51
|
Li J, Wei C, Han Y, Hu C. Recent advances in oxidative catalytic applications of polyoxovanadate-based inorganic-organic hybrids. Dalton Trans 2023; 52:12582-12596. [PMID: 37646095 DOI: 10.1039/d3dt02249h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Polyoxovanadates (POVs) have received widespread attention in catalytic applications due to their various structures and remarkable redox properties. By introducing a second transition metal, POV-based inorganic-organic hybrid (POVH) catalysts show increasing stability and more catalytic active sites compared with pure POVs. In this perspective article, POVH materials as oxidative catalysts have been classified into two main categories according to the interactions between transition metal-complex units and POV clusters: (i) hybrids with metal-organic units act as isolated cations and (ii) hybrids with an organic ligand coordinate to the second transition metal, which is further linked to a POV cluster via oxygen bridges directly or indirectly to give zero-, one-, two- or three-dimensional supramolecular structures. The oxidative conversion of organic compounds, including thiophene derivatives, thioethers, alkanes, alcohols, and alkenes, and oxidative detoxification of a sulfur mustard simulant or degradation of lignin, along with the oxidative photo/electrocatalytic transformation of organic compounds catalyzed by POVH materials, are discussed in detail. Furthermore, the challenges and prospects toward the development of POVH catalysts are explored briefly from our perspectives.
Collapse
Affiliation(s)
- Jikun Li
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, Shandong, P. R. China.
| | - Chuanping Wei
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, Shandong, P. R. China.
| | - Yinfeng Han
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, 271021, Shandong, P. R. China.
| | - Changwen Hu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry, Beijing Institute of Technology, Beijing, 100081, P.R. China.
| |
Collapse
|
52
|
Zhang Y, Zhao M, Huang J, Zhao N, Yu H. Controllable Synthesis, Photocatalytic Property, and Mechanism of a Novel POM-Based Direct Z-Scheme Nano-Heterojunction α-Fe 2O 3/P 2Mo 18. Molecules 2023; 28:6671. [PMID: 37764447 PMCID: PMC10536182 DOI: 10.3390/molecules28186671] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
In order to improve photocatalytic activity and maximize solar energy use, a new composite material Fe2O3/P2Mo18 was prepared by combining polyoxometalates (P2Mo18) with Fe2O3 nanosheets. FT-IR, XRD, XPS, SEM, TEM, UV-vis, EIS, and PL were used to characterize the composite material, and nano-Fe2O3 of different sizes and morphologies with a controllable absorption range was prepared by adjusting the reaction time, and, when combined with P2Mo18, a composite photocatalyst with efficient visible light response and photocatalytic activity was constructed. The EIS, Bode, and PL spectra analysis results show that the Fe2O3/P2Mo18 composite material has outstanding interfacial charge transfer efficiency and potential photocatalytic application possibilities. Model reactions of methylene blue (MB) and Cr (VI) photodegradation were used to evaluate the redox activity of Fe2O3/P2Mo18 composites under simulated visible light. The photocatalytic degradation rate was as high as 98.98% for MB and 96.86% for Cr (VI) when the composite ratio was Fe2O3/P2Mo18-5%. This research opens up a new avenue for the development of high-performance photocatalysts.
Collapse
Affiliation(s)
| | | | | | | | - Haihui Yu
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China; (Y.Z.); (M.Z.); (J.H.); (N.Z.)
| |
Collapse
|
53
|
Guo Y, Liu X, Liu X, Xu N, Wang X. A series of polyoxometalate-based COF composites by one-pot mechanosynthesis of thioether to sulfone. Dalton Trans 2023; 52:12264-12270. [PMID: 37603375 DOI: 10.1039/d3dt02116e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
An effective combination of polyoxometalates (POMs) and porous materials is a feasible method to solve the homogeneity of POMs and synthesize extremely stable POM-based catalysts. Herein, by using simple mechanochemical synthesis, we fabricated a series of composites constructed by Keggin-POMs, p-phenylenediamine (Pa-1), and 1,3,5-triformylphloroglucinol (Tp), which in situ form a stable covalent organic framework (Keggin-POMs@TpPa-1). Notably, the different Keggin-POMs@TpPa-1 composites showed different catalytic effects on thioether oxidation reaction under mild conditions. From the comparison, the catalytic effect of PW12@TpPa-1 with its added amount of 27% H3PW12O40 is superior to that of other composites, whose catalytic efficiency can reach 99%. This study provides some inspiration for designing diverse POM-modified catalysts with outstanding stability and efficiency using COFs as supports.
Collapse
Affiliation(s)
- Yanyan Guo
- College of Chemistry and Materials Engineering, Bohai University, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| | - Xiaohui Liu
- College of Chemistry and Materials Engineering, Bohai University, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| | - Xiaodong Liu
- College of Chemistry and Materials Engineering, Bohai University, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| | - Na Xu
- College of Chemistry and Materials Engineering, Bohai University, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| |
Collapse
|
54
|
Routh K, Pradeep CP. Multifunctional Aryl Sulfonium Decavanadates: Tuning the Photochromic and Heterogeneous Oxidative Desulfurization Catalytic Properties Using Salicylaldehyde-type Functional Moieties on Counterions. Inorg Chem 2023; 62:13775-13792. [PMID: 37575023 DOI: 10.1021/acs.inorgchem.3c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Multifunctional materials based on polyoxovanadates (POVs) have rarely been reported. Herein, we used aryl sulfonium counterions (ASCIs) bearing a salicylaldehyde-type functionality to tune the properties of decavanadate ([V10O28]6-)-based hybrids for their application in photochromism and heterogeneous oxidative desulfurization (ODS) catalysis. The counterions FHPDS ((3-formyl-4-hydroxyphenyl)dimethylsulfonium), DFHPDS ((3,5-diformyl-4-hydroxyphenyl)dimethylsulfonium), and EFPDS ((4-ethoxy-3-formylphenyl)dimethylsulfonium) were clubbed with the decavanadate cluster to generate the hybrids (FHPDS)4[H2V10O28](H2O)4 (HY1), (DFHPDS)4[H2V10O28](H2O)3 (HY2), and (EFPDS)4[H2V10O28](H2O)6 (HY3). The photochromic properties of these hybrids were tested under 365 nm irradiation, which showed a color change from yellow to green. Different hybrids exhibited different photocoloration half-life (t1/2) values in the range of 0.77-28.38 min, suggesting the dependence of the photocoloration properties upon functional groups on the counterions. The hybrid HY2, having a 2,6-diformyl phenol moiety on the ASCI, exhibited an impressive t1/2 of 0.77 min. UP to 70% reversibility of photocoloration was achieved for the best photochromic hybrid HY2 in 48 h at 70 °C under an oxygen atmosphere. Theoretical and experimental data suggested that some of these aryl sulfonium POVs follow a different e--h+ stabilization mechanism than traditional sulfonium POM hybrids. Further, the salicylaldehyde-type ASCIs control the solubility of the decavanadate hybrids, which enables their application as heterogeneous catalysts for the selective oxidation of various sulfides. The nature of the substituents on the ASCIs also affected their catalytic activities; the counterion that facilitates the reversible V4+/V5+ switching enhances the catalytic ODS efficiency of the hybrids. Using HY2 as the catalyst, up to 99% conversion and 96% selectivity toward sulfones were achieved in dibenzothiophene (DBT) oxidation. The present study suggests a new promising approach for controlling POVs' photoresponsive and catalytic properties by using ASCIs bearing salicylaldehyde-type functional moieties.
Collapse
Affiliation(s)
- Kousik Routh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Kamand 175005, Himachal Pradesh, India
| | - Chullikkattil P Pradeep
- School of Chemical Sciences, Indian Institute of Technology Mandi, Kamand 175005, Himachal Pradesh, India
| |
Collapse
|
55
|
Lentink S, Salazar Marcano DE, Moussawi MA, Vandebroek L, Van Meervelt L, Parac-Vogt TN. Fine-tuning non-covalent interactions between hybrid metal-oxo clusters and proteins. Faraday Discuss 2023; 244:21-38. [PMID: 37102318 DOI: 10.1039/d2fd00161f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interactions between the protein Hen Egg White Lysozyme (HEWL) and three different hybrid Anderson-Evans polyoxometalate clusters - AE-NH2 (δ-[MnMo6O18{(OCH2)3CNH2}2]3-), AE-CH3 (δ-[MnMo6O18{(OCH2)3CCH3}2]3-) and AE-Biot (δ-[MnMo6O18{(OCH2)3CNHCOC9H15N2OS}2]3-) - were studied via tryptophan fluorescence spectroscopy and single crystal X-ray diffraction. Quenching of tryptophan fluorescence was observed in the presence of all three hybrid polyoxometalate clusters (HPOMs), but the extent of quenching and the binding affinity were greatly dependent on the nature of the organic groups attached to the cluster. Control experiments further revealed the synergistic effect of the anionic polyoxometalate core and organic ligands towards enhanced protein interactions. Furthermore, the protein was co-crystallised with each of the three HPOMs, resulting in four different crystal structures, thus allowing for the binding modes of HPOM-protein interactions to be investigated with near-atomic precision. All crystal structures displayed a unique mode of binding of the HPOMs to the protein, with both functionalisation and the pH of the crystallisation conditions influencing the interactions. From the crystal structures, it was determined that HPOM-protein non-covalent complexes formed through a combination of electrostatic attraction between the polyoxometalate cluster and positively charged surface regions of HEWL, and direct and water-mediated hydrogen bonds with both the metal-oxo inorganic core and the functional groups of the ligand, where possible. Hence, functionalisation of metal-oxo clusters shows great potential in tuning their interactions with proteins, which is of interest for several biomedical applications.
Collapse
Affiliation(s)
- Sarah Lentink
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium.
| | | | - Mhamad Aly Moussawi
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium.
| | - Laurens Vandebroek
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium.
| | - Luc Van Meervelt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium.
| | | |
Collapse
|
56
|
Petrovskii SK, Moors M, Schmitz S, Grachova EV, Monakhov KY. Increasing the redox switching capacity of Lindqvist-type hexavanadates by organogold post-functionalisation. Chem Commun (Camb) 2023. [PMID: 37455637 DOI: 10.1039/d3cc02511j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The covalent attachment of organogold(I) moieties to the Lindqvist-type polyoxovanadate results in a measurable charge re-distribution across the formed Au-{V6}-Au linkages. Scanning probe microscopy studies of these hybrid compounds on the Au(111) surface demonstrate the increase in the number of switching states with stepwise increase in molecular conductance, compared with unfunctionalised hexavanadates.
Collapse
Affiliation(s)
| | - Marco Moors
- Leibniz Institute of Surface Engineering (IOM), Leipzig 04318, Germany.
| | - Sebastian Schmitz
- Leibniz Institute of Surface Engineering (IOM), Leipzig 04318, Germany.
| | - Elena V Grachova
- Institute of Chemistry, St Petersburg University, St. Petersburg 198504, Russia.
| | | |
Collapse
|
57
|
Kapurwan S, Sahu PK, Raizada M, Kharel R, Konar S. [α-AsW 9O 33] 9- bridged hexagonal clusters of Ln(III) showing field induced SMM behavior: experimental and theoretical insight. Dalton Trans 2023. [PMID: 37357913 DOI: 10.1039/d3dt00406f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Polyoxometalates (POM), as inorganic polydentate oxygen donors, provide binding opportunities for oxophilic lanthanide metal centers to construct novel Ln-substituted POM materials with exciting structures and attractive properties. Herein, we have reported four arsenotungstate [α-AsW9O33]9- based lanthanide-containing polyoxometalates [CsxK36-x{Ln6(H2O)12(α-AsW9O33)6}]·yH2O (Ln = Er (1), Gd (2), Ho (3), and Tb (4)), which are synthesized in an alkaline medium. Complexes 1-3 are the dimeric structures of [Ln3(H2O)6(α-AsW9O33)3]18- polyanions, whereas complex 4 is a hexamer of the polyanion [Tb (H2O)2(α-AsW9O33)]6- as a building unit. In all the complexes, [α-AsW9O33]9- units are staggered up and down and give rise to the chair conformation, where one [α-AsW9O33]9- unit bridges two Ln(III) centers through four μ2-oxygen and two terminal oxygen atoms, resulting in the hexagonal arrangement of lanthanides. The dynamic magnetic measurement indicates that only complex 1 exhibits slow relaxation of magnetization with an applied dc field (1500 Oe). To gain insight into the slow relaxation of magnetization in complex 1, the ligand-field parameters and the splitting of the ground-state multiplet of the Er(III) ions have been estimated. The ab initio calculation results confirm that the ground state wave function of these molecules (1, 3, and 4) is mainly composed of a mixture of mJ states, and the non-axial crystal field (CF) terms are more predominant than the axial CF term. The solid-state fluorescence spectra of 1-4 reveal that the photoexcitation O → M ligand-to-metal charge-transfer (LMCT) of arsenotungstate fragments is effectively quenched due to the spatial coordination environment around the Ln(III) ion.
Collapse
Affiliation(s)
- Sandhya Kapurwan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Pradip Kumar Sahu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Mukul Raizada
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Ranjan Kharel
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| |
Collapse
|
58
|
Rafieeshad M, Gumerova NI, Tanuhadi E, Giester G, Čipčić-Paljetak H, Verbanac D, Rompel A. Synthesis, Characterization, and Antibacterial Activity of Ni-Substituted Krebs-type Sandwich-Tungstobismuthates Functionalized with Amino Acids. Inorg Chem 2023; 62:9484-9490. [PMID: 37285473 PMCID: PMC10283016 DOI: 10.1021/acs.inorgchem.3c00747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 06/09/2023]
Abstract
Four new Ni-substituted Krebs-type sandwich-tungstobismuthates, K4Ni2[{Ni(β-ala)(H2O)2}2{Ni(H2O)}2{Ni(H2O)(η2-β-ala)}2(B-β-BiW9O33)2]·49H2O {(β-ala)4(Ni3)2(BiW9)2}, K3.5Na6.5[{Ni(η3-L-asp)}2(WO2)2(B-β-BiW9O33)2]·36H2O·L-asp {(L-asp)2(NiW)2(BiW9)2}, K4Na6[{Ni(gly)(H2O)2}2(WO2)2(B-β-BiW9O33)2]·86H2O {(gly)2(NiW)2(BiW9)2}, and K2Na8[{Ni(η2-serinol) (H2O)}2{Ni(H2O)2}2(B-β-BiW9O33)2]·42H2O {(serinol)2Ni4(BiW9)2} have been synthesized by one-pot solution methods. All compounds have been characterized in the solid state by single-crystal X-ray diffraction (SXRD), powder X-ray diffraction (PXRD), elemental and thermogravimetric analyses, and infrared spectroscopy (IR), as well as by UV-vis spectroscopy in solution. The antibacterial activity of all compounds was studied against four bacterial strains by the determination of the minimum inhibitory concentration (MIC). The results showed that only {(β-ala)4(Ni3)2(BiW9)2} demonstrates antibacterial activity (MIC is in the range from 8 to 256 μg/mL) compared to three other Ni-Krebs sandwiches.
Collapse
Affiliation(s)
- Morteza Rafieeshad
- Universität
Wien, Fakultät für Chemie,
Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, Wien 1090, Austria
| | - Nadiia I. Gumerova
- Universität
Wien, Fakultät für Chemie,
Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, Wien 1090, Austria
| | - Elias Tanuhadi
- Universität
Wien, Fakultät für Chemie,
Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, Wien 1090, Austria
| | - Gerald Giester
- Fakultät
für Geowissenschaften, Geographie und Astronomie, Institut
für Mineralogie und Kristallographie, Universität Wien, Josef-Holaubek-Platz 2, Wien 1090, Austria
| | - Hana Čipčić-Paljetak
- Center
for Translational and Clinical Research, School of Medicine, University of Zagreb, Šalata 2, Zagreb 10000, Croatia
| | - Donatella Verbanac
- Faculty
of Pharmacy and Biochemistry, University
of Zagreb, A. Kovačića
1, Zagreb 10000, Croatia
| | - Annette Rompel
- Universität
Wien, Fakultät für Chemie,
Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, Wien 1090, Austria
| |
Collapse
|
59
|
Amin SS, Jones KD, Kibler AJ, Damian HA, Cameron JM, Butler KS, Argent SP, Winslow M, Robinson D, Mitchell NJ, Lam HW, Newton GN. Diphosphoryl-functionalized Polyoxometalates: Structurally and Electronically Tunable Hybrid Molecular Materials. Angew Chem Int Ed Engl 2023; 62:e202302446. [PMID: 36988545 PMCID: PMC10952223 DOI: 10.1002/anie.202302446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Herein, we report the synthesis and characterization of a new class of hybrid Wells-Dawson polyoxometalate (POM) containing a diphosphoryl group (P2 O6 X) of the general formula [P2 W17 O57 (P2 O6 X)]6- (X=O, NH, or CR1 R2 ). Modifying the bridging unit X was found to impact the redox potentials of the POM. The ease with which a range of α-functionalized diphosphonic acids (X=CR1 R2 ) can be prepared provides possibilities to access diverse functionalized hybrid POMs. Compared to existing phosphonate hybrid Wells-Dawson POMs, diphosphoryl-substituted POMs offer a wider tunable redox window and enhanced hydrolytic stability. This study provides a basis for the rational design and synthesis of next-generation hybrid Wells-Dawson POMs.
Collapse
Affiliation(s)
- Sharad S. Amin
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee CampusTriumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Kieran D. Jones
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee CampusTriumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Alexander J. Kibler
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee CampusTriumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Heather A. Damian
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee CampusTriumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Jamie M. Cameron
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee CampusTriumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Kevin S. Butler
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee CampusTriumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Stephen P. Argent
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee CampusTriumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Max Winslow
- Department of Chemistry and ForensicsSchool of Science and TechnologyNottingham Trent UniversityNottinghamNG11 8NSUK
| | - David Robinson
- Department of Chemistry and ForensicsSchool of Science and TechnologyNottingham Trent UniversityNottinghamNG11 8NSUK
| | | | - Hon Wai Lam
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee CampusTriumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Graham N. Newton
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamJubilee CampusTriumph RoadNottinghamNG7 2TUUK
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| |
Collapse
|
60
|
Bharath S, Lazer A, Lin YL, Peter P, Thavasikani J. Novel morphological mono-metallic substituted polyoxometalate immobilized 3-(aminopropyl)-imidazole photocatalysts for visible-light driven degradation: Anti-bacterial activity, membrane bacterial activity applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122868. [PMID: 37216819 DOI: 10.1016/j.saa.2023.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
A novel keggin-type tetra-metalates substituted polyoxometalate was functionalized by 3-(aminopropyl)-imidazole (3-API) supporting a ligand substitution method. In this paper, polyoxometalate (POMs) (NH4)3 [PMo12O40] and transition metal substituted of (NH4)3 [{PMIVMo11O40}.(H2O)] (M = Mn, V) are used as one of the adsorbents. The 3-API/POMs hybrid have been synthesized and used as adsorbent for the photo-catalysis of azo-dye molecule degradation after visible-light illumination as a simulated organic contaminant in water. The transition metal (M = MIV, VIV) substituted keggin-type anions (MPOMs) were synthesized, which reveals the degradation of methyl orange (MO) of about 94.0 % and 88.6 %. Immobilizing high redox ability POMs as an efficient acceptor of photo generated electron, on metal 3-API. In the presence of visible light irradiation result reveals that 3-API/POMs (89.9 %) have incredibly achieved after certain irradiation time and at specific conditions (3)-API/POMs; photo-catalysts dose = 5mg/100 ml, pH = 3 and MO dye concentration = 5 ppm). As the surface of POM catalyst has strong absorption of azo-dye MO molecule engaged as a molecular exploration through photo catalytic reactant. From the SEM images it is clear that the synthesized POMs based materials and POMs conjugated MO have varieties of morphological changes observed such as flakes, rods and spherical like structures. Anti-bacterial study reveals that the process of targeted microorganism occur higher activity against pathogenic bacterium for 180 min of visible-light irradiation is measured in terms of zone of the inhibition. Furthermore, the photo catalytic degradation mechanism of MO using POM, metaled POMs and 3-API/POMs also has been discussed.
Collapse
Affiliation(s)
- Samannan Bharath
- Department of Chemistry, Sacred Heart College (Autonomous), Tirupattur 635 601, Tamil Nadu, India; Departments of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 824, Taiwan
| | - Alphonse Lazer
- Department of Chemistry, Sacred Heart College (Autonomous), Tirupattur 635 601, Tamil Nadu, India
| | - Yi-Li Lin
- Departments of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 824, Taiwan
| | - Praveen Peter
- Department of Chemistry, Sacred Heart College (Autonomous), Tirupattur 635 601, Tamil Nadu, India
| | - Jeyabalan Thavasikani
- Department of Chemistry, Sacred Heart College (Autonomous), Tirupattur 635 601, Tamil Nadu, India.
| |
Collapse
|
61
|
Bourwina M, Msalmi R, Walha S, Turnbull MM, Roisnel T, Guesmi A, Houas A, Ben Hamadi N, Naïli H. Crystal Chemistry, Optic and Magnetic Characterizations of a New Copper Based Material Templated by Hexahydrodiazepine. ACS OMEGA 2023; 8:15075-15082. [PMID: 37151535 PMCID: PMC10157685 DOI: 10.1021/acsomega.2c08035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/04/2023] [Indexed: 05/09/2023]
Abstract
Crystals of the new organic-inorganic material (DAP-H2)[CuBr4] (1); (DAP = hexahydrodiazepine (C5H14N2)) were successfully synthesized by slow evaporation and characterized by single-crystal X-ray diffraction, infrared spectroscopy, thermal analysis, UV-Vis-NIR diffuse reflectance spectroscopy, and magnetic measurements. X-ray investigation demonstrates that 1 crystallizes in the monoclinic space group C2/c. The supramolecular crystal structure of 1 is guided by several types of hydrogen bonding which connect anions and cations together into a three-dimensional network. The optical band gap was determined by diffuse reflectance spectroscopy to be 1.78 eV for a direct allowed transition, implying that it is suitable for light harvesting in solar cells. The vibrational properties of this compound were studied by infrared spectroscopy, while its thermal stability was established by simultaneous TGA-DTA from ambient temperature to 600 °C. The study of the photoresponse behavior of an optoelectronic device, based on (C5H14N2)[CuBr4], has shown a power conversion efficiency (PCE) of 0.0017%, with J sc = 0.0208 mA/cm2, V oc = 313.7 mV, and FF = 25.46. Temperature dependent magnetic susceptibility measurements in the temperature range 1.8-310 K reveal weak antiferromagnetic interactions via the two-halide superexchange pathway [2J/k B = -8.4(3) K].
Collapse
Affiliation(s)
- Mansoura Bourwina
- Laboratoire
Physico-Chimie de l’Etat Solide, Département de Chimie,
Faculté des Sciences de Sfax, Université
de Sfax, B.P. 1171, 3000 Sfax, Tunisia
| | - Rawia Msalmi
- Laboratoire
Physico-Chimie de l’Etat Solide, Département de Chimie,
Faculté des Sciences de Sfax, Université
de Sfax, B.P. 1171, 3000 Sfax, Tunisia
| | - Sandra Walha
- Laboratoire
Physico-Chimie de l’Etat Solide, Département de Chimie,
Faculté des Sciences de Sfax, Université
de Sfax, B.P. 1171, 3000 Sfax, Tunisia
| | - Mark M. Turnbull
- Carlson
School of Chemistry and Biochemistry, Clark
University, Worcester, Massachusetts 01610, United States
| | - Thierry Roisnel
- Institut
des Sciences Chimiques de Rennes UMR 6226 CNRS, Université
Rennes 1, Campus de Beaulieu, F-35042 Rennes, France
| | - Ahlem Guesmi
- Chemistry
Department, College of Science, Imam Mohammad
Ibn Saud Islamic University, P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Ammar Houas
- Research
Laboratory of Catalysis and Materials for Environment and Processes, University of Gabes, City Riadh Zerig, 6029 Gabes, Tunisia
| | - Naoufel Ben Hamadi
- Chemistry
Department, College of Science, Imam Mohammad
Ibn Saud Islamic University, P.O. Box 5701, Riyadh 11432, Saudi Arabia
- Medicinal
Chemistry and Natural Products, Laboratory of Heterocyclic Chemistry,
Natural Products and Reactivity (LR11ES39), Faculty of Science of
Monastir, University of Monastir, Avenue of Environment, 5019 Monastir, Tunisia
| | - Houcine Naïli
- Laboratoire
Physico-Chimie de l’Etat Solide, Département de Chimie,
Faculté des Sciences de Sfax, Université
de Sfax, B.P. 1171, 3000 Sfax, Tunisia
| |
Collapse
|
62
|
Salazar Marcano D, Savić ND, Abdelhameed SAM, de Azambuja F, Parac-Vogt TN. Exploring the Reactivity of Polyoxometalates toward Proteins: From Interactions to Mechanistic Insights. JACS AU 2023; 3:978-990. [PMID: 37124292 PMCID: PMC10131212 DOI: 10.1021/jacsau.3c00011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 05/03/2023]
Abstract
The latest advances in the study of the reactivity of metal-oxo clusters toward proteins showcase how fundamental insights obtained so far open new opportunities in biotechnology and medicine. In this Perspective, these studies are discussed through the lens of the reactivity of a family of soluble anionic metal-oxo nanoclusters known as polyoxometalates (POMs). POMs act as catalysts in a wide range of reactions with several different types of biomolecules and have promising therapeutic applications due to their antiviral, antibacterial, and antitumor activities. However, the lack of a detailed understanding of the mechanisms behind biochemically relevant reactions-particularly with complex biological systems such as proteins-still hinders further developments. Hence, in this Perspective, special attention is given to reactions of POMs with peptides and proteins showcasing a molecular-level understanding of the reaction mechanism. In doing so, we aim to highlight both existing limitations and promising directions of future research on the reactivity of metal-oxo clusters toward proteins and beyond.
Collapse
|
63
|
Jiang F, Wang J, Li B, Wu L. Organic-Cation Modulated Assembly Behaviors of a Ureidopyrimidone-Grafting Cluster. Molecules 2023; 28:molecules28093677. [PMID: 37175087 PMCID: PMC10180284 DOI: 10.3390/molecules28093677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Ureidopyrimidone (UPy) is an important building block for constructing functional supramolecular polymers and soft materials based on their characteristic quadruple hydrogen bonds. While the evidence from the single-crystal X-ray diffraction data for the existence of linear hydrogen bonding has still been absent up to now. To obtain the crystals of UPy-containing molecules with high quality, enhanced rigidity and crystallinity are expected. Herein, an inorganic Anderson-Evans type cluster [Mn(OH)6Mo6O18]3-, which can provide suitable stiffness and charge, is used as a linker to covalently anchor two UPy units. The prepared organic-inorganic polyanion with three negative charges has a linear architecture, which is prone to form an infinite one-dimensional structure based on the supramolecular forces. The results indicate that the combination models of UPy units can be conveniently modulated by organic counter cations with different sizes, and therefore three unreported models are observed under various conditions. The present study gives a unique understanding of the intermolecular interactions in UPy-based supramolecular polymers and also provides a simple tuning method, which benefits the construction of functional materials and the adjustment of their properties.
Collapse
Affiliation(s)
- Fengrui Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jiaxu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
64
|
Research progress of POMs constructed by 1,3,5-benzene-tricarboxylic acid: From synthesis to application. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
65
|
Hong CB, Wang T, Liu H. Insights into the Structure of Keggin-Type Polyoxometalate-Based Organic-Inorganic Hybrid Materials: The Actual Ratio of Organic Cations to Heteropolyanions. Inorg Chem 2023; 62:4054-4065. [PMID: 36521005 DOI: 10.1021/acs.inorgchem.2c03467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polyoxometalate (POM)-based organic-inorganic hybrid materials possess versatile properties and applications; however, the ratios of organic cations to POM anions still remain to be solved. In this work, 14 POM-based organic-inorganic hybrid materials were synthesized by the precipitation, hydrothermal, and solvent-evaporation methods. These hybrid materials consisted of a wide range of quaternary ammonium and imidazolium cations with different alkyl chains and different Keggin-type heteropolyanions [i.e., phosphotungstic ([PW12O40]3-), phosphomolybdic ([PMo12O40]3-), silicotungstic ([SiW12O40]4-), and silicomolybdic ([SiMo12O40]4-) anions]. Their compositions and structures were characterized complementarily by elemental analysis, powder X-ray diffraction, single-crystal X-ray diffraction, and Fourier transform infrared spectroscopy. The actual ratios of organic cations to heteropolyanions of [PW12O40]3-, [PMo12O40]3-, [SiW12O40]4-, and [SiMo12O40]4- were found to always be 3:1, 3:1, 4:1, and 4:1, respectively, independent of the organic cations, synthesis methods, and reaction parameters. This finding demonstrates that the organic cations completely substituted the protons of the heteropolyacid precursors in the hybrid materials, which thus hardly possessed Brønsted acidity probed by the pyridine adsorption and cellulose hydrolysis reaction. Such complete substitution of the protons arose apparently from the strong noncovalent interactions between the organic cations and heteropolyanions (such as electrostatic and C-H···O interactions) in the POM-based hybrid materials.
Collapse
Affiliation(s)
- Cheng-Bin Hong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tong Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Haichao Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
66
|
Enhanced electrocatalytic activity of POM-derived CoMoS/FCP heterostructures for overall water splitting in alkaline media. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
67
|
Osuka Y, Ii K, Tsuchiya K, Nemoto M, Sahoo YV, Takahashi K, Tanaka M. Molecular Speciation of Isopolyoxomolybdates and Isopolyoxotungstates with Silicic Acid in Aqueous Solution Using ESI–MS. J SOLUTION CHEM 2023. [DOI: 10.1007/s10953-023-01255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
68
|
Park SJ, Moon YK, Park SW, Lee SM, Kim TH, Kim SY, Lee JH, Jo YM. Highly Sensitive and Selective Real-Time Breath Isoprene Detection using the Gas Reforming Reaction of MOF-Derived Nanoreactors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7102-7111. [PMID: 36700612 DOI: 10.1021/acsami.2c20416] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Real-time breath isoprene sensing provides noninvasive methods for monitoring human metabolism and early diagnosis of cardiovascular diseases. Nonetheless, the stable alkene structure and high humidity of the breath hinder sensitive and selective isoprene detection. In this work, we derived well-defined Co3O4@polyoxometalate yolk-shell structures using a metal-organic framework template. The inner space, including highly catalytic Co3O4 yolks surrounded by a semipermeable polyoxometalate shell, enables stable isoprene to be reformed to reactive intermediate species by increasing the gas residence time and the reaction with the inner catalyst. This sensor exhibited selective isoprene detection with an extremely high chemiresistive response (180.6) and low detection limit (0.58 ppb). The high sensing performance can be attributed to electronic sensitization and catalytic promotion effects. In addition, the reforming reaction of isoprene is further confirmed by the proton transfer reaction-quadrupole mass spectrometry analysis. The practical feasibility of this sensor in smart healthcare applications is exhibited by monitoring muscle activity during the workout.
Collapse
Affiliation(s)
- Seon Ju Park
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young Kook Moon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sei-Woong Park
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Soo Min Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Tae-Hyun Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jong-Heun Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young-Moo Jo
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- Current address: Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
69
|
Ma X, Bhattacharya S, Taffa DH, Nisar T, Wark M, Wagner V, Kortz U. Discrete Arsonate-Grafted Inverted-Keggin 12-Molybdate Ion [Mo 12O 32(OH) 2(4-N 3C 2H 2-C 6H 4AsO 3) 4] 2- and Formation of a Copper(II)-Mediated Metal-Organic Framework. Inorg Chem 2023; 62:1813-1819. [PMID: 35588300 DOI: 10.1021/acs.inorgchem.2c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The discrete inverted-Keggin ion [Mo12O32(OH)2(4-N3C2H2-C6H4AsO3)4]2- (1) has been prepared in an aqueous acidic (pH 0.8) medium by the reaction of MoO3 with the (4-triazolylphenyl)arsonic acid 4-N3C2H2-C6H4AsO3H2 under hydrothermal conditions and was isolated as a sodium salt in 21% yield. The exact same reaction in the presence of Cu2+ ions resulted in the neutral metal-organic framework (MOF) Cu2[Mo12O34(4-N3C2H2-C6H4AsO3)4] (Cu-1) in 68% yield. The inverted-Keggin ion 1 comprises a metal-oxo core, which is capped by four organoarsonate groups, and in Cu-1, individual polyanions are linked in the solid state by coordination of the Cu2+ ions with the triazolyl groups. The discrete ion 1 was characterized by single-crystal X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and atomic absorption (AA) spectroscopy, as well as thermogravimetric analysis (TGA), and the POM-MOF Cu-1 was characterized by single-crystal and powder XRD, FT-IR, TGA, and gas sorption. Cu-1 has channels with a diameter of around ∼0.9 nm and exhibits a water-vapor adsorption capacity of 89.7 cm3 g-1 (p/p0 = 0.95).
Collapse
Affiliation(s)
- Xiang Ma
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Saurav Bhattacharya
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Dereje H Taffa
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Talha Nisar
- Department of Physics and Earth Sciences, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Michael Wark
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Veit Wagner
- Department of Physics and Earth Sciences, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
70
|
Organic–Inorganic Manganese (II) Halide Hybrid Combining the Two Isomers Cis/Trans of [MnCl4(H2O)2]: Crystal Structure, Physical Properties, Pharmacokinetics and Biological Evaluation. INORGANICS 2023. [DOI: 10.3390/inorganics11020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A manganese (II) complex templated by hexahydro-1,4-diazepinediium as a counter ion was grown by slow evaporation from an aqueous solution at room temperature. The X-ray diffraction analysis revealed that the compound (C5H14N2)[MnCl4(H2O)2] crystallizes in the centrosymmetric space group P2/c of the monoclinic system. The crystal structure of the Mn(II) complex is characterized by an alternation of 0-dimensional organic and inorganic stacks linked together by N/O-H…Cl and N-H…O hydrogen bonds, which lead to a three-dimensional supramolecular architecture. In this structure, the inorganic layer is built up by independent anionic moieties combining the two isomers cis/trans of [MnCl4(H2O)2]2−. The thermal decomposition was studied by TGA-DTA techniques. The optical band gap and Urbach energy were obtained by Tauc’s equation. The direct and indirect band gap values are found to be 4.58 and 4.44 eV, respectively. Weak antiferromagnetic interactions are present in the molecule under study, according to magnetic measurements. An agar well diffusion technique was used to assess the synthetic compound’s biological activity, and the results showed that it has potent antibacterial (Gram-positive and Gram-negative) properties. Interestingly, the synthesized compound also displayed antilipase activity. These biological activities have been confirmed by the bioavailability and pharmacokinetic analyses.
Collapse
|
71
|
Zhu L, Tao R, Peng W, Huo A, Guo W. Polyoxometalates immobilized on MIL-100 (Fe) as an emerging platform for eliminating breast cancer tumor cells. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
72
|
Luo XM, Li YK, Dong XY, Zang SQ. Platonic and Archimedean solids in discrete metal-containing clusters. Chem Soc Rev 2023; 52:383-444. [PMID: 36533405 DOI: 10.1039/d2cs00582d] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal-containing clusters have attracted increasing attention over the past 2-3 decades. This intense interest can be attributed to the fact that these discrete metal aggregates, whose atomically precise structures are resolved by single-crystal X-ray diffraction (SCXRD), often possess intriguing geometrical features (high symmetry, aesthetically pleasing shapes and architectures) and fascinating physical properties, providing invaluable opportunities for the intersection of different disciplines including chemistry, physics, mathematical geometry and materials science. In this review, we attempt to reinterpret and connect these fascinating clusters from the perspective of Platonic and Archimedean solid characteristics, focusing on highly symmetrical and complex metal-containing (metal = Al, Ti, V, Mo, W, U, Mn, Fe, Co, Ni, Pd, Pt, Cu, Ag, Au, lanthanoids (Ln), and actinoids) high-nuclearity clusters, including metal-oxo/hydroxide/chalcogenide clusters and metal clusters (with metal-metal binding) protected by surface organic ligands, such as thiolate, phosphine, alkynyl, carbonyl and nitrogen/oxygen donor ligands. Furthermore, we present the symmetrical beauty of metal cluster structures and the geometrical similarity of different types of clusters and provide a large number of examples to show how to accurately describe the metal clusters from the perspective of highly symmetrical polyhedra. Finally, knowledge and further insights into the design and synthesis of unknown metal clusters are put forward by summarizing these "star" molecules.
Collapse
Affiliation(s)
- Xi-Ming Luo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Ya-Ke Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. .,College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
73
|
Plasmonic Ag modified Ag3VO4/AgPMo S-scheme heterojunction photocatalyst for boosted Cr(VI) reduction under visible light: Performance and mechanism. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
74
|
Soria-Carrera H, Atrián-Blasco E, Martín-Rapún R, Mitchell SG. Polyoxometalate-peptide hybrid materials: from structure-property relationships to applications. Chem Sci 2022; 14:10-28. [PMID: 36605748 PMCID: PMC9769095 DOI: 10.1039/d2sc05105b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/16/2022] [Indexed: 11/17/2022] Open
Abstract
Organo-functionalisation of polyoxometalates (POMs) represents an effective approach to obtain diverse arrays of functional structures and materials, where the introduction of organic moieties into the POM molecules can dramatically change their surface chemistry, charge, polarity, and redox properties. The synergistic combination of POMs and peptides, which perform a myriad of essential roles within cellular biochemistry, including protection and transport in living organisms, leads to functional hybrid materials with unique properties. In this Perspective article, we present the principal synthetic routes to prepare and characterise POM-peptide hybrids, together with a comprehensive description of how their properties - such as redox chemistry, stereochemistry and supramolecular self-assembly - give rise to materials with relevant catalytic, adhesive, and biomedical applications. By presenting the state-of-the-art of the POM-peptide field, we show specifically how emerging chemical approaches can be harnessed to develop tailored POM-peptide materials with synergistic properties for applications in a variety of disciplines.
Collapse
Affiliation(s)
- Héctor Soria-Carrera
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza c/ Pedro Cerbuna 12 50009 Zaragoza Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III 28029 Madrid Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza c/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Elena Atrián-Blasco
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza c/ Pedro Cerbuna 12 50009 Zaragoza Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III 28029 Madrid Spain
| | - Rafael Martín-Rapún
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza c/ Pedro Cerbuna 12 50009 Zaragoza Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III 28029 Madrid Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza c/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Scott G Mitchell
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza c/ Pedro Cerbuna 12 50009 Zaragoza Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III 28029 Madrid Spain
| |
Collapse
|
75
|
Zheng K, Yang D, Niu B, Ye Y, Ma P, Wang J, Niu J. dl-Alanine Covalently Bonded Giant Arsenotungstate with Rapid Photochromic and Decent Proton Conduction Properties. Inorg Chem 2022; 61:20222-20226. [DOI: 10.1021/acs.inorgchem.2c03494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kangting Zheng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Dongsheng Yang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Bingxue Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Yajing Ye
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| |
Collapse
|
76
|
Breibeck J, Gumerova NI, Rompel A. Oxo-Replaced Polyoxometalates: There Is More than Oxygen. ACS ORGANIC & INORGANIC AU 2022; 2:477-495. [PMID: 36510613 PMCID: PMC9732882 DOI: 10.1021/acsorginorgau.2c00014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 02/02/2023]
Abstract
The presence of oxo-ligands is one of the main required characteristics for polyoxometalates (POMs), although some oxygen ions in a metallic environment can be replaced by other nonmetals, while maintaining the POM structure. The replacement of oxo-ligands offers a valuable approach to tune the charge distribution and connected properties like reducibility and hydrolytic stability of POMs for the development of tailored compounds. By assessing the reported catalytic and biological applications and connecting them to POM structures, the present review provides a guideline for synthetic approaches and aims to stimulate further applications where the oxo-replaced compounds are superior to their oxo-analogues. Oxo-replacement in POMs deserves more attention as a valuable tool to form chemically activated precursors for the synthesis of novel structures or to upgrade established structures with extraordinary properties for challenging applications.
Collapse
|
77
|
Structure/function relationships of a new stannate (IV) complex based on 5,7-dichloro-8-hydroxyquinolinium, accomplished with DFT calculations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
78
|
Lin CH, Qin RC, Cao N, Wang D, Liu CG. Synergistic Effects of Keggin-Type Phosphotungstic Acid-Supported Single-Atom Catalysts in a Fast NH 3-SCR Reaction. Inorg Chem 2022; 61:19156-19171. [DOI: 10.1021/acs.inorgchem.2c02759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Chun-Hong Lin
- Department of Chemistry, Faculty of Science, Beihua University, Jilin City132013, P. R. China
- Special Ammunition Research Institute, North Huaan Industry Group Co., Ltd., Qiqihar161046, P. R. China
- College of Chemical Engineering, Northeast Electric Power University, Jilin City132012, P. R. China
| | - Rui-Cheng Qin
- Department of Chemistry, Faculty of Science, Beihua University, Jilin City132013, P. R. China
| | - Ning Cao
- College of Chemical Engineering, Northeast Electric Power University, Jilin City132012, P. R. China
| | - Dan Wang
- Department of Chemistry, Faculty of Science, Beihua University, Jilin City132013, P. R. China
| | - Chun-Guang Liu
- Department of Chemistry, Faculty of Science, Beihua University, Jilin City132013, P. R. China
| |
Collapse
|
79
|
Water-stable porous Al24 Archimedean solids for removal of trace iodine. Nat Commun 2022; 13:6632. [PMID: 36333329 PMCID: PMC9636137 DOI: 10.1038/s41467-022-34296-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
In this paper, we report a unique type of core-shell crystalline material that combines an inorganic zeolitic cage structure with a macrocyclic host arrangement and that can remove trace levels of iodine from water effectively. These unique assemblies are made up of an inorganic Archimedean truncatedhexahedron (tcu) polyhedron in the kernel which possesses six calixarene-like shell cavities. The cages have good adaptability to guests and can be assembled into a series of supramolecular structures in the crystalline state with different lattice pore shapes. Due to the unique core-shell porous structures, the compounds are not only stable in organic solvents but also in water. The characteristics of the cages enable rapid iodine capture from low concentration aqueous I2/KI solutions (down to 4 ppm concentration). We have studied the detailed process and mechanism of iodine capture and aggregation at the molecular level. The facile synthesis, considerable adsorption capacity, recyclability, and β- and γ-radiation resistance of the cages should make these materials suitable for the extraction of iodine from aqueous effluent streams (most obviously, radioactive iodide produced by atomic power generation). The removal of radioactive elements is important to human health and sustainable development. Here, the authors reveal the synthesis of water-stable Archimedean solids based on the earth-abundant element for the fast removal of trace iodine.
Collapse
|
80
|
Different conformations of two polyoxomolybdates functionalized by the same V shape carboxylic acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
81
|
Surface Reconstruction of Cobalt-Based Polyoxometalate and CNT Fiber Composite for Efficient Oxygen Evolution Reaction. Catalysts 2022. [DOI: 10.3390/catal12101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Polyoxometalates (POMs), as carbon-free metal-oxo-clusters with unique structural properties, are emerging water-splitting electrocatalysts. Herein, we explore the development of cobalt-containing polyoxometalate immobilized over the carbon nanotube fiber (CNTF) (Co4POM@CNTF) towards efficient electrochemical oxygen evolution reaction (OER). CNTF serves as an excellent electron mediator and highly conductive support, while the self-activation of the part of Co4POM through restructuring in basic media generates cobalt oxides and/or hydroxides that serve as catalytic sites for OER. A modified electrode fabricated through the drop-casting method followed by thermal treatment showed higher OER activity and enhanced stability in alkaline media. Furthermore, advanced physical characterization and electrochemical results demonstrate efficient charge transfer kinetics and high OER performance in terms of low overpotential, small Tafel slope, and good stability over an extended reaction time. The significantly high activity and stability achieved can be ascribed to the efficient electron transfer and highly electrochemically active surface area (ECSA) of the self-activated electrocatalyst immobilized over the highly conductive CNTF. This research is expected to pave the way for developing POM-based electrocatalysts for oxygen electrocatalysis.
Collapse
|
82
|
Zheng K, Ye Y, Shi Y, Xu Y, Yang Z, Ma P, Wang J, Niu J. dl-Serine Covalently Ornamented and Ln 3+-Incorporated Arsenotungstates with Fast-Responsive Photochromic and Photoinduced Luminescent Switchable Behaviors. Inorg Chem 2022; 61:15871-15879. [PMID: 36174202 DOI: 10.1021/acs.inorgchem.2c01806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three isostructural dl-serine covalently functionalized and multinuclear lanthanide (Ln3+)-embedded arsenotungstates, K2[{As4W44O137(OH)18(H2O)2(dl-Ser)2}{Ln2(H2O)4(dl-Ser)}2{Ln(H2O)7}2]·70H2O (Ln = Sm (1), Eu (2), and Gd (3); dl-Ser = C3H7NO3), were prepared, where the centrosymmetric [{As4W44O137(OH)18(H2O)2(dl-Ser)2}{Ln2(H2O)4(dl-Ser)}2]8- polyanion consists of two {As2W19O59(OH)8(H2O)}6- fragments, integrated with a two-dl-serine-ornamented [W6O23(OH)2(dl-Ser)2{Ln2(H2O)4}2]8- segment. In addition, the photochromic transformation of solid-state compounds 1-3 was observed from colorless to blue after a UV illumination of 4 min, and the decay process lasted as long as ∼20 h in the dark. The coloration kinetic half-life (t1/2) values of compounds 1, 2, and 3 were calculated to be 0.597, 0.920, and 0.723 min, respectively. Furthermore, the luminescent properties and energy migration from arsenotungstates and organic chromophores to Sm3+ and Eu3+ ions in 1 and 2 have been intensively investigated. Further analysis manifests that 1 possesses an effective luminescent switchable behavior, triggered by its fast-responsive photochromism effect.
Collapse
Affiliation(s)
- Kangting Zheng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Yajing Ye
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Yanan Shi
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Yaxuan Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Ziyu Yang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
83
|
Tang Z, Wang M, Jia X, Xie S, Chen P, Wang D, Chen L, Zhao J. Organophosphonic Acid-Regulating Assembly of P V-Sb III Polyoxotungstate and Its Potential in Building a Dual-Signal Readout Electrochemical Aptasensor for Carcinogen Detection. Inorg Chem 2022; 61:14648-14661. [PMID: 36073797 DOI: 10.1021/acs.inorgchem.2c02003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Template-directed assembly of giant cluster-based nanomaterials is an everlasting theme in cluster science. In this work, ethylenediamine tetramethylphosphonic acid [H8EDTPA = (POCH2(OH)2)4C2H4N2] and [B-α-SbW9O33]9- were, respectively, used as an organic template and an inorganic template to prepare an organophosphonic acid-regulating PV-SbIII-heteroatom-inserted polyoxotungstate aggregate [H2N(CH3)2]5Na11H9[CeW4O10(HEDTPA)SbW15O50][B-α-SbW9O33]2·36H2O (1). Noteworthily, organophosphonic acid ligand not only works as an organic template leading to the assembly of a [HEDTPASbW15O50]14- building block but also further bridges the sandwich-type [CeW4O10(B-α-SbW9O33)2]11- entity. To extend its potential application in electrochemical sensing properties, we prepared a three-dimensional 1@EGO composite (EGO = reduced graphene oxide functionalized by ethylenediamine) with porous architecture and a prominent conducting ability. Furthermore, the 1@EGO composite was explored as a modification material for glassy carbon electrodes to build a dual-signal readout electrochemical aptasensor for carcinogens, which shows much better detection performance for aflatoxin B1 compared with traditional single-signal biosensors.
Collapse
Affiliation(s)
- Zhigang Tang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Menglu Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Xiaodan Jia
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Saisai Xie
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Pei Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Dan Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| |
Collapse
|
84
|
Mishra N, Bansal D, Supriya S. Polyoxometalate-Supported Copper(I)-Pyrazole Complex: Unusual Stability, Geometrical Isomers, Organic Transformation, and Computation. ACS OMEGA 2022; 7:31403-31412. [PMID: 36092552 PMCID: PMC9454276 DOI: 10.1021/acsomega.2c03795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
We have described the synthesis and characterization of a polyoxometalate (POM)-supported copper(I)-pyrazole complex, [CuI(C15H12N2)2] [PW12O40{CuI(C15H12N2)2}2]·CH3OH (1). There are three Cu(I)-pyrazole coordination complexes in compound 1, out of which two are supported by the {PW12O40}3- Keggin POM by coordinate covalent bonds from the POM surface through oxygen donors to the Cu(I) centers of two Cu(I) complexes and one remains uncoordinated to the POM surface, acting as a cationic complex species in the crystals of 1. The POM-coordinated Cu(I) complexes have a T-shaped geometry, and the uncoordinated Cu(I) complex is a linear one. During the solvothermal synthesis of compound 1, remarkably, the associated 1,5-diphenylpyrazole ligand is formed from cinnamaldehyde phenylhydrazone through oxidative cyclization at the cost of Cu(II) reduction to Cu(I), and then, these two (copper(I) and pyrazole ligand) form the coordination complex. Compound 1 undergoes desolvation on heating the single crystals of compound 1 at 55 °C in the aerial atmosphere with the formation of the desolvated compound [CuI(C15H12N2)2][PW12O40{CuI(C15H12N2)2}2] (2). Interestingly, when an aqueous suspension of compound 1 is bubbled with O2 gas at room temperature, it undergoes solid-to-solid transformation, resulting in the formation of the compound [CuI(C15H12N2)2]3[PW12O40] (3). Compounds 1, 2, and 3 have been characterized by routine spectral analyses (including cyclic voltammetry and X-ray photoelectron spectroscopy (XPS) studies) and unambiguously by single-crystal X-ray crystallography. We have performed density functional theory (DFT) calculations on compound 1 to understand the rationale of its unusual stability toward oxidation.
Collapse
Affiliation(s)
- Neeraj
Kumar Mishra
- School
of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Deepak Bansal
- Materials
Research and Technology, Luxembourg Institute
of Science and Technology, 4362 Esch-sur-Alzette, Luxembourg
| | - Sabbani Supriya
- School
of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
85
|
Designing polyoxometalate based hybrid catalysts for efficient removal of hazardous sulfur from fuel via heterogeneous oxidative desulfurization. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
86
|
|
87
|
Maru K, Kalla S, Jangir R. MOF/POM hybrids as catalysts for organic transformations. Dalton Trans 2022; 51:11952-11986. [PMID: 35916617 DOI: 10.1039/d2dt01895k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Insertion of molecular metal oxides, e.g. polyoxometalates (POMs), into metal-organic frameworks (MOFs) opens up new research opportunities in various fields, particularly in catalysis. POM/MOF composites have strong acidity, oxygen-rich surface, and redox capacity due to typical characteristics of POMs and the large surface area, highly organized structures, tunable pore size, and shape are due to MOFs. Such hybrid materials have gained a lot of attention due to astonishing structural features, and hence have potential applications in organic catalysis, sorption and separation, proton conduction, magnetism, lithium-ion batteries, supercapacitors, electrochemistry, medicine, bio-fuel, and so on. The exceptional chemical and physical characteristics of POMOFs make them useful as catalysts in simple organic transformations with high capacity and selectivity. Here, the thorough catalytic study starts with a brief introduction related to POMs and MOFs, and is followed by the synthetic strategies and applications of these materials in several catalytic organic transformations. Furthermore, catalytic conversions like oxidation, condensation, esterification, and some other types of catalytic reactions including photocatalytic reactions are discussed in length with their plausible catalytic mechanisms. The disadvantages of the POMOFs and difficulties faced in the field have also been explored briefly from our perspectives.
Collapse
Affiliation(s)
- Ketan Maru
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Sarita Kalla
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Ritambhara Jangir
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| |
Collapse
|
88
|
Sundar A, Bhattacharya S, Oberstein J, Ma X, Bassil BS, Nisar T, Taffa DH, Wark M, Wagner V, Kortz U. Organically Functionalized Mixed-Valent Polyoxo-30-molybdate Wheel and Neutral Tetramolybdenum(V) Oxo Cluster. Inorg Chem 2022; 61:11524-11528. [PMID: 35792914 DOI: 10.1021/acs.inorgchem.2c01236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The first organofunctionalized mixed-valent polyoxo-30-molybdate wheel, [MoVI18MoV12O84{AsO2(CH3)2}18]18- (Mo30), was synthesized in aqueous, mildly acidic conditions, and upon further acidification, the neutral tetramolybdenum(V) oxo cluster [MoV4O8{AsO2(CH3)2}4] (Mo4) was obtained. Single-crystal X-ray diffraction (XRD) revealed that Mo30 comprises 18 MoVI and 12 MoV ions arranged in a cyclic fashion with alternating {MoV2} and {MoVI3} groups, which are capped by 18 dimethylarsinate ligands, resulting in a novel polyoxo-30-molybdate wheel with a central cavity of ∼1.5 nm. On the other hand, Mo4 has a distorted-cubic structure, with the corners of the cube being occupied by alternating MoV ions and oxo ligands. The compounds were characterized in solution by 1H and 13C NMR and UV-vis spectroscopy and in the solid state by X-ray photoelectron spectroscopy and powder XRD. Mo30 represents a novel type of polyanionic cycle with manyfold possibilities regarding host-guest chemistry.
Collapse
Affiliation(s)
- Anusree Sundar
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, Bremen 28759, Germany
| | - Saurav Bhattacharya
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, Bremen 28759, Germany
| | - Juliane Oberstein
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, Bremen 28759, Germany
| | - Xiang Ma
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, Bremen 28759, Germany
| | - Bassem S Bassil
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, Bremen 28759, Germany
| | - Talha Nisar
- Department of Physics and Earth Sciences, Jacobs University, Campus Ring 1, Bremen 28759, Germany
| | - Dereje H Taffa
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Michael Wark
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Veit Wagner
- Department of Physics and Earth Sciences, Jacobs University, Campus Ring 1, Bremen 28759, Germany
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, Bremen 28759, Germany
| |
Collapse
|
89
|
Jia X, Jiang J, Liu L, Meng L, Chen L, Zhao J. Two Innovative Fumaric Acid Bridging Lanthanide-Encapsulated Hexameric Selenotungstates Containing Mixed Building Units and Electrochemical Performance for Detecting Mycotoxin. Inorg Chem 2022; 61:10965-10976. [PMID: 35793494 DOI: 10.1021/acs.inorgchem.2c01682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two particular fumaric acid bridging lanthanide-encapsulated selenotungstates [H2N(CH3)2]16Na8[Ln3(H2O)7]2 [W4O8(C4H2O4) (C4H3O4)]2[SeW6O25]2[B-α-SeW9O33]4·46H2O [Ln = Ce3+ (1), La3+ (2)] were acquired by the deliberately designed step-by-step synthetic strategy, which are composed of four trilacunary Keggin [B-α-SeW9O33]8- and two original [SeW6O25]10- building units together with one fumaric acid bridging heterometallic [Ln3(H2O)7]2[W4O8(C4H2O4) (C4H3O4)]228+ entity. Particularly, this heterometallic cluster contains four fumaric acid ligands, which play two different roles: one works as the pendant decorating the cluster and the other acts as the linker connecting the whole structure. In addition, the 1@DDA hybrid material was produced through the cation exchange of 1 and dimethyl distearylammonium chloride (DDA·Cl) and its beehive-shaped film of 1@DDA was prepared by the breath figure method, which can be further used to establish an electrochemical biosensor for detecting a kind of mycotoxin-ochratoxin A (OX-A). The 1@DDA beehive-shaped film-based electrochemical biosensor exhibits good reproducibility and specific sensing toward OX-A with a low detection limit of 29.26 pM. These results highlight the huge feasibility of long-chain flexible ligands in building lanthanide-encapsulated selenotungstates with structural complexity and further demonstrate great electrochemical application potentiality of polyoxometalate-involved materials in bioanalysis, tumor diagnosis, and iatrology.
Collapse
Affiliation(s)
- Xiaodan Jia
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jun Jiang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lulu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lina Meng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
90
|
Du W, Liu Y, Sun J, Wang H, Yang G, Zhang D. Three rare-earth incorporating 6-peroxotantalo-4-selenates and catalytic activities for imidation reaction. Dalton Trans 2022; 51:9988-9993. [PMID: 35678129 DOI: 10.1039/d2dt01332k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Functionalization with belt lanthanide groups allows for the crystallization and structural characterization of homometallic selenotantalates, CsK[Ln(H2O)6Se4(TaO2)6(OH)3O18]·nH2O (Ln = Eu/Gd, n = 14 (STD-Eu, STD-Gd) and Ln = Lu, n = 12 (STD-Lu)). The basket-shaped {Se4(TaO2)6} archetype is assembled in a simple one-pot reaction of Na2SeO3 and K8[Ta6O19]·17H2O in acidic aqueous medium (pH 2) and in the presence of hydrogen peroxide. This unit has been proven to be an effective precursor for the preparation of a range of new POMs containing the {Se4(TaO2)6} unit. The lanthanide derivatives STD-Eu, STD-Gd and STD-Lu have been fully characterized with single-crystal X-ray diffraction, IR spectroscopy, TG analysis and PXRD in the solid state. The photoluminescence and lifetime decay behaviours of STD-Eu have been studied at room temperature, and the photoluminescence spectrum displays the characteristic emission of the Eu3+ cation. In addition, the catalytic activities of STD-Eu, STD-Gd and STD-Lu on the reaction of phthalic anhydride with phenylamines have been investigated. STD-Eu shows good catalytic activities for imidation reactions.
Collapse
Affiliation(s)
- Weixin Du
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| | - Yufeng Liu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, P. R. China.
- Guangdong Provincial Key Lab of Green Chemical Product Technology, Guangzhou, 510640, P. R. China
| | - Junjun Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| | - Haiying Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| | - Guoping Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, P. R. China.
| | - Dongdi Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
91
|
Liu X, Wang X, Xu N, Zhang Z, Li X, Liu G, Wang X. A Multifunctional {P2Mo5}-based Hybrid Applying to Catalysis, Electrocatalysis and Dye Adsorption. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
92
|
Bhattacharya S, Barba‐Bon A, Zewdie TA, Müller AB, Nisar T, Chmielnicka A, Rutkowska IA, Schürmann CJ, Wagner V, Kuhnert N, Kulesza PJ, Nau WM, Kortz U. Discrete, Cationic Palladium(II)-Oxo Clusters via f-Metal Ion Incorporation and their Macrocyclic Host-Guest Interactions with Sulfonatocalixarenes. Angew Chem Int Ed Engl 2022; 61:e202203114. [PMID: 35384204 PMCID: PMC9324968 DOI: 10.1002/anie.202203114] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Indexed: 12/28/2022]
Abstract
We report on the discovery of the first two examples of cationic palladium(II)-oxo clusters (POCs) containing f-metal ions, [PdII6 O12 M8 {(CH3 )2 AsO2 }16 (H2 O)8 ]4+ (M=CeIV , ThIV ), and their physicochemical characterization in the solid state, in solution and in the gas phase. The molecular structure of the two novel POCs comprises an octahedral {Pd6 O12 }12- core that is capped by eight MIV ions, resulting in a cationic, cubic assembly {Pd6 O12 MIV8 }20+ , which is coordinated by a total of 16 terminal dimethylarsinate and eight water ligands, resulting in the mixed PdII -CeIV /ThIV oxo-clusters [PdII6 O12 M8 {(CH3 )2 AsO2 }16 (H2 O)8 ]4+ (M=Ce, Pd6 Ce8 ; Th, Pd6 Th8 ). We have also studied the formation of host-guest inclusion complexes of Pd6 Ce8 and Pd6 Th8 with anionic 4-sulfocalix[n]arenes (n=4, 6, 8), resulting in the first examples of discrete, enthalpically-driven supramolecular assemblies between large metal-oxo clusters and calixarene-based macrocycles. The POCs were also found to be useful as pre-catalysts for electrocatalytic CO2 -reduction and HCOOH-oxidation.
Collapse
Affiliation(s)
- Saurav Bhattacharya
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Andrea Barba‐Bon
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Tsedenia A. Zewdie
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Anja B. Müller
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Talha Nisar
- Department of Physics and Earth SciencesJacobs UniversityCampus Ring 128759BremenGermany
| | - Anna Chmielnicka
- Faculty of ChemistryUniversity of WarsawPasteura 102-093WarsawPoland
| | | | | | - Veit Wagner
- Department of Physics and Earth SciencesJacobs UniversityCampus Ring 128759BremenGermany
| | - Nikolai Kuhnert
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Pawel J. Kulesza
- Faculty of ChemistryUniversity of WarsawPasteura 102-093WarsawPoland
| | - Werner M. Nau
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| | - Ulrich Kortz
- Department of Life Sciences and ChemistryJacobs UniversityCampus Ring 128759BremenGermany
| |
Collapse
|
93
|
Polyoxometalate‐Surfactant Assemblies: Responsiveness to Orthogonal Stimuli. Angew Chem Int Ed Engl 2022; 61:e202203741. [DOI: 10.1002/anie.202203741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/07/2022]
|
94
|
Roy S, Böhme M, Lima S, Mohanty M, Banerjee A, Buchholz A, Plass W, Rathnam S, Banerjee I, Kaminsky W, Dinda R. Methoxido‐Bridged Lacunary Heterocubane Oxidovanadium(IV) Cluster with Azo Ligands: Synthesis, X‐ray Structure, Magnetic Properties, and Antiproliferative Activity. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Satabdi Roy
- National Institute of Technology Rourkela department of chemistry INDIA
| | - Michael Böhme
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena Institut für Anorganische und Analytische Chemie GERMANY
| | - Sudhir Lima
- National Institute of Technology Rourkela Department of Chemistry INDIA
| | - Monalisa Mohanty
- National Institute of Technology Rourkela Department of Chemisry INDIA
| | - Atanu Banerjee
- National Institute of Technology Rourkela Department of Chemistry INDIA
| | - Axel Buchholz
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena Institut für Anorganische und Analytische Chemie GERMANY
| | - Winfried Plass
- Friedrich-Schiller-Universitat Jena Anorganische und Analytische Chemie Humboldtstr. 8 7743 Jena GERMANY
| | - Sharan Rathnam
- National Institute of Technology Rourkela Department of Biotechnology and Medical Engineering INDIA
| | - Indranil Banerjee
- National Institute of Technology Rourkela Department of Biotechnology and Medical Engineering INDIA
| | - Werner Kaminsky
- University of Washington Department of Chemistry UNITED STATES
| | - Rupam Dinda
- National Institute of Technology Rourkela Department of Chemsitry INDIA
| |
Collapse
|
95
|
Bouaziz E, Kammoun O, Slassi A, Cornil D, Lhoste J, Auguste S, Boujelbene M. A supramolecular non centrosymmetric 2,6-diaminopyridinium perchlorate salt: Crystal structure and optoelectronic DFT study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
96
|
Qin L, Ren R, Huang X, Xu X, Shi H, Huai R, Song N, Yang L, Wang S, Zhang D, Zhou Z. Photocatalytic activity of an Anderson-type polyoxometalate with mixed copper(I)/copper(II) ions for visible-light enhancing heterogeneous catalysis. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
97
|
Mahfouz N, Ghaida FA, El Hajj Z, Diab M, Floquet S, Mehdi A, Naoufal D. Recent Achievements on Functionalization within closo‐Decahydrodecaborate [B
10
H
10
]
2−
Clusters. ChemistrySelect 2022. [DOI: 10.1002/slct.202200770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nadine Mahfouz
- Laboratoire de Chimie de Coordination Inorganique et Organométallique LCIO Université Libanaise Faculté des Sciences Hadat, Liban
- Ecole Doctorale en Sciences et Technologies PRASE Université Libanaise Hadat, Liban
- Institut Charles Gerhardt ICGM Université de Montpellier CNRS, ENSCM Montpellier France
| | - Fatima Abi Ghaida
- Laboratoire de Chimie de Coordination Inorganique et Organométallique LCIO Université Libanaise Faculté des Sciences Hadat, Liban
- Ecole Doctorale en Sciences et Technologies PRASE Université Libanaise Hadat, Liban
| | - Zeinab El Hajj
- Laboratoire de Chimie de Coordination Inorganique et Organométallique LCIO Université Libanaise Faculté des Sciences Hadat, Liban
- Ecole Doctorale en Sciences et Technologies PRASE Université Libanaise Hadat, Liban
- Institut Lavoisier de Versailles CNRS UVSQ Université Paris-Saclay 45 av. des Etats-Unis 78035 Versailles France
| | - Manal Diab
- Laboratoire de Chimie de Coordination Inorganique et Organométallique LCIO Université Libanaise Faculté des Sciences Hadat, Liban
| | - Sebastien Floquet
- Institut Lavoisier de Versailles CNRS UVSQ Université Paris-Saclay 45 av. des Etats-Unis 78035 Versailles France
| | - Ahmad Mehdi
- Institut Charles Gerhardt ICGM Université de Montpellier CNRS, ENSCM Montpellier France
| | - Daoud Naoufal
- Laboratoire de Chimie de Coordination Inorganique et Organométallique LCIO Université Libanaise Faculté des Sciences Hadat, Liban
- Ecole Doctorale en Sciences et Technologies PRASE Université Libanaise Hadat, Liban
| |
Collapse
|
98
|
Kar A. A New Aryl Sulfonium Polyoxomolybate with One-Electron Reduced Keggin Cluster: Crystal Structure, Hirshfeld Analysis, and Photochromic Activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
99
|
Qiao Y, Yang W, Wang X, Jiao L, Yang Y, Wang S, Bian H, Dai H. Phosphomolybdic acid-catalyzed oxidation of waste starch: a new strategy for handling the OCC pulping wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39702-39711. [PMID: 35106726 DOI: 10.1007/s11356-022-18940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
When old corrugated cardboard (OCC) is returned to the paper mill for repulping and reuse, the starch, which is added to the paper surface as a reinforcement agent, is dissolved into the pulping wastewater. Most of the OCC pulping wastewater is recycled to save precious water resources; however, during the water recycling process, the accumulation of dissolved starch stimulates microbial reproduction, which causes poor water quality and putrid odor. This problem seriously affects the stability of the papermaking process and product quality. In this study, phosphomolybdic acid (H3PMo12O40, abbreviated as PMo12) was utilized to catalyze the waste starch present in papermaking wastewater to monosaccharides, realizing the resource utilization of waste starch. The results showed that the optimized yield of total reducing sugar (78.68 wt%) and glycolic acid (12.83 wt%) was achieved at 145 °C with 30 wt% PMo12 at pH 2, which is equivalent to 91.51 wt% starch recovered from wastewater for resource utilization. In addition, the regeneration of the reduced PMo12 was realized by applying a potential of 1 V for 2 h. Overall, this study has theoretical significance and potential application value for resource utilization of waste starch in OCC pulping process and cleaner management of OCC waste paper.
Collapse
Affiliation(s)
- Yongzhen Qiao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Weisheng Yang
- Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, 211135, Jiangsu, China
| | - Xiu Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Liang Jiao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Yiqin Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Shumei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
100
|
A crown ether supramolecular host-guest complex with Keggin polyoxometalate: Synthesis, crystal structure and electrocatalytic performance for hydrogen evolution reaction. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|