51
|
Zych D, Kubis M. Bromopyrene Symphony: Synthesis and Characterisation of Isomeric Derivatives at Non-K Region and Nodal Positions for Diverse Functionalisation Strategies. Molecules 2024; 29:1131. [PMID: 38474643 DOI: 10.3390/molecules29051131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Pyrene, a renowned aromatic hydrocarbon, continues to captivate researchers due to its versatile properties and potential applications across various scientific domains. Among its derivatives, bromopyrenes stand out for their significance in synthetic chemistry, materials science, and environmental studies. The strategic functionalisation of pyrene at non-K region and nodal positions is crucial for expanding its utility, allowing for diverse functionalisation strategies. Bromo-substituted precursors serve as vital intermediates in synthetic routes; however, the substitution pattern of bromoderivatives significantly impacts their subsequent functionalisation and properties, posing challenges in synthesis and purification. Understanding the distinct electronic structure of pyrene is pivotal, dictating the preferential electrophilic aromatic substitution reactions at specific positions. Despite the wealth of literature, contradictions and complexities persist in synthesising suitably substituted bromopyrenes due to the unpredictable nature of substitution reactions. Building upon historical precedents, this study provides a comprehensive overview of bromine introduction in pyrene derivatives, offering optimised synthesis conditions based on laboratory research. Specifically, the synthesis of mono-, di-, tri-, and tetrabromopyrene isomers at non-K positions (1-, 3-, 6-, 8-) and nodal positions (2-, 7-) is systematically explored. By elucidating efficient synthetic methodologies and reaction conditions, this research contributes to advancing the synthesis and functionalisation strategies of pyrene derivatives, unlocking new possibilities for their utilisation in various fields.
Collapse
Affiliation(s)
- Dawid Zych
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Martyna Kubis
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
| |
Collapse
|
52
|
Tangdenpaisal K, Kheakwanwong W, Ruchirawat S, Ploypradith P. Dihydro-10 H-indeno[1,2- b]benzofurans and Tetrahydroindeno[1,2- c]isochromenes via Stereoselective Intramolecular Carbocation Cascade Cyclization. J Org Chem 2024; 89:2964-2983. [PMID: 38345392 DOI: 10.1021/acs.joc.3c02380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Nazarov cyclization of the (E)-(2-stilbenyl)methanols under the catalysis of p-TsOH immobilized on silica (PTS-Si) proceeded to give the corresponding indanyl cation with the exclusive trans relationship at the two newly formed adjacent stereogenic centers. The ensuing intramolecular nucleophilic addition by the MOM-protected phenol (m = 0) or benzyl alcohol (m = 1) furnished the Indane-fused benzofuran [5/5] or isochroman [5/6] system, respectively, with the exclusive cis stereocontrol at the two-carbon ring junction. Thus, in a single step, from nonchiral starting materials, the intramolecular cascade carbocation cyclization (CCC) furnished the [5/5] or [5/6] oxygen-containing Indane fused-ring systems in moderate to good yields with excellent stereoselectivity on all three contiguous stereogenic centers.
Collapse
Affiliation(s)
- Kassrin Tangdenpaisal
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok, Thailand 10210
| | - Wichita Kheakwanwong
- Program in Chemical Sciences, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok, Thailand 10210
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok, Thailand 10210
- Program in Chemical Sciences, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok, Thailand 10210
- Center of Excellence on Environmental Health and Toxicology, Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand 10400
| | - Poonsakdi Ploypradith
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok, Thailand 10210
- Program in Chemical Sciences, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok, Thailand 10210
- Center of Excellence on Environmental Health and Toxicology, Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand 10400
| |
Collapse
|
53
|
Narra SR, Bacho MZ, Hattori M, Shibata N. Expanding the Frontier of Linear Drug Design: Cu-Catalyzed C sp -C sp 3 -Coupling of Electron-Deficient SF 4 -Alkynes with Alkyl Iodides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306554. [PMID: 38161224 PMCID: PMC10953538 DOI: 10.1002/advs.202306554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/08/2023] [Indexed: 01/03/2024]
Abstract
Despite the attractive properties of tetrafluorosulfanyl (SF4 ) compounds in drug discovery, medicinal research on SF4 molecules is hindered by the scarcity of suitable synthetic methodologies. Drawing inspiration from the well-established Sonogashira cross-coupling of terminal alkynes under Pd-catalysis, it is envisioned that SF4 -alkynes can serve as effective coupling partners. To overcome the challenges associated with the electron-deficient nature of SF4 -alkynes and the lability of the SF4 unit under transition-metal catalysis, an aryl radical mediated Csp -Csp 3 cross-coupling reaction is successfully developed under Cu catalysis. This methodology facilitates the coupling of SF4 -alkynes with alkyl iodides, leading to the immediate synthesis of SF4 -attached drug-like molecules. These findings highlight the potential impact of SF4 -containing molecules in the drug industry, paving the way for further research in this emerging field.
Collapse
Affiliation(s)
- Srikanth Reddy Narra
- Department of Nanopharmaceutical SciencesNagoya Institute of TechnologyGokiso, Showa‐kuNagoya466‐8555Japan
| | - Muhamad Zulfaqar Bacho
- Department of Nanopharmaceutical SciencesNagoya Institute of TechnologyGokiso, Showa‐kuNagoya466‐8555Japan
| | - Masashi Hattori
- Department of Life Science and Applied ChemistryNagoya Institute of TechnologyGokiso, Showa‐kuNagoya466‐8555Japan
| | - Norio Shibata
- Department of Nanopharmaceutical SciencesNagoya Institute of TechnologyGokiso, Showa‐kuNagoya466‐8555Japan
- Department of Life Science and Applied ChemistryNagoya Institute of TechnologyGokiso, Showa‐kuNagoya466‐8555Japan
| |
Collapse
|
54
|
Eaton M, Zhang Y, Liu SY. Borataalkenes, boraalkenes, and the η 2-B,C coordination mode in coordination chemistry and catalysis. Chem Soc Rev 2024; 53:1915-1935. [PMID: 38190152 PMCID: PMC10922737 DOI: 10.1039/d3cs00730h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Borataalkenes and boraalkenes are the boron-containing isoelectronic analogues of alkenes and vinyl cations respectively. Compared with alkenes, the borataalkene and boraalkene ligand motifs in transition metal coordination chemistry are relatively underexplored. In this review, the synthesis of borataalkene and boraalkene complexes and other transition metal complexes featuring the η2-B,C coordination mode is described. The diversity of coordination modes and geometry in these complexes, and the spectroscopic and structural evidence supporting their assignments is disclosed as well as computational analysis of bonding. The applications of the borataalkene ligand motif in synthetic organic homogeneous catalysis, especially those involving geminal bis(pinacolatoboronates) and 1,4-azaborines, are discussed.
Collapse
Affiliation(s)
- Maxwell Eaton
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, 02467-3860, USA.
| | - Yuanzhe Zhang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, 02467-3860, USA.
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, 02467-3860, USA.
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 avenue P. Angot, 64053 Pau cedex 09, France
| |
Collapse
|
55
|
Chen L, Ji H, Ding Y, Szostak M, Liu C. Palladium-Catalyzed Decarbonylative Sonogashira Alkynylation of Carboxylic-Phosphoric Anhydrides. J Org Chem 2024; 89:2665-2674. [PMID: 38288991 DOI: 10.1021/acs.joc.3c02701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
We report the first palladium-catalyzed decarbonylative alkynylation of carboxylic-phosphoric anhydrides via highly selective C(O)-O bond cleavage. Carboxylic-phosphoric anhydrides are highly active carboxylic acid derivatives, which are generated through activating carboxylic acids using phosphates by esterification or direct dehydrogenative coupling with phosphites. Highly valuable internal alkynes have been generated by the present method, and the efficiency of this approach has been demonstrated through a wide substrate scope and excellent functional group tolerance.
Collapse
Affiliation(s)
- Lan Chen
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Haiyao Ji
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yimin Ding
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
56
|
Zhang X, Rendina LM, Müllner M. Carborane-Containing Polymers: Synthesis, Properties, and Applications. ACS POLYMERS AU 2024; 4:7-33. [PMID: 38371730 PMCID: PMC10870755 DOI: 10.1021/acspolymersau.3c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 02/20/2024]
Abstract
Carboranes are an important class of electron-delocalized icosahedral carbon-boron clusters with unique physical and chemical properties, which can offer various functions to polymers including enhanced heat-resistance, tuned electronic properties and hydrophobicity, special ability of dihydrogen bond formation, and thermal neutron capture. Carborane-containing polymers have been synthesized mainly by means of step-growth polymerizations of disubstituted carborane monomers, with chain-growth polymerizations of monosubstituted carborane monomers including ATRP, RAFT, and ROMP only utilized recently. Carborane-containing polymers may find application as harsh-environment resistant materials, ceramic precursors, fluorescent materials with tuned emissive properties, novel optoelectronic devices, potential BNCT agents, and drug carriers with low cytotoxicity. This review highlights carborane-containing polymer synthesis strategies and potential applications, showcasing the versatile properties and possibilities that this unique family of boron compounds can provide to the polymeric systems.
Collapse
Affiliation(s)
- Xinyi Zhang
- School
of Chemistry, The University of Sydney, Sydney 2006 New South Wales, Australia
| | - Louis M. Rendina
- School
of Chemistry, The University of Sydney, Sydney 2006 New South Wales, Australia
- The
University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney 2006 New South Wales, Australia
| | - Markus Müllner
- Key
Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 New South Wales, Australia
- The
University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney 2006 New South Wales, Australia
| |
Collapse
|
57
|
Bergner J, Borstelmann J, Cavinato LM, Fuenzalida-Werner JP, Walla C, Hinrichs H, Schulze P, Rominger F, Costa RD, Dreuw A, Kivala M. A Conformationally Stable π-Expanded X-Type Double Helicene Comprising Dihydropyracylene Units with Multistage Redox Behavior. Chemistry 2024; 30:e202303336. [PMID: 37986242 DOI: 10.1002/chem.202303336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
A π-expanded X-type double [5]helicene comprising dihydropyracylene moieties was synthesized from commercially available acenaphthene. X-ray crystallographic analysis revealed the unique highly twisted structure of the compound resulting in the occurrence of two enantiomers which were separated by chiral HPLC, owing to their high conformational stability. The compound shows strongly bathochromically shifted UV/vis absorption and emission bands with small Stokes shift and considerable photoluminescence quantum yield and circular polarized luminescence response. The electrochemical studies revealed five facilitated reversible redox events, including three reductions and two oxidations, thus qualifying the compound as chiral multistage redox amphoter. The experimental findings are in line with the computational studies based on density functional theory pointing towards increased spatial extension of the frontier molecular orbitals over the polycyclic framework and a considerably narrowed HOMO-LUMO gap.
Collapse
Affiliation(s)
- John Bergner
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jan Borstelmann
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Luca M Cavinato
- Technical University of Munich Campus Straubing, Chair of Biogenic Functional Materials, Schulgasse 22, 94315, Straubing, Germany
| | - Juan Pablo Fuenzalida-Werner
- Technical University of Munich Campus Straubing, Chair of Biogenic Functional Materials, Schulgasse 22, 94315, Straubing, Germany
| | - Christian Walla
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg, Im Neuenheimer Feld 205, A, 69120, Heidelberg, Germany
| | - Heike Hinrichs
- Abteilung Chromatographie & Elektrophorese, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Philipp Schulze
- Abteilung Chromatographie & Elektrophorese, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Rubén D Costa
- Technical University of Munich Campus Straubing, Chair of Biogenic Functional Materials, Schulgasse 22, 94315, Straubing, Germany
| | - Andreas Dreuw
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg, Im Neuenheimer Feld 205, A, 69120, Heidelberg, Germany
| | - Milan Kivala
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
58
|
Tallarita R, Jacobsen LM, Elvers BJ, Richter S, Bandaru SSM, Correia JV, Schulzke C. Synthesis of Seven Indolizine-Derived Pentathiepines: Strong Electronic Structure Response to Nitro Substitution in Position C-9. Molecules 2023; 29:216. [PMID: 38202800 PMCID: PMC10780577 DOI: 10.3390/molecules29010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Seven new 1,2,3,4,5-pentathiepino[6,7-a]indolizines were synthesized in which the pentathiepine moieties bear an indolizine backbone that is derivatized from C-H to F-, Cl-, Br-, I-, NO2-, and CH3-substitutions, respectively, in a meta position relative to the aza group on the pyridine moiety. Their preparation took place via two common steps: (i) a Sonogashira coupling between (4-substituted) 2-bromo- or 2-chloropyridines and propynyl 3,3-diethylacetal, and (ii) a ring closing reaction mediated by a molybdenum oxo-bistetrasulfido complex and elemental sulfur. The latter simultaneously facilitates the 1,2,3,4,5-pentathiepino chain/ring- and indolizine ring-formations. The fluoro derivative was addressed with 2-bromo-5-aminopyridine as the starting material via a Sandmeyer reaction. The iodo derivative was obtained from 5-bromo-2-alkynylpiridine using a metal-assisted variation of the Finkelstein reaction. The requirement to explore different reaction conditions and the varied respective yields of the final products are discussed. The influence of the distinct substitutions on the pyridine moieties, their electronic structures, and respective chemical properties was investigated through a set of spectroscopic/analytical characterizations. Intriguingly, in all cases, the nitro-substituted derivative exhibited a distinct behavior compared to the six other investigated derivatives, which was also addressed computationally. All seven new pentathiepines were crystallized, and their respective molecular structures were determined using single crystal X-ray diffraction. These structures are compared and discussed as are their respective packing patterns.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carola Schulzke
- Bioinorganic Chemistry, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany; (R.T.); (L.M.J.); (B.J.E.); (S.R.); (S.S.M.B.); (J.V.C.)
| |
Collapse
|
59
|
Sadowski B, Gryko DT. Dipyrrolonaphthyridinedione - (still) a mysterious cross-conjugated chromophore. Chem Sci 2023; 14:14020-14038. [PMID: 38098709 PMCID: PMC10718078 DOI: 10.1039/d3sc05272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
Dipyrrolonaphthyridinediones (DPNDs) entered the chemical world in 2016. This cross-conjugated donor-acceptor skeleton can be prepared in two steps from commercially available reagents in overall yield ≈15-20% (5 mmol scale). DPNDs can be easily and regioselectively halogenated which opens an avenue to numerous derivatives as well as to π-expansion. Although certain synthetic limitations exist, the current derivatization possibilities provided impetus for numerous explorations that use DPNDs. Structural modifications enable bathochromic shift of the emission to deep-red region and reaching the optical brightness 30 000 M-1 cm-1. Intense absorption and strong emission of greenish-yellow light attracted the interest which eventually led to the discovery of their strong two-photon absorption, singlet fission in the crystalline phase and triplet sensitization. Dipyrrolonaphthyridinedione-based twistacenes broadened our knowledge on the influence of twisting angle on the fate of the molecule in the excited state. Collectively, these findings highlight the compatibility of DPNDs with various applications within organic optoelectronics.
Collapse
Affiliation(s)
- Bartłomiej Sadowski
- Centre of New Technologies, University of Warsaw S. Banacha 2c 02-097 Warsaw Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
60
|
Gómez AC, Horgan C, Yero D, Bravo M, Daura X, O'Driscoll M, Gibert I, O'Sullivan TP. Synthesis and evaluation of aromatic BDSF bioisosteres on biofilm formation and colistin sensitivity in pathogenic bacteria. Eur J Med Chem 2023; 261:115819. [PMID: 37748387 DOI: 10.1016/j.ejmech.2023.115819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
The diffusible signal factor family (DSF) of molecules play an important role in regulating intercellular communication, or quorum sensing, in several disease-causing bacteria. These messenger molecules, which are comprised of cis-unsaturated fatty acids, are involved in the regulation of biofilm formation, antibiotic tolerance, virulence and the control of bacterial resistance. We have previously demonstrated how olefinic N-acyl sulfonamide bioisosteric analogues of diffusible signal factor can reduce biofilm formation or enhance antibiotic sensitivity in a number of bacterial strains. This work describes the design and synthesis of a second generation of aromatic N-acyl sulfonamide bioisosteres. The impact of these compounds on biofilm production in Acinetobacter baumannii, Escherichia coli, Burkholderia multivorans, Burkholderia cepacia, Burkholderia cenocepacia, Pseudomonas aeruginosa and Stenotrophomonas maltophilia is evaluated, in addition to their effects on antibiotic tolerance. The ability of these molecules to increase survival rates on co-administration with colistin is also investigated using the Galleria infection model.
Collapse
Affiliation(s)
- Andromeda-Celeste Gómez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Conor Horgan
- School of Chemistry, University College Cork, Cork, Ireland
| | - Daniel Yero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Bravo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola de Vallès, Spain
| | - Michelle O'Driscoll
- School of Chemistry, University College Cork, Cork, Ireland; School of Pharmacy, University College Cork, Cork, Ireland; Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Timothy P O'Sullivan
- School of Chemistry, University College Cork, Cork, Ireland; School of Pharmacy, University College Cork, Cork, Ireland; Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland.
| |
Collapse
|
61
|
Huang J, Keenan T, Richard F, Lu J, Jenny SE, Jean A, Arseniyadis S, Leitch DC. Chiral, air stable, and reliable Pd(0) precatalysts applicable to asymmetric allylic alkylation chemistry. Nat Commun 2023; 14:8058. [PMID: 38052843 DOI: 10.1038/s41467-023-43512-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/11/2023] [Indexed: 12/07/2023] Open
Abstract
Stereoselective carbon-carbon bond formation via palladium-catalyzed asymmetric allylic alkylation is a crucial strategy to access chiral natural products and active pharmaceutical ingredients. However, catalysts based on the privileged Trost and Pfaltz-Helmchen-Williams PHOX ligands often require high loadings, specific preactivation protocols, and excess chiral ligand. This makes these reactions uneconomical, often unreproducible, and thus unsustainable. Here we report several chiral single-component Pd(0) precatalysts that are active and practically-applicable in a variety of asymmetric allylic alkylation reactions. Despite the decades-long history and widespread use of Trost-type ligands, the precatalysts in this work are the only reported examples of stable, isolable Pd(0) complexes with these ligands. Evaluating these precatalysts across nine asymmetric allylic alkylation reactions reveals high reactivity and selectivity at low Pd loading. Importantly, we also report an unprecedented Pd-catalyzed enantioselective allylation of a hydantoin, achieved on gram scale in high yield and enantioselectivity with only 0.2 mol% catalyst.
Collapse
Affiliation(s)
- Jingjun Huang
- University of Victoria, Department of Chemistry, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Thomas Keenan
- Queen Mary University of London, Department of Chemistry, Mile End Road, London, E1 4NS, UK
| | - François Richard
- Queen Mary University of London, Department of Chemistry, Mile End Road, London, E1 4NS, UK
| | - Jingru Lu
- University of Victoria, Department of Chemistry, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Sarah E Jenny
- Temple University, Department of Chemistry, 1901 N. Broad St, Philadelphia, PA, 19122, USA
| | - Alexandre Jean
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210, Bolbec, France
| | - Stellios Arseniyadis
- Queen Mary University of London, Department of Chemistry, Mile End Road, London, E1 4NS, UK.
| | - David C Leitch
- University of Victoria, Department of Chemistry, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
62
|
Fung AKK, Sowden MJ, Coote ML, Sherburn MS. Air Tolerant Cadiot-Chodkiewicz and Sonogashira Cross-Couplings. Org Lett 2023; 25:8145-8149. [PMID: 37937958 DOI: 10.1021/acs.orglett.3c03314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Cadiot-Chodkiewicz cross-couplings generate an unsymmetric buta-1,3-diyne by way of a Cu(I)-catalyzed coupling between a terminal alkyne and a 1-haloalkyne. Despite their widespread use, Cadiot-Chodkiewicz reactions are plagued by the generation of symmetric buta-1,3-diyne side products, formed through competing: (a) formal reductive homo-coupling of the 1-haloalkyne and (b) oxidative (Glaser-Hay/Eglinton) homo-coupling of the terminal alkyne. To overcome this issue, a large excess of one of the two reacting alkynes is commonly deployed, and difficult separations of cross- and homo-coupled products are often encountered. Here, we demonstrate that the use of ascorbate as a reductant leads to a suppression of these unwanted side reactions, hence permitting excellent yields with a roughly stoichiometric ratio of reactants. The procedure also avoids an inert gas atmosphere and uses a sustainable solvent. A similar approach is effective for cross-couplings involving a Pd(0)/Pd(II) catalytic cycle, with air tolerant Sonogashira couplings also established.
Collapse
Affiliation(s)
- Alfred K K Fung
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia
| | - Madison J Sowden
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia
| | - Michelle L Coote
- Institute for Nanoscale Science & Technology, College of Science & Engineering, Flinders University, Sturt Road, Bedford Park, South Australia5042, Australia
| | - Michael S Sherburn
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia
| |
Collapse
|
63
|
Liu Y, Li P, Wang Y, Qiu Y. Electroreductive Cross-Electrophile Coupling (eXEC) Reactions. Angew Chem Int Ed Engl 2023; 62:e202306679. [PMID: 37327185 DOI: 10.1002/anie.202306679] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/18/2023]
Abstract
Electrochemistry utilizes electrons as a potent, controllable, and traceless alternative to chemical oxidants or reductants, and typically offers a more sustainable option for achieving selective organic synthesis. Recently, the merger of electrochemistry with readily available electrophiles has been recognized as a viable and increasingly popular methodology for efficiently constructing challenging C-C and C-heteroatom bonds in a sustainable manner for complex organic molecules. In this mini-review, we have systematically summarized the most recent advances in electroreductive cross-electrophile coupling (eXEC) reactions during the last decade. Our focus has been on readily available electrophiles, including aryl and alkyl organic (pseudo)halides, as well as small molecules such as CO2 , SO2 , and D2 O.
Collapse
Affiliation(s)
- Yaowen Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Pengfei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
64
|
Mondal S, Midya SP, Das S, Mondal S, Islam ASM, Ghosh P. Pd-Catalyzed Tandem Pathway for Stereoselective Synthesis of (E)-1,3-Enyne from β-Nitroalkenes by Using a Sacrificial Directing Group. Chemistry 2023; 29:e202301637. [PMID: 37551730 DOI: 10.1002/chem.202301637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
The involvement of nitroalkenes instead of minimal one alkyne motif for (E)-1,3-enynes synthesis through a palladium catalyzed stereoselective bond forming pathway at room temperature is presented. Implication of nitro group as a sacrificial directing group, formation of magical alkyne on a newly developed Csp 3 -Csp 3 bond with initial palladium-MBH adduct make this methodology distinctive. This protocol features an unprecedented sequential acetate addition, carbon-carbon bond formation, isomerization of double bond and nitromethane degradation in a tandem catalytic walk via dancing hybridization. Mechanistic understanding through identification of intermediates and computational calculations furnishes complete insight into the tandem catalytic pathway. Broad substrates scope and functional groups tolerance make this synthetic methodology magnificent and dynamic. This represents the first example of stereoselective 1,3-enyne synthesis exclusively from alkene substrates by introducing the concept of sacrificial directing group.
Collapse
Affiliation(s)
- Subal Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Siba P Midya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Suman Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Soumya Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Abu S M Islam
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
65
|
Pradhan AK, Ray M, Parthasarathy V, Mishra AK. Effects of donor and acceptor substituents on the photophysics of 4-ethynyl-2,1,3-benzothiadiazole derivatives. Phys Chem Chem Phys 2023; 25:29327-29340. [PMID: 37877192 DOI: 10.1039/d3cp03318j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The present work explores the photophysical, electrochemical, and fluorescence polarization properties of a group of π-conjugated phenylethynyl-2,1,3-benzothiadiazole derivatives (BTDs) bearing different electron-donating (ED) or electron-withdrawing (EW) substituents at the para position of the phenylethynyl moiety. The BTDs were synthesized through the Sonogashira cross-coupling reaction between 4-bromo-2,1,3-benzothiadiazole and the respective para-substituted phenylethynyl derivatives. The BTDs with the EW-substituents show relatively weak solvatochromic behavior, while the BTDs with the strong ED-substituents like methoxy and N,N-dimethylamino-based substituents (BTDPhOMe and BTDPhNMe2) exhibit a pronounced solvatochromic behavior. The change in dipole moments in the excited states of the derivatives was calculated using Lippert-Mataga plots. The conclusions drawn on the spectral behavior of the molecules could be rationalized by TD-DFT calculations involving electron density difference (EDD) maps that correlate with the ICT characteristics of the molecules. The experimental and theoretical calculations reveal that the BTDs with the strong ED-substituents (strong push-pull type BTDs) have a strong ICT character in the excited state. These strong push-pull type BTDs show high fluorescence quantum yield (ΦF) in apolar solvents and low ΦF in polar solvents. In contrast, the BTDs with the weak ED-substituents (weak push-pull type BTDs) and EW-substituents (pull-pull type BTDs) have a weaker ICT character with low ΦF in apolar and high ΦF in polar solvent media. There is good a agreement among the HOMO-LUMO band gaps obtained from absorption spectroscopy and electrochemical studies and theoretical calculations. The fluorescence anisotropy measurement in the glycerol medium shows that the studied BTDs generally exhibit higher sensitivity towards microviscosity than the traditional DPH fluorescence anisotropy probe.
Collapse
Affiliation(s)
- Asit Kumar Pradhan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| | - Manaswini Ray
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| | | | - Ashok Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
66
|
Singh P, Shaikh AC. Photochemical Sonogashira coupling reactions: beyond traditional palladium-copper catalysis. Chem Commun (Camb) 2023; 59:11615-11630. [PMID: 37697801 DOI: 10.1039/d3cc03855f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Sonogashira coupling is one of the Nobel reactions discovered in 1975 to form a C-C bond using palladium and copper as co-catalysts. Incorporating alkyne functionalities either in macro or micro molecules by using this Sonogashira reaction has already proven its viability and relevance in the sphere of synthetic chemistry. While aiming for sustainable chemistry, in recent years, visible light photoredox catalysts have appeared as an advanced tool in this regard. In this review, we aim to portray a comprehensive summary of modern visible light photo redox catalyzed Sonogashira reaction, which will leave space for the readers to rethink alternative strategies to conduct the Sonogashira reaction. This review briefly describes the implementation of various metal-based nanomaterial photocatalysts, developing either copper or palladium-free photocatalytic methods, and organo-photolytic and bioinspired photocatalysts for the Sonogashira coupling reactions. Besides, this review also gives a concise overview of the mechanistic aspects and highlights selective examples for substrate scope.
Collapse
Affiliation(s)
- Puja Singh
- Department of Chemistry, Indian Institute of Technology, Ropar (IIT Ropar), Rupnagar, Punjab-140 001, India.
| | - Aslam C Shaikh
- Department of Chemistry, Indian Institute of Technology, Ropar (IIT Ropar), Rupnagar, Punjab-140 001, India.
| |
Collapse
|
67
|
Li Y, Luo H, Wang S, Li L, Li G, Dai W. Cobalt nanoparticles-catalyzed aerobic oxygenation and esterification of alkynes via C≡C bonds cleavage. iScience 2023; 26:107608. [PMID: 37664625 PMCID: PMC10470385 DOI: 10.1016/j.isci.2023.107608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/16/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
An unprecedented efficient protocol is developed for the oxidative cleavage of C≡C bonds in alkynes to produce structure-diverse esters using heterogeneous cobalt nanoparticles as catalyst with molecular oxygen as the oxidant. A diverse set of mono- and multisubstituted aromatic and aliphatic alkynes can be effectively cleaved and converted into the corresponding esters. Characterization analysis and control experiments indicate high surface area and pore volume, as well as nanostructured nitrogen-doped graphene-layer coated cobalt nanoparticles are possibly responsible for excellent catalytic activity. Mechanistic studies reveal that ketones derived from alkynes under oxidative conditions are formed as intermediates, which subsequently are converted to esters through a tandem sequential process. The catalyst can be recycled up to five times without significant loss of activity.
Collapse
Affiliation(s)
- Yujing Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P.R. China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Huihui Luo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shuo Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Lei Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P.R. China
| | - Guosong Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Wen Dai
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| |
Collapse
|
68
|
Kim G, Hou X, Byun WS, Kim G, Jarhad DB, Lee G, Hyun YE, Yu J, Lee CS, Qu S, Warnick E, Gao ZG, Kim JY, Ji S, Shin H, Choi JR, Jacobson KA, Lee HW, Lee SK, Jeong LS. Structure-Activity Relationship of Truncated 2,8-Disubstituted-Adenosine Derivatives as Dual A 2A/A 3 Adenosine Receptor Antagonists and Their Cancer Immunotherapeutic Activity. J Med Chem 2023; 66:12249-12265. [PMID: 37603705 PMCID: PMC10896643 DOI: 10.1021/acs.jmedchem.3c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Based on hA2AAR structures, a hydrophobic C8-heteroaromatic ring in 5'-truncated adenosine analogues occupies the subpocket tightly, converting hA2AAR agonists into antagonists while maintaining affinity toward hA3AR. The final compounds of 2,8-disubstituted-N6-substituted 4'-thionucleosides, or 4'-oxo, were synthesized from d-mannose and d-erythrono-1,4-lactone, respectively, using a Pd-catalyst-controlled regioselective cross-coupling reaction. All tested compounds completely antagonized hA2AAR, including 5d with the highest affinity (Ki,A2A = 7.7 ± 0.5 nM). The hA2AAR-5d X-ray structure revealed that C8-heteroaromatic rings prevented receptor activation-associated conformational changes. However, the C8-substituted compounds still antagonized hA3AR. Structural SAR features and docking studies supported different binding modes at A2AAR and A3AR, elucidating pharmacophores for receptor activation and selectivity. Favorable pharmacokinetics were demonstrated, in which 5d displayed high oral absorption, moderate half-life, and bioavailability. Also, 5d significantly improved the antitumor effect of anti-PD-L1 in vivo. Overall, this study suggests that the novel dual A2AAR/A3AR nucleoside antagonists would be promising drug candidates for immune-oncology.
Collapse
Affiliation(s)
- Gibae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiyan Hou
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Life Science, Dalian Minzu University, Dalian 116600, People's Republic of China
| | - Woong Sub Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Gyudong Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dnyandev B Jarhad
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Grim Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Eum Hyun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinha Yu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Chang Soo Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Shuhao Qu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eugene Warnick
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ji Yong Kim
- Future Medicine Company Limited, Seoul 06665, Republic of Korea
| | - Seunghee Ji
- HK Inno.N Corporation, Seoul 04551, Republic of Korea
| | - Hyunwoo Shin
- HK Inno.N Corporation, Seoul 04551, Republic of Korea
| | | | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hyuk Woo Lee
- Future Medicine Company Limited, Seoul 06665, Republic of Korea
| | - Sang Kook Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Future Medicine Company Limited, Seoul 06665, Republic of Korea
| |
Collapse
|
69
|
Li M, Li J, Zhang Z, Chen L, Ma N, Liu Q, Zhang X, Zhang G. Palladium-catalyzed intramolecular aza-Wacker-type cyclization of vinyl cyclopropanecarboxamides to access conformationally restricted aza[3.1.0]bicycles. RSC Adv 2023; 13:27158-27166. [PMID: 37701284 PMCID: PMC10493647 DOI: 10.1039/d3ra05440c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
A palladium(ii)-catalyzed intramolecular oxidative aza-Wacker-type reaction of vinyl cyclopropanecarboxamides to access a series of conformationally restricted highly substituted aza[3.1.0]bicycles is reported. The transformation proceeded through a typical aza-Wacker reaction mechanism to forge a new C-N bond with oxygen as the terminal oxidant. The desired fused heterocycles were obtained in moderate yields. The process is tolerant of a range of functional aryl groups under mild conditions.
Collapse
Affiliation(s)
- Mengjuan Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China +86-373-332-5250
| | - Jingya Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China +86-373-332-5250
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China +86-373-332-5250
| | - Liming Chen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China +86-373-332-5250
| | - Nana Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China +86-373-332-5250
| | - Qingfeng Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China +86-373-332-5250
| | - Xingjie Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China +86-373-332-5250
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China +86-373-332-5250
| |
Collapse
|
70
|
Kraemer N, Eason EM, Hoye TR. Intramolecular Cyclization of Alkynylheteroaromatic Substrates Bearing a Tethered Cyano Group: A Strategy for Accessing Fused Pyridoheterocycles. J Org Chem 2023; 88:12716-12726. [PMID: 37590897 PMCID: PMC11167534 DOI: 10.1021/acs.joc.3c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Heterocyclic substrates containing a conjugated alkyne and a pendant nitrile were shown to cyclize in an overall tetradehydro-Diels-Alder reaction to give products in which the initial heterocycle bears a newly fused pyridine ring. Base-promoted tautomerization of the alkyne to its isomeric allene allows this process to occur at ambient temperature. DFT studies support many of the mechanistic interpretations of the overall results.
Collapse
Affiliation(s)
- Niklas Kraemer
- Department of Chemistry, 207 Pleasant St. SE, University of Minnesota, Minneapolis, Minnesota 55455 USA
| | - Erin M. Eason
- Department of Chemistry, 207 Pleasant St. SE, University of Minnesota, Minneapolis, Minnesota 55455 USA
| | - Thomas R. Hoye
- Department of Chemistry, 207 Pleasant St. SE, University of Minnesota, Minneapolis, Minnesota 55455 USA
| |
Collapse
|
71
|
Zhang D, Fan J, Shi Y, Huang Y, Fu C, Wu X, Ma S. Copper-catalyzed propargylic C-H functionalization for allene syntheses. Chem Sci 2023; 14:9191-9196. [PMID: 37655026 PMCID: PMC10466309 DOI: 10.1039/d3sc01501g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
Allenenitriles bearing different synthetically versatile functional groups have been prepared smoothly from 5-alkynyl fluorosulfonamides in decent yields with an excellent chemo- and regio-selectivity under redox neutral conditions. The resulting allenenitriles can be readily converted to useful functionalized heterocycles. Based on mechanistic study, it is confirmed that this is the first example of radical-based non-activated propargylic C-H functionalization for allene syntheses.
Collapse
Affiliation(s)
- Dongjie Zhang
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Junjie Fan
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Yaqi Shi
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Yankai Huang
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Xiaoyan Wu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| |
Collapse
|
72
|
Nishino T, Fukumura M, Katao S, Yasuhara K, Rapenne G. Multiply engaged molecular gears composed of a cerium(IV) double-decker of a triptycene-functionalized porphyrin. Dalton Trans 2023; 52:11797-11801. [PMID: 37593796 DOI: 10.1039/d3dt02443a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Intramolecular gearing motions are studied in a cerium(IV) double-decker of triptycene-functionalised porphyrins using single crystal X-ray analysis and variable temperature 1H-NMR.
Collapse
Affiliation(s)
- Toshio Nishino
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| | - Masafumi Fukumura
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| | - Shohei Katao
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
- Centre of Digital Green-Inovation, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| | - Gwénaël Rapenne
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
- CEMES, Université de Toulouse, CNRS, 29, rue Jeanne Marvig, 31055 Toulouse, France.
| |
Collapse
|
73
|
Xin T, Cummins CC. Mechanochemical Phosphorylation of Acetylides Using Condensed Phosphates: A Sustainable Route to Alkynyl Phosphonates. ACS CENTRAL SCIENCE 2023; 9:1575-1580. [PMID: 37637745 PMCID: PMC10451036 DOI: 10.1021/acscentsci.3c00725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 08/29/2023]
Abstract
In pursuit of a more sustainable route to phosphorus-carbon (P-C) bond-containing chemicals, we herein report that phosphonates can be prepared by mechanochemical phosphorylation of acetylides using polyphosphates in a single step, redox-neutral process, bypassing white phosphorus (P4) and other high-energy, environmentally hazardous intermediates. Using sodium triphosphate (Na5P3O10) and acetylides, alkynyl phosphonates 1 can be isolated in yields of up to 32%, while reaction of sodium pyrophosphate (Na4P2O7) and sodium carbide (Na2C2) engendered, in an optimized yield of 63%, ethynyl phosphonate 2, an easily isolable compound that can be readily converted to useful organophosphorus chemicals. Highly condensed phosphates like Graham's salt and bioproduced polyphosphate were also found to be compatible after reducing the chain length by grinding with orthophosphate. These results demonstrate the possibility of accessing organophosphorus chemicals directly from condensed phosphates and may offer an opportunity to move toward a "greener" phosphorus industry.
Collapse
Affiliation(s)
- Tiansi Xin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher C. Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
74
|
Ma X, Wang L, Meng X, Li W, Wang Q, Gu Y, Qiu L. NHC-mediated photocatalytic deoxygenation of alcohols for the synthesis of internal alkynes via a Csp 3-Csp coupling reaction. Org Biomol Chem 2023; 21:6693-6696. [PMID: 37548245 DOI: 10.1039/d3ob01066j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
NHC-mediated deoxygenation of alcohols under photocatalytic conditions is described. The process provides various alkyl radicals, which can react with 1-bromoalkyne via Csp3-Csp coupling to afford internal alkynes in moderate to good yields. The method offers a new and convenient approach to synthesize internal alkynes.
Collapse
Affiliation(s)
- Xueji Ma
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province, Xinxiang University, Xinxiang 453000, P. R. China.
| | - Liujie Wang
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province, Xinxiang University, Xinxiang 453000, P. R. China.
| | - Xiaoqing Meng
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province, Xinxiang University, Xinxiang 453000, P. R. China.
| | - Wenbo Li
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province, Xinxiang University, Xinxiang 453000, P. R. China.
| | - Qin Wang
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province, Xinxiang University, Xinxiang 453000, P. R. China.
| | - Yuke Gu
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province, Xinxiang University, Xinxiang 453000, P. R. China.
| | - Lingna Qiu
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province, Xinxiang University, Xinxiang 453000, P. R. China.
| |
Collapse
|
75
|
Liu Z, Wang Z, Liao H, Li Z. One-Pot Synthesis of 1,2,3-Triarylindoles through Cascade Reactions Using Calcium Carbide, Iodoarenes, and Aromatic Amines. Org Lett 2023; 25:5812-5816. [PMID: 37523462 DOI: 10.1021/acs.orglett.3c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
An efficient method for the construction of 1,2,3-triarylindoles through one-pot multicomponent reactions using calcium carbide, 3 mol of iodoarenes, and aromatic amines as starting materials was described. A series of target products were obtained by the simultaneous formation of five bonds in one step. The main advantages for this protocol are the use of a convenient alkyne source, wide scope of substrates, and simple workup procedure. The method can be extended to the gram scale.
Collapse
Affiliation(s)
- Zhenrong Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Zhiqiang Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Haiyan Liao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Zheng Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| |
Collapse
|
76
|
Nguyen KC, Lindsey JS. Synthesis of a BC-Dihydrodipyrrin Building Block of Bacteriochlorophyll a. J Org Chem 2023; 88:11205-11216. [PMID: 37471708 DOI: 10.1021/acs.joc.3c01216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
A strategy for the synthesis of bacteriochlorophyll a relies on joining AD and BC halves that contain the requisite stereochemical configurations of the target macrocycle. The BC half (1) is a dihydrodipyrrin bearing a dimethoxymethyl group at the 1-position, a β-ketoester at the 8-position, and (R)-2-methyl and (R)-3-ethyl substituents in the pyrroline ring. An established route to AD-dihydrodipyrrins (Pd-mediated coupling of a 2-halopyrrole with a chiral 4-pentynoic acid followed by Petasis methenylation, acidic hydrolysis, Paal-Knorr ring closure, and Riley oxidation) proved to be unviable for BC-dihydrodipyrrins given the presence of the β-ketoester unit. A route presented here entails Pd-mediated coupling of a 2-halopyrrole (2) with (3R,4R)-4-ethyl-1,1-dimethoxy-3-methylhex-5-yn-2-one (3), anti-Markovnikov hydration of the alkyne to give the 1,4-diketone, and Paal-Knorr ring closure. Compound 3 was prepared by Schreiber-modified Nicholas reaction beginning with (S)-4-isopropyl-3-propionyloxazolidin-2-one and the hexacarbonyldicobalt complex of (±) 3-methoxy-1-(trimethylsilyl)pentyne followed by transformation of the aldehyde derived therefrom to the 1,1-dimethoxymethylcarbonyl motif. The absolute stereochemical configuration of the Schreiber-Nicholas alkylation product was confirmed by single-crystal X-ray diffraction, whereas the BC half (1) by 1H NMR spectroscopy showed a J value of 2.9 Hz consistent with the trans-configuration. Taken together, the route provides a key chiral building block for the synthesis of photosynthetic tetrapyrroles and analogues.
Collapse
Affiliation(s)
- Khiem Chau Nguyen
- Department of Chemistry North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jonathan S Lindsey
- Department of Chemistry North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
77
|
Wang T, Fowler JM, Liu L, Loo CE, Luo M, Schutsky EK, Berríos KN, DeNizio JE, Dvorak A, Downey N, Montermoso S, Pingul BY, Nasrallah M, Gosal WS, Wu H, Kohli RM. Direct enzymatic sequencing of 5-methylcytosine at single-base resolution. Nat Chem Biol 2023; 19:1004-1012. [PMID: 37322153 PMCID: PMC10763687 DOI: 10.1038/s41589-023-01318-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/17/2023] [Indexed: 06/17/2023]
Abstract
5-methylcytosine (5mC) is the most important DNA modification in mammalian genomes. The ideal method for 5mC localization would be both nondestructive of DNA and direct, without requiring inference based on detection of unmodified cytosines. Here we present direct methylation sequencing (DM-Seq), a bisulfite-free method for profiling 5mC at single-base resolution using nanogram quantities of DNA. DM-Seq employs two key DNA-modifying enzymes: a neomorphic DNA methyltransferase and a DNA deaminase capable of precise discrimination between cytosine modification states. Coupling these activities with deaminase-resistant adapters enables accurate detection of only 5mC via a C-to-T transition in sequencing. By comparison, we uncover a PCR-related underdetection bias with the hybrid enzymatic-chemical TET-assisted pyridine borane sequencing approach. Importantly, we show that DM-Seq, unlike bisulfite sequencing, unmasks prognostically important CpGs in a clinical tumor sample by not confounding 5mC with 5-hydroxymethylcytosine. DM-Seq thus offers an all-enzymatic, nondestructive, faithful and direct method for the reading of 5mC alone.
Collapse
Affiliation(s)
- Tong Wang
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Johanna M Fowler
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian E Loo
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Meiqi Luo
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily K Schutsky
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Kiara N Berríos
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jamie E DeNizio
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashley Dvorak
- Integrated DNA Technologies, Inc., Coralville, IA, USA
| | - Nick Downey
- Integrated DNA Technologies, Inc., Coralville, IA, USA
| | - Saira Montermoso
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Bianca Y Pingul
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - MacLean Nasrallah
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Hao Wu
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul M Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
78
|
Jain S, Anmol, Sharma R, Karmakar T, Yadav MR. Cu(I)/ N,N-Imine Ligand Catalyzed C(sp 3)-C(sp) Coupling of Alkyl Bromides with Alkynes: Scope and Mechanistic Investigation. Org Lett 2023; 25:5437-5442. [PMID: 37459228 DOI: 10.1021/acs.orglett.3c01735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
We have developed an efficient Cu/N,N-bidentate imine ligand catalytic system for C(sp3)-C(sp) coupling to obtain internal alkynes, di/trisubstituted allenes and strained bridged cyclic lactams in moderate to excellent yields from readily available alkyl(benzyl) bromides in one-pot transformation. Density Functional Theory (DFT) assisted mechanistic study along with control experiments support the involvement of bialkynylated copper species which undergo single electron transfer (SET) with alkyl halides to generate radical intermediate in the reaction. The N,N-bidentate imine ligand plays a vital role in stabilization of intermediate copper complex and facilitates the product formation.
Collapse
Affiliation(s)
- Swati Jain
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Anmol
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ruchi Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - M Ramu Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
79
|
Baghel AS, Pratap R, Kumar A. Ru(II)-Catalyzed Weakly Coordinating Carbonyl-Assisted Dialkynylation of (Hetero)Aryl Ketones. J Org Chem 2023. [PMID: 37307505 DOI: 10.1021/acs.joc.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Functionalized aryl(heteroaryl) ketones are present in many natural products as key structural components and serve as basic synthetic building blocks for various organic transformation reactions. Therefore, the development of an effective and sustainable route for making these classes of compounds remains challenging yet highly desirable. Herein, we report a simple and efficient catalytic system for dialkynylation of aromatic/heteroaromatic ketones via a double C-H bond activation in the presence of less expensive ruthenium(II)-salt as a catalyst using the weakly and native carbonyl group as the desired directing group. The developed protocol is highly compatible, tolerant, and sustainable toward various functional groups. The synthetic utility of the developed protocol has been demonstrated through the scale-up synthesis and functional group transformation. Control experiments support the involvement of the base-assisted internal electrophilic substitution (BIES) reaction pathway.
Collapse
Affiliation(s)
- Akanksha Singh Baghel
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| | - Ramendra Pratap
- Department of Chemistry, Delhi University, Delhi 110007, India
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| |
Collapse
|
80
|
Błaszczyk J, Bujnicki B, Pokora-Sobczak P, Mielniczak G, Sieroń L, Kiełbasiński P, Drabowicz J. New Optically Active tert-Butylarylthiophosphinic Acids and Their Selenium Analogues as the Potential Synthons of Supramolecular Organometallic Complexes: Syntheses and Crystallographic Structure Determination. Molecules 2023; 28:molecules28114298. [PMID: 37298774 DOI: 10.3390/molecules28114298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
The aim of the research described in this publication is two-fold. The first is a detailed description of the synthesis of a series of compounds containing a stereogenic heteroatom, namely the optically active P-stereogenic derivatives of tert-butylarylphoshinic acids bearing sulfur or selenium. The second is a detailed discussion dedicated to the determination of their structures by an X-ray analysis. Such a determination is needed when considering optically active hetero-oxophosphoric acids as new chiral solvating agents, precursors of new chiral ionic liquids, or ligands in complexes serving as novel organometallic catalysts.
Collapse
Affiliation(s)
- Jarosław Błaszczyk
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Bogdan Bujnicki
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Patrycja Pokora-Sobczak
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Grażyna Mielniczak
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Lesław Sieroń
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Piotr Kiełbasiński
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Józef Drabowicz
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
- Institute of Chemistry, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| |
Collapse
|
81
|
Son J, Wu Z, Dou J, Fujita H, Cao PLD, Liu Q, Lindsey JS. Tethered Indoxyl-Glucuronides for Enzymatically Triggered Cross-Linking. Molecules 2023; 28:molecules28104143. [PMID: 37241884 DOI: 10.3390/molecules28104143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Indoxyl-glucuronides, upon treatment with β-glucuronidase under physiological conditions, are well known to afford the corresponding indigoid dye via oxidative dimerization. Here, seven indoxyl-glucuronide target compounds have been prepared along with 22 intermediates. Of the target compounds, four contain a conjugatable handle (azido-PEG, hydroxy-PEG, or BCN) attached to the indoxyl moiety, while three are isomers that include a PEG-ethynyl group at the 5-, 6-, or 7-position. All seven target compounds have been examined in indigoid-forming reactions upon treatment with β-glucuronidase from two different sources and rat liver tritosomes. Taken together, the results suggest the utility of tethered indoxyl-glucuronides for use in bioconjugation chemistry with a chromogenic readout under physiological conditions.
Collapse
Affiliation(s)
- Juno Son
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Zhiyuan Wu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Jinghuai Dou
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Hikaru Fujita
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Phuong-Lien Doan Cao
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Qihui Liu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
82
|
Maltais R, Sancéau JY, Poirier D, Marette A. A Concise, Gram-Scale Total Synthesis of Protectin DX and Related Labeled Versions via a Key Stereoselective Reduction of Enediyne. J Org Chem 2023. [PMID: 37172290 DOI: 10.1021/acs.joc.3c00360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We report a gram-scale total synthesis of protectin DX (PDX) following a convergent synthetic route (24 steps) from l-malic acid. This novel synthetic strategy is based on the assembly of three main building blocks using a Sonogashira coupling reaction (blocks A and B) and Wittig olefination (block C) to provide the 22-carbon backbone of PDX. A key stereoselective reduction of enediyne leads to a central E,Z,E-trienic system of PDX and also gives access to its labeled versions (D and T).
Collapse
Affiliation(s)
- René Maltais
- Organic Synthesis Service, Medicinal Chemistry Platform, CHU de Québec Research Center-Université Laval, Québec, QC, Canada G1V 4G2
| | - Jean-Yves Sancéau
- Organic Synthesis Service, Medicinal Chemistry Platform, CHU de Québec Research Center-Université Laval, Québec, QC, Canada G1V 4G2
| | - Donald Poirier
- Organic Synthesis Service, Medicinal Chemistry Platform, CHU de Québec Research Center-Université Laval, Québec, QC, Canada G1V 4G2
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada G1V 0A6
| | - André Marette
- Department of Medicine, Québec Heart and Lung Institute, Laval Hospital, Québec, QC, Canada G1V 4G5
| |
Collapse
|
83
|
Zhou J, Jiao T, Fu Q, Wang J, Lu J, Yang L, Wei J, Wei S, Cong X, Hao N. Catalytic C-H alkynylation of benzylamines and aldehydes with aldimine-directing groups generated in situ. Chem Commun (Camb) 2023; 59:6355-6358. [PMID: 37139669 DOI: 10.1039/d3cc01414b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Iridium-catalysed regioselective C-H alkynylation of unprotected primary benzylamines and aliphatic aldehydes has been achieved using in situ-installed aldimine directing groups. This protocol provides a straightforward route for the synthesis of the alkynylated primary benzylamine and aliphatic aldehyde derivatives, featuring good substrate compatibility and high regioselectivity.
Collapse
Affiliation(s)
- Jiao Zhou
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Tenggang Jiao
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Qiang Fu
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jun Wang
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Ji Lu
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Lin Yang
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jun Wei
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Siping Wei
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Xuefeng Cong
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Na Hao
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
84
|
Saraswat SK, Seemaladinne R, Abdullah MN, Zaini H, Ahmad N, Ahmad N, Vessally E. Aryl fluorosulfates: powerful and versatile partners in cross-coupling reactions. RSC Adv 2023; 13:13642-13654. [PMID: 37152576 PMCID: PMC10155759 DOI: 10.1039/d3ra01791e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/20/2023] [Indexed: 05/09/2023] Open
Abstract
Aryl fluorosulfates are versatile building blocks in organic synthesis and have gained increasing attention in SuFEx (Sulfur Fluoride Exchange) click chemistry. They are easily and conveniently prepared from phenols using sulfuryl fluoride SO2F2 as a low-cost sulfonyl fluoride provider. Recently, they served as less toxic and more atom economical alternatives to triflates in an impressive number of carbon-carbon and carbon-heteroatom cross-coupling reactions. In this review, we summarize the current advances and developments in applying aryl fluorosulfates as electrophilic partners in cross-coupling reactions.
Collapse
Affiliation(s)
| | | | - Media Noori Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil Kurdistan Region Iraq
| | - Halim Zaini
- Departement Chemical Engineering of Politeknik Negeri Lhokseumawe Indonesia
| | - Nabeel Ahmad
- Department of Biotechnology, School of Allied Sciences, Dev Bhoomi Uttarakhand University Dehradun-248007 Uttarakhand India
| | - Nafis Ahmad
- Department of Physics, College of Science, King Khalid University P.O. Box: 960 Abha 61421 Kingdom of Saudi Arabia
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University P.O. Box 19395-1697 Tehran Iran
| |
Collapse
|
85
|
Kim HE, Choi JH, Chung WJ. Fluorine-Assisted Rearrangement of Geminal Azidofluorides to Imidoyl Fluorides. J Org Chem 2023. [PMID: 37130141 DOI: 10.1021/acs.joc.3c00183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organoazide rearrangement constitutes versatile synthetic strategies but typically requires an extremely strong acid and/or a high reaction temperature. Our group recently discovered the remarkable accelerating effect of the geminal fluorine substituent that enables the facile rearrangement of azides into imidoyl fluorides without the aid of acid under much milder reaction conditions. The role of geminal fluorine was elucidated by both experimental and computational investigations. This new reactivity led to the development of a practical one-step tandem preparative method for potentially useful and bench-stable imidoyl fluorides from a wide range of structurally diverse geminal chlorofluorides. Our additional efforts to expand the reaction scope regarding the migrating group, halogen, and carbonyl function are described, and the synthetic utility of the imidoyl fluoride products was demonstrated in hopes of promoting the use of this under-appreciated functional group in the synthetic organic community.
Collapse
Affiliation(s)
- Ha Eun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Won-Jin Chung
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
86
|
Liu L, Corma A. Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chem Rev 2023; 123:4855-4933. [PMID: 36971499 PMCID: PMC10141355 DOI: 10.1021/acs.chemrev.2c00733] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 03/29/2023]
Abstract
Heterogeneous bimetallic catalysts have broad applications in industrial processes, but achieving a fundamental understanding on the nature of the active sites in bimetallic catalysts at the atomic and molecular level is very challenging due to the structural complexity of the bimetallic catalysts. Comparing the structural features and the catalytic performances of different bimetallic entities will favor the formation of a unified understanding of the structure-reactivity relationships in heterogeneous bimetallic catalysts and thereby facilitate the upgrading of the current bimetallic catalysts. In this review, we will discuss the geometric and electronic structures of three representative types of bimetallic catalysts (bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles) and then summarize the synthesis methodologies and characterization techniques for different bimetallic entities, with emphasis on the recent progress made in the past decade. The catalytic applications of supported bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles for a series of important reactions are discussed. Finally, we will discuss the future research directions of catalysis based on supported bimetallic catalysts and, more generally, the prospective developments of heterogeneous catalysis in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Lichen Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Avelino Corma
- Instituto
de Tecnología Química, Universitat
Politècnica de València−Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avenida de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
87
|
Li J, Zhang Z, Chen L, Li M, Zhang X, Zhang G. Base-Promoted Intramolecular Addition of Vinyl Cyclopropanecarboxamides to Access Conformationally Restricted Aza[3.1.0]bicycles. Molecules 2023; 28:molecules28093691. [PMID: 37175101 PMCID: PMC10179847 DOI: 10.3390/molecules28093691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/22/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
3-Azabicyclo[3.1.0]hexanes are common structural components in natural products and bioactive compounds. Traditionally, the metal-mediated cyclopropanation domino reaction of chain enzymes is the most commonly used strategy for the construction of this type of aza[3.1.0]bicycle derivative. In this study, a base-promoted intramolecular addition of alkenes used to deliver conformationally restricted highly substituted aza[3.1.0]bicycles is reported. This reaction was tailor-made for saturated aza[3.1.0] bicycle-containing fused bicyclic compounds that may be applied in the development of concise and divergent total syntheses of bioactive compounds.
Collapse
Affiliation(s)
- Jingya Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Liming Chen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Mengjuan Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xingjie Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
88
|
Sun X, Duan X, Zheng N, Song W. Gold-Catalyzed Anti-Markovnikov Oxidation of Au-Allenylidene to Generate Alkylidene Ketene. Org Lett 2023; 25:2798-2805. [PMID: 37052465 DOI: 10.1021/acs.orglett.3c00682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
It remains a long-standing challenge to directly convert alkynes to carboxylic derivatives. Herein, a unexpectedly anti-Markovnikov oxidation of a unique Au-allenylidene pathway instead of a traditional α-oxo gold carbene routine is disclosed for in situ formation and transformation of highly unsaturated alkylidene ketenes, which are subsequently trapped by broad nucleophiles such as alcohols, phenols, water, amines, and sulfoximines to easily access α,β-unsaturated drugs and natural product derivatives by a multicomponent reaction. Based on this scenario, polyacrylate and polyacrylamide are efficiently afforded by corresponding multicomponent polymerization.
Collapse
Affiliation(s)
- Xinhao Sun
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xuelun Duan
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Nan Zheng
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wangze Song
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
89
|
Li R, Ouyang F, Bai Y, Tang R, Yu G, Wei B. Modular and Selective Access to Functionalized Alkynes and Allenes via the Intermediacy of Propargylic Acetates. Org Lett 2023; 25:2543-2547. [PMID: 37018539 DOI: 10.1021/acs.orglett.3c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
We report an efficient one-pot, two-step procedure for the modular synthesis of α-difunctionalized alkynes and trisubstituted allenes by sequential cross-coupling of benzal gem-diacetates with organozinc or -copper reagents in the absence of external transition metals. The intermediacy of propargylic acetates enables the divergent and selective synthesis of these valuable products. This method features its readily accessible substrates, relatively mild conditions, wide scope, and scalability in practical synthesis.
Collapse
Affiliation(s)
- Rundong Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Feng Ouyang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yike Bai
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Ruiren Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Guipeng Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Baosheng Wei
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
90
|
Hosseini-Sarvari M, Dehghani A. Nickel/TiO2-catalyzed Suzuki–Miyaura cross-coupling of arylboronic acids with aryl halides in MeOH/H2O. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-023-03052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
91
|
Ackerman-Biegasiewicz LKG, Kariofillis SK, Weix DJ. Multimetallic-Catalyzed C-C Bond-Forming Reactions: From Serendipity to Strategy. J Am Chem Soc 2023; 145:6596-6614. [PMID: 36913663 PMCID: PMC10163949 DOI: 10.1021/jacs.2c08615] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The use of two or more metal catalysts in a reaction is a powerful synthetic strategy to access complex targets efficiently and selectively from simple starting materials. While capable of uniting distinct reactivities, the principles governing multimetallic catalysis are not always intuitive, making the discovery and optimization of new reactions challenging. Here, we outline our perspective on the design elements of multimetallic catalysis using precedent from well-documented C-C bond-forming reactions. These strategies provide insight into the synergy of metal catalysts and compatibility of the individual components of a reaction. Advantages and limitations are discussed to promote further development of the field.
Collapse
Affiliation(s)
| | - Stavros K. Kariofillis
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States
| |
Collapse
|
92
|
Zhang G, Luo X, Guan C, Cui Y, Ding C. Pd/Ni Co‐catalyzed Selective Cross‐Coupling of Aryl Bromides and Aryl Fluorosulfonates at Room Temperature. European J Org Chem 2023. [DOI: 10.1002/ejoc.202300114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
93
|
Wang Z, Zhang C, Wu J, Li B, Chrostowska A, Karamanis P, Liu SY. trans-Hydroalkynylation of Internal 1,3-Enynes Enabled by Cooperative Catalysis. J Am Chem Soc 2023; 145:5624-5630. [PMID: 36862947 PMCID: PMC10162690 DOI: 10.1021/jacs.3c00514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
A cooperative catalyst system involving a Pd(0)/Senphos complex, tris(pentafluorophenyl)borane, copper bromide, and an amine base, is demonstrated to catalyze trans-hydroalkynylation of internal 1,3-enynes. For the first time, a Lewis acid catalyst is shown to promote the reaction involving the emerging outer-sphere oxidative reaction step. The resulting cross-conjugated dieneynes are versatile synthons for organic synthesis, and their characterization reveals distinct photophysical properties depending on the positioning of the donor/acceptor substituents along the conjugation path.
Collapse
Affiliation(s)
- Ziyong Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Chen Zhang
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 Avenue P. Angot, 64053 Pau Cedex 09, France
| | - Jason Wu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Bo Li
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
| | - Anna Chrostowska
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 Avenue P. Angot, 64053 Pau Cedex 09, France
| | - Panaghiotis Karamanis
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 Avenue P. Angot, 64053 Pau Cedex 09, France
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467-3860, United States
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 Avenue P. Angot, 64053 Pau Cedex 09, France
| |
Collapse
|
94
|
Zhang Q, Huang X, Gui Y, He Y, Liao S, Huang G, Liang T, Zhang Z. Unlocking Regiodivergence in Pd II- and Rh III-Mediated Site-Selective C-H Bond Alkynylation of Imidazopyridines. Org Lett 2023; 25:1447-1452. [PMID: 36826371 DOI: 10.1021/acs.orglett.3c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
An efficient PdII- and RhIII-controlled site-selective C-H bond alkynylation of imidazopyridines using (bromoethynyl)triisopropylsilane is disclosed. The divergent methodology allows straightforward access to a wide range of products alkynylated at the C3 and ortho positions. This strategy is suggestive of a practical platform that can be suitable for late-stage diversification and may assist in the design of more selective and complementary catalytic systems.
Collapse
Affiliation(s)
- Qiang Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Xuecong Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Yuting Gui
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Youyuan He
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Siyang Liao
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Guan Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Taoyuan Liang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhuan Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
95
|
Wilson KA, Picinich LA, Siamaki AR. Nickel-palladium bimetallic nanoparticles supported on multi-walled carbon nanotubes; versatile catalyst for Sonogashira cross-coupling reactions. RSC Adv 2023; 13:7818-7827. [PMID: 36909771 PMCID: PMC9996231 DOI: 10.1039/d3ra00027c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/26/2023] [Indexed: 03/14/2023] Open
Abstract
We have developed an efficient method to generate highly active nickel-palladium bimetallic nanoparticles supported on multi-walled carbon nanotubes (Ni-Pd/MWCNTs) by dry mixing of the nickel and palladium salts utilizing the mechanical energy of a ball-mill. These nanoparticles were successfully employed in Sonogashira cross-coupling reactions with a wide array of functionalized aryl halides and terminal alkynes under ligand and copper free conditions using a Monowave 50 heating reactor. Notably, the concentration of palladium can be lowered to a minimum amount of 0.81% and replaced by more abundant and less expensive nickel nanoparticles while effectively catalyzing the reaction. The remarkable reactivity of the Ni-Pd/MWCNTs catalyst toward Sonogashira cross-coupling reactions is attributed to the high degree of the dispersion of Ni-Pd nanoparticles with small particle size of 5-10 nm due to an efficient grinding method. The catalyst was easily removed from the reaction mixture by centrifugation and reused several times with minimal loss of catalytic activity. Furthermore, the concentration of catalyst in Sonogashira reactions can be reduced to a minimum amount of 0.01 mol% while still providing a high conversion of the Sonogashira product with a remarkable turnover number (TON) of 7200 and turnover frequency (TOF) of 21 600 h-1. The catalyst was fully characterized by a variety of spectroscopic techniques including X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS).
Collapse
Affiliation(s)
- Katherine A Wilson
- Department of Chemistry, Physics, and Materials Science, Fayetteville State University Fayetteville NC USA 28301
| | - Lacey A Picinich
- Department of Chemistry, Physics, and Materials Science, Fayetteville State University Fayetteville NC USA 28301
| | - Ali R Siamaki
- Department of Chemistry, Physics, and Materials Science, Fayetteville State University Fayetteville NC USA 28301
| |
Collapse
|
96
|
Karimi S, Gholinejad M, Khezri R, Sansano JM, Nájera C, Yus M. Gold and palladium supported on an ionic liquid modified Fe-based metal-organic framework (MOF) as highly efficient catalysts for the reduction of nitrophenols, dyes and Sonogashira-Hagihara reactions. RSC Adv 2023; 13:8101-8113. [PMID: 36909743 PMCID: PMC10001704 DOI: 10.1039/d3ra00283g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Two supported noble metal species, gold and palladium anchored on an ionic liquid-modified Fe-based metal-organic framework (MOF), were successfully synthesized and characterized by FT-IR, XRD, TEM, XPS, SEM, EDX, and elemental mapping. The ionic liquid post-modified MOF was used for anchoring Au or Pd at ppm levels, and the resulting materials were employed as catalysts in the reduction of nitrophenol isomers, dyes, and Sonogashira-Hagihara reactions. Using the Au@Fe-MOF-IL catalyst, reduction of nitrophenol isomers, as well as the reductive degradation of dyes, e.g., methylene blue (MB), methyl orange (MO), and methyl red (MR) were performed efficiently in water. On the other hand, Pd@Fe-MOF-IL was used as an effective catalyst in the Sonogashira-Hagihara coupling reaction of aryl iodides and bromides using very low amounts of Pd. These catalysts were recycled and reused for several runs without deteriorating remarkably in catalytic performance.
Collapse
Affiliation(s)
- Shirin Karimi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) P. O. Box 45195-1159, Gavazang Zanjan 45137-66731 Iran
| | - Mohammad Gholinejad
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) P. O. Box 45195-1159, Gavazang Zanjan 45137-66731 Iran .,Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Rahimeh Khezri
- Department of Chemistry, Faculty of Sciences, Persian Gulf University Bushehr 75169 Iran
| | - José M Sansano
- Departamento de Química Orgánica, Instituto de Síntesis Orgánica, Universidad de Alicante Apdo. 99 03690-Alicante Spain.,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante Apdo. 99 03690-Alicante Spain
| | - Carmen Nájera
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante Apdo. 99 03690-Alicante Spain
| | - Miguel Yus
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante Apdo. 99 03690-Alicante Spain
| |
Collapse
|
97
|
Chen Y, Li S, Xu L, Ma D. Cu/Oxalic Diamide-Catalyzed Coupling of Terminal Alkynes with Aryl Halides. J Org Chem 2023. [PMID: 36779409 DOI: 10.1021/acs.joc.2c02882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
N1-(2,6-Dimethylphenyl)-N2-(pyridin-2-ylmethyl)oxalamide (DMPPO) was revealed to be a more effective ligand for copper-catalyzed coupling reaction of (hetero)aryl halides with 1-alkynes than previously reported ones. Only 3 mol % CuCl and DMPPO are required to make the coupling complete at 100 °C (for bromides) and 80 °C (for iodides). Both (hetero)aryl and alkyl substituted 1-alkynes worked well under these conditions, leading to the formation of internal alkynes in great diversity.
Collapse
Affiliation(s)
- Ying Chen
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Sailuo Li
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Lanting Xu
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
98
|
Malav R, Ray S. Carbon-carbon Cross Coupling Reactions Assisted by Schiff Base Complexes of Palladium, Cobalt and Copper: A Brief Overview. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
99
|
Brewitz L, Dumjahn L, Zhao Y, Owen CD, Laidlaw SM, Malla TR, Nguyen D, Lukacik P, Salah E, Crawshaw AD, Warren AJ, Trincao J, Strain-Damerell C, Carroll MW, Walsh MA, Schofield CJ. Alkyne Derivatives of SARS-CoV-2 Main Protease Inhibitors Including Nirmatrelvir Inhibit by Reacting Covalently with the Nucleophilic Cysteine. J Med Chem 2023; 66:2663-2680. [PMID: 36757959 PMCID: PMC9924091 DOI: 10.1021/acs.jmedchem.2c01627] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 02/10/2023]
Abstract
Nirmatrelvir (PF-07321332) is a nitrile-bearing small-molecule inhibitor that, in combination with ritonavir, is used to treat infections by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Nirmatrelvir interrupts the viral life cycle by inhibiting the SARS-CoV-2 main protease (Mpro), which is essential for processing viral polyproteins into functional nonstructural proteins. We report studies which reveal that derivatives of nirmatrelvir and other Mpro inhibitors with a nonactivated terminal alkyne group positioned similarly to the electrophilic nitrile of nirmatrelvir can efficiently inhibit isolated Mpro and SARS-CoV-2 replication in cells. Mass spectrometric and crystallographic evidence shows that the alkyne derivatives inhibit Mpro by apparent irreversible covalent reactions with the active site cysteine (Cys145), while the analogous nitriles react reversibly. The results highlight the potential for irreversible covalent inhibition of Mpro and other nucleophilic cysteine proteases by alkynes, which, in contrast to nitriles, can be functionalized at their terminal position to optimize inhibition and selectivity, as well as pharmacodynamic and pharmacokinetic properties.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Leo Dumjahn
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Yilin Zhao
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - C. David Owen
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research
Complex at Harwell, Harwell Science and
Innovation Campus, Didcot OX11 0FA, United
Kingdom
| | - Stephen M. Laidlaw
- Wellcome
Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Tika R. Malla
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Dung Nguyen
- Wellcome
Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Petra Lukacik
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research
Complex at Harwell, Harwell Science and
Innovation Campus, Didcot OX11 0FA, United
Kingdom
| | - Eidarus Salah
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Adam D. Crawshaw
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Anna J. Warren
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Jose Trincao
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Claire Strain-Damerell
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research
Complex at Harwell, Harwell Science and
Innovation Campus, Didcot OX11 0FA, United
Kingdom
| | - Miles W. Carroll
- Wellcome
Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Martin A. Walsh
- Diamond
Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research
Complex at Harwell, Harwell Science and
Innovation Campus, Didcot OX11 0FA, United
Kingdom
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
100
|
Zhang G, Zhang C, Tian Y, Chen F. Fe-Catalyzed Direct Synthesis of Nitriles from Carboxylic Acids with Electron-Deficient N-Cyano- N-aryl-arylsulfonamide. Org Lett 2023; 25:917-922. [PMID: 36730786 DOI: 10.1021/acs.orglett.2c04185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Established carboxylic acids to nitriles conversion methods suffer from expensive catalysts, tedious steps, high temperatures (>200 °C), high pressure, or a narrow substrate range. Herein, we demonstrate a concise and efficient access to diverse nitrile compounds from ubiquitous carboxylic acids with electron-deficient N-cyano-N-aryl-arylsulfonamide (NCAS) in moderate to excellent yields. This strategy is promoted by an inexpensive iron catalyst and is generally compatible with primary, secondary, tertiary, and aryl carboxylic acids, as well as a variety of functional groups.
Collapse
Affiliation(s)
- Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002 Yangzhou, China
| | - Chengyu Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002 Yangzhou, China
| | - Ye Tian
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002 Yangzhou, China
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002 Yangzhou, China
| |
Collapse
|