51
|
Meskher H, Mustansar HC, Thakur AK, Sathyamurthy R, Lynch I, Singh P, Han TK, Saidur R. Recent trends in carbon nanotube (CNT)-based biosensors for the fast and sensitive detection of human viruses: a critical review. NANOSCALE ADVANCES 2023; 5:992-1010. [PMID: 36798507 PMCID: PMC9926911 DOI: 10.1039/d2na00236a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/13/2022] [Indexed: 06/18/2023]
Abstract
The current COVID-19 pandemic, with its numerous variants including Omicron which is 50-70% more transmissible than the previously dominant Delta variant, demands a fast, robust, cheap, and easily deployed identification strategy to reduce the chain of transmission, for which biosensors have been shown as a feasible solution at the laboratory scale. The use of nanomaterials has significantly enhanced the performance of biosensors, and the addition of CNTs has increased detection capabilities to an unrivaled level. Among the various CNT-based detection systems, CNT-based field-effect transistors possess ultra-sensitivity and low-noise detection capacity, allowing for immediate analyte determination even in the presence of limited analyte concentrations, which would be typical of early infection stages. Recently, CNT field-effect transistor-type biosensors have been successfully used in the fast diagnosis of COVID-19, which has increased research and commercial interest in exploiting current developments of CNT field-effect transistors. Recent progress in the design and deployment of CNT-based biosensors for viral monitoring are covered in this paper, as are the remaining obstacles and prospects. This work also highlights the enormous potential for synergistic effects of CNTs used in combination with other nanomaterials for viral detection.
Collapse
Affiliation(s)
- Hicham Meskher
- Department of Process Engineering, Kasdi-Merbah University Ouargla 30000 Algeria
| | | | - Amrit Kumar Thakur
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology Arasur Coimbatore 641407 Tamil Nadu India
| | - Ravishankar Sathyamurthy
- Mechanical Engineering Department, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Punit Singh
- Institute of Engineering and Technology, Department of Mechanical Engineering, GLA University Mathura Uttar Pradesh 281406 India
| | - Tan Kim Han
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University No. 5, Jalan Universiti, Bandar Sunway Petaling Jaya 47500 Malaysia
| | - Rahman Saidur
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University No. 5, Jalan Universiti, Bandar Sunway Petaling Jaya 47500 Malaysia
| |
Collapse
|
52
|
Wang H, Boghossian AA. Covalent conjugation of proteins onto fluorescent single-walled carbon nanotubes for biological and medical applications. MATERIALS ADVANCES 2023; 4:823-834. [PMID: 36761250 PMCID: PMC9900427 DOI: 10.1039/d2ma00714b] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/02/2022] [Indexed: 05/20/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have optical properties that are conducive for biological applications such as sensing, delivery, and imaging. These applications necessitate the immobilization of macromolecules that can serve as therapeutic drugs, molecular templates, or modulators of surface interactions. Although previous studies have focused on non-covalent immobilization strategies, recent advances have introduced covalent functional handles that can preserve or even enhance the SWCNT optical properties. This review presents an overview of covalent sidewall modifications of SWCNTs, with a focus on the latest generation of "sp3 defect" modifications. We summarize and compare the reaction conditions and the reported products of these sp3 chemistries. We further review the underlying photophysics governing SWCNT fluorescence and apply these principles to the fluorescence emitted from these covalently modified SWCNTs. Finally, we provide an outlook on additional chemistries that could be applied to covalently conjugate proteins to these chemically modified, fluorescent SWCNTs. We review the advantages of these approaches, emerging opportunities for further improvement, as well as their implications for enabling new technologies.
Collapse
Affiliation(s)
- Hanxuan Wang
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering CH-1015 Lausanne Switzerland
| | - Ardemis A Boghossian
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering CH-1015 Lausanne Switzerland
| |
Collapse
|
53
|
Sengupta J, Hussain CM. The Emergence of Carbon Nanomaterials as Effective Nano-Avenues to Fight against COVID-19. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1068. [PMID: 36770075 PMCID: PMC9918919 DOI: 10.3390/ma16031068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
COVID-19 (Coronavirus Disease 2019), a viral respiratory ailment that was first identified in Wuhan, China, in 2019, and then expanded globally, was caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The severity of the illness necessitated quick action to cease the virus's spread. The best practices to avert the infection include early detection, the use of protective clothing, the consumption of antiviral medicines, and finally the immunization of the patients through vaccination. The family of carbon nanomaterials, which includes graphene, fullerene, carbon nanotube (CNT), and carbon dot (CD), has a great deal of potential to effectively contribute to each of the main trails in the battle against the coronavirus. Consequently, the recent advances in the application of carbon nanomaterials for containing and combating the SARS-CoV-2 virus are discussed herein, along with their associated challenges and futuristic applicability.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata 700033, India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
54
|
Luo X, Yue W, Zhang S, Liu H, Chen Z, Qiao L, Wu C, Li P, He Y. SARS-CoV-2 proteins monitored by long-range surface plasmon field-enhanced Raman scattering with hybrid bowtie nanoaperture arrays and nanocavities. LAB ON A CHIP 2023; 23:388-399. [PMID: 36621932 DOI: 10.1039/d2lc01006b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The identification of biomacromolecules by using surface-enhanced Raman scattering (SERS) remains a challenge because of the near-field effect of traditional substrates. Long-range surface plasmon resonance (LRSPR) is a special type of surface optical phenomenon that provides higher electromagnetic field enhancement and longer penetration depth than conventional surface plasmon resonance. To break the limit of SERS detection distance and obtain a SERS substrate with increased enhancement ability, a bowtie nanoaperture array was sandwiched between two symmetric dielectric environments. Then, an Au mirror was inserted to form a metal-insulator-metal configuration. Finite-difference time-domain simulations revealed that numerous hybrid modes can be provided by this novel configuration (denoted as long-range SERS [LR-SERS] substrate). In particular, the LRSPR mode can be excited and reach the maximum value through the regulation of the polarizations of the incident light and the geometrical parameters of the LR-SERS substrate. The optimized LR-SERS substrate was then applied to detect SARS-CoV-2 spike (S) and nucleocapsid (N) proteins. This substrate displayed ultralow detection limits of ∼9.2 and ∼11.3 pg mL-1 for the S and N proteins, respectively. Moreover, with the help of principal component analysis and receiver operating characteristic methods, our fabricated sensors exhibited excellent selectivity and hold great potential for the diagnosis of SARS-CoV-2 proteins in real samples.
Collapse
Affiliation(s)
- Xiaojun Luo
- School of Science, Xihua University, Chengdu 610039, P. R. China.
| | - Weiling Yue
- School of Science, Xihua University, Chengdu 610039, P. R. China.
| | - Shutong Zhang
- School of Science, Xihua University, Chengdu 610039, P. R. China.
| | - Haopeng Liu
- School of Science, Xihua University, Chengdu 610039, P. R. China.
| | - Zhinan Chen
- School of Science, Xihua University, Chengdu 610039, P. R. China.
| | - Ling Qiao
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Caijun Wu
- School of Science, Xihua University, Chengdu 610039, P. R. China.
| | - Panjie Li
- School of Chemistry and Chemical Engineering, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yi He
- School of Science, Xihua University, Chengdu 610039, P. R. China.
| |
Collapse
|
55
|
Fata F, Gabriele F, Angelucci F, Ippoliti R, Di Leandro L, Giansanti F, Ardini M. Bio-Tailored Sensing at the Nanoscale: Biochemical Aspects and Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23020949. [PMID: 36679744 PMCID: PMC9866807 DOI: 10.3390/s23020949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 06/01/2023]
Abstract
The demonstration of the first enzyme-based electrode to detect glucose, published in 1967 by S. J. Updike and G. P. Hicks, kicked off huge efforts in building sensors where biomolecules are exploited as native or modified to achieve new or improved sensing performances. In this growing area, bionanotechnology has become prominent in demonstrating how nanomaterials can be tailored into responsive nanostructures using biomolecules and integrated into sensors to detect different analytes, e.g., biomarkers, antibiotics, toxins and organic compounds as well as whole cells and microorganisms with very high sensitivity. Accounting for the natural affinity between biomolecules and almost every type of nanomaterials and taking advantage of well-known crosslinking strategies to stabilize the resulting hybrid nanostructures, biosensors with broad applications and with unprecedented low detection limits have been realized. This review depicts a comprehensive collection of the most recent biochemical and biophysical strategies for building hybrid devices based on bioconjugated nanomaterials and their applications in label-free detection for diagnostics, food and environmental analysis.
Collapse
|
56
|
COVID-19 diagnostics: Molecular biology to nanomaterials. Clin Chim Acta 2023; 538:139-156. [PMID: 36403665 PMCID: PMC9673061 DOI: 10.1016/j.cca.2022.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
The SARS-CoV-2 pandemic has claimed around 6.4 million lives worldwide. The disease symptoms range from mild flu-like infection to life-threatening complications. The widespread infection demands rapid, simple, and accurate diagnosis. Currently used methods include molecular biology-based approaches that consist of conventional amplification by RT-PCR, isothermal amplification-based techniques such as RT-LAMP, and gene editing tools like CRISPR-Cas. Other methods include immunological detection including ELISA, lateral flow immunoassay, chemiluminescence, etc. Radiological-based approaches are also being used. Despite good analytical performance of these current methods, there is an unmet need for less costly and simpler tests that may be performed at point of care. Accordingly, nanomaterial-based testing has been extensively pursued. In this review, we discuss the currently used diagnostic techniques for SARS-CoV-2, their usefulness, and limitations. In addition, nanoparticle-based approaches have been highlighted as another potential means of detection. The review provides a deep insight into the current diagnostic methods and future trends to combat this deadly menace.
Collapse
|
57
|
Khalid A, Yi W, Yoo S, Abbas S, Si J, Hou X, Hou J. Single-chirality of single-walled carbon nanotubes (SWCNTs) through chromatography and its potential biological applications. NEW J CHEM 2023. [DOI: 10.1039/d2nj04056e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gel chromatography is used to separate single-chirality and selective-diameter SWCNTs. We also explore the use of photothermal therapy and biosensor applications based on single-chirality, selected-diameter, and unique geometric shape.
Collapse
Affiliation(s)
- Asif Khalid
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Wenhui Yi
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Sweejiang Yoo
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Shakeel Abbas
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Jinhai Si
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Xun Hou
- Key Laboratory for Information Photonic Technology of Shaanxi & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronics Science and Engineering, Faculty of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
| | - Jin Hou
- Department of Pharmacology, School of Basic Medical Science, Xi’an Medical University, Xi’an, Shaanxi, 710021, China
| |
Collapse
|
58
|
Chaudhary KR, Kujur S, Singh K. Recent advances of nanotechnology in COVID 19: A critical review and future perspective. OPENNANO 2023; 9. [PMCID: PMC9749399 DOI: 10.1016/j.onano.2022.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The global anxiety and economic crisis causes the deadly pandemic coronavirus disease of 2019 (COVID 19) affect millions of people right now. Subsequently, this life threatened viral disease is caused due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, morbidity and mortality of infected patients are due to cytokines storm syndrome associated with lung injury and multiorgan failure caused by COVID 19. Thereafter, several methodological advances have been approved by WHO and US-FDA for the detection, diagnosis and control of this wide spreadable communicable disease but still facing multi-challenges to control. Herein, we majorly emphasize the current trends and future perspectives of nano-medicinal based approaches for the delivery of anti-COVID 19 therapeutic moieties. Interestingly, Nanoparticles (NPs) loaded with drug molecules or vaccines resemble morphological features of SARS-CoV-2 in their size (60–140 nm) and shape (circular or spherical) that particularly mimics the virus facilitating strong interaction between them. Indeed, the delivery of anti-COVID 19 cargos via a nanoparticle such as Lipidic nanoparticles, Polymeric nanoparticles, Metallic nanoparticles, and Multi-functionalized nanoparticles to overcome the drawbacks of conventional approaches, specifying the site-specific targeting with reduced drug loading and toxicities, exhibit their immense potential. Additionally, nano-technological based drug delivery with their peculiar characteristics of having low immunogenicity, tunable drug release, multidrug delivery, higher selectivity and specificity, higher efficacy and tolerability switch on the novel pathway for the prevention and treatment of COVID 19.
Collapse
Affiliation(s)
- Kabi Raj Chaudhary
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India,Department of Research and Development, United Biotech (P) Ltd. Bagbania, Nalagarh, Solan, Himachal Pradesh, India,Corresponding author at: Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, MOGA, Punjab 142001, India
| | - Sima Kujur
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India
| | - Karanvir Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India,Department of Research and Development, United Biotech (P) Ltd. Bagbania, Nalagarh, Solan, Himachal Pradesh, India
| |
Collapse
|
59
|
Lee C, Gwyther REA, Freeley M, Jones D, Palma M. Fabrication and Functionalisation of Nanocarbon-Based Field-Effect Transistor Biosensors. Chembiochem 2022; 23:e202200282. [PMID: 36193790 PMCID: PMC10092808 DOI: 10.1002/cbic.202200282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/03/2022] [Indexed: 01/25/2023]
Abstract
Nanocarbon-based field-effect transistor (NC-FET) biosensors are at the forefront of future diagnostic technology. By integrating biological molecules with electrically conducting carbon-based platforms, high sensitivity real-time multiplexed sensing is possible. Combined with their small footprint, portability, ease of use, and label-free sensing mechanisms, NC-FETs are prime candidates for the rapidly expanding areas of point-of-care testing, environmental monitoring and biosensing as a whole. In this review we provide an overview of the basic operational mechanisms behind NC-FETs, synthesis and fabrication of FET devices, and developments in functionalisation strategies for biosensing applications.
Collapse
Affiliation(s)
- Chang‐Seuk Lee
- Department of ChemistrySchool of Physical and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Rebecca E. A. Gwyther
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityCardiffCF10 3AXUK
| | - Mark Freeley
- Department of ChemistrySchool of Physical and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Dafydd Jones
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityCardiffCF10 3AXUK
| | - Matteo Palma
- Department of ChemistrySchool of Physical and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
60
|
Perera GS, Rahman MA, Blazevski A, Wood A, Walia S, Bhaskaran M, Sriram S. Rapid Conductometric Detection of SARS-CoV-2 Proteins and Its Variants Using Molecularly Imprinted Polymer Nanoparticles. ADVANCED MATERIALS TECHNOLOGIES 2022; 8:2200965. [PMID: 36718387 PMCID: PMC9877662 DOI: 10.1002/admt.202200965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/20/2022] [Indexed: 06/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) biosensors have captured more attention than the conventional methodologies for SARS-CoV-2 detection due to having cost-effective platforms and fast detection. However, these reported SARS-CoV-2 biosensors suffer from drawbacks including issues in detection sensitivity, degradation of biomaterials on the sensor's surface, and incapability to reuse the biosensors. To overcome these shortcomings, molecularly imprinted polymer nanoparticles (nanoMIPs) incorporated conductometric biosensor for highly accurate, rapid, and selective detection of two model SARS-CoV-2 proteins: (i) receptor binding domain (RBD) of the spike (S) glycoprotein and (ii) full length trimeric spike protein are introduced. In addition, these biosensors successfully responded to several other SARS-CoV-2 RBD spike protein variants including Alpha, Beta, Gamma, and Delta. Our conductometric biosensor selectively detects the two model proteins and SARS-CoV-2 RBD spike protein variant samples in real-time with sensitivity to a detection limit of 7 pg mL-1 within 10 min of sample incubation. A battery-free, wireless near-field communication (NFC) interface is incorporated with the biosensor for fast and contactless detection of SARS-CoV-2 variants. The smartphone enabled real-time detection and on-screen rapid result for SARS-CoV-2 variants can curve the outbreak due to its ability to alert the user to infection in real time.
Collapse
Affiliation(s)
- Ganganath S. Perera
- Functional Materials and Microsystems Research Group and the Micro Nano Research FacilityRMIT UniversityMelbourneVIC3001Australia
| | - Md. Ataur Rahman
- Functional Materials and Microsystems Research Group and the Micro Nano Research FacilityRMIT UniversityMelbourneVIC3001Australia
| | - April Blazevski
- Functional Materials and Microsystems Research Group and the Micro Nano Research FacilityRMIT UniversityMelbourneVIC3001Australia
| | | | - Sumeet Walia
- Functional Materials and Microsystems Research Group and the Micro Nano Research FacilityRMIT UniversityMelbourneVIC3001Australia
| | - Madhu Bhaskaran
- Functional Materials and Microsystems Research Group and the Micro Nano Research FacilityRMIT UniversityMelbourneVIC3001Australia
| | - Sharath Sriram
- Functional Materials and Microsystems Research Group and the Micro Nano Research FacilityRMIT UniversityMelbourneVIC3001Australia
| |
Collapse
|
61
|
Sengupta J, Hussain CM. Decadal Journey of CNT-Based Analytical Biosensing Platforms in the Detection of Human Viruses. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4132. [PMID: 36500755 PMCID: PMC9738197 DOI: 10.3390/nano12234132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
It has been proven that viral infections pose a serious hazard to humans and also affect social health, including morbidity and mental suffering, as illustrated by the COVID-19 pandemic. The early detection and isolation of virally infected people are, thus, required to control the spread of viruses. Due to the outstanding and unparalleled properties of nanomaterials, numerous biosensors were developed for the early detection of viral diseases via sensitive, minimally invasive, and simple procedures. To that aim, viral detection technologies based on carbon nanotubes (CNTs) are being developed as viable alternatives to existing diagnostic approaches. This article summarizes the advancements in CNT-based biosensors since the last decade in the detection of different human viruses, namely, SARS-CoV-2, dengue, influenza, human immunodeficiency virus (HIV), and hepatitis. Finally, the shortcomings and benefits of CNT-based biosensors for the detection of viruses are outlined and discussed.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata 700033, India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
62
|
Xie Z, Feng S, Pei F, Xia M, Hao Q, Liu B, Tong Z, Wang J, Lei W, Mu X. Magnetic/fluorescent dual-modal lateral flow immunoassay based on multifunctional nanobeads for rapid and accurate SARS-CoV-2 nucleocapsid protein detection. Anal Chim Acta 2022; 1233:340486. [PMID: 36283777 PMCID: PMC9544234 DOI: 10.1016/j.aca.2022.340486] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/03/2022]
Abstract
The SARS-CoV-2 pandemic has posed a huge challenge to rapid and accurate diagnosis of SARS-CoV-2 in the early stage of infection. In this work, we developed a novel magnetic/fluorescent dual-modal lateral flow immunoassay (LFIA) based on multifunctional nanobeads for rapid and accurate determination of SARS-CoV-2 nucleocapsid protein (NP). The multifunctional nanobeads were fabricated by using polyethyleneimine (PEI) as a mediate shell to combine superparamagnetic Fe3O4 core with dual quantum dot shells (MagDQD). The core-shell structure of MagDQD label with high loading density of quantum dots (QDs) and superior magnetic content realized LFIA with dual quantitative analysis modal from the assemblies of individual single nanoparticles. The LFIA integrated the advantages of magnetic signal and fluorescent signal, resulting excellent accuracy for quantitative analysis and high elasticity of the overall detection. In addition, magnetic signal and fluorescent signal both had high sensitivity with the limit of detection (LOD) as 0.235 ng mL-1 and 0.012 ng mL-1, respectively. The recovery rates of the methods in simulated saliva samples were 91.36%-103.60% (magnetic signal) and 94.39%-104.38% (fluorescent signal). The results indicate the method has a considerable potential to be an effective tool for diagnose SARS-CoV-2 in the early stage of infection.
Collapse
Affiliation(s)
- Zihao Xie
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, JiangSu, China,State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Shasha Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, JiangSu, China,State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Fubin Pei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, JiangSu, China,State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, JiangSu, China
| | - Qingli Hao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, JiangSu, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jiang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Wu Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, JiangSu, China,Corresponding author
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China,Corresponding author
| |
Collapse
|
63
|
Naumova O, Generalov V, Shcherbakov D, Zaitseva E, Zhivodkov Y, Kozhukhov A, Latyshev A, Aseev A, Safatov A, Buryak G, Cheremiskina A, Merkuleva J, Rudometova N. SOI-FET Sensors with Dielectrophoretic Concentration of Viruses and Proteins. BIOSENSORS 2022; 12:992. [PMID: 36354501 PMCID: PMC9688205 DOI: 10.3390/bios12110992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Quick label-free virus screening and highly sensitive analytical tools/techniques are becoming extremely important in a pandemic. In this study, we developed a biosensing device based on the silicon nanoribbon multichannel and dielectrophoretic controlled sensors functionalized with SARS-CoV-2 spike antibodies for the use as a platform for the detection and studding of properties of viruses and their protein components. Replicatively defective viral particles based on vesicular stomatitis viruses and HIV-1 were used as carrier molecules to deliver the target SARS-CoV-2 spike S-proteins to sensory elements. It was shown that fully CMOS-compatible nanoribbon sensors have the subattomolar sensitivity and dynamic range of 4 orders. Specific interaction between S-proteins and antibodies leads to the accumulation of the negative charge on the sensor surface. Nonspecific interactions of the viral particles lead to the positive charge accumulation. It was shown that dielectrophoretic controlled sensors allow to estimate the effective charge of the single virus at the sensor surface and separate it from the charge associated with the binding of target proteins with the sensor surface.
Collapse
Affiliation(s)
- Olga Naumova
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Vladimir Generalov
- Federal State Research Institution State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia
- Faculty of Automation and Computer Engineering, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
| | - Dmitry Shcherbakov
- Federal State Research Institution State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia
| | - Elza Zaitseva
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Yuriy Zhivodkov
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Anton Kozhukhov
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Alexander Latyshev
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Alexander Aseev
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexander Safatov
- Federal State Research Institution State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia
| | - Galina Buryak
- Federal State Research Institution State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia
| | - Anastasia Cheremiskina
- Federal State Research Institution State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia
| | - Julia Merkuleva
- Federal State Research Institution State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia
| | - Nadezhda Rudometova
- Federal State Research Institution State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia
| |
Collapse
|
64
|
Mandal A, Mallik S, Mondal S, Subhadarshini S, Sadhukhan R, Ghoshal T, Mitra S, Manna M, Mandal S, Goswami DK. Diffusion-Induced Ingress of Angiotensin-Converting Enzyme 2 into the Charge Conducting Path of a Pentacene Channel for Efficient Detection of SARS-CoV-2 in Saliva Samples. ACS Sens 2022; 7:3006-3013. [PMID: 36129125 PMCID: PMC9514329 DOI: 10.1021/acssensors.2c01287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/09/2022] [Indexed: 01/31/2023]
Abstract
Rapid and accurate identification of a pathogen is crucial for disease control and prevention of the epidemic of emerging infectious like SARS-CoV-2. However, no foolproof gold standard assay exists to date. Nucleic acid-based molecular diagnostic tests have been established for identifying COVID-19. However, viral RNAs are highly unstable in handling with poor laboratory procedures, leading to a false negative that accelerates the spread of the disease. Detection of the spike protein (S1) of the SARS-CoV-2 virus through a proper receptor, commonly used in antigen-based rapid testing kits, also suffers from false-negative predictions due to decreasing viral titers in clinical specimens. Organic field-effect transistor (OFET)-based sensors can be highly sensitive upon properly integrating receptors in the conducting channel. This work demonstrates how angiotensin-converting enzyme 2 (ACE2) molecules can be used as receptor molecules of the SARS-CoV-2 virus in the OFET platform. Integration of ACE2 molecules into pentacene grain boundaries has been studied through the statistical analysis of rough surfaces in terms of lateral correlation length and interface width. The uniform coating of ACE2 molecules has been confirmed through growth studies to achieve better ingress of the receptors into the conducting channel at the semiconductor/dielectric interface of OFETs. We have observed less than a minute detection time with 94% sensitivity, which is the highest reported value. The sensor works with a saliva sample, requiring no sample preparation or virus transfer medium. A prototype module developed for remote monitoring confirms the suitability for point-of-care (POC) application at large-scale testing in more crowded areas like airports, railway stations, shopping malls, etc.
Collapse
Affiliation(s)
- Ajoy Mandal
- Organic Electronics Laboratory, Department of Physics,
Indian Institute of Technology Kharagpur, Kharagpur721302,
India
| | - Samik Mallik
- School of Nanoscience and Technology,
Indian Institute of Technology Kharagpur, Kharagpur721302,
India
| | - Sovanlal Mondal
- School of Nanoscience and Technology,
Indian Institute of Technology Kharagpur, Kharagpur721302,
India
| | - Suvani Subhadarshini
- School of Nanoscience and Technology,
Indian Institute of Technology Kharagpur, Kharagpur721302,
India
| | - Riya Sadhukhan
- Organic Electronics Laboratory, Department of Physics,
Indian Institute of Technology Kharagpur, Kharagpur721302,
India
| | - Tanmay Ghoshal
- Department of Electronics and Electrical Communication
Engineering, Indian Institute of Technology Kharagpur,
Kharagpur721302, India
| | - Suman Mitra
- School of Nanoscience and Technology,
Indian Institute of Technology Kharagpur, Kharagpur721302,
India
| | - Mousam Manna
- B C Roy Technology Hospital, Indian
Institute of Technology Kharagpur, Kharagpur721302,
India
| | - Suman Mandal
- Organic Electronics Laboratory, Department of Physics,
Indian Institute of Technology Kharagpur, Kharagpur721302,
India
| | - Dipak K. Goswami
- Organic Electronics Laboratory, Department of Physics,
Indian Institute of Technology Kharagpur, Kharagpur721302,
India
- School of Nanoscience and Technology,
Indian Institute of Technology Kharagpur, Kharagpur721302,
India
| |
Collapse
|
65
|
Alsalameh S, Alnajjar K, Makhzoum T, Al Eman N, Shakir I, Mir TA, Alkattan K, Chinnappan R, Yaqinuddin A. Advances in Biosensing Technologies for Diagnosis of COVID-19. BIOSENSORS 2022; 12:898. [PMID: 36291035 PMCID: PMC9599206 DOI: 10.3390/bios12100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The COVID-19 pandemic has severely impacted normal human life worldwide. Due to its rapid community spread and high mortality statistics, the development of prompt diagnostic tests for a massive number of samples is essential. Currently used traditional methods are often expensive, time-consuming, laboratory-based, and unable to handle a large number of specimens in resource-limited settings. Because of its high contagiousness, efficient identification of SARS-CoV-2 carriers is crucial. As the advantages of adopting biosensors for efficient diagnosis of COVID-19 increase, this narrative review summarizes the recent advances and the respective reasons to consider applying biosensors. Biosensors are the most sensitive, specific, rapid, user-friendly tools having the potential to deliver point-of-care diagnostics beyond traditional standards. This review provides a brief introduction to conventional methods used for COVID-19 diagnosis and summarizes their advantages and disadvantages. It also discusses the pathogenesis of COVID-19, potential diagnostic biomarkers, and rapid diagnosis using biosensor technology. The current advancements in biosensing technologies, from academic research to commercial achievements, have been emphasized in recent publications. We covered a wide range of topics, including biomarker detection, viral genomes, viral proteins, immune responses to infection, and other potential proinflammatory biomolecules. Major challenges and prospects for future application in point-of-care settings are also highlighted.
Collapse
Affiliation(s)
| | - Khalid Alnajjar
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Tariq Makhzoum
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Noor Al Eman
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ismail Shakir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Tanveer Ahmad Mir
- Laboratory of Tissue/Organ Bioengineering and BioMEMS, Organ Transplant Centre of Excellence, Transplant Research and Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
66
|
Chang TC, Sun AY, Huang YC, Wang CH, Wang SC, Chau LK. Integration of Power-Free and Self-Contained Microfluidic Chip with Fiber Optic Particle Plasmon Resonance Aptasensor for Rapid Detection of SARS-CoV-2 Nucleocapsid Protein. BIOSENSORS 2022; 12:bios12100785. [PMID: 36290923 PMCID: PMC9599074 DOI: 10.3390/bios12100785] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 05/31/2023]
Abstract
The global pandemic of COVID-19 has created an unrivalled need for sensitive and rapid point-of-care testing (POCT) methods for the detection of infectious viruses. For the novel coronavirus SARS-CoV-2, the nucleocapsid protein (N-protein) is one of the most abundant structural proteins of the virus and it serves as a useful diagnostic marker for detection. Herein, we report a fiber optic particle plasmon resonance (FOPPR) biosensor which employed a single-stranded DNA (ssDNA) aptamer as the recognition element to detect the SARS-CoV-2 N-protein in 15 min with a limit of detection (LOD) of 2.8 nM, meeting the acceptable LOD of 106 copies/mL set by the WHO target product profile. The sensor chip is a microfluidic chip based on the balance between the gravitational potential and the capillary force to control fluid loading, thus enabling the power-free auto-flowing function. It also has a risk-free self-contained design to avoid the risk of the virus leaking into the environment. These findings demonstrate the potential for designing a low-cost and robust POCT device towards rapid antigen detection for early screening of SARS-CoV-2 and its related mutants.
Collapse
Affiliation(s)
- Ting-Chou Chang
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi 621301, Taiwan
| | - Aileen Y. Sun
- Instant NanoBiosensors, Co., Ltd., Taipei 115010, Taiwan
| | - Yu-Chung Huang
- Instant NanoBiosensors, Co., Ltd., Taipei 115010, Taiwan
| | - Chih-Hui Wang
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi 621301, Taiwan
| | - Shau-Chun Wang
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi 621301, Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Lai-Kwan Chau
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi 621301, Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan
| |
Collapse
|
67
|
Deng Y, Liu L, Li J, Gao L. Sensors Based on the Carbon Nanotube Field-Effect Transistors for Chemical and Biological Analyses. BIOSENSORS 2022; 12:776. [PMID: 36290914 PMCID: PMC9599861 DOI: 10.3390/bios12100776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022]
Abstract
Nano biochemical sensors play an important role in detecting the biomarkers related to human diseases, and carbon nanotubes (CNTs) have become an important factor in promoting the vigorous development of this field due to their special structure and excellent electronic properties. This paper focuses on applying carbon nanotube field-effect transistor (CNT-FET) biochemical sensors to detect biomarkers. Firstly, the preparation method, physical and electronic properties and functional modification of CNTs are introduced. Then, the configuration and sensing mechanism of CNT-FETs are introduced. Finally, the latest progress in detecting nucleic acids, proteins, cells, gases and ions based on CNT-FET sensors is summarized.
Collapse
Affiliation(s)
- Yixi Deng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Lei Liu
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jingyan Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Li Gao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
68
|
Mondal J, An JM, Surwase SS, Chakraborty K, Sutradhar SC, Hwang J, Lee J, Lee YK. Carbon Nanotube and Its Derived Nanomaterials Based High Performance Biosensing Platform. BIOSENSORS 2022; 12:731. [PMID: 36140116 PMCID: PMC9496036 DOI: 10.3390/bios12090731] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
After the COVID-19 pandemic, the development of an accurate diagnosis and monitoring of diseases became a more important issue. In order to fabricate high-performance and sensitive biosensors, many researchers and scientists have used many kinds of nanomaterials such as metal nanoparticles (NPs), metal oxide NPs, quantum dots (QDs), and carbon nanomaterials including graphene and carbon nanotubes (CNTs). Among them, CNTs have been considered important biosensing channel candidates due to their excellent physical properties such as high electrical conductivity, strong mechanical properties, plasmonic properties, and so on. Thus, in this review, CNT-based biosensing systems are introduced and various sensing approaches such as electrochemical, optical, and electrical methods are reported. Moreover, such biosensing platforms showed excellent sensitivity and high selectivity against not only viruses but also virus DNA structures. So, based on the amazing potential of CNTs-based biosensing systems, healthcare and public health can be significantly improved.
Collapse
Affiliation(s)
- Jagannath Mondal
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| | - Sachin S. Surwase
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Kushal Chakraborty
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Korea
| | - Sabuj Chandra Sutradhar
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Joon Hwang
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
- Department of Aeronautical & Mechanical Design Engineering, Korea National University of Transportation, Chungju 27469, Korea
| | - Jaewook Lee
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Yong-Kyu Lee
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Korea
| |
Collapse
|
69
|
Thapa S, Singh KRB, Verma R, Singh J, Singh RP. State-of-the-Art Smart and Intelligent Nanobiosensors for SARS-CoV-2 Diagnosis. BIOSENSORS 2022; 12:637. [PMID: 36005033 PMCID: PMC9405813 DOI: 10.3390/bios12080637] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/16/2022]
Abstract
The novel coronavirus appeared to be a milder infection initially, but the unexpected outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), commonly called COVID-19, was transmitted all over the world in late 2019 and caused a pandemic. Human health has been disastrously affected by SARS-CoV-2, which is still evolving and causing more serious concerns, leading to the innumerable loss of lives. Thus, this review provides an outline of SARS-CoV-2, of the traditional tools to diagnose SARS-CoV-2, and of the role of emerging nanomaterials with unique properties for fabricating biosensor devices to diagnose SARS-CoV-2. Smart and intelligent nanomaterial-enabled biosensors (nanobiosensors) have already proven their utility for the diagnosis of several viral infections, as various detection strategies based on nanobiosensor devices are already present, and several other methods are also being investigated by researchers for the determination of SARS-CoV-2 disease; however, considerably more is undetermined and yet to be explored. Hence, this review highlights the utility of various nanobiosensor devices for SARS-CoV-2 determination. Further, it also emphasizes the future outlook of nanobiosensing technologies for SARS-CoV-2 diagnosis.
Collapse
Affiliation(s)
- Sushma Thapa
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Kshitij RB Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ranjana Verma
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| |
Collapse
|
70
|
Mahmud N, Anik MI, Hossain MK, Khan MI, Uddin S, Ashrafuzzaman M, Rahaman MM. Advances in Nanomaterial-Based Platforms to Combat COVID-19: Diagnostics, Preventions, Therapeutics, and Vaccine Developments. ACS APPLIED BIO MATERIALS 2022; 5:2431-2460. [PMID: 35583460 PMCID: PMC9128020 DOI: 10.1021/acsabm.2c00123] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2, a ribonucleic acid (RNA) virus that emerged less than two years ago but has caused nearly 6.1 million deaths to date. Recently developed variants of the SARS-CoV-2 virus have been shown to be more potent and expanded at a faster rate. Until now, there is no specific and effective treatment for SARS-CoV-2 in terms of reliable and sustainable recovery. Precaution, prevention, and vaccinations are the only ways to keep the pandemic situation under control. Medical and scientific professionals are now focusing on the repurposing of previous technology and trying to develop more fruitful methodologies to detect the presence of viruses, treat the patients, precautionary items, and vaccine developments. Nanomedicine or nanobased platforms can play a crucial role in these fronts. Researchers are working on many effective approaches by nanosized particles to combat SARS-CoV-2. The role of a nanobased platform to combat SARS-CoV-2 is extremely diverse (i.e., mark to personal protective suit, rapid diagnostic tool to targeted treatment, and vaccine developments). Although there are many theoretical possibilities of a nanobased platform to combat SARS-CoV-2, until now there is an inadequate number of research targeting SARS-CoV-2 to explore such scenarios. This unique mini-review aims to compile and elaborate on the recent advances of nanobased approaches from prevention, diagnostics, treatment to vaccine developments against SARS-CoV-2, and associated challenges.
Collapse
Affiliation(s)
- Niaz Mahmud
- Department of Biomedical Engineering,
Military Institute of Science and Technology, Dhaka 1216,
Bangladesh
| | - Muzahidul I. Anik
- Department of Chemical Engineering,
University of Rhode Island, Kingston, Rhode Island 02881,
United States
| | - M. Khalid Hossain
- Interdisciplinary Graduate School of Engineering
Science, Kyushu University, Fukuoka 816-8580,
Japan
- Atomic Energy Research Establishment,
Bangladesh Atomic Energy Commission, Dhaka 1349,
Bangladesh
| | - Md Ishak Khan
- Department of Neurosurgery, University of
Pennsylvania, Philadelphia, Pennsylvania 19104, United
States
| | - Shihab Uddin
- Department of Applied Chemistry, Graduate School of
Engineering, Kyushu University, Fukuoka 819-0395,
Japan
- Department of Chemical Engineering,
Massachusetts Institute of Technology, Cambridge
Massachusetts 02139, United States
| | - Md. Ashrafuzzaman
- Department of Biomedical Engineering,
Military Institute of Science and Technology, Dhaka 1216,
Bangladesh
| | - Md Mushfiqur Rahaman
- Department of Emergency Medicine, NYU
Langone Health, New York, New York 10016, United
States
| |
Collapse
|
71
|
Fortunati S, Giliberti C, Giannetto M, Bolchi A, Ferrari D, Donofrio G, Bianchi V, Boni A, De Munari I, Careri M. Rapid Quantification of SARS-Cov-2 Spike Protein Enhanced with a Machine Learning Technique Integrated in a Smart and Portable Immunosensor. BIOSENSORS 2022; 12:426. [PMID: 35735573 PMCID: PMC9220900 DOI: 10.3390/bios12060426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 05/04/2023]
Abstract
An IoT-WiFi smart and portable electrochemical immunosensor for the quantification of SARS-CoV-2 spike protein was developed with integrated machine learning features. The immunoenzymatic sensor is based on the immobilization of monoclonal antibodies directed at the SARS-CoV-2 S1 subunit on Screen-Printed Electrodes functionalized with gold nanoparticles. The analytical protocol involves a single-step sample incubation. Immunosensor performance was validated in a viral transfer medium which is commonly used for the desorption of nasopharyngeal swabs. Remarkable specificity of the response was demonstrated by testing H1N1 Hemagglutinin from swine-origin influenza A virus and Spike Protein S1 from Middle East respiratory syndrome coronavirus. Machine learning was successfully used for data processing and analysis. Different support vector machine classifiers were evaluated, proving that algorithms affect the classifier accuracy. The test accuracy of the best classification model in terms of true positive/true negative sample classification was 97.3%. In addition, the ML algorithm can be easily integrated into cloud-based portable Wi-Fi devices. Finally, the immunosensor was successfully tested using a third generation replicating incompetent lentiviral vector pseudotyped with SARS-CoV-2 spike glycoprotein, thus proving the applicability of the immunosensor to whole virus detection.
Collapse
Affiliation(s)
- Simone Fortunati
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy; (S.F.); (C.G.); (A.B.); (D.F.)
| | - Chiara Giliberti
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy; (S.F.); (C.G.); (A.B.); (D.F.)
| | - Marco Giannetto
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy; (S.F.); (C.G.); (A.B.); (D.F.)
| | - Angelo Bolchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy; (S.F.); (C.G.); (A.B.); (D.F.)
| | - Davide Ferrari
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy; (S.F.); (C.G.); (A.B.); (D.F.)
| | - Gaetano Donofrio
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Strada del Taglio 10, 43126 Parma, Italy;
| | - Valentina Bianchi
- Dipartimento di Ingegneria e Architettura, Università di Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy; (V.B.); (A.B.); (I.D.M.)
| | - Andrea Boni
- Dipartimento di Ingegneria e Architettura, Università di Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy; (V.B.); (A.B.); (I.D.M.)
| | - Ilaria De Munari
- Dipartimento di Ingegneria e Architettura, Università di Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy; (V.B.); (A.B.); (I.D.M.)
| | - Maria Careri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy; (S.F.); (C.G.); (A.B.); (D.F.)
| |
Collapse
|
72
|
Tapari A, Braliou GG, Papaefthimiou M, Mavriki H, Kontou PI, Nikolopoulos GK, Bagos PG. Performance of Antigen Detection Tests for SARS-CoV-2: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2022; 12:1388. [PMID: 35741198 PMCID: PMC9221910 DOI: 10.3390/diagnostics12061388] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) initiated global health care challenges such as the necessity for new diagnostic tests. Diagnosis by real-time PCR remains the gold-standard method, yet economical and technical issues prohibit its use in points of care (POC) or for repetitive tests in populations. A lot of effort has been exerted in developing, using, and validating antigen-based tests (ATs). Since individual studies focus on few methodological aspects of ATs, a comparison of different tests is needed. Herein, we perform a systematic review and meta-analysis of data from articles in PubMed, medRxiv and bioRxiv. The bivariate method for meta-analysis of diagnostic tests pooling sensitivities and specificities was used. Most of the AT types for SARS-CoV-2 were lateral flow immunoassays (LFIA), fluorescence immunoassays (FIA), and chemiluminescence enzyme immunoassays (CLEIA). We identified 235 articles containing data from 220,049 individuals. All ATs using nasopharyngeal samples show better performance than those with throat saliva (72% compared to 40%). Moreover, the rapid methods LFIA and FIA show about 10% lower sensitivity compared to the laboratory-based CLEIA method (72% compared to 82%). In addition, rapid ATs show higher sensitivity in symptomatic patients compared to asymptomatic patients, suggesting that viral load is a crucial parameter for ATs performed in POCs. Finally, all methods perform with very high specificity, reaching around 99%. LFIA tests, though with moderate sensitivity, appear as the most attractive method for use in POCs and for performing seroprevalence studies.
Collapse
Affiliation(s)
- Anastasia Tapari
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | - Georgia G. Braliou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | - Maria Papaefthimiou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | - Helen Mavriki
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | - Panagiota I. Kontou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | | | - Pantelis G. Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| |
Collapse
|
73
|
Abid R, Shahzad MK, Sulaman SM, Faheem M, Naeem M, Khan R, Khalil AAK, Haider A, Ahmad B, Gul R, Bukhari N, Jamal SB. Therapeutic significance of nano- and biosensor technology in combating SARS-CoV-2: a review. APPLIED NANOSCIENCE 2022; 12:3127-3140. [PMID: 35677529 PMCID: PMC9162894 DOI: 10.1007/s13204-022-02465-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/12/2022] [Indexed: 02/08/2023]
Abstract
The diagnosis of novel coronavirus (COVID-19) has gained the spotlight of the world's scientific community since December 2019 and it remains an important issue due to the emergence of novel variants around the globe. Early diagnosis of coronavirus is captious to prevent and hard to control. This pandemic can be eradicated by implementing suppressing strategies which can lead to better outcomes and more lives being saved. Therefore, the analysis showed that COVID-19 can only be managed by adopting public health measures, such as testing, isolation and social distancing. Much work has been done to diagnose coronavirus. Various testing technologies have been developed, opted and modified for rapid and accurate detection. The advanced molecular diagnosis relies on the detection of SARS-CoV-2 as it has been considered the main causative agent of this pandemic. Studies have shown that several molecular tests are considered essential for the confirmation of coronavirus infection. Various serology-based tests are also used in the detection and diagnosis of coronavirus including point-of-care assays and high-throughput enzyme immunoassays that aid in the diagnosis of COVID-19. Both these assays are time-consuming and have less diagnostic accuracy. Nanotechnology has the potential to develop new strategies to combat COVID-19 by developing diagnostics and therapeutics. In this review, we have focused on the nanotechnology-based detection techniques including nanoparticles and biosensors to obstruct the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Rameesha Abid
- Department of Biotechnology, University of Sialkot, Sialkot, Punjab Pakistan
| | | | | | - Muhammad Faheem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Raees Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Atif Ali Khan Khalil
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Bilal Ahmad
- College of Biology, Hunan University, Changsha, Hunan 410082 People’s Republic of China
| | - Rukhsana Gul
- Department of Chemistry, Kohat University of Science and Technology, Kohat, KPK Pakistan
| | - Nausheen Bukhari
- Mohammad College of Medicine, Budni Road, Yaseen Abad, Peshawar, KPK Pakistan
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
74
|
Chen Y, Duan W, Xu L, Li G, Wan Y, Li H. Nanobody-based label-free photoelectrochemical immunoassay for highly sensitive detection of SARS-CoV-2 spike protein. Anal Chim Acta 2022; 1211:339904. [PMID: 35589224 PMCID: PMC9062376 DOI: 10.1016/j.aca.2022.339904] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/30/2022]
Abstract
Until now, COVID-19 caused by SARS-CoV-2 is engulfing the worldwide and still ranging to date, continuing to threaten the public health. The main challenge facing COVID-19 epidemic is short of fast-response and high-efficiency methods to determine SARS-CoV-2 viral pathogens. Herein, a nanobody-based label-free photoelectrochemical (PEC) immunosensor has been fabricated for rapidly detecting SARS-CoV-2 spike protein. As a small-size and high-stability antibody, nanobody was directly and well immobilized with Au nanoparticles and TiO2 spheres by the interaction. Au deposited TiO2 nanomaterial possessed 8.5 times photoelectric performance in comparison with TiO2 in the presence of electron donor owing to surface plasma resonance effect of Au. Based on the steric hindrance effect, this immunoassay platform realized the linear detection from 0.015 to 15000 pg mL−1, and a limit of detection was low as 5 fg mL−1. The label-free PEC immunoassay design provides a new idea for convenient, rapid, and efficient test of SARS-CoV-2 spike protein and broadens further application of nanobody as an identification agent to specific biomarkers.
Collapse
Affiliation(s)
- Yun Chen
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, China
| | - Wei Duan
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, China
| | - Li Xu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, China
| | - Guanghui Li
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, 201318, China
| | - Yakun Wan
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, 201318, China.
| | - Henan Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
75
|
Farrow T, Laumier S, Sandall I, van Zalinge H. An Aptamer-Functionalised Schottky-Field Effect Transistor for the Detection of Proteins. BIOSENSORS 2022; 12:347. [PMID: 35624648 PMCID: PMC9138399 DOI: 10.3390/bios12050347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022]
Abstract
The outbreak of the coronavirus disease 2019 (COVID-19) in December 2019 has highlighted the need for a flexible sensing system that can quickly and accurately determine the presence of biomarkers associated with the disease. This sensing system also needs to be easily adaptable to incorporate both novel diseases as well as changes in the existing ones. Here we report the feasibility of using a simple, low-cost silicon field-effect transistor functionalised with aptamers and designed to attach to the spike protein of SARS-CoV2. It is shown that a linear response can be obtained in a concentration range of 100 fM to 10 pM. Furthermore, by using a larger range of source-drain potentials compared with other FET based sensors, it is possible to look at a wider range of device parameters to optimise the response.
Collapse
Affiliation(s)
| | | | - Ian Sandall
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK; (T.F.); (S.L.)
| | - Harm van Zalinge
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK; (T.F.); (S.L.)
| |
Collapse
|
76
|
Adeel M, Asif K, Canzonieri V, Barai HR, Rahman MM, Daniele S, Rizzolio F. Controlled, partially exfoliated, self-supported functionalized flexible graphitic carbon foil for ultrasensitive detection of SARS-CoV-2 spike protein. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 359:131591. [PMID: 35221530 PMCID: PMC8860393 DOI: 10.1016/j.snb.2022.131591] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 05/20/2023]
Abstract
This paper reports on an ultrasensitive and label-free electrochemical immunosensor for monitoring the SARS-CoV-2 spike protein (SARS-CoV-2 SP). A self-supported electrode, which can simultaneously serve as an antibody immobilization matrix and electron transport channel, was initially fabricated by a controlled partial exfoliation of a flexible graphitic carbon foil (GCF). Mild acidic treatment enabled the partial oxidation and exfoliation (down to a few layers) of the flexible GCF; this also provided a high percentage of oxygen functionality and an enhanced surface roughness. The substrate electrode was further functionalized with ethylenediamine (EDA) to provide a suitable platform with even a higher surface roughness, for the covalent immobilization of an anti-SARS-CoV-2 antibody. The change in the current response for the [Fe(CN)6]3-/4- redox couple, induced by the binding of SARS-CoV-2 SP to the antibody immobilized on the electrode surface, was used to determine the SARS-CoV-2 SP concentration. The immunosensor thus prepared could detect SARS-CoV-2 SP within 30 min with high reproducibility and specificity over a wide concentration range (0.2-100 ng/mL). Detection limits of 25 pg/mL and 27 pg/mL were found in a phosphate buffer solution (pH 7.4), and diluted blood plasma, respectively. The immunosensor was also employed to detect SARS-CoV-2 SP in artificial human saliva.
Collapse
Affiliation(s)
- Muhammad Adeel
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123 Venezia, Italy
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Kanwal Asif
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123 Venezia, Italy
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Hasi Rani Barai
- Department of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | - Md Mahbubur Rahman
- Department of Applied Chemistry, Konkuk University, Chungju 27478, South Korea
| | - Salvatore Daniele
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123 Venezia, Italy
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123 Venezia, Italy
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| |
Collapse
|
77
|
Vásquez V, Navas MC, Jaimes JA, Orozco J. SARS-CoV-2 electrochemical immunosensor based on the spike-ACE2 complex. Anal Chim Acta 2022; 1205:339718. [PMID: 35414393 PMCID: PMC8941303 DOI: 10.1016/j.aca.2022.339718] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023]
Abstract
Rapid, straightforward, and massive diagnosis of coronavirus disease 2019 (COVID-19) is one of the more important measures to mitigate the current pandemics. This work reports on an immunosensor to rapidly detect the spike protein from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The immunosensing device entraps the spike protein linked to angiotensin-converting enzyme host receptor (ACE2) protein in a sandwich between carboxylated magnetic beads functionalized with an anti-spike antibody and an anti-ACE2 antibody, further labeled with streptavidin (poly)horseradish peroxidase (HRP) reporter enzyme. The particles were confined at the surface of screen-printed gold electrodes, whose signal resulting from the interaction of the enzyme with a mediator was recorded in a portable potentiostat. The immunosensor showed a sensitivity of 0.83 μA∗mL/μg and a limit of detection of 22.5 ng/mL of spike protein, with high reproducibility. As a proof-of-concept, it detected commercial spike protein-supplemented buffer solutions, pseudovirions, isolated viral particles and ten nasopharyngeal swab samples from infected patients compared to samples from three healthy individuals paving the way to detect the virus closer to the patient.
Collapse
|
78
|
Soto D, Orozco J. Peptide-based simple detection of SARS-CoV-2 with electrochemical readout. Anal Chim Acta 2022; 1205:339739. [PMID: 35414399 PMCID: PMC8935448 DOI: 10.1016/j.aca.2022.339739] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/15/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is considered one of the worst pandemic outbreaks worldwide. This ongoing pandemic urgently requires rapid, accurate, and specific testing devices to detect the virus. We report a simple electrochemical biosensor based on a highly specific synthetic peptide to detect SARS-CoV-2 Spike protein. Unlike other reported electrochemical biosensors involving nanomaterials or complex approaches, our electrochemical platform uses screen-printed gold electrodes functionalized with the thiolated peptide, whose interaction with the Spike protein is directly followed by Electrochemical Impedance Spectroscopy. The electrochemical platform was Spike protein concentration-dependent, with high sensitivity and reproducibility and a limit of detection of 18.2 ng/mL when tested in Spike protein commercial solutions and 0.01 copies/mL in lysed SARS-CoV-2 particles. The label-free biosensor successfully detected the Spike protein in samples from infected patients straightforwardly in only 15 min. The simplicity of the proposed format combined with an on-demand designed peptide opens the path for detecting other pathogen-related antigens.
Collapse
|
79
|
Ardekani LS, Thulstrup PW. Gold Nanoparticle-Mediated Lateral Flow Assays for Detection of Host Antibodies and COVID-19 Proteins. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1456. [PMID: 35564165 PMCID: PMC9102158 DOI: 10.3390/nano12091456] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 01/15/2023]
Abstract
Coronaviruses, that are now well-known to the public, include a family of viruses that can cause severe acute respiratory syndrome (SARS) and other respiratory diseases, such as Middle East respiratory syndrome (MERS). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the seventh member of this coronavirus family, was detected in 2019 and can cause a number of respiratory symptoms, from dry cough and fever to fatal viral pneumonia. Various diagnostic assays ranging from real-time polymerase chain reaction (RT-PCR) to point-of-care medical diagnostic systems have been developed for detection of viral components or antibodies targeting the virus. Point-of-care assays allow rapid diagnostic assessment of infectious patients. Such assays are ideally simple, low-cost, portable tests with the possibility for on-site field detection that do not require skilled staff, sophisticated equipment, or sample pretreatment, as compared to RT-PCR. Since early 2021 when new SARS-CoV-2 variants of concern increased, rapid tests became more crucial in the disease management cycle. Among rapid tests, gold nanoparticle (GNP)-based lateral flow assays (LFAs) have high capacity for performing at the bedside, paving the way to easy access to diagnosis results. In this review, GNP-based LFAs used for either COVID-19 proteins or human response antibodies are summarized and recommendations for their improvement have been suggested.
Collapse
Affiliation(s)
- Leila Safaee Ardekani
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran
| | - Peter Waaben Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
80
|
Wangkheirakpam VD, Bhowmick B, Pukhrambam PD. Detection of SARS-CoV-2 using dielectric modulated TFET-based biosensor. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN ELECTRONICS 2022; 33:10323-10334. [PMID: 38625001 PMCID: PMC8926094 DOI: 10.1007/s10854-022-08020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/28/2022] [Indexed: 05/08/2023]
Abstract
Attributable to the rapid increase in human infection of Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the World Health Organization (WHO) has declared this disease outbreak as a pandemic. This outbreak can be tackled to some extent through proper management and early diagnosis. This work reports a biosensor based on vertical tunnel field-effect transistor (VTFET) developed for the detection of SARS-CoV-2 from the clinical samples through the analysis of its spike, envelope, and DNA proteins. Investigation of the sensitivity of the proposed sensor has been done by calculating the shift in drain current. The dielectric constant equivalent of the virus proteins is used to represent the hybridized biomolecules within the nanogaps. The sensitivity of this proposed sensor is found to be significantly high (order of 106) showing the viability of the device to be a superior sensor. Furthermore, the sensitivity analysis concerning DNA charge density is also performed. The effect of DNA charge density variation on the threshold voltage (Vth) and sensitivity have also been studied in this work. The proposed sensor is also investigated for its noise performance and observed the sensitivity with and without the effect of interface trap charges. Finally, the proposed sensor is benchmarked against the sensitivity of various FET-based biosensors already published earlier.
Collapse
Affiliation(s)
| | - Brinda Bhowmick
- Department of Electronics and Communication, National Institute of Technology Silchar, Silchar, Assam India
| | - Puspa Devi Pukhrambam
- Department of Electronics and Communication, National Institute of Technology Silchar, Silchar, Assam India
| |
Collapse
|
81
|
Fabiani L, Mazzaracchio V, Moscone D, Fillo S, De Santis R, Monte A, Amatore D, Lista F, Arduini F. Paper-based immunoassay based on 96-well wax-printed paper plate combined with magnetic beads and colorimetric smartphone-assisted measure for reliable detection of SARS-CoV-2 in saliva. Biosens Bioelectron 2022; 200:113909. [PMID: 34995838 PMCID: PMC8697482 DOI: 10.1016/j.bios.2021.113909] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/26/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has been recognized as a global pandemic outbreak, opening the most severe socio-economic crisis since World War II. Different scientific activities have been emerged in this global scenario, including the development of innovative analytical tools to measure nucleic acid, antibodies, and antigens in the nasopharyngeal swab, serum, and saliva for prompt identification of COVID-19 patients and to evaluate the immune response to the vaccine. The detection of SARS-CoV-2 in saliva remains a challenge for the lack of sufficient sensitivity. To address this issue, we developed a novel paper-based immunoassay using magnetic beads to support the immunological chain and 96-well wax-printed paper plate as a platform for color visualization by using a smartphone combined with Spotxel free-charge app. To assess the reliability of the measurement of SARS-CoV-2 in saliva, untreated saliva was used as a specimen and the calibration curve demonstrated a dynamic range up to 10 μg/mL, with a detection limit equal to 0.1 μg/mL. The effectiveness of this sustainable analytical tool in saliva was evaluated by comparing the data with the nasopharyngeal swab specimens sampled by the same patients and tested with Real-Time PCR reference method, founding 100% of agreement, even in the case of high Cycle Threshold (CT) numbers (low viral load). Furthermore, the positive saliva samples were characterized by the next-generation sequencing method, demonstrating the capability to detect the Delta variant, which is actually (July 2021) the most relevant variant of concern.
Collapse
Affiliation(s)
- Laura Fabiani
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Vincenzo Mazzaracchio
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Danila Moscone
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Silvia Fillo
- Scientific Department, Army Medical Center, Via Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Riccardo De Santis
- Scientific Department, Army Medical Center, Via Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Anella Monte
- Scientific Department, Army Medical Center, Via Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Donatella Amatore
- Scientific Department, Army Medical Center, Via Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Florigio Lista
- Scientific Department, Army Medical Center, Via Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Fabiana Arduini
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133, Rome, Italy; SENSE4MED, Via Renato Rascel 30, 00128, Rome, Italy.
| |
Collapse
|
82
|
Abstract
Printing technology promises a viable solution for the low-cost, rapid, flexible, and mass fabrication of biosensors. Among the vast number of printing techniques, screen printing and inkjet printing have been widely adopted for the fabrication of biosensors. Screen printing provides ease of operation and rapid processing; however, it is bound by the effects of viscous inks, high material waste, and the requirement for masks, to name a few. Inkjet printing, on the other hand, is well suited for mass fabrication that takes advantage of computer-aided design software for pattern modifications. Furthermore, being drop-on-demand, it prevents precious material waste and offers high-resolution patterning. To exploit the features of inkjet printing technology, scientists have been keen to use it for the development of biosensors since 1988. A vast number of fully and partially inkjet-printed biosensors have been developed ever since. This study presents a short introduction on the printing technology used for biosensor fabrication in general, and a brief review of the recent reports related to virus, enzymatic, and non-enzymatic biosensor fabrication, via inkjet printing technology in particular.
Collapse
|
83
|
Haghayegh F, Salahandish R, Hassani M, Sanati-Nezhad A. Highly Stable Buffer-Based Zinc Oxide/Reduced Graphene Oxide Nanosurface Chemistry for Rapid Immunosensing of SARS-CoV-2 Antigens. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10844-10855. [PMID: 35172574 DOI: 10.1021/acsami.1c24475] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The widespread and long-lasting effect of the COVID-19 pandemic has called attention to the significance of technological advances in the rapid diagnosis of SARS-CoV-2 virus. This study reports the use of a highly stable buffer-based zinc oxide/reduced graphene oxide (bbZnO/rGO) nanocomposite coated on carbon screen-printed electrodes for electrochemical immuno-biosensing of SARS-CoV-2 nuelocapsid (N-) protein antigens in spiked and clinical samples. The incorporation of a salt-based (ionic) matrix for uniform dispersion of the nanomixture eliminates multistep nanomaterial synthesis on the surface of the electrode and enables a stable single-step sensor nanocoating. The immuno-biosensor provides a limit of detection of 21 fg/mL over a linear range of 1-10 000 pg/mL and exhibits a sensitivity of 32.07 ohms·mL/pg·mm2 for detection of N-protein in spiked samples. The N-protein biosensor is successful in discriminating positive and negative clinical samples within 15 min, demonstrating its proof of concept used as a COVID-19 rapid antigen test.
Collapse
Affiliation(s)
- Fatemeh Haghayegh
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Razieh Salahandish
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
- Center for BioEngineering Research and Education, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Mohsen Hassani
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
- Center for BioEngineering Research and Education, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
84
|
Kim J, Jeong S, Sarawut S, Kim H, Son SU, Lee S, Rabbani G, Kwon H, Lim EK, Ahn SN, Park SHK. An immunosensor based on a high performance dual-gate oxide semiconductor thin-film transistor for rapid detection of SARS-CoV-2. LAB ON A CHIP 2022; 22:899-907. [PMID: 35191444 DOI: 10.1039/d1lc01116b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of an infectious disease that has led the WHO to declare its highest level (6) pandemic. The coronavirus disease 2019 (COVID-19) has spread rapidly around the world, and the number of confirmed cases has passed 246 million as of November 2021. Therefore, precise and fast virus detection protocols need to be developed to cope with the rapid spread of the virus. Here, we present a high performance dual-gate oxide semiconductor thin-film transistor (TFT)-based immunosensor for detecting SARS-CoV-2. The immunosensor has an indium tin oxide sensing membrane to which the antibody against the SARS-CoV-2 spike S1 protein can be immobilized through functionalization. The dual-gate TFT was stable under ambient conditions with near-zero hysteresis; capacitive coupling yields a 10.14 ± 0.14-fold amplification of the surface charge potential on the sensing membrane and improves the pH sensitivity to 770.1 ± 37.74 mV pH-1 above the Nernst limit. The immunosensor could rapidly detect the SARS-CoV-2 spike S1 protein and cultured SARS-CoV-2 in 0.01× PBS with high antigen selectivity and sensitivity. Our immunosensor can accurately measure the electrical changes originated from SARS-CoV-2, without the need for polymerase chain reaction tests or labeling.
Collapse
Affiliation(s)
- Jingyu Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Sehun Jeong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Siracosit Sarawut
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Haneul Kim
- Nano Diagnostics & Devices (NDD), Room B-312 IT, Medical Fusion Center, Gumidae-ro, 350-27, Gumi-si, Gyeongbuk, 39253, Republic of Korea
| | - Seong Uk Son
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Seungheon Lee
- Nano Diagnostics & Devices (NDD), Room B-312 IT, Medical Fusion Center, Gumidae-ro, 350-27, Gumi-si, Gyeongbuk, 39253, Republic of Korea
| | - Gulam Rabbani
- Nano Diagnostics & Devices (NDD), Room B-312 IT, Medical Fusion Center, Gumidae-ro, 350-27, Gumi-si, Gyeongbuk, 39253, Republic of Korea
| | - Hyunhwa Kwon
- Nano Diagnostics & Devices (NDD), Room B-312 IT, Medical Fusion Center, Gumidae-ro, 350-27, Gumi-si, Gyeongbuk, 39253, Republic of Korea
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Saeyoung Nate Ahn
- Nano Diagnostics & Devices (NDD), Room B-312 IT, Medical Fusion Center, Gumidae-ro, 350-27, Gumi-si, Gyeongbuk, 39253, Republic of Korea
- Fuzbien Technology Institute, 12111 Parklawn Drive, Lab 130, Rockville, MD 20852, USA
| | - Sang-Hee Ko Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
85
|
He Y, Hu C, Li Z, Wu C, Zeng Y, Peng C. Multifunctional carbon nanomaterials for diagnostic applications in infectious diseases and tumors. Mater Today Bio 2022; 14:100231. [PMID: 35280329 PMCID: PMC8896867 DOI: 10.1016/j.mtbio.2022.100231] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Infectious diseases (such as Corona Virus Disease 2019) and tumors pose a tremendous challenge to global public health. Early diagnosis of infectious diseases and tumors can lead to effective control and early intervention of the patient's condition. Over the past few decades, carbon nanomaterials (CNs) have attracted widespread attention in different scientific disciplines. In the field of biomedicine, carbon nanotubes, graphene, carbon quantum dots and fullerenes have the ability of improving the accuracy of the diagnosis by the improvement of the diagnostic approaches. Therefore, this review highlights their applications in the diagnosis of infectious diseases and tumors over the past five years. Recent advances in the field of biosensing, bioimaging, and nucleic acid amplification by such CNs are introduced and discussed, emphasizing the importance of their unique properties in infectious disease and tumor diagnosis and the challenges and opportunities that exist for future clinical applications. Although the application of CNs in the diagnosis of several diseases is still at a beginning stage, biosensors, bioimaging technologies and nucleic acid amplification technologies built on CNs represent a new generation of promising diagnostic tools that further support their potential application in infectious disease and tumor diagnosis.
Collapse
Affiliation(s)
| | | | - Zhijia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yuanyuan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| |
Collapse
|
86
|
Zheng Y, Bian S, Sun J, Wen L, Rong G, Sawan M. Label-Free LSPR-Vertical Microcavity Biosensor for On-Site SARS-CoV-2 Detection. BIOSENSORS 2022; 12:151. [PMID: 35323421 PMCID: PMC8946032 DOI: 10.3390/bios12030151] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 05/08/2023]
Abstract
Cost-effective, rapid, and sensitive detection of SARS-CoV-2, in high-throughput, is crucial in controlling the COVID-19 epidemic. In this study, we proposed a vertical microcavity and localized surface plasmon resonance hybrid biosensor for SARS-CoV-2 detection in artificial saliva and assessed its efficacy. The proposed biosensor monitors the valley shifts in the reflectance spectrum, as induced by changes in the refractive index within the proximity of the sensor surface. A low-cost and fast method was developed to form nanoporous gold (NPG) with different surface morphologies on the vertical microcavity wafer, followed by immobilization with the SARS-CoV-2 antibody for capturing the virus. Modeling and simulation were conducted to optimize the microcavity structure and the NPG parameters. Simulation results revealed that NPG-deposited sensors performed better in resonance quality and in sensitivity compared to gold-deposited and pure microcavity sensors. The experiment confirmed the effect of NPG surface morphology on the biosensor sensitivity as demonstrated by simulation. Pre-clinical validation revealed that 40% porosity led to the highest sensitivity for SARS-CoV-2 pseudovirus at 319 copies/mL in artificial saliva. The proposed automatic biosensing system delivered the results of 100 samples within 30 min, demonstrating its potential for on-site coronavirus detection with sufficient sensitivity.
Collapse
Affiliation(s)
- Yuqiao Zheng
- CenBRAIN Lab, School of Engineering, Westlake University, Hangzhou 310024, China; (Y.Z.); (S.B.)
| | - Sumin Bian
- CenBRAIN Lab, School of Engineering, Westlake University, Hangzhou 310024, China; (Y.Z.); (S.B.)
| | - Jiacheng Sun
- School of Engineering, Westlake University, Hangzhou 310024, China; (J.S.); (L.W.)
| | - Liaoyong Wen
- School of Engineering, Westlake University, Hangzhou 310024, China; (J.S.); (L.W.)
| | - Guoguang Rong
- CenBRAIN Lab, School of Engineering, Westlake University, Hangzhou 310024, China; (Y.Z.); (S.B.)
| | - Mohamad Sawan
- CenBRAIN Lab, School of Engineering, Westlake University, Hangzhou 310024, China; (Y.Z.); (S.B.)
| |
Collapse
|
87
|
Gao J, Wang C, Wang C, Chu Y, Wang S, Sun MY, Ji H, Gao Y, Wang Y, Han Y, Song F, Liu H, Zhang Y, Han L. Poly-l-Lysine-Modified Graphene Field-Effect Transistor Biosensors for Ultrasensitive Breast Cancer miRNAs and SARS-CoV-2 RNA Detection. Anal Chem 2022; 94:1626-1636. [PMID: 35025203 PMCID: PMC8767657 DOI: 10.1021/acs.analchem.1c03786] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Abstract
(Mi)RNAs are important biomarkers for cancers diagnosis and pandemic diseases, which require fast, ultrasensitive, and economical detection strategies to quantitatively detect exact (mi)RNAs expression levels. The novel coronavirus disease (SARS-CoV-2) has been breaking out globally, and RNA detection is the most effective way to identify the SARS-CoV-2 virus. Here, we developed an ultrasensitive poly-l-lysine (PLL)-functionalized graphene field-effect transistor (PGFET) biosensor for breast cancer miRNAs and viral RNA detection. PLL is functionalized on the channel surface of GFET to immobilize DNA probes by the electrostatic force. The results show that PGFET biosensors can achieve a (mi)RNA detection range of five orders with a detection limit of 1 fM and an entire detection time within 20 min using 2 μL of human serum and throat swab samples, which exhibits more than 113% enhancement in terms of sensitivity compared to that of GFET biosensors. The performance enhancement mechanisms of PGFET biosensors were comprehensively studied based on an electrical biosensor theoretical model and experimental results. In addition, the PGFET biosensor was applied for the breast cancer miRNA detection in actual serum samples and SARS-CoV-2 RNA detection in throat swab samples, providing a promising approach for rapid cancer diagnosis and virus screening.
Collapse
Affiliation(s)
- Jianwei Gao
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Chunhua Wang
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Chao Wang
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Yujin Chu
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Shun Wang
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Ming yuan Sun
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Hao Ji
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Yakun Gao
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Yanhao Wang
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Yingkuan Han
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Fangteng Song
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Hong Liu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan, Shandong 250100, China
| | - Yu Zhang
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| | - Lin Han
- Institute
of Marine Science and Technology, Shandong
University, Qingdao 266237, China
| |
Collapse
|
88
|
Shao W, Shurin GV, He X, Zeng Z, Shurin MR, Star A. Cerebrospinal Fluid Leak Detection with a Carbon Nanotube-Based Field-Effect Transistor Biosensing Platform. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1684-1691. [PMID: 34932323 DOI: 10.1021/acsami.1c19120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cerebrospinal fluid (CSF) leakage may lead to life-threatening complications if not detected promptly. However, gel electrophoresis, the gold-standard test for confirming CSF leakage by detecting beta2-transferrin (β2-Tf), requires 3-6 h and is labor-intensive. We developed a new β2-Tf detection platform for rapid identification of CSF leakage. The three-step design, which includes two steps of affinity chromatography and a rapid sensing step using a semiconductor-enriched single-walled carbon nanotube field-effect transistor (FET) sensor, circumvented the lack of selectivity that antitransferrin antibody exhibits for transferrin isoforms and markedly shortened the detection time. Furthermore, three different sensing configurations for the FET sensor were investigated for obtaining the optimal β2-Tf sensing results. Finally, body fluid (CSF and serum) tests employing our three-step strategy demonstrated high sensitivity, suggesting its potential to be used as a rapid diagnostic tool for CSF leakage.
Collapse
Affiliation(s)
- Wenting Shao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15260, United States
| | - Xiaoyun He
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zidao Zeng
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
89
|
Erdem Ö, Eş I, Saylan Y, Inci F. Unifying the Efforts of Medicine, Chemistry, and Engineering in Biosensing Technologies to Tackle the Challenges of the COVID-19 Pandemic. Anal Chem 2022; 94:3-25. [PMID: 34874149 DOI: 10.1021/acs.analchem.1c04454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Özgecan Erdem
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Ismail Eş
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
90
|
Chen M, Cui D, Zhao Z, Kang D, Li Z, Albawardi S, Alsageer S, Alamri F, Alhazmi A, Amer MR, Zhou C. Highly sensitive, scalable, and rapid SARS-CoV-2 biosensor based on In 2O 3 nanoribbon transistors and phosphatase. NANO RESEARCH 2022; 15:5510-5516. [PMID: 35371413 PMCID: PMC8959552 DOI: 10.1007/s12274-022-4190-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 05/06/2023]
Abstract
UNLABELLED Developing convenient and accurate SARS-CoV-2 antigen test and serology test is crucial in curbing the global COVID-19 pandemic. In this work, we report an improved indium oxide (In2O3) nanoribbon field-effect transistor (FET) biosensor platform detecting both SARS-CoV-2 antigen and antibody. Our FET biosensors, which were fabricated using a scalable and cost-efficient lithography-free process utilizing shadow masks, consist of an In2O3 channel and a newly developed stable enzyme reporter. During the biosensing process, the phosphatase enzymatic reaction generated pH change of the solution, which was then detected and converted to electrical signal by our In2O3 FETs. The biosensors applied phosphatase as enzyme reporter, which has a much better stability than the widely used urease in FET based biosensors. As proof-of-principle studies, we demonstrate the detection of SARS-CoV-2 spike protein in both phosphate-buffered saline (PBS) buffer and universal transport medium (UTM) (limit of detection [LoD]: 100 fg/mL). Following the SARS-CoV-2 antigen tests, we developed and characterized additional sensors aimed at SARS-CoV-2 IgG antibodies, which is important to trace past infection and vaccination. Our spike protein IgG antibody tests exhibit excellent detection limits in both PBS and human whole blood ((LoD): 1 pg/mL). Our biosensors display similar detection performance in different mediums, demonstrating that our biosensor approach is not limited by Debye screening from salts and can selectively detect biomarkers in physiological fluids. The newly selected enzyme for our platform performs much better performance and longer shelf life which will lead our biosensor platform to be capable for real clinical diagnosis usage. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (materials and methods for device fabrication, functionalization of In2O3 devices, photographs of the liquid gate measurement setup, mobilities of the nine devices labeled in Fig. 1(b), family curves of I DS-V DS with the liquid gate setup and current change after bubbling the substrate solution (current vs. time curve for S1 antigen detection)) is available in the online version of this article at 10.1007/s12274-022-4190-0.
Collapse
Affiliation(s)
- Mingrui Chen
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089 USA
| | - Dingzhou Cui
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 USA
| | - Zhiyuan Zhao
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089 USA
| | - Di Kang
- eDNA Biotech, Pasadena, California 91107 USA
| | - Zhen Li
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089 USA
| | - Shahad Albawardi
- Center of Excellence for Green Nanotechnologies, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Shahla Alsageer
- Center of Excellence for Green Nanotechnologies, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Faisal Alamri
- Center of Excellence for Green Nanotechnologies, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Abrar Alhazmi
- Center of Excellence for Green Nanotechnologies, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Moh. R. Amer
- Center of Excellence for Green Nanotechnologies, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
- Department of Electrical Engineering, 420 Westwood Plaza, 5412 Boelter Hall, University of California, Los Angeles, Los Angeles, California 90095 USA
| | - Chongwu Zhou
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089 USA
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 USA
| |
Collapse
|
91
|
Liu Y, Johnson BN. Electrochemical biosensors for detection of SARS-CoV-2. SENSING TOOLS AND TECHNIQUES FOR COVID-19 2022. [PMCID: PMC9334985 DOI: 10.1016/b978-0-323-90280-9.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pathogen detection is an essential application of electrochemical biosensors. Through the integration of selective biorecognition elements with sensitive transducers, electrochemical biosensors have enabled the rapid, sensitive, and selective detection of viruses. While various studies have achieved impressive detection limits, in some cases a single virus or tens to hundreds of viral RNA molecules, the developed approaches for electrochemical detection of virus particles significantly vary in regard to device and measurement approach, such as the electrode, biorecognition element, electrochemical method utilized for transduction of target binding, and measurement format (e.g., sample collection, preparation, and handling protocols). Thus, the reagents, materials, and measurement approach must be carefully considered to accurately assess the utility and time-to-results (TTR) for a given electrochemical biosensor-based assay for pathogen detection in a pandemic setting.
Collapse
|
92
|
Varghese R, Salvi S, Sood P, Karsiya J, Kumar D. Carbon nanotubes in COVID-19: A critical review and prospects. COLLOID AND INTERFACE SCIENCE COMMUNICATIONS 2022; 46:100544. [PMID: 34778007 PMCID: PMC8577996 DOI: 10.1016/j.colcom.2021.100544] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/31/2021] [Indexed: 05/11/2023]
Abstract
The rapid spread of Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) around the world has ravaged both global health and economy. This unprecedented situation has thus garnered attention globally. This further necessitated the deployment of an effective strategy for rapid and patient-compliant identification and isolation of patients tested positive for SARS-CoV-2. Following this, several companies and institutions across the globe are striving hard to develop real-time methods, like biosensors for the detection of various viral components including antibodies, antigens, ribonucleic acid (RNA), or the whole virus. This article attempts to review the various, mechanisms, advantages and limitations of the common biosensors currently being employed for detection. Additionally, it also summarizes recent advancements in various walks of fighting COVID-19, including its prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- Ryan Varghese
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
| | - Sahil Salvi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
| | - Purab Sood
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
| | - Jainam Karsiya
- River Route Creative Group LLP, Mumbai, Maharashtra 400013, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University) Erandwane, Pune - 411038, Maharashtra, India
| |
Collapse
|
93
|
Forinová M, Pilipenco A, Víšová I, Lynn NS, Dostálek J, Mašková H, Hönig V, Palus M, Selinger M, Kočová P, Dyčka F, Štěrba J, Houska M, Vrabcová M, Horák P, Anthi J, Tung CP, Yu CM, Chen CY, Huang YC, Tsai PH, Lin SY, Hsu HJ, Yang AS, Dejneka A, Vaisocherová-Lísalová H. Functionalized Terpolymer-Brush-Based Biointerface with Improved Antifouling Properties for Ultra-Sensitive Direct Detection of Virus in Crude Clinical Samples. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60612-60624. [PMID: 34902239 DOI: 10.1021/acsami.1c16930] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
New analytical techniques that overcome major drawbacks of current routinely used viral infection diagnosis methods, i.e., the long analysis time and laboriousness of real-time reverse-transcription polymerase chain reaction (qRT-PCR) and the insufficient sensitivity of "antigen tests", are urgently needed in the context of SARS-CoV-2 and other highly contagious viruses. Here, we report on an antifouling terpolymer-brush biointerface that enables the rapid and sensitive detection of SARS-CoV-2 in untreated clinical samples. The developed biointerface carries a tailored composition of zwitterionic and non-ionic moieties and allows for the significant improvement of antifouling capabilities when postmodified with biorecognition elements and exposed to complex media. When deployed on a surface of piezoelectric sensor and postmodified with human-cell-expressed antibodies specific to the nucleocapsid (N) protein of SARS-CoV-2, it made possible the quantitative analysis of untreated samples by a direct detection assay format without the need of additional amplification steps. Natively occurring N-protein-vRNA complexes, usually disrupted during the sample pre-treatment steps, were detected in the untreated clinical samples. This biosensor design improved the bioassay sensitivity to a clinically relevant limit of detection of 1.3 × 104 PFU/mL within a detection time of only 20 min. The high specificity toward N-protein-vRNA complexes was validated both by mass spectrometry and qRT-PCR. The performance characteristics were confirmed by qRT-PCR through a comparative study using a set of clinical nasopharyngeal swab samples. We further demonstrate the extraordinary fouling resistance of this biointerface through exposure to other commonly used crude biological samples (including blood plasma, oropharyngeal, stool, and nasopharyngeal swabs), measured via both the surface plasmon resonance and piezoelectric measurements, which highlights the potential to serve as a generic platform for a wide range of biosensing applications.
Collapse
Affiliation(s)
- Michala Forinová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Alina Pilipenco
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Ivana Víšová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - N Scott Lynn
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Jakub Dostálek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
- Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Hana Mašková
- Faculty of Science, University of South Bohemia, Branišovská 31a, 370 05 České Budějovice, Czech Republic
| | - Václav Hönig
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Martin Palus
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Martin Selinger
- Faculty of Science, University of South Bohemia, Branišovská 31a, 370 05 České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Pavlína Kočová
- Faculty of Science, University of South Bohemia, Branišovská 31a, 370 05 České Budějovice, Czech Republic
| | - Filip Dyčka
- Faculty of Science, University of South Bohemia, Branišovská 31a, 370 05 České Budějovice, Czech Republic
| | - Jan Štěrba
- Faculty of Science, University of South Bohemia, Branišovská 31a, 370 05 České Budějovice, Czech Republic
| | - Milan Houska
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Markéta Vrabcová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Petr Horák
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Judita Anthi
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Chao-Ping Tung
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec.2, Nankang Dist., Taipei 115, Taiwan
| | - Chung-Ming Yu
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec.2, Nankang Dist., Taipei 115, Taiwan
| | - Chi-Yung Chen
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec.2, Nankang Dist., Taipei 115, Taiwan
| | - Yu-Chuan Huang
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec.2, Nankang Dist., Taipei 115, Taiwan
| | - Pei-Hsun Tsai
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec.2, Nankang Dist., Taipei 115, Taiwan
| | - Szu-Yu Lin
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec.2, Nankang Dist., Taipei 115, Taiwan
| | - Hung-Ju Hsu
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec.2, Nankang Dist., Taipei 115, Taiwan
| | - An-Suei Yang
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec.2, Nankang Dist., Taipei 115, Taiwan
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | | |
Collapse
|
94
|
Carbon fullerene and nanotube are probable binders to multiple targets of SARS-CoV-2: Insights from computational modeling and molecular dynamic simulation studies. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 96:105155. [PMID: 34823028 PMCID: PMC8607796 DOI: 10.1016/j.meegid.2021.105155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 01/18/2023]
Abstract
The present study aimed to predict the binding potential of carbon nanotube and nano fullerene towards multiple targets of SARS-CoV-2. Based on the virulent functions, the spike glycoprotein, RNA-dependent RNA polymerase, main protease, papain-like protease, and RNA binding domain of the nucleocapsid proteins of SARS-CoV-2 were prioritized as the molecular targets and their three-dimensional (3D) structures were retrieved from the Protein Data Bank. The 3D structures of carbon nanotubes and nano-fullerene were computationally modeled, and the binding potential of these nanoparticles to the selected molecular targets was predicted by molecular docking and molecular dynamic (MD) simulations. The drug-likeness and pharmacokinetic features of the lead molecules were computationally predicted. The current study suggested that carbon fullerene and nanotube demonstrated significant binding towards the prioritized multi-targets of SARS-CoV-2. Interestingly, carbon nanotube showed better interaction with these targets when compared to carbon fullerene. MD simulation studies clearly showed that the interaction of nanoparticles and selected targets possessed stability and conformational changes. This study revealed that carbon nanotubes and fullerene are probably used as effectual binders to multiple targets of SARS-CoV-2, and the study offers insights into the experimental validation and highlights the relevance of utilizing carbon nanomaterials as a therapeutic remedy against COVID-19.
Collapse
|
95
|
Ferrier DC, Honeychurch KC. Carbon Nanotube (CNT)-Based Biosensors. BIOSENSORS 2021; 11:bios11120486. [PMID: 34940243 PMCID: PMC8699144 DOI: 10.3390/bios11120486] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 05/28/2023]
Abstract
This review focuses on recent advances in the application of carbon nanotubes (CNTs) for the development of sensors and biosensors. The paper discusses various configurations of these devices, including their integration in analytical devices. Carbon nanotube-based sensors have been developed for a broad range of applications including electrochemical sensors for food safety, optical sensors for heavy metal detection, and field-effect devices for virus detection. However, as yet there are only a few examples of carbon nanotube-based sensors that have reached the marketplace. Challenges still hamper the real-world application of carbon nanotube-based sensors, primarily, the integration of carbon nanotube sensing elements into analytical devices and fabrication on an industrial scale.
Collapse
Affiliation(s)
- David C. Ferrier
- Institute of Bio-Sensing Technology, Frenchay Campus, University of the West of England, Bristol BS16 1QY, UK;
| | - Kevin C. Honeychurch
- Institute of Bio-Sensing Technology, Frenchay Campus, University of the West of England, Bristol BS16 1QY, UK;
- Centre for Research in Biosciences, Frenchay Campus, Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| |
Collapse
|
96
|
Rosati G, Idili A, Parolo C, Fuentes-Chust C, Calucho E, Hu L, Castro e Silva CDC, Rivas L, Nguyen EP, Bergua JF, Alvárez-Diduk R, Muñoz J, Junot C, Penon O, Monferrer D, Delamarche E, Merkoçi A. Nanodiagnostics to Face SARS-CoV-2 and Future Pandemics: From an Idea to the Market and Beyond. ACS NANO 2021; 15:17137-17149. [PMID: 34705433 PMCID: PMC8565461 DOI: 10.1021/acsnano.1c06839] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/20/2021] [Indexed: 05/24/2023]
Abstract
The COVID-19 pandemic made clear how our society requires quickly available tools to address emerging healthcare issues. Diagnostic assays and devices are used every day to screen for COVID-19 positive patients, with the aim to decide the appropriate treatment and containment measures. In this context, we would have expected to see the use of the most recent diagnostic technologies worldwide, including the advanced ones such as nano-biosensors capable to provide faster, more sensitive, cheaper, and high-throughput results than the standard polymerase chain reaction and lateral flow assays. Here we discuss why that has not been the case and why all the exciting diagnostic strategies published on a daily basis in peer-reviewed journals are not yet successful in reaching the market and being implemented in the clinical practice.
Collapse
Affiliation(s)
- Giulio Rosati
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Andrea Idili
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Claudio Parolo
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Celia Fuentes-Chust
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Enric Calucho
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Liming Hu
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Cecilia de Carvalho Castro e Silva
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
- MackGraphe-Mackenzie
Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian University, Consolação street 930, 01302-907 São Paulo, Brazil
| | - Lourdes Rivas
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Emily P. Nguyen
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - José F. Bergua
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Ruslan Alvárez-Diduk
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - José Muñoz
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
- ISGlobal-Barcelona
Institute for Global Health, Carrer del Rosselló, 132, 08036 Barcelona, Spain
| | - Christophe Junot
- Université
Paris-Saclay, CEA, INRAE Departement Médicaments
et Technologies pour la Santé SPI, 91191 Gif-sur-Yvette cedex, France
| | - Oriol Penon
- Asphalion, Carrer de Tarragona 151-157, 08014 Barcelona, Spain
| | | | | | - Arben Merkoçi
- Institut
Català de Nanociència i Nanotecnologia, Edifici ICN2 Campus UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
97
|
Tripathy S, Supraja P, Mohanty S, Sai VM, Agrawal T, Chowdary CG, Taranikanti M, Bandaru R, Mudunuru AK, Tadi LJ, Suravaram S, Siddiqui IA, Maddur S, Guntuka RK, Singh R, Singh V, Singh SG. Artificial Intelligence-Based Portable Bioelectronics Platform for SARS-CoV-2 Diagnosis with Multi-nucleotide Probe Assay for Clinical Decisions. Anal Chem 2021; 93:14955-14965. [PMID: 34694783 DOI: 10.1021/acs.analchem.1c01650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the context of the recent pandemic, the necessity of inexpensive and easily accessible rapid-test kits is well understood and need not be stressed further. In light of this, we report a multi-nucleotide probe-based diagnosis of SARS-CoV-2 using a bioelectronics platform, comprising low-cost chemiresistive biochips, a portable electronic readout, and an Android application for data acquisition with machine-learning-based decision making. The platform performs the desired diagnosis from standard nasopharyngeal and/or oral swabs (both on extracted and non-extracted RNA samples) without amplifying the viral load. Being a reverse transcription polymerase chain reaction-free hybridization assay, the proposed approach offers inexpensive, fast (time-to-result: ≤ 30 min), and early diagnosis, as opposed to most of the existing SARS-CoV-2 diagnosis protocols recommended by the WHO. For the extracted RNA samples, the assay accounts for 87 and 95.2% test accuracies, using a heuristic approach and a machine-learning-based classification method, respectively. In case of the non-extracted RNA samples, 95.6% decision accuracy is achieved using the heuristic approach, with the machine-learning-based best-fit model producing 100% accuracy. Furthermore, the availability of the handheld readout and the Android application-based simple user interface facilitates easy accessibility and portable applications. Besides, by eliminating viral RNA extraction from samples as a pre-requisite for specific detection, the proposed approach presents itself as an ideal candidate for point-of-care SARS-CoV-2 diagnosis.
Collapse
Affiliation(s)
- Suryasnata Tripathy
- Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Patta Supraja
- Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Swati Mohanty
- Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Vallepu Mohan Sai
- Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Tushant Agrawal
- Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | | | - Madhuri Taranikanti
- All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana 508126, India
| | - Rajiv Bandaru
- ESIC Medical College, S R Nagar, Hyderabad, Telangana 500038, India
| | | | - Lakshmi Jyothi Tadi
- All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana 508126, India.,ESIC Medical College, S R Nagar, Hyderabad, Telangana 500038, India
| | - Swathi Suravaram
- ESIC Medical College, S R Nagar, Hyderabad, Telangana 500038, India
| | | | - Srinivas Maddur
- ESIC Medical College, S R Nagar, Hyderabad, Telangana 500038, India
| | | | - Ranjana Singh
- Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Vikrant Singh
- School of Medicine, University of California, 1 Shields Avenue, Davis, California 95616, United States
| | - Shiv Govind Singh
- Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| |
Collapse
|
98
|
Cho SY, Jin X, Gong X, Yang S, Cui J, Strano MS. Antibody-Free Rapid Detection of SARS-CoV-2 Proteins Using Corona Phase Molecular Recognition to Accelerate Development Time. Anal Chem 2021; 93:14685-14693. [PMID: 34698489 PMCID: PMC8565189 DOI: 10.1021/acs.analchem.1c02889] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
To develop better analytical approaches for future global pandemics, it is widely recognized that sensing materials are necessary that enable molecular recognition and sensor assay development on a much faster scale than currently possible. Previously developed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) point-of-care devices are based on the specific molecular recognition using subunit protein antibodies and protein receptors that selectively capture the viral proteins. However, these necessarily involve complex and lengthy development and processing times and are notoriously prone to a loss of biological activity upon sensor immobilization and device interfacing, potentially limiting their use in applications at scale. Here, we report a synthetic strategy for nanoparticle corona interfaces that enables the molecular recognition of SARS-CoV-2 proteins without any antibody and receptor design. Our nanosensor constructs consist of poly(ethylene glycol) (PEG)─phospholipid heteropolymers adsorbed onto near-infrared (nIR) fluorescent single-walled carbon nanotubes (SWCNTs) that recognize the nucleocapsid (N) and spike (S) protein of SARS-CoV-2 using unique three-dimensional (3D) nanosensor interfaces. This results in rapid and label-free nIR fluorescence detection. This antibody-free nanosensor shows up to 50% sensor responses within 5 min of viral protein injections with limit of detection (LOD) values of 48 fM and 350 pM for N and S proteins, respectively. Finally, we demonstrate instrumentation based on a fiber-optic platform that interfaces the advantages of antibody-free molecular recognition and biofluid compatibility in human saliva conditions.
Collapse
Affiliation(s)
- Soo-Yeon Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Xiaojia Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Sungyun Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Jianqiao Cui
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Michael S. Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| |
Collapse
|
99
|
Lim WY, Lan BL, Ramakrishnan N. Emerging Biosensors to Detect Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): A Review. BIOSENSORS 2021; 11:bios11110434. [PMID: 34821650 PMCID: PMC8615996 DOI: 10.3390/bios11110434] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 05/07/2023]
Abstract
Coronavirus disease (COVID-19) is a global health crisis caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) is the gold standard test for diagnosing COVID-19. Although it is highly accurate, this lab test requires highly-trained personnel and the turn-around time is long. Rapid and inexpensive immuno-diagnostic tests (antigen or antibody test) are available, but these point of care (POC) tests are not as accurate as the RT-PCR test. Biosensors are promising alternatives to these rapid POC tests. Here we review three types of recently developed biosensors for SARS-CoV-2 detection: surface plasmon resonance (SPR)-based, electrochemical and field-effect transistor (FET)-based biosensors. We explain the sensing principles and discuss the advantages and limitations of these sensors. The accuracies of these sensors need to be improved before they could be translated into POC devices for commercial use. We suggest potential biorecognition elements with highly selective target-analyte binding that could be explored to increase the true negative detection rate. To increase the true positive detection rate, we suggest two-dimensional materials and nanomaterials that could be used to modify the sensor surface to increase the sensitivity of the sensor.
Collapse
|
100
|
Zamzami MA, Rabbani G, Ahmad A, Basalah AA, Al-Sabban WH, Nate Ahn S, Choudhry H. Carbon nanotube field-effect transistor (CNT-FET)-based biosensor for rapid detection of SARS-CoV-2 (COVID-19) surface spike protein S1. Bioelectrochemistry 2021; 143:107982. [PMID: 34715586 PMCID: PMC8518145 DOI: 10.1016/j.bioelechem.2021.107982] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
The large-scale diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is important for traceability and treatment during pandemic outbreaks. We developed a fast (2–3 min), easy-to-use, low-cost, and quantitative electrochemical biosensor based on carbon nanotube field-effect transistor (CNT-FET) that allows digital detection of the SARS-CoV-2 S1 in fortifited saliva samples for quick and accurate detection of SARS-CoV-2 S1 antigens. The biosensor was developed on a Si/SiO2 surface by CNT printing with the immobilization of a anti-SARS-CoV-2 S1. SARS-CoV-2 S1 antibody was immobilized on the CNT surface between the S-D channel area using a linker 1-pyrenebutanoic acid succinimidyl ester (PBASE) through non-covalent interaction. A commercial SARS-CoV-2 S1 antigen was used to characterize the electrical output of the CNT-FET biosensor. The SARS-CoV-2 S1 antigen in the 10 mM AA buffer pH 6.0 was effectively detected by the CNT-FET biosensor at concentrations from 0.1 fg/mL to 5.0 pg/mL. The limit of detection (LOD) of the developed CNT-FET biosensor was 4.12 fg/mL. The selectivity test was performed by using target SARS-CoV-2 S1 and non-target SARS-CoV-1 S1 and MERS-CoV S1 antigens in the 10 mM AA buffer pH 6.0. The biosensor showed high selectivity (no response to SARS-CoV-1 S1 or MERS-CoV S1 antigen) with SARS-CoV-2 S1 antigen detection in the 10 mM AA buffer pH 6.0. The biosensor is highly sensitive, saves time, and could be a helpful platform for rapid detection of SARS-CoV-2 S1 antigen from the patients saliva.
Collapse
Affiliation(s)
- Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Gulam Rabbani
- Nano Diagnostics & Devices (NDD), IT Medical Fusion Center, 350-27 Gumidae-ro, Gumi-si, Gyeongbuk 39253, Republic of Korea
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmad A Basalah
- Department of Mechanical Engineering, College of Engineering & Islamic Architecture, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Wesam H Al-Sabban
- Department of Information Systems, College of Computer and Information Systems, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saeyoung Nate Ahn
- Nano Diagnostics & Devices (NDD), IT Medical Fusion Center, 350-27 Gumidae-ro, Gumi-si, Gyeongbuk 39253, Republic of Korea; Fuzbien Technology Institute, 13 Taft Court, suite 222, Rockville, MD 20850, USA.
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|