51
|
Yang Y, He T, Ravindran P, Wen F, Krishnamurthy P, Wang L, Zhang Z, Kumar PP, Chae E, Lee C. All-organic transparent plant e-skin for noninvasive phenotyping. SCIENCE ADVANCES 2024; 10:eadk7488. [PMID: 38363835 PMCID: PMC10871535 DOI: 10.1126/sciadv.adk7488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
Real-time in situ monitoring of plant physiology is essential for establishing a phenotyping platform for precision agriculture. A key enabler for this monitoring is a device that can be noninvasively attached to plants and transduce their physiological status into digital data. Here, we report an all-organic transparent plant e-skin by micropatterning poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) on polydimethylsiloxane (PDMS) substrate. This plant e-skin is optically and mechanically invisible to plants with no observable adverse effects to plant health. We demonstrate the capabilities of our plant e-skins as strain and temperature sensors, with the application to Brassica rapa leaves for collecting corresponding parameters under normal and abiotic stress conditions. Strains imposed on the leaf surface during growth as well as diurnal fluctuation of surface temperature were captured. We further present a digital-twin interface to visualize real-time plant surface environment, providing an intuitive and vivid platform for plant phenotyping.
Collapse
Affiliation(s)
- Yanqin Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Tianyiyi He
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Pratibha Ravindran
- Department of Biological Sciences and Research Center for Sustainable Urban Farming, National University of Singapore, Singapore 117558, Singapore
| | - Feng Wen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Pannaga Krishnamurthy
- Department of Biological Sciences and Research Center for Sustainable Urban Farming, National University of Singapore, Singapore 117558, Singapore
| | - Luwei Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Zixuan Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Prakash P Kumar
- Department of Biological Sciences and Research Center for Sustainable Urban Farming, National University of Singapore, Singapore 117558, Singapore
| | - Eunyoung Chae
- Department of Biological Sciences and Research Center for Sustainable Urban Farming, National University of Singapore, Singapore 117558, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
52
|
Tao X, Yang P, Liu Z, Qin S, Hu J, Huang ZX, Chen X, Qu JP. Acid-Doped Pyridine-Based Polybenzimidazole as a Positive Triboelectric Material with Superior Charge Retention Capability. ACS NANO 2024; 18:4467-4477. [PMID: 38263634 DOI: 10.1021/acsnano.3c11087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The energy conversion efficiency of a triboelectric nanogenerator (TENG) is severely limited by the charge density of triboelectric materials, while drastic and unavoidable charge decay happens during contact due to the insufficient charge retention capacity of positive triboelectric materials. Here, elaborately synthesized acid-ion-doped pyridine-based polybenzimidazole processing with strong charge retention capability is demonstrated to couple with negatively corona-polarized electrets. As illustrated by thermal stimulation and an ion mass spectrometer, the formation of acid-ion chimerism processes high activation energy for stored charges, and the selective anion migration can compensate the escape of polarized charge. Accordingly, the charge density can reach up to 596 μC m-2 and the charge retention rate reaches 49.7%, which is so far the highest intrinsic charge density obtained in the open air. Thus, the ionic chimerism strategy provides an effective way to suppress the charge escaping in the open air and gives a great expandable avenue for the material challenges of TENG's practical deployment.
Collapse
Affiliation(s)
- Xinglin Tao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Peng Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhaoqi Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Siyao Qin
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jun Hu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhao-Xia Huang
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education; Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing; Department of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Xiangyu Chen
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jin-Ping Qu
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education; Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing; Department of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
53
|
Jiang F, Zhan L, Lee JP, Lee PS. Triboelectric Nanogenerators Based on Fluid Medium: From Fundamental Mechanisms toward Multifunctional Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308197. [PMID: 37842933 DOI: 10.1002/adma.202308197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/21/2023] [Indexed: 10/17/2023]
Abstract
Fluid-based triboelectric nanogenerators (FB-TENGs) are at the forefront of promising energy technologies, demonstrating the ability to generate electricity through the dynamic interaction between two dissimilar materials, wherein at least one is a fluidic medium (such as gas or liquid). By capitalizing on the dynamic and continuous properties of fluids and their interface interactions, FB-TENGs exhibit a larger effective contact area and a longer-lasting triboelectric effect in comparison to their solid-based counterparts, thereby affording longer-term energy harvesting and higher-precision self-powered sensors in harsh conditions. In this review, various fluid-based mechanical energy harvesters, including liquid-solid, gas-solid, liquid-liquid, and gas-liquid TENGs, have been systematically summarized. Their working mechanism, optimization strategies, respective advantages and applications, theoretical and simulation analysis, as well as the existing challenges, have also been comprehensively discussed, which provide prospective directions for device design and mechanism understanding of FB-TENGs.
Collapse
Affiliation(s)
- Feng Jiang
- Institute of Flexible Electronics Technology of Tsinghua, Jiaxing, Zhejiang, 314000, China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Liuxiang Zhan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jin Pyo Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
54
|
Jiao P, Wang ZL, Alavi AH. Maximizing Triboelectric Nanogenerators by Physics-Informed AI Inverse Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308505. [PMID: 38062801 DOI: 10.1002/adma.202308505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/11/2023] [Indexed: 02/02/2024]
Abstract
Triboelectric nanogenerators offer an environmentally friendly approach to harvesting energy from mechanical excitations. This capability has made them widely sought-after as an efficient, renewable, and sustainable energy source, with the potential to decrease reliance on traditional fossil fuels. However, developing triboelectric nanogenerators with specific output remains a challenge mainly due to the uncertainties associated with their complex designs for real-life applications. Artificial intelligence-enabled inverse design is a powerful tool to realize performance-oriented triboelectric nanogenerators. This is an emerging scientific direction that can address the concerns about the design and optimization of triboelectric nanogenerators leading to a next generation nanogenerator systems. This perspective paper aims at reviewing the principal analysis of triboelectricity, summarizing the current challenges of designing and optimizing triboelectric nanogenerators, and highlighting the physics-informed inverse design strategies to develop triboelectric nanogenerators. Strategic inverse design is particularly discussed in the contexts of expanding the four-mode analytical models by physics-informed artificial intelligence, discovering new conductive and dielectric materials, and optimizing contact interfaces. Various potential development levels of artificial intelligence-enhanced triboelectric nanogenerators are delineated. Finally, the potential of physics-informed artificial intelligence inverse design to propel triboelectric nanogenerators from prototypes to multifunctional intelligent systems for real-life applications is discussed.
Collapse
Affiliation(s)
- Pengcheng Jiao
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, 316021, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Yonsei Frontier Lab, Yonsei University, Seoul, 03722, Republic of Korea
| | - Amir H Alavi
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
55
|
Zheng T, Zhang H, Chen C, Tu X, Fang L, Zhang M, He W, Wang P. Self-Powered Dual-Band Electrochromic Supercapacitor Devices for Smart Window Based on Ternary Dielectric Triboelectric Nanogenerator. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:229. [PMID: 38276747 PMCID: PMC10820962 DOI: 10.3390/nano14020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
A dual-band electrochromic supercapacitor device (DESCD) can be driven by an external power supply to modulate solar radiation, which is a promising energy-saving strategy and has broad application prospects in smart windows. However, traditional power supplies, such as batteries, supercapacitors, etc., usually face limited lifetimes and potential environmental issues. Hence, we propose a self-powered DESCD based on TiO2/WO3 dual-band electrochromic material and a ternary dielectric rotating triboelectric nanogenerator (TDR-TENG). The TDR-TENG can convert mechanical energy from the environment into electrical energy to obtain a high output of 840 V, 23.9 µA, and 327 nC. The as-prepared TDR-TENG can drive the TiO2/WO3 film to store energy with a high dual-band modulation amplitude of 41.6% in the visible (VIS) region and 84% in the near-infrared (NIR) region, decreasing the indoor-outdoor light-heat interaction and thereby reducing the building energy consumption. The self-powered DESCD demonstrated in this study has multiple functions of energy harvesting, energy storage, and energy saving, providing a promising strategy for the development of self-powered smart windows.
Collapse
Affiliation(s)
- Tianxiang Zheng
- Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, School of Materials Science and Engineering, Anhui University, Hefei 230601, China; (T.Z.); (H.Z.); (C.C.); (X.T.); (L.F.); (M.Z.)
| | - Haonan Zhang
- Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, School of Materials Science and Engineering, Anhui University, Hefei 230601, China; (T.Z.); (H.Z.); (C.C.); (X.T.); (L.F.); (M.Z.)
| | - Chen Chen
- Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, School of Materials Science and Engineering, Anhui University, Hefei 230601, China; (T.Z.); (H.Z.); (C.C.); (X.T.); (L.F.); (M.Z.)
| | - Xinbo Tu
- Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, School of Materials Science and Engineering, Anhui University, Hefei 230601, China; (T.Z.); (H.Z.); (C.C.); (X.T.); (L.F.); (M.Z.)
| | - Lin Fang
- Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, School of Materials Science and Engineering, Anhui University, Hefei 230601, China; (T.Z.); (H.Z.); (C.C.); (X.T.); (L.F.); (M.Z.)
| | - Mingjie Zhang
- Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, School of Materials Science and Engineering, Anhui University, Hefei 230601, China; (T.Z.); (H.Z.); (C.C.); (X.T.); (L.F.); (M.Z.)
| | - Wen He
- Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, School of Materials Science and Engineering, Anhui University, Hefei 230601, China; (T.Z.); (H.Z.); (C.C.); (X.T.); (L.F.); (M.Z.)
| | - Peihong Wang
- Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, School of Materials Science and Engineering, Anhui University, Hefei 230601, China; (T.Z.); (H.Z.); (C.C.); (X.T.); (L.F.); (M.Z.)
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, China
| |
Collapse
|
56
|
Li J, Che Z, Wan X, Manshaii F, Xu J, Chen J. Biomaterials and bioelectronics for self-powered neurostimulation. Biomaterials 2024; 304:122421. [PMID: 38065037 DOI: 10.1016/j.biomaterials.2023.122421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Self-powered neurostimulation via biomaterials and bioelectronics innovation has emerged as a compelling approach to explore, repair, and modulate neural systems. This review examines the application of self-powered bioelectronics for electrical stimulation of both the central and peripheral nervous systems, as well as isolated neurons. Contemporary research has adeptly harnessed biomechanical and biochemical energy from the human body, through various mechanisms such as triboelectricity, piezoelectricity, magnetoelasticity, and biofuel cells, to power these advanced bioelectronics. Notably, these self-powered bioelectronics hold substantial potential for delivering neural stimulations that are customized for the treatment of neurological diseases, facilitation of neural regeneration, and the development of neuroprosthetics. Looking ahead, we expect that the ongoing advancements in biomaterials and bioelectronics will drive the field of self-powered neurostimulation toward the realization of more advanced, closed-loop therapeutic solutions, paving the way for personalized and adaptable neurostimulators in the coming decades.
Collapse
Affiliation(s)
- Jinlong Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ziyuan Che
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiao Wan
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Farid Manshaii
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jing Xu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
57
|
Li Z, Chen L, Zhang B, Jiang X, Zhang J, Zhang S. A wave energy driven high-performance self-powered oil spill positioner. NANOTECHNOLOGY 2023; 35:105401. [PMID: 38064733 DOI: 10.1088/1361-6528/ad13bc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
The oil spill positioner is capable of real-time monitoring oil films on the sea surface. However, the lack of high-performance power supply methods greatly restricts the application of oil spill positioner. In this research, we design a high-performance self-powered oil spill positioner based on a soft-contact-triboelectric-nanogenerator (SC-TENG). This device achieves soft-contact by attaching rabbit fur to the rotor, which can effectively reduce frictional resistance, quickly transfer charge to the electrode, and improve the durability of the parts. First, we calculate the highest occupied molecular orbital and the lowest unoccupied molecular orbital of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) molecules through first-principles simulations, and compared the ease of electron excitation between the two materials. The results show that the performance of SC-TENG with PVDF as dielectric material is significantly better than that of PTFE. At the same time, this phenomenon has been confirmed by experiments. On the basis of experimental and simulate research on two types of power management circuits, a bridge rectifier circuit with the function of converting alternating current to direct current is selected to realize the self-power supply of the oil spill positioner. Additionally, by optimizing the structure of the SC-TENG and employing a bridge rectifier circuit, the SC-TENG can achieve a maximum open-circuit voltage of 1400 V and a short-circuit current of 3.49μA, which are enough to light up 200 light-emitting diodes and power the oil spill positioner. Finally, we simulate the open-circuit voltage and short-circuit current of the SC-TENG on a six-degree-of-freedom platform and test its durability under real-world ocean wave conditions, all of which show excellent performance. This work develops an efficient wave energy conversion mechanism and successfully realizes the high-performance self-powering of the oil spill positioner, making oil spill monitoring more flexible and reliable.
Collapse
Affiliation(s)
- Zhaozhao Li
- Marine Engineering College, Dalian Maritime University, Dalian 116026, Liaoning, People's Republic of China
| | - Li Chen
- Marine Engineering College, Dalian Maritime University, Dalian 116026, Liaoning, People's Republic of China
| | - Bin Zhang
- Marine Engineering College, Dalian Maritime University, Dalian 116026, Liaoning, People's Republic of China
| | - Xin Jiang
- Marine Engineering College, Dalian Maritime University, Dalian 116026, Liaoning, People's Republic of China
| | - Jinnan Zhang
- Marine Engineering College, Dalian Maritime University, Dalian 116026, Liaoning, People's Republic of China
| | - Shibo Zhang
- Marine Engineering College, Dalian Maritime University, Dalian 116026, Liaoning, People's Republic of China
| |
Collapse
|
58
|
Wang Y, Wang X, Nie S, Meng K, Lin Z. Recent Progress of Wearable Triboelectric Nanogenerator-Based Sensor for Pulse Wave Monitoring. SENSORS (BASEL, SWITZERLAND) 2023; 24:36. [PMID: 38202897 PMCID: PMC10780409 DOI: 10.3390/s24010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Today, cardiovascular diseases threaten human health worldwide. In clinical practice, it has been concluded that analyzing the pulse waveform can provide clinically valuable information for the diagnosis of cardiovascular diseases. Accordingly, continuous and accurate monitoring of the pulse wave is essential for the prevention and detection of cardiovascular diseases. Wearable triboelectric nanogenerators (TENGs) are emerging as a pulse wave monitoring biotechnology due to their compelling characteristics, including being self-powered, light-weight, and wear-resistant, as well as featuring user-friendliness and superior sensitivity. Herein, a comprehensive review is conducted on the progress of wearable TENGs for pulse wave monitoring. Firstly, the four modes of operation of TENG are briefly described. Secondly, TENGs for pulse wave monitoring are classified into two categories, namely wearable flexible film-based TENG sensors and textile-based TENG sensors. Next, the materials, fabrication methods, working mechanisms, and experimental performance of various TENG-based sensors are summarized. It concludes by comparing the characteristics of the two types of TENGs and discussing the potential development and challenges of TENG-based sensors in the diagnosis of cardiovascular diseases and personalized healthcare.
Collapse
Affiliation(s)
- Yiming Wang
- School of Electronic and Information Engineering, Southwest University, Chongqing 400715, China; (Y.W.); (X.W.); (S.N.)
| | - Xiaoke Wang
- School of Electronic and Information Engineering, Southwest University, Chongqing 400715, China; (Y.W.); (X.W.); (S.N.)
| | - Shijin Nie
- School of Electronic and Information Engineering, Southwest University, Chongqing 400715, China; (Y.W.); (X.W.); (S.N.)
| | - Keyu Meng
- School of Electronic and Information Engineering, Changchun University, Changchun 130022, China;
| | - Zhiming Lin
- School of Electronic and Information Engineering, Southwest University, Chongqing 400715, China; (Y.W.); (X.W.); (S.N.)
| |
Collapse
|
59
|
Szewczyk PK, Busolo T, Kar-Narayan S, Stachewicz U. Wear-Resistant Smart Textiles Using Nylon-11 Triboelectric Yarns. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56575-56586. [PMID: 37985370 DOI: 10.1021/acsami.3c14156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The ever-increasing demand for self-powered systems such as glucose biosensors and mixed reality devices has sparked significant interest in triboelectric generators, which hold large potential as renewable energy solutions. Our study explores new methods for integrating energy-harvesting capabilities into smart textiles by developing strong and efficient yarns that can convert mechanical energy into electrical energy through a triboelectric effect. Specifically, we focused on Nylon-11 (PA11), a material known for its crystalline structure well-suited for generating a powerful triboelectric response. To achieve this, we created triboelectric yarns by electrospinning PA11 fibers onto conductive carbon yarns, enabling energy-harvesting applications. Extensive testing demonstrated that these yarns possess exceptional durability, surpassing real-life usage requirements while experiencing minimal degradation. Additionally, we developed a prototype haptic device by interweaving tribopositive PA11 and tribonegative poly(vinylidene fluoride) (PVDF) triboelectric yarns. Our research has successfully yielded durable and efficient yarns with strong energy-harvesting capabilities, opening up possibilities for integrating smart textiles into practical scenarios. These technologies are promising steps to achieve greener and more reliable self-powered systems.
Collapse
Affiliation(s)
- Piotr K Szewczyk
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Krakow 30-059, Poland
| | - Tommaso Busolo
- Department of Materials Science & Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - Sohini Kar-Narayan
- Department of Materials Science & Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Krakow 30-059, Poland
| |
Collapse
|
60
|
Cai X, Liu Z, Dong J, Li H, Han J, Huang J, Chen H. U-Shaped Tube Based Liquid-Solid Triboelectric Nanogenerator for Harvesting Unutilized Compressed Air Energy. MICROMACHINES 2023; 14:2057. [PMID: 38004914 PMCID: PMC10673232 DOI: 10.3390/mi14112057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023]
Abstract
Due to a lack of technologies that harvest green and sustainable energy, unutilized compressed air energy during the operation of pneumatic systems is wasted. Liquid-solid triboelectric nano-generators (L-S TENGs) have been widely used as an advanced technology with broad development prospects due to their advantages of a simple structure and long service life. Among them, liquid-solid triboelectric nanogenerators with tube structures have great potential for coupling multiple physical effects and integrating them into a single device. Herein, a U-shaped tube triboelectric nanogenerator composed of fluorinated ethylene propylene (FEP) and copper foil (UFC-TENG) is proposed to directly harvest unutilized compressed air energy. The UFC-TENG can collect unutilized compressed air energy with a stable peak voltage and current of approximately 33 V and 0.25 μA, respectively. When the alternating frequency of the liquid is 0.9 Hz, the unutilized compressed air can drive the UFC-TENG unit with an inner diameter of 12 mm, achieving a maximum output power of 3.93 μW at an external load resistance of 90 MΩ. The UFC-TENG is a novel driving method for L-S TENGs and demonstrates the promising potential of TENGs in the harvesting of unutilized compressed air energy in pneumatic systems.
Collapse
Affiliation(s)
| | - Zhijian Liu
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China; (X.C.); (H.L.); (J.H.); (J.H.); (H.C.)
| | - Jingming Dong
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China; (X.C.); (H.L.); (J.H.); (J.H.); (H.C.)
| | | | | | | | | |
Collapse
|
61
|
Kim H, Nguyen DC, Luu TT, Ding Z, Lin ZH, Choi D. Recent Advances in Functional Fiber-Based Wearable Triboelectric Nanogenerators. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2718. [PMID: 37836359 PMCID: PMC10574623 DOI: 10.3390/nano13192718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
The quality of human life has improved thanks to the rapid development of wearable electronics. Previously, bulk structures were usually selected for the fabrication of high performance electronics, but these are not suitable for wearable electronics due to mobility limitations and comfortability. Fibrous material-based triboelectric nanogenerators (TENGs) can provide power to wearable electronics due to their advantages such as light weight, flexibility, stretchability, wearability, etc. In this work, various fiber materials, multiple fabrication methods, and fundamentals of TENGs are described. Moreover, recent advances in functional fiber-based wearable TENGs are introduced. Furthermore, the challenges to functional fiber-based TENGs are discussed, and possible solutions are suggested. Finally, the use of TENGs in hybrid devices is introduced for a broader introduction of fiber-based energy harvesting technologies.
Collapse
Affiliation(s)
- Hakjeong Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dinh Cong Nguyen
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Thien Trung Luu
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Zhengbing Ding
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Zong-Hong Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei 10167, Taiwan
| | - Dukhyun Choi
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Future Energy Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Institute of Energy Science & Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
62
|
Chen J, Zhao Y, Wang R, Wang P. Super-Low Friction Electrification Achieved on Polytetrafluoroethylene Films-Based Triboelectric Nanogenerators Lubricated by Graphene-Doped Silicone Oil. MICROMACHINES 2023; 14:1776. [PMID: 37763939 PMCID: PMC10536030 DOI: 10.3390/mi14091776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
The novel proposal of Wang's triboelectric nanogenerator (TENG) has inspired extensive efforts to explore energy harvesting devices from the living environment for the upcoming low-carbon society. The inevitable friction and wear problems of the tribolayer materials become one of the biggest obstacles for attaining high-performance TENGs. To achieve super-low friction electrification of the TENGs, the tribological and electrical behaviors of the sliding-mode TENGs based on polytetrafluoroethylene (PTFE) films and metallic balls under both dry friction and liquid lubrication conditions were investigated by using a customized testing platform with a ball-on-flat configuration. Most interestingly, a super-low friction coefficient of 0.008 was achieved under graphene-doped silicone oil lubrication. The corresponding wear rate of the PTFE film was drastically decreased to 8.19 × 10-5 mm3/Nm. Simultaneously, the output short-circuit current and open-circuit voltage were enhanced by 6.8 times and 3.0 times, respectively, compared to the dry friction condition. The outstanding triboelectrical performances of the PTFE film when sliding against a steel ball are attributed to the synergistic lubricating effects of the silicone oil and the graphene nanosheets. The current research provides valuable insights into achieving the macro-scale superlubricity of the TENGs in practical industrial applications.
Collapse
Affiliation(s)
| | | | | | - Pengfei Wang
- Institute of Nanosurface Science and Engineering (INSE), State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China; (J.C.); (Y.Z.); (R.W.)
| |
Collapse
|
63
|
Kim MP. Multilayered Functional Triboelectric Polymers for Self-Powered Wearable Applications: A Review. MICROMACHINES 2023; 14:1640. [PMID: 37630176 PMCID: PMC10456717 DOI: 10.3390/mi14081640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Multifunctional wearable devices detect electric signals responsive to various biological stimuli and monitor present body motions or conditions, necessitating flexible materials with high sensitivity and sustainable operation. Although various dielectric polymers have been utilized in self-powered wearable applications in response to multiple external stimuli, their intrinsic limitations hinder further device performance enhancement. Because triboelectric devices comprising dielectric polymers are based on triboelectrification and electrostatic induction, multilayer-stacking structures of dielectric polymers enable significant improvements in device performance owing to enhanced interfacial polarization through dissimilar permittivity and conductivity between each layer, resulting in self-powered high-performance wearable devices. Moreover, novel triboelectric polymers with unique chemical structures or nano-additives can control interfacial polarization, allowing wearable devices to respond to multiple external stimuli. This review summarizes the recent insights into multilayered functional triboelectric polymers, including their fundamental dielectric principles and diverse applications.
Collapse
Affiliation(s)
- Minsoo P Kim
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|