51
|
Sodium Alginate/Chitosan Scaffolds for Cardiac Tissue Engineering: The Influence of Its Three-Dimensional Material Preparation and the Use of Gold Nanoparticles. Polymers (Basel) 2022; 14:polym14163233. [PMID: 36015490 PMCID: PMC9414310 DOI: 10.3390/polym14163233] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Natural biopolymer scaffolds and conductive nanomaterials have been widely used in cardiac tissue engineering; however, there are still challenges in the scaffold fabrication, which include enhancing nutrient delivery, biocompatibility and properties that favor the growth, maturation and functionality of the generated tissue for therapeutic application. In the present work, different scaffolds prepared with sodium alginate and chitosan (alginate/chitosan) were fabricated with and without the addition of metal nanoparticles and how their fabrication affects cardiomyocyte growth was evaluated. The scaffolds (hydrogels) were dried by freeze drying using calcium gluconate as a crosslinking agent, and two types of metal nanoparticles were incorporated, gold (AuNp) and gold plus sodium alginate (AuNp+Alg). A physicochemical characterization of the scaffolds was carried out by swelling, degradation, permeability and infrared spectroscopy studies. The results show that the scaffolds obtained were highly porous (>90%) and hydrophilic, with swelling percentages of around 3000% and permeability of the order of 1 × 10−8 m2. In addition, the scaffolds proposed favored adhesion and spheroid formation, with cardiac markers expression such as tropomyosin, troponin I and cardiac myosin. The incorporation of AuNp+Alg increased cardiac protein expression and cell proliferation, thus demonstrating their potential use in cardiac tissue engineering.
Collapse
|
52
|
Asri NAN, Mahat MM, Zakaria A, Safian MF, Abd Hamid UM. Fabrication Methods of Electroactive Scaffold-Based Conducting Polymers for Tissue Engineering Application: A Review. Front Bioeng Biotechnol 2022; 10:876696. [PMID: 35875482 PMCID: PMC9300926 DOI: 10.3389/fbioe.2022.876696] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/03/2022] [Indexed: 11/19/2022] Open
Abstract
Conductive scaffolds, defined as scaffold systems capable of carrying electric current, have been extensively researched for tissue engineering applications. Conducting polymers (CPs) as components of conductive scaffolds was introduced to improve morphology or cell attachment, conductivity, tissue growth, and healing rate, all of which are beneficial for cardiac, muscle, nerve, and bone tissue management. Conductive scaffolds have become an alternative for tissue replacement, and repair, as well as to compensate for the global organ shortage for transplantation. Previous researchers have presented a wide range of fabrication methods for conductive scaffolds. This review highlights the most recent advances in developing conductive scaffolds, with the aim to trigger more theoretical and experimental work to address the challenges and prospects of these new fabrication techniques in medical sciences.
Collapse
Affiliation(s)
- Nurul Ain Najihah Asri
- School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
| | - Mohd Muzamir Mahat
- School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
- *Correspondence: Mohd Muzamir Mahat, ; Azlan Zakaria, ; Muhd Fauzi Safian, ; Umi Marshida Abd Hamid,
| | - Azlan Zakaria
- School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
- *Correspondence: Mohd Muzamir Mahat, ; Azlan Zakaria, ; Muhd Fauzi Safian, ; Umi Marshida Abd Hamid,
| | - Muhd Fauzi Safian
- School of Chemistry and Environmental Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
- *Correspondence: Mohd Muzamir Mahat, ; Azlan Zakaria, ; Muhd Fauzi Safian, ; Umi Marshida Abd Hamid,
| | - Umi Marshida Abd Hamid
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
- *Correspondence: Mohd Muzamir Mahat, ; Azlan Zakaria, ; Muhd Fauzi Safian, ; Umi Marshida Abd Hamid,
| |
Collapse
|
53
|
Pournemati B, Tabesh H, Jenabi A, Mehdinavaz Aghdam R, Hossein Rezayan A, Poorkhalil A, Ahmadi Tafti SH, Mottaghy K. Injectable conductive nanocomposite hydrogels for cardiac tissue engineering: Focusing on carbon and metal-based nanostructures. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
54
|
Zheng L, Gu B, Li S, Luo B, Wen Y, Chen M, Li X, Zha Z, Zhang HT, Wang X. An antibacterial hemostatic AuNPs@corn stalk/chitin composite sponge with shape recovery for promoting wound healing. Carbohydr Polym 2022; 296:119924. [DOI: 10.1016/j.carbpol.2022.119924] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/07/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
|
55
|
Borghei YS, Hosseinkhani S, Ganjali MR. "Plasmonic Nanomaterials": An emerging avenue in biomedical and biomedical engineering opportunities. J Adv Res 2022; 39:61-71. [PMID: 35777917 PMCID: PMC9263747 DOI: 10.1016/j.jare.2021.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Plasmonic nanomaterials asnoble metal-based materials have unique optical characteristic upon exposure to incident light with an appropriate wavelength. Today, generated plasmon by nanoparticles has receivedincreasingattention in nanomedicine; from diagnosis, tissue and tumor imaging to therapeutic and biomedical engineering. AIM OF REVIEW Due to rapid growing of knowledge in the inorganic nanomaterial field, this paper aims to be a comprehensive and authoritative, critical, and broad interest to the scientific community. Here, we introduce basic physicochemical properties of plasmonic nanoparticles and their applications in biomedical and tissue engineering The first part of each division explain the basic physico-chemical properties of each nanomaterial with a graphical abstract. In the second part, concepts by describing classic examples taken from the biomedical and biomedical engineering literature are illustrated. The selected case studies are intended to give an overview of the different systems and mechanisms utilized in nanomedicine. KEY SCIENTIFIC CONCEPTS OF REVIEW In this communication, we have tried to introduce the needed concepts of plasmonic nanomaterials and their implication in a particular part of biomedical over the last 20 years. Moreover, in each part with insist on limitations, a perspective is presented which can guide a researcher how they can develop or modify new scaffolds for biomedical engineering.
Collapse
Affiliation(s)
- Yasaman-Sadat Borghei
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
| |
Collapse
|
56
|
Hou M, Tian B, Bai B, Ci Z, Liu Y, Zhang Y, Zhou G, Cao Y. Dominant role of in situ native cartilage niche for determining the cartilage type regenerated by BMSCs. Bioact Mater 2022; 13:149-160. [PMID: 35224298 PMCID: PMC8843973 DOI: 10.1016/j.bioactmat.2021.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/27/2022] Open
Affiliation(s)
- Mengjie Hou
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
- National Tissue Engineering Center of China, Shanghai, PR China
| | - Baoxing Tian
- Department of Breast Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, PR China
| | - Baoshuai Bai
- National Tissue Engineering Center of China, Shanghai, PR China
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, PR China
| | - Zheng Ci
- National Tissue Engineering Center of China, Shanghai, PR China
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, PR China
| | - Yu Liu
- National Tissue Engineering Center of China, Shanghai, PR China
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, PR China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
- National Tissue Engineering Center of China, Shanghai, PR China
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, PR China
- Corresponding author. Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
- National Tissue Engineering Center of China, Shanghai, PR China
- Corresponding author. Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai, 200011, PR China.
| |
Collapse
|
57
|
Ghovvati M, Kharaziha M, Ardehali R, Annabi N. Recent Advances in Designing Electroconductive Biomaterials for Cardiac Tissue Engineering. Adv Healthc Mater 2022; 11:e2200055. [PMID: 35368150 PMCID: PMC9262872 DOI: 10.1002/adhm.202200055] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/12/2022] [Indexed: 12/19/2022]
Abstract
Implantable cardiac patches and injectable hydrogels are among the most promising therapies for cardiac tissue regeneration following myocardial infarction. Incorporating electrical conductivity into these patches and hydrogels is found to be an efficient method to improve cardiac tissue function. Conductive nanomaterials such as carbon nanotube, graphene oxide, gold nanorod, as well as conductive polymers such as polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate are appealing because they possess the electroconductive properties of semiconductors with ease of processing and have potential to restore electrical signaling propagation through the infarct area. Numerous studies have utilized these materials for regeneration of biological tissues that possess electrical activities, such as cardiac tissue. In this review, recent studies on the use of electroconductive materials for cardiac tissue engineering and their fabrication methods are summarized. Moreover, recent advances in developing electroconductive materials for delivering therapeutic agents as one of emerging approaches for treating heart diseases and regenerating damaged cardiac tissues are highlighted.
Collapse
Affiliation(s)
- Mahsa Ghovvati
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Mahshid Kharaziha
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
58
|
Li L, Gil CJ, Finamore TA, Evans CJ, Tomov ML, Ning L, Theus A, Kabboul G, Serpooshan V, Roeder RK. Methacrylate‐Modified Gold Nanoparticles Enable Noninvasive Monitoring of Photocrosslinked Hydrogel Scaffolds. ADVANCED NANOBIOMED RESEARCH 2022; 2. [DOI: 10.1002/anbr.202200022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Lan Li
- Department of Aerospace and Mechanical Engineering Bioengineering Graduate Program University of Notre Dame Notre Dame IN 46556 USA
- Notre Dame Center for Nanoscience and Technology (NDnano) Materials Science and Engineering Graduate Program University of Notre Dame Notre Dame IN 46556 USA
| | - Carmen J. Gil
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Tyler A. Finamore
- Department of Aerospace and Mechanical Engineering Bioengineering Graduate Program University of Notre Dame Notre Dame IN 46556 USA
| | - Connor J. Evans
- Department of Aerospace and Mechanical Engineering Bioengineering Graduate Program University of Notre Dame Notre Dame IN 46556 USA
| | - Martin L. Tomov
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Liqun Ning
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Andrea Theus
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Gabriella Kabboul
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology Atlanta GA 30332 USA
- Department of Pediatrics Emory University School of Medicine Emory University Atlanta GA 30322 USA
| | - Ryan K. Roeder
- Department of Aerospace and Mechanical Engineering Bioengineering Graduate Program University of Notre Dame Notre Dame IN 46556 USA
- Notre Dame Center for Nanoscience and Technology (NDnano) Materials Science and Engineering Graduate Program University of Notre Dame Notre Dame IN 46556 USA
- Department of Aerospace and Mechanical Engineering Bioengineering Graduate Program University of Notre Dame 148 Multidisciplinary Research Building Notre Dame IN 46556 USA
| |
Collapse
|
59
|
Progress, Opportunities, and Challenges of Magneto-Plasmonic Nanoparticles under Remote Magnetic and Light Stimulation for Brain-Tissue and Cellular Regeneration. NANOMATERIALS 2022; 12:nano12132242. [PMID: 35808077 PMCID: PMC9268050 DOI: 10.3390/nano12132242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 01/25/2023]
Abstract
Finding curable therapies for neurodegenerative disease (ND) is still a worldwide medical and clinical challenge. Recently, investigations have been made into the development of novel therapeutic techniques, and examples include the remote stimulation of nanocarriers to deliver neuroprotective drugs, genes, growth factors, and antibodies using a magnetic field and/or low-power lights. Among these potential nanocarriers, magneto-plasmonic nanoparticles possess obvious advantages, such as the functional restoration of ND models, due to their unique nanostructure and physiochemical properties. In this review, we provide an overview of the latest advances in magneto-plasmonic nanoparticles, and the associated therapeutic approaches to repair and restore brain tissues. We have reviewed their potential as smart nanocarriers, including their unique responsivity under remote magnetic and light stimulation for the controlled and sustained drug delivery for reversing neurodegenerations, as well as the utilization of brain organoids in studying the interaction between NPs and neuronal tissue. This review aims to provide a comprehensive summary of the current progress, opportunities, and challenges of using these smart nanocarriers for programmable therapeutics to treat ND, and predict the mechanism and future directions.
Collapse
|
60
|
Neural Differentiation Potential of Mesenchymal Stem Cells Enhanced by Biocompatible Chitosan-Gold Nanocomposites. Cells 2022; 11:cells11121861. [PMID: 35740991 PMCID: PMC9221394 DOI: 10.3390/cells11121861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/28/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Chitosan (Chi) is a natural polymer that has been demonstrated to have potential as a promoter of neural regeneration. In this study, Chi was prepared with various amounts (25, 50, and 100 ppm) of gold (Au) nanoparticles for use in in vitro and in vivo assessments. Each as-prepared material was first characterized by UV-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), and Dynamic Light Scattering (DLS). Through the in vitro experiments, Chi combined with 50 ppm of Au nanoparticles demonstrated better biocompatibility. The platelet activation, monocyte conversion, and intracellular ROS generation was remarkably decreased by Chi–Au 50 pm treatment. Furthermore, Chi–Au 50 ppm could facilitate colony formation and strengthen matrix metalloproteinase (MMP) activation in mesenchymal stem cells (MSCs). The lower expression of CD44 in Chi–Au 50 ppm treatment demonstrated that the nanocomposites could enhance the MSCs undergoing differentiation. Chi–Au 50 ppm was discovered to significantly induce the expression of GFAP, β-Tubulin, and nestin protein in MSCs for neural differentiation, which was verified by real-time PCR analysis and immunostaining assays. Additionally, a rat model involving subcutaneous implantation was used to evaluate the superior anti-inflammatory and endothelialization abilities of a Chi–Au 50 ppm treatment. Capsule formation and collagen deposition were decreased. The CD86 expression (M1 macrophage polarization) and leukocyte filtration (CD45) were remarkably reduced as well. In summary, a Chi polymer combined with 50 ppm of Au nanoparticles was proven to enhance the neural differentiation of MSCs and showed potential as a biosafe nanomaterial for neural tissue engineering.
Collapse
|
61
|
Electrical Stimulation Increases Axonal Growth from Dorsal Root Ganglia Co-Cultured with Schwann Cells in Highly Aligned PLA-PPy-Au Microfiber Substrates. Int J Mol Sci 2022; 23:ijms23126362. [PMID: 35742806 PMCID: PMC9223746 DOI: 10.3390/ijms23126362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
Nerve regeneration is a slow process that needs to be guided for distances greater than 5 mm. For this reason, different strategies are being studied to guide axonal growth and accelerate the axonal growth rate. In this study, we employ an electroconductive fibrillar substrate that is able to topographically guide axonal growth while accelerating the axonal growth rate when subjected to an exogenous electric field. Dorsal root ganglia were seeded in co-culture with Schwann cells on a substrate of polylactic acid microfibers coated with the electroconductive polymer polypyrrole, adding gold microfibers to increase its electrical conductivity. The substrate is capable of guiding axonal growth in a highly aligned manner and, when subjected to an electrical stimulation, an improvement in axonal growth is observed. As a result, an increase in the maximum length of the axons of 19.2% and an increase in the area occupied by the axons of 40% were obtained. In addition, an upregulation of the genes related to axon guidance, axogenesis, Schwann cells, proliferation and neurotrophins was observed for the electrically stimulated group. Therefore, our device is a good candidate for nerve regeneration therapies.
Collapse
|
62
|
Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
63
|
Zhang Q, Hou D, Wen X, Xin M, Li Z, Wu L, Pathak JL. Gold nanomaterials for oral cancer diagnosis and therapy: Advances, challenges, and prospects. Mater Today Bio 2022; 15:100333. [PMID: 35774196 PMCID: PMC9237953 DOI: 10.1016/j.mtbio.2022.100333] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Early diagnosis and treatment of oral cancer are vital for patient survival. Since the oral cavity accommodates the second largest and most diverse microbiome community after the gut, the diagnostic and therapeutic approaches with low invasiveness and minimal damage to surrounding tissues are keys to preventing clinical intervention-related infections. Gold nanoparticles (AuNPs) are widely used in the research of cancer diagnosis and therapy due to their excellent properties such as surface-enhanced Raman spectroscopy, surface plasma resonance, controlled synthesis, the plasticity of surface morphology, biological safety, and stability. AuNPs had been used in oral cancer detection reagents, tumor-targeted therapy, photothermal therapy, photodynamic therapy, and other combination therapies for oral cancer. AuNPs-based noninvasive diagnosis and precise treatments further reduce the clinical intervention-related infections. This review is focused on the recent advances in research and application of AuNPs for early screening, diagnostic typing, drug delivery, photothermal therapy, radiotherapy sensitivity treatment, and combination therapy of oral cancer. Distinctive reports from the literature are summarized to highlight the latest advances in the development and application of AuNPs in oral cancer diagnosis and therapy. Finally, this review points out the challenges and prospects of possible applications of AuNPs in oral cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Qing Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China.,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 BT Amsterdam, the Netherlands
| | - Dan Hou
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Xueying Wen
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Mengyu Xin
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Ziling Li
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| |
Collapse
|
64
|
Jeong GJ, Castels H, Kang I, Aliya B, Jang YC. Nanomaterial for Skeletal Muscle Regeneration. Tissue Eng Regen Med 2022; 19:253-261. [PMID: 35334091 PMCID: PMC8971233 DOI: 10.1007/s13770-022-00446-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle has an innate regenerative capacity to restore their structure and function following acute damages and injuries. However, in congenital muscular dystrophies, large volumetric muscle loss, cachexia, or aging, the declined regenerative capacity of skeletal muscle results in muscle wasting and functional impairment. Recent studies indicate that muscle mass and function are closely correlated with morbidity and mortality due to the large volume and location of skeletal muscle. However, the options for treating neuromuscular disorders are limited. Biomedical engineering strategies such as nanotechnologies have been implemented to address this issue.In this review, we focus on recent studies leveraging nano-sized materials for regeneration of skeletal muscle. We look at skeletal muscle pathologies and describe various proof-of-concept and pre-clinical studies that have used nanomaterials, with a focus on how nano-sized materials can be used for skeletal muscle regeneration depending on material dimensionality.Depending on the dimensionality of nano-sized materials, their application have been changed because of their different physical and biochemical properties.Nanomaterials have been spotlighted as a great candidate for addressing the unmet needs of regenerative medicine. Nanomaterials could be applied to several types of tissues and diseases along with the unique characteristics of nanomaterials. However, when confined to muscle tissue, the targets of nanomaterial applications are limited and can be extended in future research.
Collapse
Affiliation(s)
- Gun-Jae Jeong
- Department of Orthopedics, Emory Musculoskeletal Institute, Emory School of Medicine, Atlanta, GA, 30329, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory School of Medicine, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hannah Castels
- Department of Orthopedics, Emory Musculoskeletal Institute, Emory School of Medicine, Atlanta, GA, 30329, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Innie Kang
- Department of Orthopedics, Emory Musculoskeletal Institute, Emory School of Medicine, Atlanta, GA, 30329, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Berna Aliya
- Department of Orthopedics, Emory Musculoskeletal Institute, Emory School of Medicine, Atlanta, GA, 30329, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Young C Jang
- Department of Orthopedics, Emory Musculoskeletal Institute, Emory School of Medicine, Atlanta, GA, 30329, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory School of Medicine, Atlanta, GA, 30332, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
65
|
Li R, Liu K, Huang X, Li D, Ding J, Liu B, Chen X. Bioactive Materials Promote Wound Healing through Modulation of Cell Behaviors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105152. [PMID: 35138042 PMCID: PMC8981489 DOI: 10.1002/advs.202105152] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/24/2021] [Indexed: 05/13/2023]
Abstract
Skin wound repair is a multistage process involving multiple cellular and molecular interactions, which modulate the cell behaviors and dynamic remodeling of extracellular matrices to maximize regeneration and repair. Consequently, abnormalities in cell functions or pathways inevitably give rise to side effects, such as dysregulated inflammation, hyperplasia of nonmigratory epithelial cells, and lack of response to growth factors, which impedes angiogenesis and fibrosis. These issues may cause delayed wound healing or even non-healing states. Current clinical therapeutic approaches are predominantly dedicated to preventing infections and alleviating topical symptoms rather than addressing the modulation of wound microenvironments to achieve targeted outcomes. Bioactive materials, relying on their chemical, physical, and biological properties or as carriers of bioactive substances, can affect wound microenvironments and promote wound healing at the molecular level. By addressing the mechanisms of wound healing from the perspective of cell behaviors, this review discusses how bioactive materials modulate the microenvironments and cell behaviors within the wounds during the stages of hemostasis, anti-inflammation, tissue regeneration and deposition, and matrix remodeling. A deeper understanding of cell behaviors during wound healing is bound to promote the development of more targeted and efficient bioactive materials for clinical applications.
Collapse
Affiliation(s)
- Ruotao Li
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Kai Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Xu Huang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
- Department of Hepatobiliary and Pancreatic SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
| | - Di Li
- Department of Hepatobiliary and Pancreatic SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Bin Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130065P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
66
|
Li S, Gu B, Li X, Tang S, Zheng L, Ruiz‐Hitzky E, Sun Z, Xu C, Wang X. MXene-Enhanced Chitin Composite Sponges with Antibacterial and Hemostatic Activity for Wound Healing. Adv Healthc Mater 2022; 11:e2102367. [PMID: 35285165 DOI: 10.1002/adhm.202102367] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/02/2022] [Indexed: 12/13/2022]
Abstract
This study shows the effective use of MXene-based nanomaterials to improve the performance of biocomposite sponges in wound healing. In this way, diverse chitin/MXene composite sponges are fabricated by incorporating MXene-based nanomaterials with various morphology (accordion-shaped, intercalated, single-layer, gold nanoparticles (AuNPs)-loaded single-layer) into the network of chitin sponge (CH), which can prevent massive blood losses and promote the healing process of bacterial-infected wounds. With the addition of MXene-based nanomaterials, the hemostatic efficacy of CH is enhanced due to the improved hemophilicity and accelerated blood coagulation kinetics. Furthermore, the composite sponges show a predominant antibacterial activity through the synergy between the capture and the photothermal effects. Importantly, the addition of AuNPs to composite sponges further improves hemostatic performance and promotes normal skin cell migration to heal the infected wound, achieving wound closure rates of 84% on day 9. These initial studies expand the applications of MXene-based nanomaterials in biomedical fields.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China
| | - Bin Gu
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China
| | - Xiaoyun Li
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China
| | - Shuwei Tang
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China
| | - Lu Zheng
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China
| | - Eduardo Ruiz‐Hitzky
- Materials Science Institute of Madrid CSIC Calle Sor Juana Inés de la Cruz 3 Madrid 28049 Spain
| | - Zeyu Sun
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China
| | - Changliang Xu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor Nanjing University of Chinese Medicine Jiangsu 210023 China
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
67
|
Biru EI, Necolau MI, Zainea A, Iovu H. Graphene Oxide-Protein-Based Scaffolds for Tissue Engineering: Recent Advances and Applications. Polymers (Basel) 2022; 14:1032. [PMID: 35267854 PMCID: PMC8914712 DOI: 10.3390/polym14051032] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023] Open
Abstract
The field of tissue engineering is constantly evolving as it aims to develop bioengineered and functional tissues and organs for repair or replacement. Due to their large surface area and ability to interact with proteins and peptides, graphene oxides offer valuable physiochemical and biological features for biomedical applications and have been successfully employed for optimizing scaffold architectures for a wide range of organs, from the skin to cardiac tissue. This review critically focuses on opportunities to employ protein-graphene oxide structures either as nanocomposites or as biocomplexes and highlights the effects of carbonaceous nanostructures on protein conformation and structural stability for applications in tissue engineering and regenerative medicine. Herein, recent applications and the biological activity of nanocomposite bioconjugates are analyzed with respect to cell viability and proliferation, along with the ability of these constructs to sustain the formation of new and functional tissue. Novel strategies and approaches based on stem cell therapy, as well as the involvement of the extracellular matrix in the design of smart nanoplatforms, are discussed.
Collapse
Affiliation(s)
- Elena Iuliana Biru
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (E.I.B.); (M.I.N.); (A.Z.)
| | - Madalina Ioana Necolau
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (E.I.B.); (M.I.N.); (A.Z.)
| | - Adriana Zainea
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (E.I.B.); (M.I.N.); (A.Z.)
| | - Horia Iovu
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (E.I.B.); (M.I.N.); (A.Z.)
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, 050094 Bucharest, Romania
| |
Collapse
|
68
|
Zare I, Yaraki MT, Speranza G, Najafabadi AH, Haghighi AS, Nik AB, Manshian BB, Saraiva C, Soenen SJ, Kogan MJ, Lee JW, Apollo NV, Bernardino L, Araya E, Mayer D, Mao G, Hamblin MR. Gold nanostructures: synthesis, properties, and neurological applications. Chem Soc Rev 2022; 51:2601-2680. [PMID: 35234776 DOI: 10.1039/d1cs01111a] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in technology are expected to increase our current understanding of neuroscience. Nanotechnology and nanomaterials can alter and control neural functionality in both in vitro and in vivo experimental setups. The intersection between neuroscience and nanoscience may generate long-term neural interfaces adapted at the molecular level. Owing to their intrinsic physicochemical characteristics, gold nanostructures (GNSs) have received much attention in neuroscience, especially for combined diagnostic and therapeutic (theragnostic) purposes. GNSs have been successfully employed to stimulate and monitor neurophysiological signals. Hence, GNSs could provide a promising solution for the regeneration and recovery of neural tissue, novel neuroprotective strategies, and integrated implantable materials. This review covers the broad range of neurological applications of GNS-based materials to improve clinical diagnosis and therapy. Sub-topics include neurotoxicity, targeted delivery of therapeutics to the central nervous system (CNS), neurochemical sensing, neuromodulation, neuroimaging, neurotherapy, tissue engineering, and neural regeneration. It focuses on core concepts of GNSs in neurology, to circumvent the limitations and significant obstacles of innovative approaches in neurobiology and neurochemistry, including theragnostics. We will discuss recent advances in the use of GNSs to overcome current bottlenecks and tackle technical and conceptual challenges.
Collapse
Affiliation(s)
- Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | | | - Giorgio Speranza
- CMM - FBK, v. Sommarive 18, 38123 Trento, Italy.,IFN - CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy.,Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| | - Alireza Hassani Najafabadi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alireza Shourangiz Haghighi
- Department of Mechanical Engineering, Shiraz University of Technology, Modarres Boulevard, 13876-71557, Shiraz, Iran
| | - Amirala Bakhshian Nik
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Cláudia Saraiva
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg.,Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marques d'Avila e Bolama, 6201-001 Covilha, Portugal
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, 8380492 Santiago, Chile
| | - Jee Woong Lee
- Department of Medical Sciences, Clinical Neurophysiology, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Nicholas V Apollo
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Liliana Bernardino
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marques d'Avila e Bolama, 6201-001 Covilha, Portugal
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago, Chile
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Germany
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Michael R Hamblin
- Laser Research Center, University of Johannesburg, Doorfontein 2028, South Africa.
| |
Collapse
|
69
|
Escobar A, Reis RL, Oliveira JM. Nanoparticles for neurotrophic factor delivery in nerve guidance conduits for peripheral nerve repair. Nanomedicine (Lond) 2022; 17:477-494. [DOI: 10.2217/nnm-2021-0413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Peripheral nerve injuries are a major source of disabilities, and treatment of long nerve gap autografts is the gold standard. However, due to poor availability and donor-site morbidity, research is directed towards the development of regenerative strategies based on the use of artificial nerve guidance conduits (NGCs). Several properties and characteristics of the NGCs can be fine-tuned, such as the architecture of the conduit, the surface topography and the addition of bioactive molecules and cells to speed up nerve regeneration. In this review, US FDA-approved NGCs are described. The recent works, in which polymeric, magnetic, silica-based and lipidic NPs are employed to introduce growth factors (GFs) to NGCs, are overviewed and discussed in depth herein.
Collapse
Affiliation(s)
- Ane Escobar
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco GMR, 4805-017, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui Luís Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco GMR, 4805-017, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco GMR, 4805-017, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
70
|
Gold nanorods decorated polycaprolactone/cellulose acetate hybrid scaffold for PC12 cells proliferation. Int J Biol Macromol 2022; 206:511-520. [PMID: 35240215 DOI: 10.1016/j.ijbiomac.2022.02.156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/15/2022] [Accepted: 02/25/2022] [Indexed: 01/12/2023]
Abstract
Synthetic and natural polymers have recently received considerable attention due to the exclusive potential for supporting the regenerative cellular processes in peripheral nerve injuries (PNIs). Gold nanorods (GNRs) decorated polycaprolactone (PCL)/cellulose acetate (CA) nanocomposite (PCL/CA/GNR) were fabricated via electrospinning to improve PC12 cells attachment and growth or scaffold cues. Transmission electron microscopy (TEM) corroborated the GNR distribution (23 ± 2 nm length and 3/1 Aspect ratio) and suitable average dimension of 800 nm for the fibers; also, scanning electron microscopy (SEM) represented block-free and smooth fibers without perturbation. Because of gold nanorods incorporation, electrical conductivity of PCL/CA/GNR increased ~21%. Water contact angle data emphasized PCL/CA/GNR surface is more wettable that PCL/CA (<90° at 62 s). Real-time PCR technique (RT-PCR) demonstrated overexpression of β-tubulin and microtubule-associated protein 2 (MAP2) on PCL/CA/GNR compared to PCL/CA composite. Additionally, evaluated of the maturation and neurogenic differentiation of PC12 cells emphasized overexpression of nestin and β-tubulin by Immunocytochemistry staining onto PCL/CA/GNR in comparison to PCL/CA composite. Notably, these recently developed hybrid scaffolds could be considered for peripheral nerve injury (PNI) regeneration.
Collapse
|
71
|
Kim GJ, Lee KJ, Choi JW, An JH. Modified Industrial Three-Dimensional Polylactic Acid Scaffold Cell Chip Promotes the Proliferation and Differentiation of Human Neural Stem Cells. Int J Mol Sci 2022; 23:ijms23042204. [PMID: 35216320 PMCID: PMC8879874 DOI: 10.3390/ijms23042204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, we fabricated a three-dimensional (3D) scaffold using industrial polylactic acid (PLA), which promoted the proliferation and differentiation of human neural stem cells. An industrial PLA 3D scaffold (IPTS) cell chip with a square-shaped pattern was fabricated via computer-aided design and printed using a fused deposition modeling technique. To improve cell adhesion and cell differentiation, we coated the IPTS cell chip with gold nanoparticles (Au-NPs), nerve growth factor (NGF) protein, an NGF peptide fragment, and sonic hedgehog (SHH) protein. The proliferation of F3.Olig2 neural stem cells was increased in the IPTS cell chips coated with Au-NPs and NGF peptide fragments when compared with that of the cells cultured on non-coated IPTS cell chips. Cells cultured on the IPTS-SHH cell chip also showed high expression of motor neuron cell-specific markers, such as HB9 and TUJ-1. Therefore, we suggest that the newly engineered industrial PLA scaffold is an innovative tool for cell proliferation and motor neuron differentiation.
Collapse
Affiliation(s)
- Gyeong-Ji Kim
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea;
- Department of Food and Nutrition, KC University, Seoul 07661, Korea
| | - Kwon-Jai Lee
- College of H-LAC, Daejeon University, Daejeon 34520, Korea;
| | - Jeong-Woo Choi
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea;
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
- Correspondence: (J.-W.C.); (J.H.A.); Tel.: +82-2-705-8480 (J.-W.C.); +82-2-2600-2566 (J.H.A.)
| | - Jeung Hee An
- Department of Food and Nutrition, KC University, Seoul 07661, Korea
- Correspondence: (J.-W.C.); (J.H.A.); Tel.: +82-2-705-8480 (J.-W.C.); +82-2-2600-2566 (J.H.A.)
| |
Collapse
|
72
|
Zakhireh S, Barar J, Adibkia K, Beygi-Khosrowshahi Y, Fathi M, Omidain H, Omidi Y. Bioactive Chitosan-Based Organometallic Scaffolds for Tissue Engineering and Regeneration. Top Curr Chem (Cham) 2022; 380:13. [PMID: 35149879 DOI: 10.1007/s41061-022-00364-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Captivating achievements in developing advanced hybrid biostructures through integrating natural biopolymers with inorganic materials (e.g., metals and metalloids) have paved the way towards the application of bioactive organometallic scaffolds (OMSs) in tissue engineering and regenerative medicine (TERM). Of various biopolymers, chitosan (CS) has been used widely for the development of bioactive OMSs, in large part due to its unique characteristics (e.g., biocompatibility, biodegradability, surface chemistry, and functionalization potential). In integration with inorganic elements, CS has been used to engineer advanced biomimetic matrices to accommodate both embedded cells and drug molecules and serve as scaffolds in TERM. The use of the CS-based OMSs is envisioned to provide a new pragmatic potential in TERM and even in precision medicine. In this review, we aim to elaborate on recent achievements in a variety of CS/metal, CS/metalloid hybrid scaffolds, and discuss their applications in TERM. We also provide comprehensive insights into the formulation, surface modification, characterization, biocompatibility, and cytotoxicity of different types of CS-based OMSs.
Collapse
Affiliation(s)
- Solmaz Zakhireh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Beygi-Khosrowshahi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Omidain
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA.
| |
Collapse
|
73
|
Bioengineering approaches to treat the failing heart: from cell biology to 3D printing. Nat Rev Cardiol 2022; 19:83-99. [PMID: 34453134 DOI: 10.1038/s41569-021-00603-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 02/08/2023]
Abstract
Successfully engineering a functional, human, myocardial pump would represent a therapeutic alternative for the millions of patients with end-stage heart disease and provide an alternative to animal-based preclinical models. Although the field of cardiac tissue engineering has made tremendous advances, major challenges remain, which, if properly resolved, might allow the clinical implementation of engineered, functional, complex 3D structures in the future. In this Review, we provide an overview of state-of-the-art studies, challenges that have not yet been overcome and perspectives on cardiac tissue engineering. We begin with the most clinically relevant cell sources used in this field and discuss the use of topological, biophysical and metabolic stimuli to obtain mature phenotypes of cardiomyocytes, particularly in relation to organized cytoskeletal and contractile intracellular structures. We then move from the cellular level to engineering planar cardiac patches and discuss the need for proper vascularization and the main strategies for obtaining it. Finally, we provide an overview of several different approaches for the engineering of volumetric organs and organ parts - from whole-heart decellularization and recellularization to advanced 3D printing technologies.
Collapse
|
74
|
Morsink M, Severino P, Luna-Ceron E, Hussain MA, Sobahi N, Shin SR. Effects of electrically conductive nano-biomaterials on regulating cardiomyocyte behavior for cardiac repair and regeneration. Acta Biomater 2022; 139:141-156. [PMID: 34818579 PMCID: PMC11041526 DOI: 10.1016/j.actbio.2021.11.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023]
Abstract
Myocardial infarction (MI) represents one of the most prevalent cardiovascular diseases, with a highly relevant and impactful role in public health. Despite the therapeutic advances of the last decades, MI still begets extensive death rates around the world. The pathophysiology of the disease correlates with cardiomyocyte necrosis, caused by an imbalance in the demand of oxygen to cardiac tissues, resulting from obstruction of the coronary flow. To alleviate the severe effects of MI, the use of various biomaterials exhibit vast potential in cardiac repair and regeneration, acting as native extracellular matrices. These hydrogels have been combined with nano sized or functional materials which possess unique electrical, mechanical, and topographical properties that play important roles in regulating phenotypes and the contractile function of cardiomyocytes even in adverse microenvironments. These nano-biomaterials' differential properties have led to substantial healing on in vivo cardiac injury models by promoting fibrotic scar reduction, hemodynamic function preservation, and benign cardiac remodeling. In this review, we discuss the interplay of the unique physical properties of electrically conductive nano-biomaterials, are able to manipulate the phenotypes and the electrophysiological behavior of cardiomyocytes in vitro, and can enhance heart regeneration in vivo. Consequently, the understanding of the decisive roles of the nano-biomaterials discussed in this review could be useful for designing novel nano-biomaterials in future research for cardiac tissue engineering and regeneration. STATEMENT OF SIGNIFICANCE: This study introduced and deciphered the understanding of the role of multimodal cues in recent advances of electrically conductive nano-biomaterials on cardiac tissue engineering. Compared with other review papers, which mainly describe these studies based on various types of electrically conductive nano-biomaterials, in this review paper we mainly discussed the interplay of the unique physical properties (electrical conductivity, mechanical properties, and topography) of electrically conductive nano-biomaterials, which would allow them to manipulate phenotypes and the electrophysiological behavior of cardiomyocytes in vitro and to enhance heart regeneration in vivo. Consequently, understanding the decisive roles of the nano-biomaterials discussed in the review could help design novel nano-biomaterials in future research for cardiac tissue engineering and regeneration.
Collapse
Affiliation(s)
- Margaretha Morsink
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, United States of America; Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, Netherlands; Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, Netherlands
| | - Patrícia Severino
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, United States of America; University of Tiradentes (Unit), Biotechnological Postgraduate Program. Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil; Institute of Technology and Research (ITP), Nanomedicine and Nanotechnology Laboratory (LNMed), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil; Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, United States of America
| | - Eder Luna-Ceron
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, United States of America
| | - Mohammad A Hussain
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Nebras Sobahi
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, United States of America.
| |
Collapse
|
75
|
Gu N, Sheng J. Introduction to Nanomedicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_1-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
76
|
Mancipe JMA, Lobianco FA, Dias ML, da Silva Moreira Thiré RM. Electrospinning: New Strategies for the Treatment of Skin Melanoma. Mini Rev Med Chem 2022; 22:564-578. [PMID: 34254914 DOI: 10.2174/1389557521666210712111809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/25/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022]
Abstract
Recent studies have shown a significant growth of skin cancer cases in northern regions of the world, in which its presence was not common. Skin cancer is one of the cancers that mostly affects the world's population, ranking fifth in studies conducted in the United States (USA). Melanoma is cancer that has the highest number of deaths worldwide since it is the most resistant skin cancer to current treatments. This is why alternatives for its treatment has been investigated considering nanomedicine concepts. This study approaches the role of this field in the creation of promising electrospun devices, composed of nanoparticles and nanofibers, among other structures, capable of directing and/or loading active drugs and/or materials with the objective of inhibiting the growth of melanoma cells or even eliminating those cells.
Collapse
Affiliation(s)
- Javier Mauricio Anaya Mancipe
- Programa de Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de Janeiro - PEMM/COPPE/ UFRJ, Rio de Janeiro, RJ. Brazil
- Instituto de Macromolécula Professora Eloisa Mano, Universidade Federal do Rio de Janeiro - IMA/UFRJ, Rio de Janeiro, RJ. Brazil
| | - Franz Acker Lobianco
- Programa de Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de Janeiro - PEMM/COPPE/ UFRJ, Rio de Janeiro, RJ. Brazil
| | - Marcos Lopes Dias
- Instituto de Macromolécula Professora Eloisa Mano, Universidade Federal do Rio de Janeiro - IMA/UFRJ, Rio de Janeiro, RJ. Brazil
| | | |
Collapse
|
77
|
Kumar PPP, Lim DK. Gold-Polymer Nanocomposites for Future Therapeutic and Tissue Engineering Applications. Pharmaceutics 2021; 14:70. [PMID: 35056967 PMCID: PMC8781750 DOI: 10.3390/pharmaceutics14010070] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022] Open
Abstract
Gold nanoparticles (AuNPs) have been extensively investigated for their use in various biomedical applications. Owing to their biocompatibility, simple surface modifications, and electrical and unique optical properties, AuNPs are considered promising nanomaterials for use in in vitro disease diagnosis, in vivo imaging, drug delivery, and tissue engineering applications. The functionality of AuNPs may be further expanded by producing hybrid nanocomposites with polymers that provide additional functions, responsiveness, and improved biocompatibility. Polymers may deliver large quantities of drugs or genes in therapeutic applications. A polymer alters the surface charges of AuNPs to improve or modulate cellular uptake efficiency and their biodistribution in the body. Furthermore, designing the functionality of nanocomposites to respond to an endo- or exogenous stimulus, such as pH, enzymes, or light, may facilitate the development of novel therapeutic applications. In this review, we focus on the recent progress in the use of AuNPs and Au-polymer nanocomposites in therapeutic applications such as drug or gene delivery, photothermal therapy, and tissue engineering.
Collapse
Affiliation(s)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
78
|
Cernencu AI, Dinu AI, Stancu IC, Lungu A, Iovu H. Nanoengineered biomimetic hydrogels: A major advancement to fabricate 3D-printed constructs for regenerative medicine. Biotechnol Bioeng 2021; 119:762-783. [PMID: 34961918 DOI: 10.1002/bit.28020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022]
Abstract
Nanostructured compounds already validated as performant reinforcements for biomedical applications together with different fabrication strategies have been often used to channel the biophysical and biochemical features of hydrogel networks. Ergo, a wide array of nanostructured compounds has been employed as additive materials integrated with hydrophilic networks based on naturally-derived polymers to produce promising scaffolding materials for specific fields of regenerative medicine. To date, nanoengineered hydrogels are extensively explored in (bio)printing formulations, representing the most advanced designs of hydrogel (bio)inks able to fabricate structures with improved mechanical properties and high print fidelity along with a cell-interactive environment. The development of printing inks comprising organic-inorganic hybrid nanocomposites is in full ascent as the impact of a small amount of nanoscale additive does not translate only in improved physicochemical and biomechanical properties of bioink. The biopolymeric nanocomposites may even exhibit additional particular properties engendered by nano-scale reinforcement such as electrical conductivity, magnetic responsiveness, antibacterial or antioxidation properties. The present review focus on hydrogels nanoengineered for 3D printing of biomimetic constructs, with particular emphasis on the impact of the spatial distribution of reinforcing agents (0D, 1D, 2D). Here, a systematic analysis of the naturally-derived nanostructured inks is presented highlighting the relationship between relevant length scales and size effects that influence the final properties of the hydrogels designed for regenerative medicine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Alexandra I Cernencu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Andreea I Dinu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Izabela C Stancu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Adriana Lungu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania.,Academy of Romanian Scientists, 54 Splaiul Independentei, 050094, Bucharest, Romania
| |
Collapse
|
79
|
Saiding Q, Cui W. Functional nanoparticles in electrospun fibers for biomedical applications. NANO SELECT 2021. [DOI: 10.1002/nano.202100335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Qimanguli Saiding
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| |
Collapse
|
80
|
Boularaoui S, Shanti A, Lanotte M, Luo S, Bawazir S, Lee S, Christoforou N, Khan KA, Stefanini C. Nanocomposite Conductive Bioinks Based on Low-Concentration GelMA and MXene Nanosheets/Gold Nanoparticles Providing Enhanced Printability of Functional Skeletal Muscle Tissues. ACS Biomater Sci Eng 2021; 7:5810-5822. [PMID: 34802227 PMCID: PMC8672345 DOI: 10.1021/acsbiomaterials.1c01193] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
![]()
There is a growing
need to develop novel well-characterized biological
inks (bioinks) that are customizable for three-dimensional (3D) bioprinting
of specific tissue types. Gelatin methacryloyl (GelMA) is one such
candidate bioink due to its biocompatibility and tunable mechanical
properties. Currently, only low-concentration GelMA hydrogels (≤5%
w/v) are suitable as cell-laden bioinks, allowing high cell viability,
elongation, and migration. Yet, they offer poor printability. Herein,
we optimize GelMA bioinks in terms of concentration and cross-linking
time for improved skeletal muscle C2C12 cell spreading in 3D, and
we augment these by adding gold nanoparticles (AuNPs) or a two-dimensional
(2D) transition metal carbide (MXene nanosheets) for enhanced printability
and biological properties. AuNP and MXene addition endowed GelMA with
increased conductivity (up to 0.8 ± 0.07 and 0.9 ± 0.12
S/m, respectively, compared to 0.3 ± 0.06 S/m for pure GelMA).
Furthermore, it resulted in an improvement of rheological properties
and printability, specifically at 10 °C. Improvements in electrical
and rheological properties led to enhanced differentiation of encapsulated
myoblasts and allowed for printing highly viable (97%) stable constructs.
Taken together, these results constitute a significant step toward
fabrication of 3D conductive tissue constructs with physiological
relevance.
Collapse
Affiliation(s)
- Selwa Boularaoui
- Department of Biomedical Engineering, Khalifa University of Science and Technology, 127788, Abu Dhabi, UAE.,Advanced Digital and Additive Manufacturing (ADAM) Center, Khalifa University of Science and Technology, 127788, Abu Dhabi, UAE
| | - Aya Shanti
- Department of Biomedical Engineering, Khalifa University of Science and Technology, 127788, Abu Dhabi, UAE.,Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, 127788, Abu Dhabi, UAE
| | - Michele Lanotte
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, 127788, Abu Dhabi, UAE
| | - Shaohong Luo
- Department of Biomedical Engineering, Khalifa University of Science and Technology, 127788, Abu Dhabi, UAE
| | - Sarah Bawazir
- Department of Biomedical Engineering, Khalifa University of Science and Technology, 127788, Abu Dhabi, UAE
| | - Sungmun Lee
- Department of Biomedical Engineering, Khalifa University of Science and Technology, 127788, Abu Dhabi, UAE.,Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, 127788, Abu Dhabi, UAE
| | - Nicolas Christoforou
- Rare Disease Research Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Kamran A Khan
- Advanced Digital and Additive Manufacturing (ADAM) Center, Khalifa University of Science and Technology, 127788, Abu Dhabi, UAE.,Department of Aerospace Engineering, Khalifa University of Science and Technology, 127788, Abu Dhabi, UAE
| | - Cesare Stefanini
- Department of Biomedical Engineering, Khalifa University of Science and Technology, 127788, Abu Dhabi, UAE.,Advanced Digital and Additive Manufacturing (ADAM) Center, Khalifa University of Science and Technology, 127788, Abu Dhabi, UAE.,Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, 127788, Abu Dhabi, UAE.,The Biorobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127 Pisa, PI, Italy
| |
Collapse
|
81
|
Folks C, Phuyal US, Rajesh M, Arja N, Gladden M, Hamm L, De Silva Indrasekara AS. Fabrication and Comparative Quantitative Analysis of Plasmonic-Polymer Nanocomposites as Optical Platforms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12853-12866. [PMID: 34705467 DOI: 10.1021/acs.langmuir.1c01826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plasmonic-polymer nanocomposites can serve as a multifunctional platform for a wide range of applications such as biochemical sensing and photothermal treatments, where they synergistically benefit from the extraordinary optical properties of plasmonic nanoparticles (NPs) and biocompatible characteristics of biopolymers. The field translation of plasmonic-polymer nanocomposites requires design rules for scalable and reproducible fabrication with tunable and predictable optical properties and achieving the best performance. The optical properties of NPs and the optimal analytical performance of nanocomposites could be affected by many fabrication parameters, but a fundamental understanding of such parameters is still minimal. Herein, we systematically investigated the NP distribution and their optical properties in gold nanostar (GNS)-polymer nanocomposites as a function of GNS concentration, polymer identity, and the method of GNS incorporation into a polymer matrix. We performed a comprehensive analysis of the single-particle scattering spectra of GNS incorporated into agarose gel and chitosan hydrogels via embedding and surface deposition, using dark-field spectroscopy. While relative GNS concentration affects the GNS scattering property distribution in both polymer matrices, chemical interactions between a polymer matrix and GNS is the key determinant of the GNS stability and homogenous distribution in nanocomposites. When GNS are embedded in a polymer matrix and there are stronger chemical interactions between GNS and a polymer, significantly less aggregation and a more homogenous distribution of GNS, which leads to a larger percentage of GNS optical property preservation, were observed at all the concentrations. In a proof-of-concept surface-enhanced Raman spectroscopy (SERS) study, we observed that the SERS detection efficiency is dictated by the analyte accessibility of GNS, which is governed by the polymer matrix porosity, polymer-GNS interactions, and other polymer physical characteristics. This work presents the interplay between key fabrication parameters and foundational design parameters for more predictable and reliable fabrication of plasmonic-polymer nanocomposites as an optical platform.
Collapse
Affiliation(s)
- Casey Folks
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, North Carolina 28203, United States
| | - Uttam Sharma Phuyal
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, North Carolina 28203, United States
| | - Mahima Rajesh
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, North Carolina 28203, United States
| | - Nagathushara Arja
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, North Carolina 28203, United States
| | - Michael Gladden
- Department of Chemistry, Winthrop University, 312-A Sims Building, Rock Hill, South Carolina 29733, United States
| | - Logan Hamm
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, North Carolina 28203, United States
| | | |
Collapse
|
82
|
Physical Gold Nanoparticle-Decorated Polyethylene Glycol-Hydroxyapatite Composites Guide Osteogenesis and Angiogenesis of Mesenchymal Stem Cells. Biomedicines 2021; 9:biomedicines9111632. [PMID: 34829861 PMCID: PMC8615876 DOI: 10.3390/biomedicines9111632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 12/26/2022] Open
Abstract
In this study, polyethylene glycol (PEG) with hydroxyapatite (HA), with the incorporation of physical gold nanoparticles (AuNPs), was created and equipped through a surface coating technique in order to form PEG-HA-AuNP nanocomposites. The surface morphology and chemical composition were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), UV–Vis spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and contact angle assessment. The effects of PEG-HA-AuNP nanocomposites on the biocompatibility and biological activity of MC3T3-E1 osteoblast cells, endothelial cells (EC), macrophages (RAW 264.7), and human mesenchymal stem cells (MSCs), as well as the guiding of osteogenic differentiation, were estimated through the use of an in vitro assay. Moreover, the anti-inflammatory, biocompatibility, and endothelialization capacities were further assessed through in vivo evaluation. The PEG-HA-AuNP nanocomposites showed superior biological properties and biocompatibility capacity for cell behavior in both MC3T3-E1 cells and MSCs. These biological events surrounding the cells could be associated with the activation of adhesion, proliferation, migration, and differentiation processes on the PEG-HA-AuNP nanocomposites. Indeed, the induction of the osteogenic differentiation of MSCs by PEG-HA-AuNP nanocomposites and enhanced mineralization activity were also evidenced in this study. Moreover, from the in vivo assay, we further found that PEG-HA-AuNP nanocomposites not only facilitate the anti-immune response, as well as reducing CD86 expression, but also facilitate the endothelialization ability, as well as promoting CD31 expression, when implanted into rats subcutaneously for a period of 1 month. The current research illustrates the potential of PEG-HA-AuNP nanocomposites when used in combination with MSCs for the regeneration of bone tissue, with their nanotopography being employed as an applicable surface modification approach for the fabrication of biomaterials.
Collapse
|
83
|
Elkhoury K, Morsink M, Sanchez-Gonzalez L, Kahn C, Tamayol A, Arab-Tehrany E. Biofabrication of natural hydrogels for cardiac, neural, and bone Tissue engineering Applications. Bioact Mater 2021; 6:3904-3923. [PMID: 33997485 PMCID: PMC8080408 DOI: 10.1016/j.bioactmat.2021.03.040] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/05/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Natural hydrogels are one of the most promising biomaterials for tissue engineering applications, due to their biocompatibility, biodegradability, and extracellular matrix mimicking ability. To surpass the limitations of conventional fabrication techniques and to recapitulate the complex architecture of native tissue structure, natural hydrogels are being constructed using novel biofabrication strategies, such as textile techniques and three-dimensional bioprinting. These innovative techniques play an enormous role in the development of advanced scaffolds for various tissue engineering applications. The progress, advantages, and shortcomings of the emerging biofabrication techniques are highlighted in this review. Additionally, the novel applications of biofabricated natural hydrogels in cardiac, neural, and bone tissue engineering are discussed as well.
Collapse
Affiliation(s)
| | - Margaretha Morsink
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, 7500AE, the Netherlands
| | | | - Cyril Kahn
- LIBio, Université de Lorraine, Nancy, F-54000, France
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| | | |
Collapse
|
84
|
Shen CC, Yang MY, Chang KB, Tseng CH, Yang YP, Yang YC, Kung ML, Lai WY, Lin TW, Hsieh HH, Hung HS. Fabrication of hyaluronic acid-gold nanoparticles with chitosan to modulate neural differentiation of mesenchymal stem cells. J Chin Med Assoc 2021; 84:1007-1018. [PMID: 34320517 DOI: 10.1097/jcma.0000000000000589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Chitosan (Chi) is a natural material which has been widely used in neural applications due to possessing better biocompatibility. In this research study, a novel of nanocomposites film based on Chi with hyaluronic acid (HA), combined with varying amounts of gold nanoparticles (AuNPs), was created resulting in pure Chi, Chi-HA, Chi-HA-AuNPs (25 ppm), and Chi-HA-AuNPs (50 ppm). METHODS This study focused on evaluating their effects on mesenchymal stem cell (MSC) viability, colony formation, and biocompatibility. The surface morphology and chemical position were characterized through UV-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), SEM, and contact-angle assessment. RESULTS When seeding MSCs on Chi-HA-AuNPs (50 ppm), the results showed high cell viability, biocompatibility, and the highest colony formation ability. Meanwhile, the evidence showed that Chi-HA-Au nanofilm was able to inhibit nestin and β-tubulin expression of MSCs, as well as inhibit the ability of neurogenic differentiation. Furthermore, the results of matrix metalloproteinase 2/9 (MMP2/9) expression in MSCs were also significantly higher in the Chi-HA-AuNP (50 ppm) group, guiding with angiogenesis and wound healing abilities. In addition, in our rat model, both capsule thickness and collagen deposition were the lowest in Chi-HA-AuNPs (50 ppm). CONCLUSION Thus, in view of the in vitro and in vivo results, Chi-HA-AuNPs (50 ppm) could not only maintain the greatest stemness properties and regulate the neurogenic differentiation ability of MSCs, but was able to also induce the least immune response. Herein, Chi-HA-Au 50 ppm nanofilm holds promise as a suitable material for nerve regeneration engineering.
Collapse
Affiliation(s)
- Chiung-Chyi Shen
- Neurological Institute Head of Department of Neurosurgery Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- Department of Physical Therapy, Hung Kuang University, Taichung, Taiwan, ROC
- Basic Medical Education Center, Central Taiwan University of Science and Technology, Taichung, Taiwan, ROC
| | - Meng-Yin Yang
- Neurological Institute Head of Department of Neurosurgery Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- Basic Medical Education Center, Central Taiwan University of Science and Technology, Taichung, Taiwan, ROC
| | - Kai-Bo Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan, ROC
| | - Chia-Hsuan Tseng
- Department of Occupational Safety and Health, China Medical University, Taichung, Taiwan, ROC
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Chin Yang
- Neurological Institute Head of Department of Neurosurgery Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Tzu-Wei Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Hsien-Hsu Hsieh
- Blood Bank, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan, ROC
- Translational Medicine Research, China Medical University Hospital, Taichung, Taiwan, ROC
| |
Collapse
|
85
|
Rosli NA, Teow YH, Mahmoudi E. Current approaches for the exploration of antimicrobial activities of nanoparticles. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:885-907. [PMID: 34675754 PMCID: PMC8525934 DOI: 10.1080/14686996.2021.1978801] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/11/2021] [Accepted: 09/02/2021] [Indexed: 05/09/2023]
Abstract
Infectious diseases of bacterial and viral origins contribute to substantial mortality worldwide. Collaborative efforts have been underway between academia and the industry to develop technologies for a more effective treatment for such diseases. Due to their utility in various industrial applications, nanoparticles (NPs) offer promising potential as antimicrobial agents against bacterial and viral infections. NPs have been established to possess potent antimicrobial activities against various types of pathogens due to their unique characteristics and cell-damaging ability through several mechanisms. The recently accepted antimicrobial mechanisms possessed by NPs include metal ion release, oxidative stress induction, and non-oxidative mechanisms. Another merit of NPs lies in the low likelihood of the development of microbial tolerance towards NPs, given the multiple simultaneous mechanisms of action against the pathogens targeting numerous gene mutations in these pathogens. Moreover, NPs provide a fascinating opportunity to curb microbial growth before infections: this outstanding feature has led to their utilization as active antimicrobial agents in different industrial applications, e.g. the coating of medical devices, incorporation in food packaging, promoting wound healing and encapsulation with other potential materials for wastewater treatment. This review discusses the progress and achievements in the antimicrobial applications of NPs, factors contributing to their actions, mechanisms underlying their efficiency, and risks of their applications, including the antimicrobial action of metal nanoclusters (NCs). The review concludes with a discussion of the restrictions on present studies and future prospects of nanotechnology-based NPs development.
Collapse
Affiliation(s)
- Nur Ameera Rosli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Yeit Haan Teow
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Research Centre for Sustainable Process Technology (Cespro), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Ebrahim Mahmoudi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
86
|
Touzeau J, Seydou M, Maurel F, Tallet L, Mutschler A, Lavalle P, Barbault F. Theoretical and Experimental Elucidation of the Adsorption Process of a Bioinspired Peptide on Mineral Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11374-11385. [PMID: 34516122 DOI: 10.1021/acs.langmuir.1c01994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inorganic materials used for biomedical applications such as implants generally induce the adsorption of proteins on their surface. To control this phenomenon, the bioinspired peptidomimetic polymer 1 (PMP1), which aims to reproduce the adhesion of mussel foot proteins, is commonly used to graft specific proteins on various surfaces and to regulate the interfacial mechanism. To date and despite its wide application, the elucidation at the atomic scale of the PMP1 mechanism of adsorption on surfaces is still unknown. The purpose of the present work was thus to unravel this process through experimental and computational investigations of adsorption of PMP1 on gold, TiO2, and SiO2 surfaces. A common mechanism of adsorption is identified for the adsorption of PMP1 which emphasizes the role of electrostatics to approach the peptide onto the surface followed by a full adhesion process where the entropic desolvation step plays a key role. Besides, according to the fact that mussel naturally controls the oxidation states of its proteins, further investigations were performed for two distinct redox states of PMP1, and we conclude that even if both states are able to allow interaction of PMP1 with the surfaces, the oxidation of PMP1 leads to a stronger interaction.
Collapse
Affiliation(s)
- J Touzeau
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - M Seydou
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - F Maurel
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - L Tallet
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR_S 1121 Biomaterials and Bioengineering, 11 rue Humann, 67000 Strasbourg Cedex, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000 Strasbourg, France
| | - A Mutschler
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR_S 1121 Biomaterials and Bioengineering, 11 rue Humann, 67000 Strasbourg Cedex, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000 Strasbourg, France
| | - P Lavalle
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR_S 1121 Biomaterials and Bioengineering, 11 rue Humann, 67000 Strasbourg Cedex, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000 Strasbourg, France
| | - F Barbault
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| |
Collapse
|
87
|
Kiyotake EA, Thomas EE, Homburg HB, Milton CK, Smitherman AD, Donahue ND, Fung KM, Wilhelm S, Martin MD, Detamore MS. Conductive and injectable hyaluronic acid/gelatin/gold nanorod hydrogels for enhanced surgical translation and bioprinting. J Biomed Mater Res A 2021; 110:365-382. [PMID: 34390325 DOI: 10.1002/jbm.a.37294] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/24/2021] [Accepted: 08/02/2021] [Indexed: 12/25/2022]
Abstract
There is growing evidence indicating the need to combine the rehabilitation and regenerative medicine fields to maximize functional recovery after spinal cord injury (SCI), but there are limited methods to synergistically combine the fields. Conductive biomaterials may enable synergistic combination of biomaterials with electric stimulation (ES), which may enable direct ES of neurons to enhance axon regeneration and reorganization for better functional recovery; however, there are three major challenges in developing conductive biomaterials: (1) low conductivity of conductive composites, (2) many conductive components are cytotoxic, and (3) many conductive biomaterials are pre-formed scaffolds and are not injectable. Pre-formed, noninjectable scaffolds may hinder clinical translation in a surgical context for the most common contusion-type of SCI. Alternatively, an injectable biomaterial, inspired by lessons from bioinks in the bioprinting field, may be more translational for contusion SCIs. Therefore, in the current study, a conductive hydrogel was developed by incorporating high aspect ratio citrate-gold nanorods (GNRs) into a hyaluronic acid and gelatin hydrogel. To fabricate nontoxic citrate-GNRs, a robust synthesis for high aspect ratio GNRs was combined with an indirect ligand exchange to exchange a cytotoxic surfactant for nontoxic citrate. For enhanced surgical placement, the hydrogel precursor solution (i.e., before crosslinking) was paste-like, injectable/bioprintable, and fast-crosslinking (i.e., 4 min). Finally, the crosslinked hydrogel supported the adhesion/viability of seeded rat neural stem cells in vitro. The current study developed and characterized a GNR conductive hydrogel/bioink that provided a refinable and translational platform for future synergistic combination with ES to improve functional recovery after SCI.
Collapse
Affiliation(s)
- Emi A Kiyotake
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| | - Emily E Thomas
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Hannah B Homburg
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Camille K Milton
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Adam D Smitherman
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Nathan D Donahue
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| | - Michael D Martin
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael S Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
88
|
Liu Z, Wan X, Wang ZL, Li L. Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007429. [PMID: 34117803 DOI: 10.1002/adma.202007429] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Indexed: 06/12/2023]
Abstract
During natural tissue regeneration, tissue microenvironment and stem cell niche including cell-cell interaction, soluble factors, and extracellular matrix (ECM) provide a train of biochemical and biophysical cues for modulation of cell behaviors and tissue functions. Design of functional biomaterials to mimic the tissue/cell microenvironment have great potentials for tissue regeneration applications. Recently, electroactive biomaterials have drawn increasing attentions not only as scaffolds for cell adhesion and structural support, but also as modulators to regulate cell/tissue behaviors and function, especially for electrically excitable cells and tissues. More importantly, electrostimulation can further modulate a myriad of biological processes, from cell cycle, migration, proliferation and differentiation to neural conduction, muscle contraction, embryogenesis, and tissue regeneration. In this review, endogenous bioelectricity and piezoelectricity are introduced. Then, design rationale of electroactive biomaterials is discussed for imitating dynamic cell microenvironment, as well as their mediated electrostimulation and the applying pathways. Recent advances in electroactive biomaterials are systematically overviewed for modulation of stem cell fate and tissue regeneration, mainly including nerve regeneration, bone tissue engineering, and cardiac tissue engineering. Finally, the significance for simulating the native tissue microenvironment is emphasized and the open challenges and future perspectives of electroactive biomaterials are concluded.
Collapse
Affiliation(s)
- Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
89
|
Yazdani S, Daneshkhah A, Diwate A, Patel H, Smith J, Reul O, Cheng R, Izadian A, Hajrasouliha AR. Model for Gold Nanoparticle Synthesis: Effect of pH and Reaction Time. ACS OMEGA 2021; 6:16847-16853. [PMID: 34250344 PMCID: PMC8264833 DOI: 10.1021/acsomega.1c01418] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
The synthesis of gold nanoparticles is dependent on both the concentration of trisodium citrate dihydrate and the time that it interacts with tetrachloroauric acid. A wide range of gold nanoparticles with various sizes and dispersity can be produced based on control variables, such as time of reaction and acid concentration, using a similar approach to that of the Turkevich model. In this model, the pH of the solution decreases slightly throughout the reaction (0.005 unit/min) due to the chemical interactions between trisodium citrate dihydrate and tetrachloroauric acid. Dicarboxy acetone is formed during citrate oxidization, resulting in gold nuclei formation over time. In addition, gold nanoparticle nucleation causes pH fluctuation over time based on gold nanoparticle sizes. An inverse correlation (coefficient of smaller than -0.97) was calculated between the pH and reaction time at different ratios of trisodium citrate dihydrate to tetrachloroauric acid. Regression analysis was used to develop a model for the prediction of the size of gold nanoparticles ranging from 18 to 38 nm based on the concentration of trisodium citrate dihydrate and the reaction time.
Collapse
Affiliation(s)
- Saeed Yazdani
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Ali Daneshkhah
- Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Abolee Diwate
- Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Hardi Patel
- Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Joshua Smith
- Purdue School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Olivia Reul
- Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Ruihua Cheng
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Afshin Izadian
- Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Amir Reza Hajrasouliha
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
90
|
Wang G, Xu W, Zhang J, Tang T, Chen J, Fan C. Induction of Bone Remodeling by Raloxifene-Doped Iron Oxide Functionalized with Hydroxyapatite to Accelerate Fracture Healing. J Biomed Nanotechnol 2021; 17:932-941. [PMID: 34082878 DOI: 10.1166/jbn.2021.3068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Repairing fractures in the presence of infection is a major challenge that is currently declining using nanotechnology. By producing iron oxide nanoparticles (NPs) containing hydroxyapatite and Raloxifene (R-IONPs-HA), this study tries to target drug delivery, control infection and promotion of the cells proliferation/differentiation to repair damaged tissue. After the production of R-IONPs-HA through co-precipitation, the physicochemical features of the NPs were considered by SEM, TEM, DLS and XRD methods, and the possibility of drug release. The effect of R-IONPs-HA on MC3T3-E1 cell proliferation/differentiation was determined by CCK-assay and microscopic observations. Also, Gram-negative and -positive bacteria were applied to evaluate the antibacterial activity. Finally, cell differentiation biomarkers like an ALP, OCN, and RUNX-2 genes were examined by real time (RT)-PCR. The results showed that R-IONPs-HA was spherical with dimensions of 98.1 ± 1.17 nm. In addition, the results of Zeta and XRD confirmed the loading HA and R on IONPs. Also, the release rate of R and HA in 64 h with pH 6 reached 61.4 and 30.4%, respectively. The anti-bacterial activity of R-IONPs-HA on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa bacteria showed a significant reduction in infection. Also, MC3T3-E1 cells showed greater proliferation and differentiation by R-IONPs-HA compared to other groups. Increased expression of ossification genes such as OCN, and RUNX-2 confirmed this claim. Finally, R-IONPs-HA with good biocompatibility, antibacterial activity and ossification induction has great potential to repair bone fractures and prevent infection.
Collapse
Affiliation(s)
- Gengqi Wang
- Department of Orthopedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine of Nanjing University of Chinese Medicine & Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210000, China
| | - Wenqiang Xu
- Department of Orthopedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine of Nanjing University of Chinese Medicine & Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210000, China
| | - Junjie Zhang
- Department of Orthopedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine of Nanjing University of Chinese Medicine & Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210000, China
| | - Tian Tang
- Department of Orthopedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine of Nanjing University of Chinese Medicine & Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210000, China
| | - Jing Chen
- Department of Gynaecology and Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Changchun Fan
- Department of Orthopedics, Heze Chenhe Hospital, Heze 274000, China
| |
Collapse
|
91
|
Maheswari P, Harish S, Ponnusamy S, Muthamizhchelvan C. A novel strategy of nanosized herbal Plectranthus amboinicus, Phyllanthus niruri and Euphorbia hirta treated TiO 2 nanoparticles for antibacterial and anticancer activities. Bioprocess Biosyst Eng 2021; 44:1593-1616. [PMID: 34075470 DOI: 10.1007/s00449-020-02491-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/23/2020] [Indexed: 01/25/2023]
Abstract
Titanium dioxide nanoparticles exhibit good anticancer and antibacterial activities. They are known to be environmentally friendly, stable, less toxic, and have excellent biocompatibility nature. Due to these properties, they are well suited for biological applications particularly in biomedical applications such as drug delivery and cancer therapy. In this research article, three medicinal herbs namely, Plectranthus amboinicus (Karpooravalli), Phyllanthus niruri (Keezhanelli), and Euphorbia hirta (Amman Pacharisi), were used to modify the surface of the TiO2 nanoparticles. The synthesized nanoparticles were subjected to various characterization techniques. The samples are then subjected to MTT assay to determine cell viability. KB oral cancer cells are used for the determination of the anticancer nature of the pure and bio modified nanoparticles. It is observed that Plectranthus amboinicus-Phyllanthus niruri modified TiO2 nanoparticles exhibit excellent anticancer activities among other bio modified and pure samples. The samples are then examined for antibacterial activities against three Gram-negative bacterial strains namely, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and two Gram-positive bacterial strains namely, Staphylococcus aureus and Streptococcus mutans, respectively. Among the modified and pure samples, Plectranthus amboinicus showed good antibacterial activity against Gram-positive and Gram-negative bacteria. In the Flow cytometry analysis, the generation of p53 protein expression from Plectranthus amboinicus-Phyllanthus niruri modified TiO2 nano herbal particles shows the anti-cancerous nature of the sample. Then to determine the toxic nature of the Plectranthus amboinicus-Phyllanthus niruri modified TiO2 nano herbal particles against normal cells, the NPs were subjected to MTT assay against normal L929 cells, and it was found to be safer and less toxic towards the normal cells.
Collapse
Affiliation(s)
- P Maheswari
- Department of Nautical Science, VELS Institute of Science, Technology and Advanced Studies, Thalambur, 603 103, India.,Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - S Harish
- Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu, Shizuoka, 432-8011, Japan. .,Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India.
| | - S Ponnusamy
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India.
| | - C Muthamizhchelvan
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| |
Collapse
|
92
|
Liu H, Yang G, Yin H, Wang Z, Chen C, Liu Z, Xie H. In vitro and in vivo osteogenesis up-regulated by two-dimensional nanosheets through a macrophage-mediated pathway. Biomater Sci 2021; 9:780-794. [PMID: 33206069 DOI: 10.1039/d0bm01596b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two-dimensional (2D) nanomaterials are attracting more and more interest in regenerative medicine due to their unique properties; however 2D biomimetic calcium mineral has not yet been developed and demonstrated application for bone tissue engineering. Here we described a novel calcium phosphate material with a 2D nanostructure that was synthesized using collagen and sodium alginate as the template. In vitro performance of the nanocrystalline material was evaluated, and we found that 2D CaP nanoparticles (NPs) enhanced the in vitro osteogenic differentiation of rat mesenchymal stem cells (rMSCs) through a macrophage-mediated signal pathway, when co-cultured with RAW 264.7 cells, rather than direct NP/stem cell interaction. A 2D topology structured surface was constructed by encapsulating the CaP nanomaterials in a gelatin hydrogel, which was demonstrated to be able to mediate in vivo ossification through a macrophage polarization related pathway in a femur defect rat model, and allowed the optimal therapeutic outcome compared to normal CaP counterparts. Our current work may have enlightened a new mechanism regarding NP-induced stem cell differentiation through immunoregulation, and the 2D CaP encapsulated hydrogel scaffold may serve as a potential alternative to autograft bone for orthopedic applications.
Collapse
Affiliation(s)
- Haoming Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China. and Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gaojie Yang
- Department of Materials, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Yin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China. and Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhenxing Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China. and Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chunyuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China. and Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhengzhao Liu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China and Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China. and Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China and Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, China and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China and Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha 410008, China and Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha 410008, China
| |
Collapse
|
93
|
Staszak K, Wieszczycka K, Bajek A, Staszak M, Tylkowski B, Roszkowski K. Achievement in active agent structures as a power tools in tumor angiogenesis imaging. Biochim Biophys Acta Rev Cancer 2021; 1876:188560. [PMID: 33965512 DOI: 10.1016/j.bbcan.2021.188560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022]
Abstract
According to World Health Organization (WHO) cancer is the second most important cause of death globally. Because angiogenesis is considered as an essential process of growth, proliferation and tumor progression, within this review we decided to shade light on recent development of chemical compounds which play a significant role in its imaging and monitoring. Indeed, the review gives insight about the current achievements of active agents structures involved in imaging techniques such as: positron emission computed tomography (PET), magnetic resonance imaging (MRI) and single photon emission computed tomography (SPECT), as well as combination PET/MRI and PET/CT. The review aims to provide the journal audience with a comprehensive and in-deep understanding of chemistry policy in tumor angiogenesis imaging.
Collapse
Affiliation(s)
- Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Karolina Wieszczycka
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Anna Bajek
- Department of Tissue Engineering, Collegium Medicum Nicolaus Copernicus University, Karlowicza St. 24, 85-092 Bydgoszcz, Poland
| | - Maciej Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya, C/Marcellí Domingo s/n, 43007 Tarragona, Spain
| | - Krzysztof Roszkowski
- Department of Oncology, Collegium Medicum Nicolaus Copernicus University, Romanowskiej St. 2, 85-796 Bydgoszcz, Poland.
| |
Collapse
|
94
|
Michael PL, Lam YT, Hung J, Tan RP, Santos M, Wise SG. Comprehensive Evaluation of the Toxicity and Biosafety of Plasma Polymerized Nanoparticles. NANOMATERIALS 2021; 11:nano11051176. [PMID: 33947114 PMCID: PMC8145910 DOI: 10.3390/nano11051176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022]
Abstract
The rapid growth of nanoparticle-based therapeutics has underpinned significant developments in nanomedicine, which aim to overcome the limitations imposed by conventional therapies. Establishing the safety of new nanoparticle formulations is the first important step on the pathway to clinical translation. We have recently shown that plasma-polymerized nanoparticles (PPNs) are highly efficient nanocarriers and a viable, cost-effective alternative to conventional chemically synthesized nanoparticles. Here, we present the first comprehensive toxicity and biosafety study of PPNs using both established in vitro cell models and in vivo models. Overall, we show that PPNs were extremely well tolerated by all the cell types tested, significantly outperforming commercially available lipid-based nanoparticles (lipofectamine) used at the manufacturer’s recommended dosage. Supporting the in vitro data, the systemic toxicity of PPNs was negligible in BALB/c mice following acute and repeated tail-vein intravenous injections. PPNs were remarkably well tolerated in mice without any evidence of behavioral changes, weight loss, significant changes to the hematological profile, or signs of histological damage in tissues. PPNs were tolerated at extremely high doses without animal mortality observed at 6000 mg/kg and 48,000 mg/kg for acute and repeated-injection regimens, respectively. Our findings demonstrate the safety of PPNs in biological systems, adding to their future potential in biomedical applications.
Collapse
Affiliation(s)
- Praveesuda L. Michael
- Faculty of Health and Medicine, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia; (P.L.M.); (Y.T.L.); (J.H.); (R.P.T.)
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| | - Yuen Ting Lam
- Faculty of Health and Medicine, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia; (P.L.M.); (Y.T.L.); (J.H.); (R.P.T.)
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| | - Juichien Hung
- Faculty of Health and Medicine, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia; (P.L.M.); (Y.T.L.); (J.H.); (R.P.T.)
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| | - Richard P. Tan
- Faculty of Health and Medicine, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia; (P.L.M.); (Y.T.L.); (J.H.); (R.P.T.)
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| | - Miguel Santos
- Faculty of Health and Medicine, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia; (P.L.M.); (Y.T.L.); (J.H.); (R.P.T.)
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (M.S.); (S.G.W.); Tel.: +61-2-8627-9458 (M.S.); +61-2-8627-9458 (S.G.W.)
| | - Steven G. Wise
- Faculty of Health and Medicine, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia; (P.L.M.); (Y.T.L.); (J.H.); (R.P.T.)
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (M.S.); (S.G.W.); Tel.: +61-2-8627-9458 (M.S.); +61-2-8627-9458 (S.G.W.)
| |
Collapse
|
95
|
Osteoinductive potential and antibacterial characteristics of collagen coated iron oxide nanosphere containing strontium and hydroxyapatite in long term bone fractures. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
96
|
PC12 cells proliferation and morphological aspects: Inquiry into raffinose-grafted graphene oxide in silk fibroin-based scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111810. [DOI: 10.1016/j.msec.2020.111810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/15/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022]
|
97
|
Rezaei S, Landarani-Isfahani A, Moghadam M, Tangestaninejad S, Mirkhani V, Mohammadpoor-Baltork I. Hierarchical Gold Mesoflowers in Enzyme Engineering: An Environmentally Friendly Strategy for the Enhanced Enzymatic Performance and Biodiesel Production. ACS APPLIED BIO MATERIALS 2020; 3:8414-8426. [PMID: 35019613 DOI: 10.1021/acsabm.0c00721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To expand the field of nanomaterial and engineering of enzyme in eco-friendly processes, gold mesoflower (Au-MF) nanostructure was applied for preparation of three series of immobilized lipase (Au-MF/SAM 1-3) through biofunctionalization of surface by Ugi multicomponent reaction. The synthesized Au-MF/SAM 1-3/lipase as unique biocatalysts was confirmed by different analytical tools and techniques. Compared to the free lipase, the Au-MF/SAM 1-3/lipase showed more stability at high temperature and pH. Also, these biocatalysts showed high storage stability and reusability after 2 months and eight cycles, respectively. Moreover, the kinetic behavior was investigated and the results showed a minimal impairment of catalytic activity of immobilized lipase. The kinetic constants of the immobilized lipase, Au-MF/SAM 2/lipase, are Km = 0.37 mM, Vmax = 0.22 mM min-1, and kcat = 154 min-1. The immobilized lipase showed smaller activation energy (Ea) than that of free enzyme, indicating that the immobilized enzyme is less sensitive to temperature. In the following, the biodiesel production from palmitic acid was studied in the presence of Au-MF/SAM 2/lipase as an efficient biocatalyst. The influence of different reaction parameters such as temperature, molar ratio of alcohol to palmitic acid, water content, and lipase amount was deeply investigated.
Collapse
Affiliation(s)
- Saghar Rezaei
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | | | - Majid Moghadam
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | | | - Valiollah Mirkhani
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | | |
Collapse
|
98
|
Lin X, Mo Y. Resonance-Assisted but Antielectrostatic Intramolecular Au···H–O Hydrogen Bonding in Gold(I) Complexes: A Computational Verification. Inorg Chem 2020; 60:460-467. [DOI: 10.1021/acs.inorgchem.0c03252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuhui Lin
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| |
Collapse
|
99
|
Mousavi A, Vahdat S, Baheiraei N, Razavi M, Norahan MH, Baharvand H. Multifunctional Conductive Biomaterials as Promising Platforms for Cardiac Tissue Engineering. ACS Biomater Sci Eng 2020; 7:55-82. [PMID: 33320525 DOI: 10.1021/acsbiomaterials.0c01422] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adult cardiomyocytes are terminally differentiated cells that result in minimal intrinsic potential for the heart to self-regenerate. The introduction of novel approaches in cardiac tissue engineering aims to repair damages from cardiovascular diseases. Recently, conductive biomaterials such as carbon- and gold-based nanomaterials, conductive polymers, and ceramics that have outstanding electrical conductivity, acceptable mechanical properties, and promoted cell-cell signaling transduction have attracted attention for use in cardiac tissue engineering. Nevertheless, comprehensive classification of conductive biomaterials from the perspective of cardiac cell function is a subject for discussion. In the present review, we classify and summarize the unique properties of conductive biomaterials considered beneficial for cardiac tissue engineering. We attempt to cover recent advances in conductive biomaterials with a particular focus on their effects on cardiac cell functions and proposed mechanisms of action. Finally, current problems, limitations, challenges, and suggested solutions for applications of these biomaterials are presented.
Collapse
Affiliation(s)
- Ali Mousavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Sadaf Vahdat
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, 14117-13116 Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911 Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, 14117-13116 Tehran, Iran
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida 32816, United States
| | - Mohammad Hadi Norahan
- Centro de Biotecnología-FEMSA, Department of Sciences, Tecnologico de Monterrey, Monterrey 64849, NL, México
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911 Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
100
|
Farr AC, Hogan KJ, Mikos AG. Nanomaterial Additives for Fabrication of Stimuli-Responsive Skeletal Muscle Tissue Engineering Constructs. Adv Healthc Mater 2020; 9:e2000730. [PMID: 32691983 DOI: 10.1002/adhm.202000730] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/13/2020] [Indexed: 12/12/2022]
Abstract
Volumetric muscle loss necessitates novel tissue engineering strategies for skeletal muscle repair, which have traditionally involved cells and extracellular matrix-mimicking scaffolds and have thus far been unable to successfully restore physiologically relevant function. However, the incorporation of various nanomaterial additives with unique physicochemical properties into scaffolds has recently been explored as a means of fabricating constructs that are responsive to electrical, magnetic, and photothermal stimulation. Herein, several classes of nanomaterials that are used to mediate external stimulation to tissue engineered skeletal muscle are reviewed and the impact of these stimuli-responsive biomaterials on cell growth and differentiation and in vivo muscle repair is discussed. The degradation kinetics and biocompatibilities of these nanomaterial additives are also briefly examined and their potential for incorporation into clinically translatable skeletal muscle tissue engineering strategies is considered. Overall, these nanomaterial additives have proven efficacious and incorporation in tissue engineering scaffolds has resulted in enhanced functional skeletal muscle regeneration.
Collapse
Affiliation(s)
- Amy Corbin Farr
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- Center for Engineering Complex Tissues, USA
| | - Katie J Hogan
- Center for Engineering Complex Tissues, USA
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Antonios G Mikos
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- Center for Engineering Complex Tissues, USA
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| |
Collapse
|