51
|
Zhao S, Xu Y, Xu W, Weng Z, Cao F, Wan X, Cui T, Yu Y, Liao L, Wang X. Tremella-Like ZnO@Col-I-Decorated Titanium Surfaces with Dual-Light-Defined Broad-Spectrum Antibacterial and Triple Osteogenic Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30044-30051. [PMID: 32589010 DOI: 10.1021/acsami.0c05413] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The growing population of peri-implant diseases (PIDs) has become a public obsession, mainly due to the lack of antibacterial ability and osteogenic promotion of titanium (Ti) implants. Herein, inspired by tremella, we reported zinc oxide (ZnO)@collagen type I (Col-I)-decorated Ti for PIDs treatments. Compared with pure Ti implants, ZnO@Col-I-decorated Ti could be activated by a safe visible yellow light and showed excellent broad-spectrum antibacterial properties. The proliferation and osteogenic gene expression of bone marrow mesenchymal stem cells (BMSCs) indicated that the triple osseointegration of implants was realized through (I) the remarkedly improved surface hydrophilicity of ZnO@Col-I-decorated Ti, (II) the function of Col-I, and (III) the excellent near-infrared (NIR)-induced photothermal performance of ZnO. Collectively, the proposed dual-light-defined ZnO@Col-I coating was a promising implant surface modification system to provide customized treatments for each PID patient.
Collapse
Affiliation(s)
- Siyu Zhao
- Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China
- Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang 330006, China
| | - Yingying Xu
- Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, China
- Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang 330006, China
| | - Wenying Xu
- Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan 430022, China
| | - Zhenzhen Weng
- College of Chemistry, Nanchang University, Nanchang 330088, China
| | - Fei Cao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China
| | - Xinyi Wan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China
| | - Tongcan Cui
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China
| | - Yajun Yu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China
| | - Lan Liao
- Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, China
- Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang 330006, China
| | - Xiaolei Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China
- College of Chemistry, Nanchang University, Nanchang 330088, China
| |
Collapse
|
52
|
Deng Y, Shi X, Chen Y, Yang W, Ma Y, Shi XL, Song P, Dargusch MS, Chen ZG. Bacteria-Triggered pH-Responsive Osteopotentiating Coating on 3D-Printed Polyetheretherketone Scaffolds for Infective Bone Defect Repair. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02107] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yi Deng
- College of Materials Science and Engineering, School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Xiuyuan Shi
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U. K
| | - Yong Chen
- College of Materials Science and Engineering, School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Weizhong Yang
- College of Materials Science and Engineering, School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yuan Ma
- Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Xiao-Lei Shi
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
- Centre for Materials Processing and Manufacturing, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| | - Matthew S. Dargusch
- Centre for Materials Processing and Manufacturing, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhi-Gang Chen
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| |
Collapse
|
53
|
Xu D, Wan Y, Li Z, Wang C, Zou Q, Du C, Wang Y. Tailorable hierarchical structures of biomimetic hydroxyapatite micro/nano particles promoting endocytosis and osteogenic differentiation of stem cells. Biomater Sci 2020; 8:3286-3300. [PMID: 32490486 DOI: 10.1039/d0bm00443j] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyapatite (HA) micro/nano particles show great promise as artificial bone and dental substitutes, or drug carrier systems. However, the precise regulation of hydroxyapatite micro/nano particles with controllable physicochemical properties (such as hierarchical structure, particle size, potential and crystallinity) is still a challenge. Furthermore, the effects of different hierarchical structures on biological responses have been rarely reported. Herein, the HA particles with a precisely tailored micro/nano hierarchical structure have been developed using an elaborate biomimetic synthesis technology. Three representative particles, namely, micro/nano needle-like HA particles, micro/nano rod-like HA particles, and micro/nano flake-like HA particles, were featured to evaluate their biological responses to stem cells. The pore structure facilitated the adsorption of serum adhesive proteins, which together with the unique hierarchical architecture of micro/nano flake-like HA particles remarkably promoted the endocytosis efficiency in a concentration-dependent manner. The qRT-PCR together with RNA-seq and western blot analyses showed that micro/nano flake-like HA particles more significantly up-regulated the expression of genes and production of proteins related to osteogenic differentiation among the three particles through the activated ERK/MAPK signalling pathway. RNA-seq further revealed a complex mechanism of cell interface events, suggesting that the hierarchical architecture of HA particles is of crucial importance for the regulation of actin cytoskeleton involved in the modulation of cell adhesion which positively stimulated osteogenic differentiation of stem cells. Moreover, the endocytosis of particles into lysosomes resulted in an increase in the intracellular Ca2+ levels, which activated possible intracellular Ca2+-mediated signaling cascades (Ras/cAMP/Rap1/MAPK signaling pathways) related to osteogenic differentiation of stem cells. Our findings shed light on the effects of different hierarchical structures of HA particles on stem cell differentiation and contribute to the optimal design of implant materials.
Collapse
Affiliation(s)
- Dong Xu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China.
| | | | | | | | | | | | | |
Collapse
|
54
|
Gao Q, Feng T, Huang D, Liu P, Lin P, Wu Y, Ye Z, Ji J, Li P, Huang W. Antibacterial and hydroxyapatite-forming coating for biomedical implants based on polypeptide-functionalized titania nanospikes. Biomater Sci 2020; 8:278-289. [PMID: 31691698 DOI: 10.1039/c9bm01396b] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Titanium (Ti)-based implants often suffer from detrimental bacterial adhesion and inefficient healing, so it is crucial to design a dual-functional coating that prevents bacterial infection and enhances bioactivity for a successful implant. Herein, we successfully devised a cationic polypeptide (Pep)-functionalized biomimetic nanostructure coating with superior activity, which could not only kill pathogenic bacteria rapidly and inhibit biofilm formation for up to two weeks, but also promote in situ hydroxyapatite (HAp) formation. Specifically, a titania (TiO2) nanospike coating (TNC) was fabricated by alkaline hydrothermal treatment firstly, followed by immobilization of rationally synthesized Pep via robust coordinative interactions, named TNPC. This coating was able to effectively kill (>99.9%) both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria, while being non-toxic to murine MC3T3-E1 osteoblastic cells. Furthermore, the in vivo infection studies denoted that the adherent bacteria numbers on the TNPC implants were significantly reduced by 6 orders of magnitude than those on the pure Ti implants (p < 0.001). Importantly, in the presence of cationic amino groups and residual Ti-OH groups, substantial HAp deposition on the TNPC surface in Kokubo's simulated body fluid (SBF) occurred after 14 days. Altogether, our results support the clinical potential of this biomimetic dual-functional coating as a new approach with desirable antibacterial properties and HAp-forming ability in orthopedic and dental applications.
Collapse
Affiliation(s)
- Qiang Gao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
With the rapidly development of clinical treatments, precision medicine has come to people eyes with the requirement according to different people and different disease situation. So precision medicine is called personalized medicine which is a new frontier of healthcare. Bone tissue engineering developed from traditional bone graft to precise medicine era. So scientists seek approaches to harness stem cells, scaffolds, growth factors, and extracellular matrix to promise enhanced and more reliable bone formation. This review provides an overview of novel developments on precision medicine in tissue engineering of bone hoping it can open new perspectives of strategies on bone treatment.
Collapse
Affiliation(s)
| | | | - Rong Zhou
- Department of Stomatology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haixia Liu
- Department of Stomatology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengcai Qi
- Department of Stomatology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Raorao Wang
- Department of Stomatology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
56
|
Fu J, Liu X, Tan L, Cui Z, Liang Y, Li Z, Zhu S, Zheng Y, Kwok Yeung KW, Chu PK, Wu S. Modulation of the mechanosensing of mesenchymal stem cells by laser-induced patterning for the acceleration of tissue reconstruction through the Wnt/β-catenin signaling pathway activation. Acta Biomater 2020; 101:152-167. [PMID: 31678738 DOI: 10.1016/j.actbio.2019.10.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 11/29/2022]
Abstract
Growing evidence suggests that the physical microenvironment can guide cell fate. However, cells sense cues from the adjacent physical microenvironment over a limited distance. In the present study, murine mesenchymal stem cells (MSCs) and murine preosteoblastic cells (MC3T3-E1) behaviors are regulated by the cell-material interface using ordered-micro and disordered-nano patterned structures on Ti implants. The optimal bone formation structure is a stable wave (horizontal direction: ridge, 2.7 µm; grooves, 5.3 µm; and vertical direction: distance, 700 µm) with the appropriate density of nano-branches (6.0 per µm2). The repeated waves provide cells with directional guidance, and the disordered branches influence cell geometry by providing different spacing and density nanostructure. And micro-nano patterned structure can provide biophysical cues to direct cell phenotype development, including cell size, shape, and orientation, to influence cellular processes including survival, growth, and differentiation. Thus, the overlaid isotropic and anisotropic cues, ordered-micro and disordered-nano patterned structures, could transfer further and alter cell shape and induce nuclear orientation by activating Wnt/β-catenin signaling to promote integrin α5, integrin β1, cadherin 2, Runx2, Opn, and Ocn. That canonical Wnt signaling inhibitor dickkopf1 further demonstrates osteogenic differentiation induced by ordered-micro and disordered-nano patterned structures, which is related to Wnt/β-catenin signaling. Our findings show the role of ordered microstructures and disordered nanostructures in modulating stem cell differentiation with potential medical applications. STATEMENT OF SIGNIFICANCE: It remains a challenge to modify poor osteogenic and osteoconductive properties of titanium alloy bases on the inherent poverty of titanium. We demonstrate that ordered microtopography and disordered nano topography pattern structure could lead to osteogenic differentiation in vitro and bone regeneration in vivo. Furthermore, the pattern structure is created through selective laser melting and alkali heat. And the structure only takes advantage of titanium itself and does not bring in active film, such as hydroxyapatite. On the other hand, we find that cell shape and orientation show angle-orientation tendency due to the polarity, which involves with mechanical signal created via patterned structure. Meanwhile, the Wnt/Ca2+ signaling pathway is activated.
Collapse
Affiliation(s)
- Jieni Fu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Xiangmei Liu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.
| | - Lei Tan
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Yanqin Liang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics & Traumatology, Li KaShing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Paul K Chu
- Department of Physics and Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Shuilin Wu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China; School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
57
|
Zhou W, Wang T, Gan Y, Yang J, Zhu H, Wang A, Wang Y, Xi W. Effect of micropore/microsphere topography and a silicon-incorporating modified titanium plate surface on the adhesion and osteogenic differentiation of BMSCs. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 48:230-241. [PMID: 31851839 DOI: 10.1080/21691401.2019.1699829] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Wuchao Zhou
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine of Jiangxi Province, Medical College of Nanchang University, Nanchang, China
| | - Tiesheng Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine of Jiangxi Province, Medical College of Nanchang University, Nanchang, China
- Department of Oral and Maxillofacial Surgery, Pingxiang People's Hospital, Pingxiang, China
| | - Yanzi Gan
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine of Jiangxi Province, Medical College of Nanchang University, Nanchang, China
| | - Jian Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine of Jiangxi Province, Medical College of Nanchang University, Nanchang, China
| | - Hongshui Zhu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine of Jiangxi Province, Medical College of Nanchang University, Nanchang, China
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yujiang Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine of Jiangxi Province, Medical College of Nanchang University, Nanchang, China
| | - Weihong Xi
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine of Jiangxi Province, Medical College of Nanchang University, Nanchang, China
| |
Collapse
|
58
|
Cai B, Jiang N, Tan P, Hou Y, Li Y, Zhang L, Zhu S. The custom making of hierarchical micro/nanoscaled titanium phosphate coatings and their formation mechanism analysis. RSC Adv 2019; 9:41311-41318. [PMID: 35540057 PMCID: PMC9076429 DOI: 10.1039/c9ra08168b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/28/2019] [Indexed: 02/05/2023] Open
Abstract
In this study, a series of hierarchical micro/nanoscaled titanium phosphate (TiP) coatings possessing various surface morphologies were successfully fabricated on titanium (Ti) discs. The hydrothermal reactions of Ti discs in hydrogen peroxide (H2O2) and phosphoric acid (H3PO4) mixed solution yield diverse topographies such as hemispheric clump, cylindrical rod, spherical walnut, micro/nano grass, micro/nano sheet, and fibrous network. And their crystal structures were mainly composed of Ti(HPO4)2·0.5H2O, (TiO)2P2O7, H2TiP2O8, Ti(HPO4)2 and TiO2. The morphology and crystal shape of the TiP coatings depend strongly on the mass ratio of H2O2/H3PO4, reaction temperature and water content. Besides, the formation mechanism of TiP coatings with diverse morphologies was explored from the perspective of energetics and crystallography. The mechanism exploration paved the way for custom-making TiP coatings with desirable micro/nanoscaled morphologies to meet specific application purposes. The in vitro cytological performances of TiP coatings were also evaluated by co-culturing with rat bone marrow stromal cells (BMSCs), demonstrating a positive prospect for their use in bone tissue engineering.
Collapse
Affiliation(s)
- Bianyun Cai
- Analytical & Testing Center, Sichuan University Chengdu 610065 China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University Chengdu 610065 China
| | - Peijie Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University Chengdu 610065 China
| | - Yi Hou
- Analytical & Testing Center, Sichuan University Chengdu 610065 China
| | - Yubao Li
- Analytical & Testing Center, Sichuan University Chengdu 610065 China
| | - Li Zhang
- Analytical & Testing Center, Sichuan University Chengdu 610065 China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University Chengdu 610065 China
| |
Collapse
|
59
|
Li L, Shi J, Zhang K, Yang L, Yu F, Zhu L, Liang H, Wang X, Jiang Q. Early osteointegration evaluation of porous Ti6Al4V scaffolds designed based on triply periodic minimal surface models. J Orthop Translat 2019; 19:94-105. [PMID: 31844617 PMCID: PMC6896722 DOI: 10.1016/j.jot.2019.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/12/2019] [Accepted: 03/08/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The graded porous structures were designed using triply periodic minimal surfaces models to mimic the biomechanical properties of bone. The mechanical properties and bone formation ability were evaluated to explore the feasibility of the design method in bone tissue engineering. METHODS The scaffolds were designed using a P-surface with different pore sizes. All materials were fabricated using 3D printing technology and the mechanical properties were tested by an electronic universal testing device. The biomechanical properties were then analyzed by finite element method, while the ontogenesis of the material in vivo was examined by implanting the scaffolds for five weeks in pigs. RESULTS According to the obtained results, the pore size ranged between 100 μm to about 700 μm and porosity were around 49.54%. The graded porous architectures can decrease the stiffness of implants and reduce the stress shielding effect. In addition, these porous structures can stimulate bone ingrowth and achieve a stable interface between implants and surrounding bone tissues after 5 weeks' implantation. The micro-CT results also demonstrated the obviously bone formation around all the porous structures. CONCLUSION To sum up, the triply periodic minimal surfaces based graded porous structure is effective in decreasing the stress shielding effect, promoting early osteogenesis and osteointegration. This is the first research to explore the effect of this kind of porous structures on bone formation in vivo where the obtained results supported the previous theoretical research on the application potential in bone tissue engineering. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Porous architecture designed using triply periodic minimal surface models can achieve gradually changed pore size and appropriate porosity for bone regeneration. This kind of structure can mimic the Young's modulus of natural bone tissue, improve the stress transmission capability and dismiss the stress shielding effect. It also can stimulate the early bone integration in vivo and enhance the binding force between bone and implants, which may bring a new design method for orthopaedic implants and their surface structure.
Collapse
Affiliation(s)
- Lan Li
- School of Mechanical Engineering, Southeast University, Jiangsu, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital affiliated to Medical School of Nanjing University, Jiangsu, China
| | - Jianping Shi
- School of Electrical and Automation Engineering, Nanjing Normal University, Jiangsu, China
| | - Kaijia Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital affiliated to Medical School of Nanjing University, Jiangsu, China
| | - Longfei Yang
- School of Mechanical Engineering, Southeast University, Jiangsu, China
| | - Fei Yu
- Drum Tower of Clinical Medicine, Nanjing Medical University, Jiangsu, China
| | - Liya Zhu
- School of Electrical and Automation Engineering, Nanjing Normal University, Jiangsu, China
| | - Huixin Liang
- School of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Jiangsu, China
| | - Xingsong Wang
- School of Mechanical Engineering, Southeast University, Jiangsu, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital affiliated to Medical School of Nanjing University, Jiangsu, China
| |
Collapse
|
60
|
Jiang N, Guo Z, Sun D, Ay B, Li Y, Yang Y, Tan P, Zhang L, Zhu S. Exploring the mechanism behind improved osteointegration of phosphorylated titanium implants with hierarchically structured topography. Colloids Surf B Biointerfaces 2019; 184:110520. [PMID: 31590052 DOI: 10.1016/j.colsurfb.2019.110520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/09/2019] [Accepted: 09/21/2019] [Indexed: 02/05/2023]
Abstract
Titanium (Ti) and its alloys have been frequently used in dental and orthopedic implants, but the undesired oxide layer easily formed on the surface tends to be the cause of implant failure for Ti-based implants. To address this problem, we herein prepared a phosphorylated Ti coating (TiP-Ti) with a micro/nano hierarchically structured topography on commercially pure Ti implants by a hydrothermal method to improve its osteointegration capacity. The surface morphology, chemical composition, and biological activity were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), contact-angle measurement, and protein adsorption assay. Osteointegration of TiP-Ti implants in rat tibia was investigated by biomechanical testing, micro-CT and histological analyses. We further explored the proposed mechanism which improves osteointegration of TiP-Ti implants by proliferation, adhesion, and differentiation assays of rat bone marrow mesenchymal stem cells (BMSCs). Our results demonstrated that the improved osteointegration mainly benefited from the better spread and adhesion of BMSCs on the micro/nano hierarchically structured TiP-Ti surfaces compared to hydroxyapatite coated Ti (HA-Ti), the positive control, and untreated Ti (untreated-Ti), the negative control. In conclusion, TiP-Ti surface is a promising candidate implant surface design to accelerate the osteointegration of Ti-based implants in biomedical applications.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Zhijun Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Dan Sun
- School of Mechanical and Aerospace Engineering, Queens University Belfast, Belfast BT7 1NN, UK
| | - Birol Ay
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3E3, Canada
| | - Yubao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Yutao Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Peijie Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China
| | - Li Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China.
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Analytical and Testing Center, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
61
|
Ghorai SK, Maji S, Subramanian B, Maiti TK, Chattopadhyay S. Promoted Osteoconduction of Polyurethane-Urea Based 3D Nanohybrid Scaffold through Nanohydroxyapatite Adorned Hierarchical Titanium Phosphate. ACS APPLIED BIO MATERIALS 2019; 2:3907-3925. [PMID: 35021325 DOI: 10.1021/acsabm.9b00487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The lack of optimal physiological properties, bacterial colonization, and auto-osteoinduction, are the foremost issues of orthopedic implantations. In terms of bone healing, many researchers have reported the release of additional growth factors of the implanted biomaterials to accelerate the bone regeneration process. However, the additional growth factor may cause side effects such as contagion, nerve pain, and the formation of ectopic bone. Thus, the design of an osteoconductive scaffold having excellent biocompatibility, appropriate physicomechanical properties, and promoted auto osteoinductivity with antibacterial activity is greatly desired. In this study, 2D rodlike nanohydroxyapatite (nHA) adorned titanium phosphate (TP) with a flowerlike morphology was synthesized by a hydrothermal precipitation reaction. The nanohybrid material (nHA-TP) was incorporated into the synthesized polycaprolactone diol and spermine based thermoplastic polyurethane-urea (PUU) via in situ technique followed by salt leaching to fabricate the macroporous 3D polymer nanohybrid scaffold (PUU/nHA-TP). Structure explication of PUU was performed by NMR spectroscopy. The synthesized nanohybrid scaffold with 1% nHA-TP showed 67% increase of tensile strength and 18% improved modulus compared to the pristine PUU via formation of H-bonding or dative bonds between the metal and the amide linkage of the polyurethane or polyurea. In vitro study showing improved cell viability and proliferation of the seeded cell revealed the superior osteoconductivity of the nanohybrid scaffold. Most importantly, the in vivo experiments revealed a significant amount of bone regeneration in the nanohybrid scaffold implanted tibial site compared to the pristine scaffold without any toxic effect. Introduction of the minute amount of titanium phosphate within the adorned nHA promotes the osteoconductivity significantly by the capability of forming coordinate bonds of the titanium ion. Depending on the mechanical, physicochemical, in vitro characteristics, and in vivo osteoconductivity, the PUU/nHA-TP nanohybrid scaffold has great potential as an alternative biomaterial in bone tissue regeneration application.
Collapse
Affiliation(s)
- Sanjoy Kumar Ghorai
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur-721302, India
| | - Somnath Maji
- Department of Biotechnology, Indian Institute of Technology, Kharagpur-721302, India
| | | | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur-721302, India
| | | |
Collapse
|
62
|
Guo Z, Jiang N, Moore J, McCoy CP, Ziminska M, Rafferty C, Sarri G, Hamilton AR, Li Y, Zhang L, Zhu S, Sun D. Nanoscale Hybrid Coating Enables Multifunctional Tissue Scaffold for Potential Multimodal Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27269-27278. [PMID: 31260238 DOI: 10.1021/acsami.9b04278] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zhijun Guo
- School of Mechanical & Aerospace Engineering, Queens University Belfast, Belfast BT9 5AH, U.K
- Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jessica Moore
- School of Pharmacy, Queens University Belfast, Belfast BT9 7BL, U.K
| | - Colin P. McCoy
- School of Pharmacy, Queens University Belfast, Belfast BT9 7BL, U.K
| | - Monika Ziminska
- School of Pharmacy, Queens University Belfast, Belfast BT9 7BL, U.K
| | - Cormac Rafferty
- School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, U.K
| | - Gianluca Sarri
- School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, U.K
| | - Andrew R. Hamilton
- Faculty Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, U.K
| | - Yubao Li
- Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Li Zhang
- Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dan Sun
- School of Mechanical & Aerospace Engineering, Queens University Belfast, Belfast BT9 5AH, U.K
| |
Collapse
|
63
|
Li X, Zou Q, Man Y, Li W. Synergistic Effects of Novel Superparamagnetic/Upconversion HA Material and Ti/Magnet Implant on Biological Performance and Long-Term In Vivo Tracking. SMALL 2019; 15:e1901617. [PMID: 31187930 DOI: 10.1002/smll.201901617] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/10/2019] [Indexed: 02/05/2023]
Abstract
To solve the clinical challenges presented by the long-term tracking of implanted hydroxyapatite (HA) bone repair material and to investigate the synergistic effects of superparamagnetic HA and a static magnetic field (SMF) on the promotion of osteogenesis, herein a new type of superparamagnetic/upconversion-generating HA material (HYH-Fe) is developed via a two-step doping method, as well as a specially-designed titanium implant with a built-in magnet to provide a local static magnetic field in vivo. The results show that the prepared HYH-Fe material maintains the crystal structure of HA and exhibits good cytocompatibility. The combined use of the superparamagnetic HYH-Fe material and SMF can effectively and synergistically promote osteogenesis/osteointegration surrounding the Ti implants. In addition, the HYH-Fe material exhibits distinct advantages in terms of both long-term fluorescence tracking and microcomputed tomography (micro-CT) tracking. The new material and tracking strategy in this study provide scientific feasibility and will have important clinical value for long-term tracking and evaluation of implanted materials and the bone repair effect.
Collapse
Affiliation(s)
- Xiyu Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qin Zou
- Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Yi Man
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wei Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
64
|
Cheng FF, Sun P, Xiong WW, Zhang Y, Zhang Q, Yao W, Cao Y, Zhang L. Multifunctional titanium phosphate nanoparticles for site-specific drug delivery and real-time therapeutic efficacy evaluation. Analyst 2019; 144:3103-3110. [PMID: 30920573 DOI: 10.1039/c8an02450b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Receptor-targeted delivery systems have been proposed as means of concentrating therapeutic agents to improve therapeutic effects on disease sites and reduce side effects on normal issues. Herein, we synthesized biocompatible folic acid (FA)-functionalized DHE-modified TiP (TiP-PAH-DHE-FA) nanoparticles as a drug delivery system that possessed high drug loading capability and enhanced folate-receptor-mediated cellular uptake. Moreover, it also allowed drug effect evaluation based on the real-time monitoring of the fluorescence intensity of HE molecules that are triggered by intercellular ROS. This acquired drug delivery system provided a novel platform to integrate efficient cell-specific drug delivery with real-time monitoring of therapeutic efficacy.
Collapse
Affiliation(s)
- Fang-Fang Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Panpan Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Wei-Wei Xiong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Yi Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Qiao Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Weifeng Yao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Yudan Cao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Li Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou 225300, PR China
| |
Collapse
|
65
|
Li Y, Zhang Q, Xie X, Xiao D, Lin Y. Review of craniofacial regeneration in China. J Oral Rehabil 2019; 47 Suppl 1:107-117. [PMID: 30868603 DOI: 10.1111/joor.12793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/28/2019] [Accepted: 03/09/2019] [Indexed: 02/05/2023]
Abstract
AIM Tissue engineering has been recognised as one of the most effective means to form a new viable tissue for medical purpose. Tissue engineering involves a combination of scaffolds, cells, suitable biochemical and physicochemical factors, and engineering and materials methods. This review covered some biomedicine, such as biomaterials, bioactive factors, and stem cells, and manufacturing technologies used in tissue engineering in the oral maxillofacial region, especially in China. MATERIALS AND METHODS Data for this review were identified by searches of Web of Science and PubMed, and references from relevant articles using the search terms "biomaterials", "oral tissue regeneration", "bioactive factors" and "stem cells". Only articles published in English between 2013 and 2018 were included. CONCLUSION The combination of stem cells, bioactive factors and 3D scaffolds could be of far-reaching significance for the future therapies in tissue repair or tissue regeneration. Furthermore, the review also mentions issues that need to be solved in the application of these biomedicines.
Collapse
Affiliation(s)
- Yanjing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xueping Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
66
|
Huang J, Chen Y, Tang C, Fei Y, Wu H, Ruan D, Paul ME, Chen X, Yin Z, Heng BC, Chen W, Shen W. The relationship between substrate topography and stem cell differentiation in the musculoskeletal system. Cell Mol Life Sci 2019; 76:505-521. [PMID: 30390116 PMCID: PMC11105278 DOI: 10.1007/s00018-018-2945-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/15/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022]
Abstract
It is well known that biomaterial topography can exert a profound influence on various cellular functions such as migration, polarization, and adhesion. With the development and refinement of manufacturing technology, much research has recently been focused on substrate topography-induced cell differentiation, particularly in the field of tissue engineering. Even without biological and chemical stimuli, the differentiation of stem cells can also be initiated by various biomaterials with different topographic features. However, the underlying mechanisms of this biological phenomenon remain elusive. During the past few decades, many researchers have demonstrated that cells can sense the topography of materials through the assembly and polymerization of membrane proteins. Following the activation of RHO, TGF-b or FAK signaling pathways, cells can be induced into various differentiation states. But these signaling pathways often coincide with canonical mechanical transduction pathways, and no firm conclusion has been reached among researchers in this field on topography-specific signaling pathways. On the other hand, some substrate topographies are reported to have the ability to inhibit differentiation and maintain the 'stemness' of stem cells. In this review, we will summarize the role of topography in musculoskeletal system regeneration and explore possible topography-related signaling pathways involved in cell differentiation.
Collapse
Affiliation(s)
- Jiayun Huang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Yangwu Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Yang Fei
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Haoyu Wu
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Maswikiti Ewetse Paul
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
| | - Xiao Chen
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Zi Yin
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
| | - Boon Chin Heng
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Weishan Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China.
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China.
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China.
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China.
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China.
| |
Collapse
|
67
|
Li YM, Wu JY, Jiang J, Dong SK, Chen YS, He HY, Liu CS, Zhao JZ. Chondroitin sulfate-polydopamine modified polyethylene terephthalate with extracellular matrix-mimetic immunoregulatory functions for osseointegration. J Mater Chem B 2019; 7:7756-7770. [DOI: 10.1039/c9tb01984g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Optimal integration between the polyethylene terephthalate (PET) graft and host bone is a prerequisite to obtain a satisfactory outcome after graft implantation for ligament reconstruction.
Collapse
Affiliation(s)
- Ya-Min Li
- Department of Sports Medicine
- Shanghai Jiaotong University Affiliated Sixth People's Hospital
- Shanghai 200233
- China
| | - Jing-Yao Wu
- Engineering Research Center for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai
- China
| | - Jia Jiang
- Department of Sports Medicine
- Shanghai Jiaotong University Affiliated Sixth People's Hospital
- Shanghai 200233
- China
| | - Shi-Kui Dong
- Department of Sports Medicine
- Shanghai Jiaotong University Affiliated Sixth People's Hospital
- Shanghai 200233
- China
| | - Yun-Su Chen
- Department of Joint Surgery
- Shanghai Jiaotong University Affiliated Sixth People's Hospital
- Shanghai 200233
- China
| | - Hong-Yan He
- Engineering Research Center for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai
- China
| | - Chang-Sheng Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai
- China
| | - Jin-Zhong Zhao
- Department of Sports Medicine
- Shanghai Jiaotong University Affiliated Sixth People's Hospital
- Shanghai 200233
- China
| |
Collapse
|