51
|
Bhatti SI, Mindikoglu AL. The impact of dawn to sunset fasting on immune system and its clinical significance in Covid-19 pandemic. Metabol Open 2021; 13:100162. [PMID: 34977523 PMCID: PMC8713419 DOI: 10.1016/j.metop.2021.100162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Dawn to sunset fasting, a type of intermittent fasting commonly practiced in the month of Ramadan, requires fasting from dawn to sunset without food or liquid intake. Dawn and dusk are two transition time zones of the day that play a critical role in the human circadian rhythm. Practicing dawn to sunset fasting requires the alignment of mealtimes and wake-sleep times with the human biological dawn and dusk. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impairs immune cell responses at multiple levels and leads to severe Coronavirus Disease 2019 (COVID-19). It generates high levels of pro-inflammatory cytokines and chemokines, also known as a cytokine storm, leads to mitochondrial dysfunction and generation of excessive amounts of mitochondrial reactive oxygen species, downregulates autophagy to escape detection for unchecked replication, and alters gut microbiome composition. Severe cases of COVID-19 have been associated with several comorbidities that impair immune responses (e.g., obesity, diabetes, malignancy) and blood laboratory abnormalities (e.g., elevated procalcitonin, C-reactive protein, interleukin-6 (IL-6), leukocytosis, lymphopenia). Several studies of dawn to sunset fasting showed anti-inflammatory effect by suppressing several pro-inflammatory cytokines, reducing oxidative stress, inducing a proteome response associated with increased autophagy, remodeling the gut microbiome, and improving the components of metabolic syndrome (e.g., obesity, blood glucose levels, blood pressure, lipids). In conclusion, dawn to sunset fasting has the potential to optimize the immune system function against SARS-CoV-2 during the COVID-19 pandemic as it suppresses chronic inflammation and oxidative stress, improves metabolic profile, and remodels the gut microbiome. This review presents scientific literature related to the effects of dawn to sunset fasting on the immune system. Studies are needed to assess and confirm the potential benefits of dawn to sunset fasting against SARS-CoV-2.
Collapse
Affiliation(s)
- Sundus I Bhatti
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, USA
| | - Ayse L Mindikoglu
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
52
|
Yau B, Naghiloo S, Diaz-Vegas A, Carr AV, Van Gerwen J, Needham EJ, Jevon D, Chen SY, Hoehn KL, Brandon AE, Macia L, Cooney GJ, Shortreed MR, Smith LM, Keller MP, Thorn P, Larance M, James DE, Humphrey SJ, Kebede MA. Proteomic pathways to metabolic disease and type 2 diabetes in the pancreatic islet. iScience 2021; 24:103099. [PMID: 34622154 PMCID: PMC8479695 DOI: 10.1016/j.isci.2021.103099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic islets are essential for maintaining physiological blood glucose levels, and declining islet function is a hallmark of type 2 diabetes. We employ mass spectrometry-based proteomics to systematically analyze islets from 9 genetic or diet-induced mouse models representing a broad cross-section of metabolic health. Quantifying the islet proteome to a depth of >11,500 proteins, this study represents the most detailed analysis of mouse islet proteins to date. Our data highlight that the majority of islet proteins are expressed in all strains and diets, but more than half of the proteins vary in expression levels, principally due to genetics. Associating these varied protein expression levels on an individual animal basis with individual phenotypic measures reveals islet mitochondrial function as a major positive indicator of metabolic health regardless of strain. This compendium of strain-specific and dietary changes to mouse islet proteomes represents a comprehensive resource for basic and translational islet cell biology.
Collapse
Affiliation(s)
- Belinda Yau
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| | - Sheyda Naghiloo
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| | - Alexis Diaz-Vegas
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Austin V. Carr
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Julian Van Gerwen
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Elise J. Needham
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Dillon Jevon
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| | - Sing-Young Chen
- Department of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Kyle L. Hoehn
- Department of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Amanda E. Brandon
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| | - Laurance Macia
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| | - Gregory J. Cooney
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| | | | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Peter Thorn
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| | - Mark Larance
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - David E. James
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Sean J. Humphrey
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Melkam A. Kebede
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| |
Collapse
|
53
|
Intermittent Fasting and the Possible Benefits in Obesity, Diabetes, and Multiple Sclerosis: A Systematic Review of Randomized Clinical Trials. Nutrients 2021; 13:nu13093179. [PMID: 34579056 PMCID: PMC8469355 DOI: 10.3390/nu13093179] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022] Open
Abstract
Intermittent fasting has become popular in recent years and is controversially presented as a possible therapeutic adjunct. A bibliographic review of the literature on intermittent fasting and obesity, diabetes, and multiple sclerosis was carried out. The scientific quality of the methodology and the results obtained were evaluated in pairs. Intermittent fasting has beneficial effects on the lipid profile, and it is associated with weight loss and a modification of the distribution of abdominal fat in people with obesity and type 2 diabetes as well as an improvement in the control of glycemic levels. In patients with multiple sclerosis, the data available are too scarce to draw any firm conclusions, but it does appear that intermittent fasting may be a safe and feasible intervention. However, it is necessary to continue investigating its long-term effects since so far, the studies carried out are small and of short duration.
Collapse
|
54
|
Saraswat M, Garapati K, Mun DG, Pandey A. Extensive heterogeneity of glycopeptides in plasma revealed by deep glycoproteomic analysis using size-exclusion chromatography. Mol Omics 2021; 17:939-947. [PMID: 34368825 PMCID: PMC8664156 DOI: 10.1039/d1mo00132a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several plasma glycoproteins are clinically useful as biomarkers in a variety of diseases. Although thousands of proteins are present in plasma, >95% of the plasma proteome by mass is represented by only 22 proteins. This necessitates strategies to deplete the abundant proteins and enrich other subsets of proteins. Although glycoproteins are abundant in plasma, in routine proteomic analyses, glycopeptides are not often investigated. Traditional methods such as lectin-based enrichment of glycopeptides followed by deglycosylation have helped understand the glycoproteome, but they lack any information about the attached glycans. Here, we apply size-exclusion chromatography (SEC) as a simple strategy to enrich intact N-glycopeptides based on their larger size which achieves broad selectivity regardless of the nature of attached glycans. Using this approach, we identified 1317 N-glycopeptides derived from 266 glycosylation sites on 154 plasma glycoproteins. The deep coverage achieved by this approach was evidenced by extensive heterogeneity that was observed. For instance, 20-100 glycopeptides were observed per protein for the 15 most-glycosylated glycoproteins. Notably, we discovered 615 novel glycopeptides of which 39 glycosylation sites (from 38 glycoproteins) were not included in protein databases such as Uniprot and GlyConnectDB. Finally, we also identified 12 novel glycopeptides containing di-sialic acid, which is a rare glycan epitope. Our results demonstrate the utility of SEC for efficient LC-MS/MS-based deep glycoproteomics analysis of human plasma. Overall, the SEC-based method described here is a simple, rapid and high-throughput strategy for characterization of any glycoproteome.
Collapse
Affiliation(s)
- Mayank Saraswat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA. and Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India and Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Kishore Garapati
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA. and Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India and Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India and Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, India
| | - Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA. and Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India and Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India and Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, India and Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
55
|
Kearney AL, Norris DM, Ghomlaghi M, Kin Lok Wong M, Humphrey SJ, Carroll L, Yang G, Cooke KC, Yang P, Geddes TA, Shin S, Fazakerley DJ, Nguyen LK, James DE, Burchfield JG. Akt phosphorylates insulin receptor substrate to limit PI3K-mediated PIP3 synthesis. eLife 2021; 10:e66942. [PMID: 34253290 PMCID: PMC8277355 DOI: 10.7554/elife.66942] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/30/2021] [Indexed: 01/16/2023] Open
Abstract
The phosphoinositide 3-kinase (PI3K)-Akt network is tightly controlled by feedback mechanisms that regulate signal flow and ensure signal fidelity. A rapid overshoot in insulin-stimulated recruitment of Akt to the plasma membrane has previously been reported, which is indicative of negative feedback operating on acute timescales. Here, we show that Akt itself engages this negative feedback by phosphorylating insulin receptor substrate (IRS) 1 and 2 on a number of residues. Phosphorylation results in the depletion of plasma membrane-localised IRS1/2, reducing the pool available for interaction with the insulin receptor. Together these events limit plasma membrane-associated PI3K and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) synthesis. We identified two Akt-dependent phosphorylation sites in IRS2 at S306 (S303 in mouse) and S577 (S573 in mouse) that are key drivers of this negative feedback. These findings establish a novel mechanism by which the kinase Akt acutely controls PIP3 abundance, through post-translational modification of the IRS scaffold.
Collapse
Affiliation(s)
- Alison L Kearney
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Dougall M Norris
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| | - Milad Ghomlaghi
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash UniversityClaytonAustralia
- Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
| | - Martin Kin Lok Wong
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Luke Carroll
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Guang Yang
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Kristen C Cooke
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Pengyi Yang
- Charles Perkins Centre, School of Mathematics and Statistics, University of SydneySydneyAustralia
- Computational Systems Biology Group, Children's Medical Research Institute, University of SydneyWestmeadAustralia
| | - Thomas A Geddes
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
- Computational Systems Biology Group, Children's Medical Research Institute, University of SydneyWestmeadAustralia
| | - Sungyoung Shin
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash UniversityClaytonAustralia
- Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
| | - Daniel J Fazakerley
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| | - Lan K Nguyen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash UniversityClaytonAustralia
- Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
- School of Medical Sciences, University of SydneySydneyAustralia
| | - James G Burchfield
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| |
Collapse
|
56
|
Ma J, Cheng Y, Su Q, Ai W, Gong L, Wang Y, Li L, Ma Z, Pan Q, Qiao Z, Chen K. Effects of intermittent fasting on liver physiology and metabolism in mice. Exp Ther Med 2021; 22:950. [PMID: 34335892 PMCID: PMC8290466 DOI: 10.3892/etm.2021.10382] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
A broad spectrum of health benefits from intermittent fasting have been reported in studies on animal models and human subjects. However, the underlying mechanisms of these beneficial effects remain largely elusive. The present study aimed to explore the effects and potential mode of action of intermittent fasting in mouse models with a focus on the liver. C57BL/6 mice were subjected to intermittent fasting or ad libitum feeding as controls. It was determined that 12 h of daily intermittent fasting for 30 days significantly reduced the cumulative food intake compared with that in mice with ad libitum feeding. Fasting resulted in a significantly reduced liver mass but only had a minimal effect on bodyweight. The effects on the liver by 30 days of fasting were not reversed by subsequent ad libitum refeeding for 30 days. Among the measured blood biochemical parameters, the levels of blood glucose were decreased, while the levels of alkaline phosphatase were increased in fasting mice. Of note, targeted metabolic profiling revealed global elevation of metabolites in the livers of fasting mice. These metabolic molecules included adenosine triphosphate, nicotinamide adenine dinucleotide phosphate (NADP), reduced NADP and succinate, which are essentially involved in the citric acid cycle and oxidative phosphorylation. Thus, it was concluded that daily 12 h of intermittent fasting for one month significantly reduced the liver weight of mice, which is associated with enhanced liver metabolism.
Collapse
Affiliation(s)
- Jianbo Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Yan Cheng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China.,Experimental Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Qiang Su
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Wen Ai
- Department of Cardiology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong 518102, P.R. China
| | - Ling Gong
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Yueying Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Linhao Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Zhongren Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Qiuwei Pan
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Zilin Qiao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Kan Chen
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China.,College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
57
|
Grajewski M, Hermann M, Oleschuk R, Verpoorte E, Salentijn G. Leveraging 3D printing to enhance mass spectrometry: A review. Anal Chim Acta 2021; 1166:338332. [DOI: 10.1016/j.aca.2021.338332] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022]
|
58
|
Xie J, De Poi SP, Humphrey SJ, Hein LK, Bruning JB, Pan W, Selth LA, Sargeant TJ, Proud CG. TSC-insensitive Rheb mutations induce oncogenic transformation through a combination of constitutively active mTORC1 signalling and proteome remodelling. Cell Mol Life Sci 2021; 78:4035-4052. [PMID: 33834258 PMCID: PMC11072378 DOI: 10.1007/s00018-021-03825-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/02/2021] [Accepted: 03/27/2021] [Indexed: 01/18/2023]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is an important regulator of cellular metabolism that is commonly hyperactivated in cancer. Recent cancer genome screens have identified multiple mutations in Ras-homolog enriched in brain (Rheb), the primary activator of mTORC1 that might act as driver oncogenes by causing hyperactivation of mTORC1. Here, we show that a number of recurrently occurring Rheb mutants drive hyperactive mTORC1 signalling through differing levels of insensitivity to the primary inactivator of Rheb, tuberous sclerosis complex. We show that two activated mutants, Rheb-T23M and E40K, strongly drive increased cell growth, proliferation and anchorage-independent growth resulting in enhanced tumour growth in vivo. Proteomic analysis of cells expressing the mutations revealed, surprisingly, that these two mutants promote distinct oncogenic pathways with Rheb-T23M driving an increased rate of anaerobic glycolysis, while Rheb-E40K regulates the translation factor eEF2 and autophagy, likely through differential interactions with 5' AMP-activated protein kinase (AMPK) which modulate its activity. Our findings suggest that unique, personalized, combination therapies may be utilised to treat cancers according to which Rheb mutant they harbour.
Collapse
Affiliation(s)
- Jianling Xie
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Stuart P De Poi
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
- Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Leanne K Hein
- Lysosomal Health in Ageing, Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
| | - John B Bruning
- Institute for Photonics and Advanced Sensing, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Wenru Pan
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Luke A Selth
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, 5042, Australia
| | - Timothy J Sargeant
- Lysosomal Health in Ageing, Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
| | - Christopher G Proud
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia.
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
59
|
Harney DJ, Cielesh M, Chu R, Cooke KC, James DE, Stöckli J, Larance M. Proteomics analysis of adipose depots after intermittent fasting reveals visceral fat preservation mechanisms. Cell Rep 2021; 34:108804. [PMID: 33657384 DOI: 10.1016/j.celrep.2021.108804] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 12/21/2022] Open
Abstract
Intermittent fasting is a beneficial dietary treatment for obesity. But the response of each distinct adipose depot is currently poorly defined. Here we explore the response of key adipose depots to every-other-day fasting (EODF) in mice using proteomics. A key change in subcutaneous white adipose tissue (scWAT) and visceral WAT (vWAT) depots is an increase in mitochondrial protein content after EODF. This effect is correlated with increased fatty acid synthesis enzymes in both WAT depots but not in brown adipose tissue. Strikingly, EODF treatment downregulates lipolysis specifically in vWAT, mediated by a large decrease in the abundance of the catecholamine receptor (ADRB3). Together, these changes are important for preservation of the visceral lipid store during EODF. Enrichment analysis highlights downregulation of inflammatory collagen IV specifically in vWAT, allowing improved insulin sensitivity. This resource for adipose-depot-specific fasting adaptations in mice is available using a web-based interactive visualization.
Collapse
Affiliation(s)
- Dylan J Harney
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Michelle Cielesh
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Renee Chu
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Kristen C Cooke
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia; School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Jacqueline Stöckli
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Mark Larance
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
60
|
Sun DY, Fu JT, Li GQ, Zhang WJ, Zeng FY, Tong J, Miao CY, Li DJ, Wang P. iTRAQ- and LC-MS/MS-based quantitative proteomics reveals Pqlc2 as a potential regulator of hepatic glucose metabolism and insulin signalling pathway during fasting. Clin Exp Pharmacol Physiol 2021; 48:238-249. [PMID: 33051888 DOI: 10.1111/1440-1681.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022]
Abstract
Glucose homeostasis is tightly controlled by balance between glucose production and uptake in liver tissue upon energy shortage condition. Altered glucose homeostasis contributes to the pathophysiology of metabolic disorders including diabetes and obesity. Here, we aimed to analyse the change of proteomic profile upon prolonged fasting in mice with isobaric tag for relative and absolute quantification (iTRAQ) labelling followed by liquid chromatography-mass spectrometry (LC/MS) technology. Adult male mice were fed or fasted for 16 hours and liver tissues were collected for iTRAQ labelling followed by LC/MS analysis. A total of 322 differentially expressed proteins were identified, including 189 upregulated and 133 downregulated proteins. Bioinformatics analyses, including Gene Ontology analysis (GO), Kyoto encyclopaedia of genes and genomes analysis (KEGG) and protein-protein interaction analysis (PPI) were conducted to understand biological process, cell component, and molecular function of the 322 differentially expressed proteins. Among 322 hepatic proteins differentially expressed between fasting and fed mice, we validated three upregulated proteins (Pqlc2, Ehhadh and Apoa4) and two downregulated proteins (Uba52 and Rpl37) by western-blotting analysis. In cultured HepG2 hepatocellular cells, we found that depletion of Pqlc2 by siRNA-mediated knockdown impaired the insulin-induced glucose uptake, inhibited GLUT2 mRNA level and suppressed the insulin-induced Akt phosphorylation. By contrast, knockdown of Pqlc2 did not affect the cAMP/dexamethasone-induced gluconeogenesis. In conclusion, our study provides important information on protein profile change during prolonged fasting with iTRAQ- and LC-MS/MS-based quantitative proteomics, and identifies Pqlc2 as a potential regulator of hepatic glucose metabolism and insulin signalling pathway in this process.
Collapse
Affiliation(s)
- Di-Yang Sun
- Department of Pharmacology, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Jiang-Tao Fu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Guo-Qiang Li
- Department of Pharmacology, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Wen-Jie Zhang
- Department of Pharmacology, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Fei-Yan Zeng
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jie Tong
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Pei Wang
- Department of Pharmacology, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
61
|
Martinez-Huenchullan SF, Shipsey I, Hatchwell L, Min D, Twigg SM, Larance M. Blockade of High-Fat Diet Proteomic Phenotypes Using Exercise as Prevention or Treatment. Mol Cell Proteomics 2020; 20:100027. [PMID: 33594989 PMCID: PMC7950115 DOI: 10.1074/mcp.tir120.002343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/29/2020] [Indexed: 11/06/2022] Open
Abstract
The increasing consumption of high-fat foods combined with a lack of exercise is a major contributor to the burden of obesity in humans. Aerobic exercise such as running is known to provide metabolic benefits, but how the overconsumption of a high-fat diet (HFD) and exercise interact is not well characterized at the molecular level. Here, we examined the plasma proteome in mice for the effects of aerobic exercise as both a treatment and as a preventative regimen for animals on either a HFD or a healthy control diet. This analysis detected large changes in the plasma proteome induced by the HFD, such as increased abundance of SERPINA7, ALDOB, and downregulation of SERPINA1E and complement factor D (CFD; adipsin). Some of these changes were significantly reverted using exercise as a preventative measure but not as a treatment regimen. To determine if either the intensity or duration of exercise influenced the outcome, we compared high-intensity interval training and endurance running. Endurance running slightly outperformed high-intensity interval training exercise, but overall, both provided similar reversion in abundance of plasma proteins modulated by the HFD, including SERPINA7, apolipoprotein E, SERPINA1E, and CFD. Finally, we compared the changes induced by overconsumption of a HFD with previous data from mice fed on an isocaloric high-saturated fatty acid or polyunsaturated fatty acid diet. This identified several common changes, including not only increased apolipoprotein C-II and apolipoprotein E but also highlighted changes specific for overconsumption of a HFD (fructose-bisphosphate aldolase B, SERPINA7, and CFD), saturated fatty acid-based diets (SERPINA1E), or polyunsaturated fatty acid-based diets (haptoglobin). Together, these data highlight the importance of early intervention with exercise to revert HFD-induced phenotypes and suggest some of the molecular mechanisms leading to the changes in the plasma proteome generated by HFD consumption. Web-based interactive visualizations are provided for this dataset (larancelab.com/hfd-exercise), which give insight into diet and exercise phenotypic interactions on the plasma proteome.
Collapse
Affiliation(s)
- Sergio F Martinez-Huenchullan
- Faculty of Science, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia; Faculty of Medicine and Health, Central Clinical School, University of Sydney, New South Wales, Australia; Faculty of Medicine, School of Physical Therapy, Austral University of Chile, Valdivia, Chile
| | - Isaac Shipsey
- Faculty of Science, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Luke Hatchwell
- Faculty of Science, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
| | - Danqing Min
- Faculty of Science, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia; Faculty of Medicine and Health, Central Clinical School, University of Sydney, New South Wales, Australia
| | - Stephen M Twigg
- Faculty of Science, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia; Faculty of Medicine and Health, Central Clinical School, University of Sydney, New South Wales, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, New South Wales, Australia.
| | - Mark Larance
- Faculty of Science, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia.
| |
Collapse
|
62
|
Loupy KM, Lee T, Zambrano CA, Elsayed AI, D'Angelo HM, Fonken LK, Frank MG, Maier SF, Lowry CA. Alzheimer's Disease: Protective Effects of Mycobacterium vaccae, a Soil-Derived Mycobacterium with Anti-Inflammatory and Anti-Tubercular Properties, on the Proteomic Profiles of Plasma and Cerebrospinal Fluid in Rats. J Alzheimers Dis 2020; 78:965-987. [PMID: 33074227 DOI: 10.3233/jad-200568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is an inflammatory neurodegenerative disease that may be associated with prior bacterial infections. Microbial "old friends" can suppress exaggerated inflammation in response to disease-causing infections or increase clearance of pathogens such as Mycobacterium tuberculosis, which causes tuberculosis (TB). One such "old friend" is Mycobacterium vaccae NCTC 11659, a soil-derived bacterium that has been proposed either as a vaccine for prevention of TB, or as immunotherapy for the treatment of TB when used alongside first line anti-TB drug treatment. OBJECTIVE The goal of this study was to use a hypothesis generating approach to explore the effects of M. vaccae on physiological changes in the plasma and cerebrospinal fluid (CSF). METHODS Liquid chromatography-tandem mass spectrometry-based proteomics were performed in plasma and CSF of adult male rats after immunization with a heat-killed preparation of M. vaccae NCTC 11659 or borate-buffered saline vehicle. Gene enrichment analysis and analysis of protein-protein interactions were performed to integrate physiological network changes in plasma and CSF. We used RT-qPCR to assess immune and metabolic gene expression changes in the hippocampus. RESULTS In both plasma and CSF, immunization with M. vaccae increased proteins associated with immune activation and downregulated proteins corresponding to lipid (including phospholipid and cholesterol) metabolism. Immunization with M. vaccae also increased hippocampal expression of interleukin-4 (IL-4) mRNA, implicating anti-inflammatory effects in the central nervous system. CONCLUSION M. vaccae alters host immune activity and lipid metabolism. These data are consistent with the hypothesis that microbe-host interactions may protect against possible infection-induced, inflammation-related cognitive impairments.
Collapse
Affiliation(s)
- Kelsey M Loupy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Thomas Lee
- Central Analytical Laboratory and Mass Spectrometry Facility, Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Cristian A Zambrano
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Ahmed I Elsayed
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Heather M D'Angelo
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USA
| | - Matthew G Frank
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.,Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, USA.,Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA.,Senior Fellow, inVIVO Planetary Health, of the Worldwide Universities Network (WUN), West New York, NJ, USA
| |
Collapse
|
63
|
O'Rourke MB, Sahni S, Samra J, Mittal A, Molloy MP. Data independent acquisition of plasma biomarkers of response to neoadjuvant chemotherapy in pancreatic ductal adenocarcinoma. J Proteomics 2020; 231:103998. [PMID: 33027703 DOI: 10.1016/j.jprot.2020.103998] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/18/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
The detection of disease-related plasma biomarkers has challenged the proteomic community for years. Attractive features for plasma proteomics includes the ease of collection and small volume needed for analysis, but on the other hand, the presence of highly abundant proteins complicates sample preparation procedures and reduces dynamic range. Data independent acquisition label free quantitation (DIA-LFQ) by mass spectrometry partly overcomes the dynamic range issue; however, generating the peptide spectral reference libraries that allow extensive analysis of the plasma proteome can be a slow and expensive task which is unattainable for many laboratories. We investigated the re-purposing of publically available plasma proteome datasets and the impact on peptide/protein detection for DIA-LFQ. We carried out these studies in the context of identifying putative biomarkers of response to neoadjuvant chemotherapy (NAC) for pancreatic ductal adenocarcinoma, as no useful plasma biomarkers have been clinically adopted. We demonstrated the benefit in searching DIA data against multiple spectral libraries to show that complement proteins were linked to NAC response in PDAC patients, confirming previous observations of the prognostic utility of complement following adjuvant chemotherapy. Our workflow demonstrates that DIA-LFQ can be readily applied in the oncology setting for the putative assignment of clinically relevant plasma biomarkers. STATEMENT OF SIGNIFICANCE: The proteomic mass spectrometry analysis of undepleted, unfractionated human plasma has benefits for sample throughput but remains challenging to obtain deep coverage. This work evaluated the re-purposing of open source peptide mass spectrometry data from human plasma to create spectral reference libraries for use in Data independent acquisition (DIA). We showed how seeding in locally acquired data to integrate iRT peptides into spectral libraries increased identification confidence by facilitating querying of multiple libraries. This workflow was applied to the discovery of putative plasma biomarkers for response to neoadjuvant chemotherapy (NAC) in pancreatic ductal adenocarcinoma patients. There is a paucity of prior information in the literature on this topic and we show that good responder patients have reduced levels of complement proteins.
Collapse
Affiliation(s)
- Matthew B O'Rourke
- Bowel Cancer and Biomarker Laboratory, Kolling Institute, Royal North Shore Hospital, The University of Sydney, Australia
| | - Sumit Sahni
- Bill Walsh Translational Cancer Laboratory, Kolling Institute, Royal North Shore Hospital, The University of Sydney, Australia
| | - Jaswinder Samra
- Upper GI Surgical Unit, Royal North Shore Hospital, Sydney, Australia
| | - Anubhav Mittal
- Upper GI Surgical Unit, Royal North Shore Hospital, Sydney, Australia
| | - Mark P Molloy
- Bowel Cancer and Biomarker Laboratory, Kolling Institute, Royal North Shore Hospital, The University of Sydney, Australia.
| |
Collapse
|
64
|
Green ID, Pinello N, Song R, Lee Q, Halstead JM, Kwok CT, Wong ACH, Nair SS, Clark SJ, Roediger B, Schmitz U, Larance M, Hayashi R, Rasko JEJ, Wong JJL. Macrophage development and activation involve coordinated intron retention in key inflammatory regulators. Nucleic Acids Res 2020; 48:6513-6529. [PMID: 32449925 PMCID: PMC7337907 DOI: 10.1093/nar/gkaa435] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 12/31/2022] Open
Abstract
Monocytes and macrophages are essential components of the innate immune system. Herein, we report that intron retention (IR) plays an important role in the development and function of these cells. Using Illumina mRNA sequencing, Nanopore direct cDNA sequencing and proteomics analysis, we identify IR events that affect the expression of key genes/proteins involved in macrophage development and function. We demonstrate that decreased IR in nuclear-detained mRNA is coupled with increased expression of genes encoding regulators of macrophage transcription, phagocytosis and inflammatory signalling, including ID2, IRF7, ENG and LAT. We further show that this dynamic IR program persists during the polarisation of resting macrophages into activated macrophages. In the presence of proinflammatory stimuli, intron-retaining CXCL2 and NFKBIZ transcripts are rapidly spliced, enabling timely expression of these key inflammatory regulators by macrophages. Our study provides novel insights into the molecular factors controlling vital regulators of the innate immune response.
Collapse
Affiliation(s)
- Immanuel D Green
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Natalia Pinello
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Quintin Lee
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia.,Immune Imaging Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia
| | - James M Halstead
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Chau-To Kwok
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Alex C H Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia.,Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia
| | - Shalima S Nair
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia.,St. Vincent's Clinical School, UNSW, Sydney 2010, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
| | - Susan J Clark
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia.,St. Vincent's Clinical School, UNSW, Sydney 2010, Australia
| | - Ben Roediger
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia.,Immune Imaging Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia
| | - Ulf Schmitz
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia.,Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia.,Computational Biomedicine Laboratory Centenary Institute, The University of Sydney, Camperdown 2050, Australia
| | - Mark Larance
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown 2006, New South Wales, Australia
| | - Rippei Hayashi
- The John Curtin School of Medical Research, The Australian National University, ACT 2601, Australia
| | - John E J Rasko
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia.,Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown 2050, Australia
| | - Justin J-L Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| |
Collapse
|
65
|
Bernier M, Harney D, Koay YC, Diaz A, Singh A, Wahl D, Pulpitel T, Ali A, Guiterrez V, Mitchell SJ, Kim EY, Mach J, Price NL, Aon MA, LeCouteur DG, Cogger VC, Fernandez-Hernando C, O’Sullivan J, Larance M, Cuervo AM, de Cabo R. Elucidating the mechanisms by which disulfiram protects against obesity and metabolic syndrome. NPJ Aging Mech Dis 2020; 6:8. [PMID: 32714562 PMCID: PMC7374720 DOI: 10.1038/s41514-020-0046-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022] Open
Abstract
There is an unmet need and urgency to find safe and effective anti-obesity interventions. Our recent study in mice fed on obesogenic diet found that treatment with the alcohol aversive drug disulfiram reduced feeding efficiency and led to a decrease in body weight and an increase in energy expenditure. The intervention with disulfiram improved glucose tolerance and insulin sensitivity, and mitigated metabolic dysfunctions in various organs through poorly defined mechanisms. Here, integrated analysis of transcriptomic and proteomic data from mouse and rat livers unveiled comparable signatures in response to disulfiram, revealing pathways associated with lipid and energy metabolism, redox, and detoxification. In cell culture, disulfiram was found to be a potent activator of autophagy, the malfunctioning of which has negative consequences on metabolic regulation. Thus, repurposing disulfiram may represent a potent strategy to combat obesity.
Collapse
Affiliation(s)
- Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 USA
| | - Dylan Harney
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia
| | - Yen Chin Koay
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia
- Heart Research Institute, The University of Sydney, Sydney, NSW 2042 Australia
| | - Antonio Diaz
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY 10461 USA
| | - Abhishek Singh
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Devin Wahl
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 USA
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia
- Ageing and Alzheimer’s Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW 2139 Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia
- Ageing and Alzheimer’s Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW 2139 Australia
| | - Ahmed Ali
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 USA
| | - Vince Guiterrez
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 USA
| | - Sarah J. Mitchell
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 USA
| | - Eun-Young Kim
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 USA
- Functional Genomics Research Center, KRIBB, Daejeon, 305-806 Republic of Korea
| | - John Mach
- Kolling Institute of Medical Research and Sydney Medical School, University of Sydney, Sydney, NSW 2064 Australia
| | - Nathan L. Price
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Miguel A. Aon
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 USA
| | - David G. LeCouteur
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia
- Ageing and Alzheimer’s Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW 2139 Australia
| | - Victoria C. Cogger
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia
- Ageing and Alzheimer’s Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW 2139 Australia
| | - Carlos Fernandez-Hernando
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, New Haven, CT 06510 USA
| | - John O’Sullivan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia
- Heart Research Institute, The University of Sydney, Sydney, NSW 2042 Australia
| | - Mark Larance
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY 10461 USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 USA
| |
Collapse
|
66
|
Mellinger AL, Griffith EH, Bereman MS. Peptide variability and signatures associated with disease progression in CSF collected longitudinally from ALS patients. Anal Bioanal Chem 2020; 412:5465-5475. [PMID: 32591871 DOI: 10.1007/s00216-020-02765-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/20/2020] [Accepted: 06/09/2020] [Indexed: 01/06/2023]
Abstract
We employ shotgun proteomics and data-independent acquisition (DIA) mass spectrometry to analyze cerebrospinal fluid longitudinally collected from 14 amyotrophic lateral sclerosis (ALS) patients (8 males and 6 females). We perform three main analyses of these data: (1) examine the intra- and inter-patient protein variability in CSF; (2) explore the association of inflammation with rate of disease progression; and (3) develop a mixed-effects model to best explain the decrease in ALS-Functional Rating Scale (ALS-FRS) score. Overall, the CSF protein abundances are tightly regulated with the intra-individual variability contributing just 4% to the overall variance. In four patients, a moderately significant correlation (p < 0.1) was observed between inflammation and rate of disease progression. Using a least absolute shrinkage and selection operator (LASSO) variable selection, we selected 55 viable peptides for mathematical modeling via a linear mixed-effects regression. We then employed forward selection to generate a final model by minimizing Akaike's information criterion (AIC). The final model utilized changes in abundance from 28 peptides as fixed effects to model progression of the disease in these patients. These peptides were from proteins involved in stress response and innate immunity. Graphical abstract.
Collapse
Affiliation(s)
- Allyson L Mellinger
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Emily H Griffith
- Department of Statistics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael S Bereman
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA. .,Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA. .,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
67
|
Mindikoglu AL, Abdulsada MM, Jain A, Choi JM, Jalal PK, Devaraj S, Mezzari MP, Petrosino JF, Opekun AR, Jung SY. Intermittent fasting from dawn to sunset for 30 consecutive days is associated with anticancer proteomic signature and upregulates key regulatory proteins of glucose and lipid metabolism, circadian clock, DNA repair, cytoskeleton remodeling, immune system and cognitive function in healthy subjects. J Proteomics 2020; 217:103645. [PMID: 31927066 PMCID: PMC7429999 DOI: 10.1016/j.jprot.2020.103645] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/13/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Abstract
Murine studies showed that disruption of circadian clock rhythmicity could lead to cancer and metabolic syndrome. Time-restricted feeding can reset the disrupted clock rhythm, protect against cancer and metabolic syndrome. Based on these observations, we hypothesized that intermittent fasting for several consecutive days without calorie restriction in humans would induce an anticarcinogenic proteome and the key regulatory proteins of glucose and lipid metabolism. Fourteen healthy subjects fasted from dawn to sunset for over 14 h daily. Fasting duration was 30 consecutive days. Serum samples were collected before 30-day intermittent fasting, at the end of 4th week during 30-day intermittent fasting, and one week after 30-day intermittent fasting. An untargeted serum proteomic profiling was performed using ultra high-performance liquid chromatography/tandem mass spectrometry. Our results showed that 30-day intermittent fasting was associated with an anticancer serum proteomic signature, upregulated key regulatory proteins of glucose and lipid metabolism, circadian clock, DNA repair, cytoskeleton remodeling, immune system, and cognitive function, and resulted in a serum proteome protective against cancer, metabolic syndrome, inflammation, Alzheimer's disease, and several neuropsychiatric disorders. These findings suggest that fasting from dawn to sunset for 30 consecutive days can be preventive and adjunct therapy in cancer, metabolic syndrome, and several cognitive and neuropsychiatric diseases. SIGNIFICANCE: Our study has important clinical implications. Our results showed that intermittent fasting from dawn to sunset for over 14 h daily for 30 consecutive days was associated with an anticancer serum proteomic signature and upregulated key regulatory proteins of glucose and lipid metabolism, insulin signaling, circadian clock, DNA repair, cytoskeleton remodeling, immune system, and cognitive function, and resulted in a serum proteome protective against cancer, obesity, diabetes, metabolic syndrome, inflammation, Alzheimer's disease, and several neuropsychiatric disorders. Importantly, these findings occurred in the absence of any calorie restriction and significant weight loss. These findings suggest that intermittent fasting from dawn to sunset can be a preventive and adjunct therapy in cancer, metabolic syndrome and Alzheimer's disease and several neuropsychiatric diseases.
Collapse
Affiliation(s)
- Ayse L Mindikoglu
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States of America; Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, United States of America.
| | - Mustafa M Abdulsada
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States of America
| | - Antrix Jain
- Advanced Technology Core, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, United States of America
| | - Jong Min Choi
- Advanced Technology Core, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, United States of America
| | - Prasun K Jalal
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States of America; Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, United States of America
| | - Sridevi Devaraj
- Clinical Chemistry and Point of Care Technology, Texas Children's Hospital and Health Centers, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States of America
| | - Melissa P Mezzari
- The Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, United States of America
| | - Joseph F Petrosino
- The Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, United States of America
| | - Antone R Opekun
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States of America; Department of Pediatrics, Division of Gastroenterology, Nutrition and Hepatology, Baylor College of Medicine, Houston, TX, United States of America
| | - Sung Yun Jung
- Advanced Technology Core, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, United States of America; Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
68
|
Freire T, Senior AM, Perks R, Pulpitel T, Clark X, Brandon AE, Wahl D, Hatchwell L, Le Couteur DG, Cooney GJ, Larance M, Simpson SJ, Solon-Biet SM. Sex-specific metabolic responses to 6 hours of fasting during the active phase in young mice. J Physiol 2020; 598:2081-2092. [PMID: 32198893 DOI: 10.1113/jp278806] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Night time/active phase food restriction for 6 h impaired glucose intolerance in young male and female mice. Females displayed increased capacity for lipogenesis and triglyceride storage in response to a short daily fast. Females had lower fasting insulin levels and an increased potential for utilizing fat for energy through β-oxidation compared to males. The need for the inclusion of both sexes, and the treatment of sex as an independent variable, is emphasized within the context of this fasting regime. ABSTRACT There is growing interest in understanding the mechanistic significance and benefits of fasting physiology in combating obesity. Increasing the fasting phase of a normal day can promote restoration and repair mechanisms that occur during the post-absorptive period. Most studies exploring the effect of restricting food access on mitigating obesity have done so with a large bias towards the use of male mice. Here, we disentangle the roles of sex, food intake and food withdrawal in the response to a short-term daily fasting intervention, in which food was removed for 6 h in the dark/active phase of young, 8-week-old mice. We showed that the removal of food during the dark phase impaired glucose tolerance in males and females, possibly due to the circadian disruption induced by this feeding protocol. Although both sexes demonstrated similar patterns of food intake, body composition and various metabolic markers, there were clear sex differences in the magnitude and extent of these responses. While females displayed enhanced capacity for lipogenesis and triglyceride storage, they also had low fasting insulin levels and an increased potential for utilizing available energy sources such as fat for energy through β-oxidation. Our results highlight the intrinsic biological and metabolic disparities between male and female mice, emphasizing the growing need for the inclusion of both sexes in scientific research. Furthermore, our results illustrate sex-specific metabolic pathways that regulate lipogenesis, obesity and overall metabolic health.
Collapse
Affiliation(s)
- Therese Freire
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Alistair M Senior
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Ruth Perks
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Ximonie Clark
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Amanda E Brandon
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW, Australia
| | - Devin Wahl
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW, Australia
| | - Luke Hatchwell
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Ageing and Alzheimer's Institute and Centre for Education and Research on Ageing, Concord Hospital, Concord, NSW, Australia
| | - Gregory J Cooney
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW, Australia
| | - Mark Larance
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
69
|
Doucette AA, Nickerson JL. Developing front-end devices for improved sample preparation in MS-based proteome analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4494. [PMID: 31957906 DOI: 10.1002/jms.4494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/13/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Chemical analysis has long relied on instrumentation, from the simplest (eg, burets) to the more sophisticated (eg, mass spectrometers) to facilitate precision measurements. Regardless of their complexity, the development of a new instrumental device can be a valued approach to address problems in science. In this perspective, we outline the process of novel device design, from early phase conception to the manufacturing and testing of the tool or gadget. Focus is placed on the development of improved front-end devices to facilitate protein sample manipulations ahead of mass spectrometry, which therefore augment the proteomics workflow. Highlighted are some of the many training secrets, choices, and challenges that are inherent to the often iterative process of device design. In hopes of inspiring others to pursue instrument design to address relevant research questions, we present a summary list of points to consider prior to innovating their own devices.
Collapse
Affiliation(s)
- Alan A Doucette
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
70
|
Hatchwell L, Harney DJ, Cielesh M, Young K, Koay YC, O’Sullivan JF, Larance M. Multi-omics Analysis of the Intermittent Fasting Response in Mice Identifies an Unexpected Role for HNF4α. Cell Rep 2020; 30:3566-3582.e4. [DOI: 10.1016/j.celrep.2020.02.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/24/2020] [Accepted: 02/11/2020] [Indexed: 12/21/2022] Open
|
71
|
Harney DJ, Hutchison AT, Su Z, Hatchwell L, Heilbronn LK, Hocking S, James DE, Larance M. Small-protein Enrichment Assay Enables the Rapid, Unbiased Analysis of Over 100 Low Abundance Factors from Human Plasma. Mol Cell Proteomics 2019; 18:1899-1915. [PMID: 31308252 PMCID: PMC6731089 DOI: 10.1074/mcp.tir119.001562] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Unbiased and sensitive quantification of low abundance small proteins in human plasma (e.g. hormones, immune factors, metabolic regulators) remains an unmet need. These small protein factors are typically analyzed individually and using antibodies that can lack specificity. Mass spectrometry (MS)-based proteomics has the potential to address these problems, however the analysis of plasma by MS is plagued by the extremely large dynamic range of this body fluid, with protein abundances spanning at least 13 orders of magnitude. Here we describe an enrichment assay (SPEA), that greatly simplifies the plasma dynamic range problem by enriching small-proteins of 2-10 kDa, enabling the rapid, specific and sensitive quantification of >100 small-protein factors in a single untargeted LC-MS/MS acquisition. Applying this method to perform deep-proteome profiling of human plasma we identify C5ORF46 as a previously uncharacterized human plasma protein. We further demonstrate the reproducibility of our workflow for low abundance protein analysis using a stable-isotope labeled protein standard of insulin spiked into human plasma. SPEA provides the ability to study numerous important hormones in a single rapid assay, which we applied to study the intermittent fasting response and observed several unexpected changes including decreased plasma abundance of the iron homeostasis regulator hepcidin.
Collapse
Affiliation(s)
- Dylan J Harney
- ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Amy T Hutchison
- ¶Discipline of Medicine, University of Adelaide, Adelaide, Australia
| | - Zhiduan Su
- ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Luke Hatchwell
- ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | | | - Samantha Hocking
- §Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - David E James
- ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Mark Larance
- ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia.
| |
Collapse
|