 4O 7 anode. WATER RESEARCH 2018; 137:324-334. [PMID: 29567608 DOI: 10.1016/j.watres.2018.03.030] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
Tetracycline (TC) is one of the most widely used antibiotics with significant impacts on human health and thus it needs appropriate approaches for its removal. In the present study, we evaluated the performance and complete pathway of the TC electrochemical oxidation on a Ti/Ti4O7 anode prepared by plasma spraying. Morphological data and composition analysis indicated a compact coating layer on the anode, which had the characteristic peaks of Ti4O7 as active constituent. The TC electrochemical oxidation on the Ti/Ti4O7 anode followed a pseudo-first-order kinetics, and the TC removal efficiency reached 95.8% in 40 min. The influential factors on TC decay kinetics included current density, anode-cathode distance and initial TC concentration. This anode also had high durability and the TC removal efficiency was maintained over 95% after five times reuse. For the first time, we unraveled the complete pathway of the TC electrochemical oxidation using high-performance liquid chromatograph (HPLC) and gas chromatograph (GC) coupled with mass spectrometer (MS). ·OH radicals produced from electrochemical oxidation attack the double bond, phenolic group and amine group of TC, forming a primary intermediate (m/z = 461), secondary intermediates (m/z = 432, 477 and 509) and tertiary intermediates (m/z = 480, 448 and 525). The latter were further oxidized to the key downstream intermediate (m/z = 496), followed by further downstream intermediates (m/z = 451, 412, 396, 367, 351, 298 and 253) and eventually short-chain carboxylic acids. We also evaluated the toxicity change during the electrochemical oxidation process with bioluminescent bacteria. The bioluminescence inhibition ratio peaked at 10 min (55.41%), likely owing to the high toxicity of intermediates with m/z = 461, 432 and 477 as obtained from quantitative structure activity relationship (QSAR) analysis. The bioluminescence inhibition ratio eventually decreased to 16.78% in 40 min due to further transformation of TC and intermediates. By comprehensively analyzing the influential factors and complete degradation pathway of TC electrochemical oxidation on the Ti/Ti4O7 anode, our research provides deeper insights into the risk assessment of intermediates and their toxicity, assigning new perspectives for practical electrochemical oxidation to effectively eliminate the amount and toxicity of TC and other antibiotics in wastewater.
Collapse
Affiliation(s)
- Jianbing Wang
- School of Chemical and Environmental Engineering, Beijing Campus, China University of Mining and Technology, Beijing 100083, PR China.
| | - Dan Zhi
- School of Chemical and Environmental Engineering, Beijing Campus, China University of Mining and Technology, Beijing 100083, PR China
| | - Hao Zhou
- School of Chemical and Environmental Engineering, Beijing Campus, China University of Mining and Technology, Beijing 100083, PR China
| | - Xuwen He
- School of Chemical and Environmental Engineering, Beijing Campus, China University of Mining and Technology, Beijing 100083, PR China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
99
|
Hudari FF, Bessegato GG, Bedatty Fernandes FC, Zanoni MVB, Bueno PR. Reagentless Detection of Low-Molecular-Weight Triamterene Using Self-Doped TiO2 Nanotubes. Anal Chem 2018; 90:7651-7658. [DOI: 10.1021/acs.analchem.8b01501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Felipe F. Hudari
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Guilherme G. Bessegato
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | | | - Maria V. B. Zanoni
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Paulo R. Bueno
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| |
Collapse
|
100
|
Yang Y, Kao LC, Liu Y, Sun K, Yu H, Guo J, Liou SYH, Hoffmann MR. Cobalt-Doped Black TiO 2 Nanotube Array as a Stable Anode for Oxygen Evolution and Electrochemical Wastewater Treatment. ACS Catal 2018; 8:4278-4287. [PMID: 29755829 PMCID: PMC5939910 DOI: 10.1021/acscatal.7b04340] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/09/2018] [Indexed: 11/28/2022]
Abstract
![]()
TiO2 has long been recognized as a stable and reusable
photocatalyst for water splitting and pollution control. However,
it is an inefficient anode material in the absence of photoactivation
due to its low electron conductivity. To overcome this limitation,
a series of conductive TiO2 nanotube array electrodes have
been developed. Even though nanotube arrays are effective for electrochemical
oxidation initially, deactivation is often observed within a few hours.
To overcome the problem of deactivation, we have synthesized cobalt-doped
Black-TiO2 nanotube array (Co-Black NTA) electrodes that
are stable for more than 200 h of continuous operation in a NaClO4 electrolyte at 10 mA cm–2. Using X-ray
photoelectron spectroscopy, X-ray absorption spectroscopy, electron
paramagnetic resonance spectroscopy, and DFT simulations, we are able
to show that bulk oxygen vacancies (Ov) are the primary
source of the enhanced conductivity of Co-Black. Cobalt doping both
creates and stabilizes surficial oxygen vacancies, Ov,
and thus prevents surface passivation. The Co-Black electrodes outperform
dimensionally stable IrO2 anodes (DSA) in the electrolytic
oxidation of organic-rich wastewater. Increasing the loading of Co
leads to the formation of a CoOx film
on top of Co-Black electrode. The CoOx/Co-Black composite electrode was found to have a lower OER overpotential
(352 mV) in comparison to a DSA IrO2 (434 mV) electrode
and a stability that is greater than 200 h in a 1.0 M KOH electrolyte
at a current density of 10 mA cm–2.
Collapse
Affiliation(s)
- Yang Yang
- Division of Engineering and Applied Science, Linde-Robinson Laboratory, California Institute of Technology, Pasadena, California 91125, United States
| | - Li Cheng Kao
- Department of Geosciences, National Taiwan University, P.O. Box 13-318, Taipei 106, Taiwan
| | - Yuanyue Liu
- Department of Mechanical Engineering and Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ke Sun
- Divisions of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Hongtao Yu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Sofia Ya Hsuan Liou
- Department of Geosciences, National Taiwan University, P.O. Box 13-318, Taipei 106, Taiwan
| | - Michael R. Hoffmann
- Division of Engineering and Applied Science, Linde-Robinson Laboratory, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|