51
|
Simard CF, Brunet GM, Daigle ND, Montminy V, Caron L, Isenring P. Self-interacting domains in the C terminus of a cation-Cl- cotransporter described for the first time. J Biol Chem 2004; 279:40769-77. [PMID: 15280386 DOI: 10.1074/jbc.m406458200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first isoform of the Na+-K+-Cl- cotransporter (NKCC1), a widely distributed member of the cation-Cl- cotransporter superfamily, plays key roles in many physiological processes by regulating the ion and water content of animal cells and by sustaining electrolyte secretion across various epithelia. Indirect studies have led to the prediction that NKCC1 operates as a dimer assembled through binding domains that are distal to the amino portion of the carrier. In this study, evidence is presented that NKCC1 possesses self-interacting properties that result in the formation of a large complex between the proximal and the distal segment of the cytosolic C terminus. Elaborate mapping studies of these segments showed that the contact sites are dispersed along the entire C terminus, and they also led to the identification of a critical interacting residue that belongs to a putative forkhead-associated binding domain. In conjunction with previous findings, our results indicate that the uncovered interacting domains are probably a major determinant of the NKCC1 conformational landscape and assembly into a high order structure. A model is proposed in which the carrier could alternate between monomeric and homo-oligomeric units via chemical- or ligand-dependent changes in conformational dynamics.
Collapse
Affiliation(s)
- Charles F Simard
- Nephrology Research Group, Department of Medicine, Faculty of Medicine, Laval University, Québec, Québec G1R 2J6, Canada
| | | | | | | | | | | |
Collapse
|
52
|
Abstract
Na+-Cl--dependent neurotransmitter transporters (or neurotransmitter:Na+ symporters, NSS) share many structural and functional features, e.g. a conserved topology of 12 transmembrane spanning alpha-helices, the capacity to operate in two directions and in an electrogenic manner. Biochemical and biophysical experiments indicate that these transporters interact in oligomeric quaternary structures. Fluorescence resonance energy transfer (FRET) microscopy has provided evidence for a constitutive physical interaction of NSS at the cell surface and throughout the biosynthetic pathway. Two interfaces for protein-protein interaction have been shown to be important in NSS; these comprise a glycophorin-like motif and a leucine heptad repeat. Upon mutational modification of the latter, surface targeting is considerably impaired without concomitant loss in uptake activity. This supports a role of oligomer formation in the passage of the quality control mechanisms of the endoplasmic reticulum and/or Golgi. In contrast, oligomerisation is dispensable for substrate binding and translocation.
Collapse
Affiliation(s)
- Harald H Sitte
- Institute of Pharmacology, University of Vienna, Währinger Str 13a, A-1090 Vienna, Austria.
| | | |
Collapse
|
53
|
Banci L, Bertini I, Cantini F, Ciofi-Baffoni S, Gonnelli L, Mangani S. Solution structure of Cox11, a novel type of beta-immunoglobulin-like fold involved in CuB site formation of cytochrome c oxidase. J Biol Chem 2004; 279:34833-9. [PMID: 15181013 DOI: 10.1074/jbc.m403655200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome c oxidase assembly process involves many accessory proteins including Cox11, which is a copper-binding protein required for Cu incorporation into the Cu(B) site of cytochrome c oxidase. In a genome wide search, a number of Cox11 homologs are found in all of the eukaryotes with complete genomes and in several Gram-negative bacteria. All of them possess a highly homologous soluble domain and contain an N-terminal fragment that anchors the protein to the membrane. An anchor-free construct of 164 amino acids was obtained from Sinorhizobium meliloti, and the first structure of this class of proteins is reported here. The apoform has an immunoglobulin-like fold with a novel type of beta-strand organization. The copper binding motif composed of two highly conserved cysteines is located on one side of the beta-barrel structure. The apoprotein is monomeric in the presence of dithiothreitol, whereas it dimerizes in the absence of the reductant. When copper(I) binds, NMR and extended x-ray absorption fine structure (EXAFS) data indicate a dimeric protein state with two thiolates bridging two copper(I) ions. The present results advance the knowledge on the poorly understood molecular aspects of cytochrome c oxidase assembly.
Collapse
Affiliation(s)
- Lucia Banci
- Magnetic Resonance Center CERM and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino 50019, Florence, Italy
| | | | | | | | | | | |
Collapse
|
54
|
Santamaria M, Lanave C, Saccone C. The evolution of the adenine nucleotide translocase family. Gene 2004; 333:51-9. [PMID: 15177680 DOI: 10.1016/j.gene.2004.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 11/12/2003] [Accepted: 02/05/2004] [Indexed: 11/19/2022]
Abstract
Homologous genes are grouped into families whose evolution may be different in the various organisms. For the variety of the processes and the well-known mechanism of gene gain and gene loss, which takes place in genome evolution, we deal in comparative analyses with a "one-to-many" or a "many-to-many" relationship between homologous genes going from invertebrates to vertebrates. In this scenario, it is important to understand how gene function has been preserved and in addition the innovations originated in a given lineage or species. The phylogenetic relations between gene family members and their molecular clock behavior may be very helpful to elucidate their functional fates in various organisms. This in turn can direct laboratory experiments and practical applications. In order to track the evolutionary history of the ANT gene family, we have collected and analyzed 46 sequences from fungi to mammals. Phylogenetic analyses have been performed on nucleotide and amino acidic sequences which have produced basically the same results. We observe the presence of multiple isoforms both in lower and higher eukaryotic species, thus a "many-to-many" correspondence between genes. The molecular phylogeny of ANT genes, reported in the present study, allows to date the time of divergence of ANT isoforms in various lineages. Furthermore, the logo analysis has been carried out to characterize the conservation features of ANT proteins particularly in their three similar domains originated by duplication.
Collapse
Affiliation(s)
- Monica Santamaria
- Department of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | | | | |
Collapse
|
55
|
Just H, Sitte HH, Schmid JA, Freissmuth M, Kudlacek O. Identification of an additional interaction domain in transmembrane domains 11 and 12 that supports oligomer formation in the human serotonin transporter. J Biol Chem 2003; 279:6650-7. [PMID: 14660642 DOI: 10.1074/jbc.m306092200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Na+/Cl--dependent neurotransmitter transporters form constitutive oligomers. The topological arrangement is not known, but a leucine heptad repeat in transmembrane domain (TM) 2 and a glycophorin-like motif in TM6 have been proposed to stabilize the oligomer. To determine the topology, we generated versions of the human serotonin transporter (hSERT) that carried cyan or yellow fluorescent proteins at their amino and/or carboxyl terminus. Appropriate pairs were coexpressed to measure fluorescence resonance energy transfer (FRET). Donor photobleaching FRET microscopy was employed to deduce the following arrangement: within the monomer, the amino and carboxyl termini are in close vicinity. In addition, in the oligomer, the carboxyl termini are closer to each other than the amino termini. Hence, a separate interaction domain (i.e. distinct from TM2 and TM6) must reside in the carboxyl-terminal half of hSERT. This was confirmed by expressing the amino- and carboxyl-terminal halves of hSERT. These were retained intracellularly; they also retained the coexpressed full-length transporter by forming export-deficient oligomers and, when cotransfected in all possible combinations, supported FRET. Hence, both the carboxyl and amino termini contain elements that drive oligomerization. By employing fragments comprising two neighboring TM helices, we unequivocally identified TM11/12 as a new contact site by donor photobleaching FRET and beta-lactamase protein fragment complementation assay. TM1/2 was also found to self-associate. Thus, oligomerization of hSERT involves at least two discontinuous interfaces. The currently identified interaction sites drive homophilic interactions. This is consistent with assembly of SERT oligomers in an array-like structure containing multimers of dimers.
Collapse
Affiliation(s)
- Herwig Just
- Institute of Pharmacology, University of Vienna Medical School, Währinger Strasse 13A, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
56
|
Hastrup H, Sen N, Javitch JA. The Human Dopamine Transporter Forms a Tetramer in the Plasma Membrane. J Biol Chem 2003; 278:45045-8. [PMID: 14519759 DOI: 10.1074/jbc.c300349200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using cysteine cross-linking, we demonstrated previously that the dopamine transporter (DAT) is at least a homodimer, with the extracellular end of transmembrane segment (TM) 6 at a symmetrical dimer interface. We have now explored the possibility that DAT exists as a higher order oligomer in the plasma membrane. Cysteine cross-linking of wild type DAT resulted in bands on SDS-PAGE consistent with dimer, trimer, and tetramer, suggesting that DAT forms a tetramer in the plasma membrane. A cysteine-depleted DAT (CD-DAT) into which only Cys243 or Cys306 was reintroduced was cross-linked to dimer, suggesting that these endogenous cysteines in TM4 and TM6, respectively, were cross-linked at a symmetrical dimer interface. Reintroduction of both Cys243 and Cys306 into CD-DAT led to a pattern of cross-linking indistinguishable from that of wild type, with dimer, trimer, and tetramer bands. This indicated that the TM4 interface and the TM6 interface are distinct and further suggested that DAT may exist in the plasma membrane as a dimer of dimers, with two symmetrical homodimer interfaces. The cocaine analog MFZ 2-12 and other DAT inhibitors, including benztropine and mazindol, protected Cys243 against cross-linking. In contrast, two substrates of DAT, dopamine and tyramine, did not significantly impact cross-linking. We propose that the impairment of cross-linking produced by the inhibitors results from a conformational change at the TM4 interface, further demonstrating that these compounds are not neutral blockers but by themselves have effects on the structure of the transporter.
Collapse
Affiliation(s)
- Hanne Hastrup
- Center for Molecular Recognition, Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
57
|
Abstract
Re-uptake of the neurotransmitters serotonin and noradrenaline out of the synaptic cleft is mediated by selective transporter proteins, the serotonin transporter and the noradrenaline transporter respectively. Both are integral membrane proteins that are have a high degree of homology and represent members of a larger neurotransmitter transporter superfamily. Several studies have indicated that the serotonin transporter has an an oligomeric structure. To determine whether monoamine transporters can also function in oligomeric structures in situ, we constructed a concatenate consisting of one molecule of serotonin transporter covalently linked to one molecule of noradrenaline transporter. Heterologous expression of this hybrid construct allowed us to analyse the function, i.e. transport activity, and the structure, i.e. the molecular weight of the total construct and of its single components, at the same time. We showed that serotonin-noradrenaline transporter fusion proteins are fully active and exhibit the pharmacological profile of both their individual components. These findings support the hypothesis that monoamine transporters are expressed and may function as oligomeric proteins composed of non-interacting monomers.
Collapse
Affiliation(s)
- Sandra Horschitz
- Biochemical Laboratory, Central Institute of Mental Health, Mannheim, Germany
| | | | | |
Collapse
|
58
|
Korge P, Honda HM, Weiss JN. Effects of fatty acids in isolated mitochondria: implications for ischemic injury and cardioprotection. Am J Physiol Heart Circ Physiol 2003; 285:H259-69. [PMID: 12793979 DOI: 10.1152/ajpheart.01028.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fatty acids accumulate during myocardial ischemia and are implicated in ischemia-reperfusion injury and mitochondrial dysfunction. Because functional recovery after ischemia-reperfusion ultimately depends on the ability of the mitochondria to recover membrane potential (DeltaPsim), we studied the effects of fatty acids on DeltaPsim regulation, cytochrome c release, and Ca2+ handling in isolated mitochondria under conditions that mimicked aspects of ischemia-reperfusion. Long-chain but not short-chain free fatty acids caused a progressive and reversible (with BSA) increase in inner membrane leakiness (proton leak), which limited mitochondrial ability to support DeltaPsim. In comparison, long-chain activated fatty acids promoted 1). a slower depolarization that was not reversible with BSA, 2). cytochrome c loss that was unrelated to permeability transition pore opening, and 3). inhibition of the adenine nucleotide translocator. Together, these results impaired both mitochondrial ATP production and Ca2+ handling. Diazoxide, a selective opener of mitochondrial ATP-dependent potassium (KATP) channels, partially protected against these effects. These findings indicate that long-chain fatty acid accumulation during ischemia-reperfusion may predispose mitochondria to cytochrome c loss and irreversible injury and identify a novel cardioprotective action of diazoxide.
Collapse
Affiliation(s)
- Paavo Korge
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, California 90095-17690, USA.
| | | | | |
Collapse
|
59
|
Kästner CN, Prummer M, Sick B, Renn A, Wild UP, Dimroth P. The citrate carrier CitS probed by single-molecule fluorescence spectroscopy. Biophys J 2003; 84:1651-9. [PMID: 12609868 PMCID: PMC1302735 DOI: 10.1016/s0006-3495(03)74974-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A prominent region of the Na(+)-dependent citrate carrier (CitS) from Klebsiella pneumoniae is the highly conserved loop X-XI, which contains a putative citrate binding site. To monitor potential conformational changes within this region by single-molecule fluorescence spectroscopy, the target cysteines C398 and C414 of the single-Cys mutants (CitS-sC398, CitS-sC414) were selectively labeled with the thiol-reactive fluorophores AlexaFluor 546/568 C(5) maleimide (AF(546), AF(568)). While both single-cysteine mutants were catalytically active citrate carriers, labeling with the fluorophore was only tolerated at C398. Upon citrate addition to the functional protein fluorophore conjugate CitS-sC398-AF(546), complete fluorescence quenching of the majority of molecules was observed, indicating a citrate-induced conformational change of the fluorophore-containing domain of CitS. This quenching was specific for the physiological substrate citrate and therefore most likely reflecting a conformational change in the citrate transport mechanism. Single-molecule studies with dual-labeled CitS-sC398-AF(546/568) and dual-color detection provided strong evidence for a homodimeric association of CitS.
Collapse
Affiliation(s)
- Christopher N Kästner
- Eidgenössische Technische Hochschule Zürich, Institut für Mikrobiologie, Institut für Physikalische Chemie, Switzerland
| | | | | | | | | | | |
Collapse
|
60
|
Scholze P, Freissmuth M, Sitte HH. Mutations within an intramembrane leucine heptad repeat disrupt oligomer formation of the rat GABA transporter 1. J Biol Chem 2002; 277:43682-90. [PMID: 12223478 DOI: 10.1074/jbc.m205602200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Na(+)/Cl(-)-dependent neurotransmitter transporters form constitutive oligomers, the significance of which is not known. In soluble proteins, leucine heptad repeats drive dimerization; the rat gamma-aminobutyric acid transporter GAT-1 (rGAT) contains a motif reminiscent of a leucine heptad repeat in the second transmembrane helix (TM2). We substituted leucine residues in TM2 of rGAT by alanine and tested the ability of the resulting mutants to form oligomers by three methods of Förster resonance energy transfer (FRET) microscopy. Replacement of one leucine (L97A) resulted in considerable loss of energy transfer, replacing two or more ablated it completely. Furthermore, intracellular trapping increased with the number of leucine substitutions. Only rGAT-L97A reached the cell surface to a sufficient amount such that, in intact cells, it was indistinguishable from wild type rGAT with respect to substrate transport, binding of inhibitors, and regulation by protein kinase C. However, in membrane vesicles prepared from transfected cells, all mutants were still functional. In addition, FRET was readily detected during maturation of wild type rGAT, when the bulk of the protein resided in the endoplasmic reticulum. Hence, our findings strongly argue for a role of oligomer formation during biosynthesis and subsequent delivery of the multimer from the endoplasmic reticulum to the plasma membrane.
Collapse
Affiliation(s)
- Petra Scholze
- Institute of Pharmacology, University of Vienna, Währinger Strasse 13a, Austria
| | | | | |
Collapse
|
61
|
Abstract
Proline residues in the transmembrane (TM) alpha-helices of integral membrane proteins have long been suspected to play a key role for helix packing and signal transduction by inducing regions of helix distortion and/or dynamic flexibility (hinges). In this study we try to characterise the effect of proline on the geometric properties of TM alpha-helices. We have examined 199 transmembrane alpha-helices from polytopic membrane proteins of known structure. After examining the location of proline residues within the amino acid sequences of TM helices, we estimated the helix axes either side of a hinge and hence identified a hinge residue. This enabled us to calculate helix kink and swivel angles. The results of this analysis show that proline residues occur with a significant concentration in the centre of sequences of TM alpha-helices. In this location, they may induce formation of molecular hinges, located on average about four residues N-terminal to the proline residue. A superposition of proline-containing TM helices structures shows that the distortion induced is anisotropic and favours certain relative orientations (defined by helix kink and swivel angles) of the two helix segments.
Collapse
Affiliation(s)
- Frank S Cordes
- Laboratory of Molecular Biophysics, The Rex Richards Building, Department of Biochemistry, University of Oxford, South Parks Road, UK
| | | | | |
Collapse
|
62
|
|
63
|
Huang SG, Odoy S, Klingenberg M. Chimers of two fused ADP/ATP carrier monomers indicate a single channel for ADP/ATP transport. Arch Biochem Biophys 2001; 394:67-75. [PMID: 11566029 DOI: 10.1006/abbi.2001.2520] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mitochondrial ADP/ATP carrier (AAC) is generally believed to function as a homodimer (Wt. Wt). It remains unknown whether the two monomers possess two independent but fully anticooperative channels or they form a single central channel for nucleotide transport. Here we generated fusion proteins consisting of two tandem covalent-linked AAC monomers and studied the kinetics of ADP/ATP transport in reconstituted proteoliposomes. Functional 64-kDa fusion proteins Wt-Wt and Wt-R294A (wild-type AAC linked to a mutant having low ATP transport activity) were expressed in mitochondria of yeast transformants. Compared to homodimer Wt. Wt, the fusion protein Wt-Wt retained the transport activity and selectivity of ADP versus ATP. The strongly divergent selectivities of Wt and R294A were partially propagated in the Wt-R294A fusion protein, suggesting a limited cooperativity during solute translocation. The rates of ADP or ATP transport were significantly higher than those predicted by the two-channel model. Fusion proteins for Wt-R204L (Wt linked to an inactive mutant) and R204L-Wt were not expressed in aerobically grown yeast cells, which contained plasmid rearrangements that regenerated the fully active 32-kDa homodimer Wt. Wt, suggesting that these fusion proteins are inactive in ADP/ATP transport. These results favor a single binding center gated pore model [Klingenberg, M. (1991) in A Study of Enzymes, Vol. 2: pp. 367-388] in which two AAC subunits cooperate for a coordinated ADP/ATP exchange through a single channel.
Collapse
Affiliation(s)
- S G Huang
- Institute of Physical Biochemistry, University of Munich, Schillerstrasse 44, Munich, D-80336, Germany.
| | | | | |
Collapse
|
64
|
Berman MC. Slippage and uncoupling in P-type cation pumps; implications for energy transduction mechanisms and regulation of metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1513:95-121. [PMID: 11470083 DOI: 10.1016/s0005-2736(01)00356-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
P-type ATPases couple scalar and vectorial events under optimized states. A number of procedures and conditions lead to uncoupling or slippage. A key branching point in the catalytic cycle is at the cation-bound form of E(1)-P, where isomerization to E(2)-P leads to coupled transport, and hydrolysis leads to uncoupled release of cations to the cis membrane surface. The phenomenon of slippage supports a channel model for active transport. Ability to occlude cations within the channel is essential for coupling. Uncoupling and slippage appear to be inherent properties of P-type cation pumps, and are significant contributors to standard metabolic rate. Heat production is favored in the uncoupled state. A number of disease conditions, include ageing, ischemia and cardiac failure, result in uncoupling of either the Ca(2+)-ATPase or Na(+)/K(+)-ATPase.
Collapse
Affiliation(s)
- M C Berman
- Division of Chemical Pathology, Health Sciences Faculty, University of Cape Town, Observatory 7925, Cape Town, South Africa.
| |
Collapse
|
65
|
Bradford AD, Terris JM, Ecelbarger CA, Klein JD, Sands JM, Chou CL, Knepper MA. 97- and 117-kDa forms of collecting duct urea transporter UT-A1 are due to different states of glycosylation. Am J Physiol Renal Physiol 2001; 281:F133-43. [PMID: 11399654 DOI: 10.1152/ajprenal.2001.281.1.f133] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
UT-A1 is an extremely hydrophobic 929-amino acid integral membrane protein, expressed in the renal inner medullary collecting duct, with a central role in the urinary concentrating mechanism. Previous immunoblotting studies in rats have revealed that UT-A1 is present in kidney in 97- and 117-kDa monomeric forms and that the relative abundance of the two forms is altered by vasopressin treatment and other treatments that altered urinary inner medullary urea concentration. The present studies were carried out using protein chemistry techniques to determine the origin of the two forms. Peptide-directed polyclonal antibodies targeted to five sites along the polypeptide sequence from the NH2 to the COOH terminus labeled both forms, thus failing to demonstrate a significant deletion in the primary amino acid chain. The 97- and 117-kDa monomeric forms were both reduced to 88 kDa by deglycosylation with N-glycosidase F, indicating that a single polypeptide chain is glycosylated to two different extents. Studies using nonionic detergents for membrane solubilization or using homobifunctional cross-linkers demonstrated that UT-A1 exists as a 206-kDa protein complex in native kidney membranes. The mobility of this complex was also increased by deglycosylation. Both the 97- and 117-kDa proteins, as well as the 206-kDa complex, were immunoprecipitated with UT-A1 antibodies. We conclude that UT-A1 is a glycoprotein and that the two monomeric forms (97 and 117 kDa) in inner medullary collecting duct are the consequence of different states of glycosylation.
Collapse
Affiliation(s)
- A D Bradford
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Metzler DE, Metzler CM, Sauke DJ. Lipids, Membranes, and Cell Coats. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
67
|
Titus SA, Moran RG. Retrovirally mediated complementation of the glyB phenotype. Cloning of a human gene encoding the carrier for entry of folates into mitochondria. J Biol Chem 2000; 275:36811-7. [PMID: 10978331 DOI: 10.1074/jbc.m005163200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The transduction of a human placental cDNA retroviral library into glyB cells, a Chinese hamster ovary K1 subline that is deficient in the transport of folates into mitochondria, resulted in the complementation of glycine auxotrophy of these cells. A 2.6-kilobase pair cDNA insert flanked by retroviral sequences had integrated into genomic DNA in rescued cells. An open reading frame in this cDNA encoded a 35-kDa protein homologous to several inner mitochondrial wall transporters for intermediate metabolites. The subcloned cDNA complemented the glycine auxotrophy of glyB cells and reinstated folate accumulation in the mitochondria of transfected cells. The human origin, chromosomal location, and intron-exon organization of the isolated mitochondrial folate transporter gene were deduced from the expressed sequence tag database and human genome project data.
Collapse
Affiliation(s)
- S A Titus
- Department of Pharmacology and Toxicology and the Massey Cancer Center, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | |
Collapse
|
68
|
McKEE JA, Kumar S, Ecelbarger CA, Fernández-Llama P, Terris J, Knepper MA. Detection of Na(+) transporter proteins in urine. J Am Soc Nephrol 2000; 11:2128-2132. [PMID: 11053490 DOI: 10.1681/asn.v11112128] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Previous studies have established that the vasopressin-regulated water channel of the collecting duct, aquaporin-2, is excreted in the urine, providing a means for assessment of regulation and dysregulation of aquaporin-2 in humans. This article addresses the hypothesis that membrane transporters from upstream nephron segments are normally detectable in urine. The experiments employed rabbit polyclonal antibodies against the major Na transporters of the proximal tubule (the type 3 Na-H exchanger [NHE3]), the thick ascending limb of Henle's loop (the bumetanide-sensitive Na-K-2Cl cotransporter [NKCC2]), and the distal convoluted tubule (the thiazide-sensitive Na-Cl cotransporter [NCC]) in immunoblotting experiments. All three of these transporters were readily detectable as high molecular weight complexes present in lowdensity membrane fractions from urine of normal rats. Cross linking studies of NHE3, NKCC2, and NCC revealed that high molecular weight complexes are normally present in renal tissue. The molecular weights of the complexes in urine matched those of the cross-linked complexes in native kidney tissue. The presence in urine of integral membrane proteins representative of each nephron segment raises the possibility that limited or comprehensive proteomic analysis of urine samples may be useful in clinical settings.
Collapse
Affiliation(s)
- J Andrew McKEE
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Shailesh Kumar
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Carolyn A Ecelbarger
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Patricia Fernández-Llama
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - James Terris
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
- Department of Physiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Mark A Knepper
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
69
|
Zazueta C, Sánchez C, García N, Correa F. Possible involvement of the adenine nucleotide translocase in the activation of the permeability transition pore induced by cadmium. Int J Biochem Cell Biol 2000; 32:1093-101. [PMID: 11091142 DOI: 10.1016/s1357-2725(00)00041-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low levels of cadmium induce a rapid calcium efflux in energized rat kidney mitochondria. This is accompanied by the collapse of the transmembrane gradient in a partial CSA-sensitive fashion. The binding of 109Cd2+ to mitochondria is a saturable function; in the presence of NEM, the binding of 2.5 nmol 109Cd2+/mg of protein suffices to induce the opening of the permeability transition pore. It was found that cadmium bound mainly to proteins of molecular weight between 30 and 50 kDa. In the presence of the monothiol reagent NEM, the label is concentrated in the 30 kDa protein. Following the addition of the reducing agent dithiothreitol, calcium is reaccumulated and the membrane potential restored. This correlates with a significant loss of label in the 30 kDa protein region. The 30 kDa protein was identified as the adenine nucleotide translocase by labelling experiments with eosin 5-maleimide and experiments of reconstitution.
Collapse
Affiliation(s)
- C Zazueta
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, Juan Badiano No. 1, Colonia Sección XVI, México, D.F. 014080, Mexico.
| | | | | | | |
Collapse
|
70
|
Trentmann O, Decker C, Winkler HH, Neuhaus HE. Charged amino-acid residues in transmembrane domains of the plastidic ATP/ADP transporter from arabidopsis are important for transport efficiency, substrate specificity, and counter exchange properties. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4098-105. [PMID: 10866812 DOI: 10.1046/j.1432-1033.2000.01468.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Structure-function relationships of the plastidic ATP/ADP transporter from Arabidopsis thaliana have been determined using site-directed mutants at positions K155, E245, E385, and K527. These charged residues are found within highly conserved domains of homologous transport proteins from plants and bacteria and are located in predicted transmembrane regions. Mutants of K155 to K155E, K155R, or K155Q reduced ATP transport to values between 4 and 16% of wild-type uptake, whereas ADP transport was always less then 3% of the wild-type value. Site-directed mutations in which glutamate at positions 245 or 385 was replaced with lysine, abolished transport. However, conservative (E245D, E385D) or neutral (E245Q, E385Q) replacement at these two positions allowed transport. The fourth reciprocal exchange, K527E, also abolished uptake of both adenylates. K527R and K527Q were unable to transport ATP, but ADP transport remained at 35 and 27%, respectively, of the wild-type activity. There was a 70-fold decreased apparent affinity of K527R for ATP, but only a twofold decrease for ADP. The efflux of ATP, but not ADP, was also greatly reduced in K527R. These observations show strikingly that K527 plays a role in substrate specificity that is manifest in both the influx and efflux components of this antiporter.
Collapse
Affiliation(s)
- O Trentmann
- Universität Kaiserslautern, Pflanzenphysiologie, Kaiserslautern, Germany
| | | | | | | |
Collapse
|
71
|
Taylor AM, Boulter J, Harding SE, Cölfen H, Watts A. Hydrodynamic properties of human erythrocyte band 3 solubilized in reduced Triton X-100. Biophys J 1999; 76:2043-55. [PMID: 10096900 PMCID: PMC1300178 DOI: 10.1016/s0006-3495(99)77361-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The oligomeric state and function of band 3, purified by sulfhydryl affinity chromatography in reduced Triton X-100, was investigated. Size exclusion high-performance liquid chromatography showed that a homogeneous population of band 3 dimers could be purified from whole erythrocyte membranes. The elution profile of band 3 purified from membranes that had been stripped of its cytoskeleton before solubilization was a broad single peak describing a heterogeneous population of oligomers with a mean Stokes radius of 100 A. Sedimentation velocity ultracentrifugation analysis confirmed particle heterogeneity and further showed monomer/dimer/tetramer equilibrium self-association. Whether the conversion of dimer to the form described by a Stokes radius of 100 A was initiated by removal of cytoskeletal components, alkali-induced changes in band 3 conformation, or alkali-induced loss of copurifying ligands remains unclear. After incubation at 20 degrees C for 24 h, both preparations of band 3 converted to a common form characterized by a mean Stokes radius of 114 A. This form of the protein, examined by equilibrium sedimentation ultracentrifugation, is able to self-associate reversibly, and the self-association can be described by a dimer/tetramer/hexamer model, although the presence of higher oligomers cannot be discounted. The ability of the different forms of the protein to bind stilbene disulfonates revealed that the dimer had the highest inhibitor binding affinity, and the form characterized by a mean Stokes radius of 114 A to have the lowest.
Collapse
Affiliation(s)
- A M Taylor
- Department of Biochemistry, Oxford University, Oxford, OX1 3QU, England
| | | | | | | | | |
Collapse
|
72
|
Yamashita T, Yamauchi A, Miyai A, Taniguchi M, Yoshimine T, Tohyama M. Differential regulation of adenine nucleotide translocators by hypertonicity in the brain. J Neurochem 1999; 72:1259-65. [PMID: 10037499 DOI: 10.1046/j.1471-4159.1999.0721259.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To determine the gene(s) induced by hypertonicity in the brain, we performed a differential display analysis using RNA isolated from isotonic and hypertonic rat astrocytes. One cDNA rapidly up-regulated by hypertonicity was isolated, and the DNA sequence revealed that it was identical to adenine nucleotide translocator (ANT)2. ANT2 protein exchanges intramitochondrial ATP for cytoplasmic ADP. Among three ANT isoforms, only ANT2 mRNA was up-regulated markedly from 1 to 4 h after exposure to hypertonicity. Induction of the mRNA did not require de novo protein synthesis. Furthermore, ADP translocase activity in mitochondria of astrocytes was increased significantly by hypertonicity. To see the localization and regulation of ANT2 mRNA in the brain, we performed in situ hybridization of rat brain after intraperitoneal injection of a high concentration of NaCl. Although there were only weak signals in the control, intense hybridization signals were seen in hypertonic rat whole brain. Microscopic examination showed that ANT2 signals were present in the neurons, as well as glial cells. These results suggest that ANT2 may play a role in brain cells to adapt to the hypertonic environment.
Collapse
Affiliation(s)
- T Yamashita
- Department of Anatomy and Neuroscience, Osaka University Medical School, Suita, Japan
| | | | | | | | | | | |
Collapse
|
73
|
Klingenberg M, Huang SG. Structure and function of the uncoupling protein from brown adipose tissue. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1415:271-96. [PMID: 9889383 DOI: 10.1016/s0005-2736(98)00232-6] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- M Klingenberg
- Institut für Physikalische Biochemie, Universität München, Schillerstrasse 44, D-80336, Munich, Germany.
| | | |
Collapse
|
74
|
Schroers A, Burkovski A, Wohlrab H, Krämer R. The phosphate carrier from yeast mitochondria. Dimerization is a prerequisite for function. J Biol Chem 1998; 273:14269-76. [PMID: 9603933 DOI: 10.1074/jbc.273.23.14269] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wild type phosphate carrier (PIC) from Saccharomyces cerevisiae and recombinant PIC proteins with different C-terminal extensions were expressed in Escherichia coli as inclusion bodies. From these, PIC was isolated with the detergent sodium lauroyl sarcosinate in a form, partially monomeric and unfolded. This PIC associates to stable dimers after exchanging the detergent to the polyoxyethylene detergent C12E8 and dialysis. Combining two differently tagged monomers of PIC and following this with affinity chromatography yields defined homo- and heterodimeric forms of PIC, which are all fully active after reconstitution. As a member of the mitochondrial carrier family PIC is supposed to function as a homodimer. We investigated its dimeric nature in the functionally active state after reconstitution. When reconstituting PIC monomers a sigmoidal dependence of transport activity on the amount of inserted protein is observed, whereas insertion of PIC dimers leads to a linear dependence. Heterodimeric PIC constructs consisting of both an active and an inactivated subunit do not catalyze phosphate transport. In contrast, reconstitution of a mixture of active and inactive monomeric subunits led to partially active carrier. These experiments prove (i) that PIC does not function in monomeric form, (ii) that PIC dimers are stable both in the solubilized state and after membrane insertion, and (iii) that transport catalyzed by PIC dimers involves functional cross-talk between the two monomers.
Collapse
Affiliation(s)
- A Schroers
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | | | | | | |
Collapse
|
75
|
Huizing M, Ruitenbeek W, van den Heuvel LP, Dolce V, Iacobazzi V, Smeitink JA, Palmieri F, Trijbels JM. Human mitochondrial transmembrane metabolite carriers: tissue distribution and its implication for mitochondrial disorders. J Bioenerg Biomembr 1998; 30:277-84. [PMID: 9733094 DOI: 10.1023/a:1020501021222] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mitochondrial transmembrane carrier deficiencies are a recently discovered group of disorders, belonging to the so-called mitochondriocytopathies. We examined the human tissue distribution of carriers which are involved in the process of oxidative phosphorylation (adenine nucleotide translocator, phosphate carrier, and voltage-dependent anion channel) and some mitochondrial substrate carriers (2-oxoglutarate carrier, carnitine-acylcarnitine carrier, and citrate carrier). The tissue distribution on mRNA level of mitochondrial transport proteins appears to be roughly in correlation with the dependence of these tissues on mitochondrial energy production capacity. In general the main mRNA expression of carriers involved in mitochondrial energy metabolism occurs in skeletal muscle and heart. Expression in liver and pancreas differs between carriers. Expression in brain, placenta, lung, and kidney is lower than in the other tissues. Western and Northern blotting experiments show a comparable HVDAC1 protein and mRNA distribution for the tested tissues. Patient's studies showed that cultured skin fibroblasts may not be a reliable alternative for skeletal muscle in screening for human mitochondrial carrier defects.
Collapse
Affiliation(s)
- M Huizing
- Department of Pediatrics, University Hospital, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
76
|
West IC. Ligand conduction and the gated-pore mechanism of transmembrane transport. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1331:213-34. [PMID: 9512653 DOI: 10.1016/s0304-4157(97)00007-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- I C West
- University of Newcastle upon Tyne, Department of Biochemistry and Genetics, Medical School, UK.
| |
Collapse
|
77
|
Schroers A, Krämer R, Wohlrab H. The reversible antiport-uniport conversion of the phosphate carrier from yeast mitochondria depends on the presence of a single cysteine. J Biol Chem 1997; 272:10558-64. [PMID: 9099701 DOI: 10.1074/jbc.272.16.10558] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Wild type and mutant phosphate carriers (PIC) from Saccharomyces cerevisiae mitochondria were expressed in Escherichia coli as inclusion bodies, solubilized, purified, and optimally reconstituted into liposomal membranes. This PIC can function as coupled antiport (Pi-/Pi- antiport and Pi- net transport, i.e. Pi-/OH- antiport) and uncoupled uniport (mercuric chloride-induced Pi- efflux). The basic kinetic properties of these three transport modes were analyzed. The kinetic properties closely resemble those of the reconstituted PIC from beef heart mitochondria. A competitive inhibitor of phosphate transport by the PIC, phosphonoformic acid, was used to establish functional overlap between the the physiological transport modes and the induced efflux mode. Replacement mutants were used to relate the reversible switch from antiport to uniport to a specific residue of the carrier. There are only three cysteines in the yeast PIC. They are at positions 28, 134, and 300 and were replaced by serine, both individually and in combinations. Cysteine 300 near the C-terminal loop and cysteine 134 located within the third transmembrane segment are accessible to bulky hydrophilic reagents from the cytosolic side, whereas cysteine 28 within the first transmembrane segment is not. None of the three cysteines is relevant to the two antiport modes. Cysteine 134 was identified to be the major target of bulky SH reagents, that lead to complete inactivation of the physiological transport modes. The reversible conversion between coupled antiport and uncoupled uniport of the PIC depends on the presence of one single cysteine (cysteine 28) in the PIC monomer, i.e. two cysteines in the functionally active dimer. The consequences of this result with respect to a functional model of the carrier protein are discussed.
Collapse
Affiliation(s)
- A Schroers
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | | | | |
Collapse
|
78
|
Loo TW, Clarke DM. The minimum functional unit of human P-glycoprotein appears to be a monomer. J Biol Chem 1996; 271:27488-92. [PMID: 8910332 DOI: 10.1074/jbc.271.44.27488] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Several studies have demonstrated the presence of oligomers of P-glycoprotein in multidrug-resistant cells. The minimum functional unit of P-glycoprotein, however, is not known. In order to determine whether the functional unit is an oligomer, we tested for associations between P-glycoproteins containing either a histidine tag or the epitope tag for monoclonal antibody A52 at the COOH-terminal end of the molecule. Both tagged molecules were active and had indistinguishable drug resistance profiles. The tagged P-glycoproteins were expressed contemporaneously in HEK 293 cells, purified by nickel-chelate chromatography followed by immunoblot analysis. We found that P-glycoprotein-A52 did not copurify with functionally active P-glycoprotein-(His)10, even when the former was overexpressed relative to the histidine-tagged protein. Similar results were obtained with phosphorylation-deficient mutants of P-glycoprotein. By contrast, we could purify and reconstitute drug-stimulated ATPase activity when the half-molecules NH2-terminal half-(His)10/COOH-terminal half-A52 or NH2-terminal half-A52/COOH-terminal half-(His)10 were coexpressed in HEK 293 cells. These results suggest that nickel-chelate chromatography may be a suitable method for studying protein-protein interactions in membrane proteins and that the minimal functional unit of P-glycoprotein is likely to be a monomer.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/isolation & purification
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal
- Binding Sites
- Cell Line
- Chromatography, Affinity
- Chromatography, Gel
- Drug Resistance, Multiple
- Humans
- Kidney
- Recombinant Proteins/chemistry
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Sequence Tagged Sites
- Transfection
Collapse
Affiliation(s)
- T W Loo
- Medical Research Council Group in Membrane Biology, Department of Medicine and Department of Biochemistry, University of Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
79
|
Heddi A, Faure-Vigny H, Wallace DC, Stepien G. Coordinate expression of nuclear and mitochondrial genes involved in energy production in carcinoma and oncocytoma. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1316:203-9. [PMID: 8781539 DOI: 10.1016/0925-4439(96)00026-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The expression of mitochondrial and nuclear genes involved in ATP production was examined in renal carcinomas, renal oncocytomas, and a salivary oncocytoma. Renal carcinomas were found to have a reduced mitochondrial DNA (mtDNA) content while oncocytomas had increased mtDNA contents. This parallels morphological changes in mitochondrial number in these tumours. In the carcinomas, mtDNA transcripts were decreased 5- to 10-fold relative to control kidneys, suggesting that mitochondrial transcript levels depend on the mtDNA content. In renal oncocytomas, mtDNA transcripts were slightly reduced in spite of a high mtDNA content. However, in the salivary gland oncocytoma, mtDNA transcripts were increased more than 10-fold in parallel with a 10-fold increase in mtDNA content. The expression of the nuclear DNA oxidative phosphorylation genes, ATPsyn beta and ANT2, was reduced up to 4-fold in renal carcinoma. In contrast, the levels of these two nuclear gene transcripts were induced about 4-fold in renal oncocytoma and up to 30-fold in salivary gland oncocytoma. Moreover, the ANT2 precursors were observed to change in oncocytomas. These data suggest a coordinated regulation of nuclear and mitochondrial gene expression in renal carcinomas and the specific induction of nuclear OXPHOS gene expression in oncocytomas.
Collapse
Affiliation(s)
- A Heddi
- Department of Genetics and Molecular Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
80
|
Goldstein L, Davis-Amaral EM, Musch MW. Organic osmolyte channels: transport characteristics and regulation. Kidney Int 1996; 49:1690-4. [PMID: 8743479 DOI: 10.1038/ki.1996.249] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Erythrocytes of the skate (Raja erinacea) exposed to hypotonic stress swell and then undergo a volume regulatory decrease by releasing taurine and other osmolytes. Previous studies showed that taurine release occurs via a volume-activated, Na(+)-independent, bi-directional transporter that has the properties of a size-limited channel. We now report on the transport characteristics of this channel and its regulation. Kinetic, competition and inhibitor studies indicate that polyols (myo-inositol) and trimethylamines (betaine) are transported by the same channel as taurine. Although the identity of the channel is still unknown a variety of evidence suggests that band 3 is involved in either channel formation or regulation. Hypotonicity causes phosphorylation and structural changes in band 3. Under isotonic conditions band 3 is predominantly in the dimeric form. Hypotonicity causes a shift to tetrameric band 3. We hypothesize that the band 3 tetramer either forms or regulates an osmolyte channel. The finding that expression of band 3 protein increases osmolyte channel activity in Xenopus oocytes supports this hypothesis.
Collapse
Affiliation(s)
- L Goldstein
- Department of Physiology, Brown University, Providence, Rhode Island, USA
| | | | | |
Collapse
|
81
|
Huizing M, DePinto V, Ruitenbeek W, Trijbels FJ, van den Heuvel LP, Wendel U. Importance of mitochondrial transmembrane processes in human mitochondriopathies. J Bioenerg Biomembr 1996; 28:109-14. [PMID: 9132408 DOI: 10.1007/bf02110640] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In a substantial group of subjects suspected to have a mitochondriopathy no defect in the mitochondrial energy metabolism (pyruvate dehydrogenase complex or respiratory chain complexes) can be demonstrated. At least in some of these subjects it seems justified to consider a defect in one of the proteins which mediate the transport of several ions and substrates across the mitochondrial membranes. Of particular interest are proteins which are directly involved in the process of oxidative phosphorylation, such as the adenine nucleotide translocator (ANT) and the phosphate carrier (PiC). However, defects in transmembrane ion transporters also may induce impaired energy metabolism probably as a result of osmotic disturbances within the mitochondrial matrix. In this respect, the voltage-dependent anion channel (VDAC) and other ion channels have to be taken into consideration. Here we review the still incomplete knowledge of the occurrence of ANT, PiC, VDAC, cation channels, and a few substrate carriers in human tissues, as well as their possible role in pathology.
Collapse
Affiliation(s)
- M Huizing
- Department of Pediatrics, University Hospital, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
82
|
Biocatalysis of chlorophyllase from Phaeodactylum tricornutm in micellar ternary system containing spans. J Biotechnol 1996. [DOI: 10.1016/0168-1656(95)00177-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
83
|
Rotondo A, Giannaccini G, Betti L, Chiellini G, Marazziti D, Martin C, Lucacchini A, Cassano GB. The serotonin transporter from human brain: purification and partial characterization. Neurochem Int 1996; 28:299-307. [PMID: 8813248 DOI: 10.1016/0197-0186(95)00080-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The serotonin (5-HT) transporter from human striatum was solubilized by digitonin and purified by affinity chromatography. The native protein-detergent complex had a molecular mass of 205 kDa, as estimated by gel-exclusion chromatography of the eluates obtained from affinity chromatography. The purified 5-HT transporter migrated as a single band of 67 kDa in SDS-PAGE. To clarify the spatial relationships between the binding sites of the tricyclic antidepressants, as [3H]-imipramine, and of the selective serotonin reuptake inhibitors, as [3H]-paroxetine, on the 5'HT transporter, both radioligands were used to label it in the purification steps. [3H]-paroxetine bound with the same affinity to a single high-affinity site on both membrane and purified preparations. [3H]-imipramine labeled a high- and a low-affinity site on parent membranes, whereas it bound to a single high-affinity site on the purified extract. Tricyclic antidepressants, selective serotonin reuptake inhibitors and 5-HT itself displaced [3H]-paroxetine and [3H-]imipramine from their high-affinity binding sites on both the membrane-bound and the purified 5-HT transporter in a monophasic fashion with Hill coefficients close to unity. Furthermore, both [3H]-paroxetine and [3H]-imipramine displayed a similar maximum binding capacity on an identical protein of 205 kDa. Our results suggest overlapping binding sites for tricyclic antidepressants, selective serotonin reuptake inhibitors and 5-HT on the 5-HT transporter.
Collapse
Affiliation(s)
- A Rotondo
- Institute of Psychiatry, University of Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Loo TW, Ho C, Clarke DM. Expression of a functionally active human renal sodium-calcium exchanger lacking a signal sequence. J Biol Chem 1995; 270:19345-50. [PMID: 7642612 DOI: 10.1074/jbc.270.33.19345] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Na+-Ca2+ exchanger is an unusual membrane transport protein as it contains an NH2-terminal signal sequence which is co-translationally removed in the endoplasmic reticulum during synthesis. To determine if the signal sequence was essential for biosynthesis, mutations were introduced in the NH2 terminus of the cDNA coding for the human renal Na+-Ca2+ exchanger in order to alter processing of the protein. To prevent cleavage of the signal sequence during biosynthesis, the last residue of the consensus signal sequence, Ala-1, was changed to Phe. Deletion mutants were also constructed to encode for exchangers which lacked the signal sequence, the signal sequence and the first extracellular loop, or all of the NH2 terminus including the first transmembrane segment of the mature protein. These mutants were expressed in HEK 293 cells and assayed for Na+-Ca2+ exchange activity. Mutants lacking either a signal sequence or containing a noncleavable signal sequence were still targeted to the plasma membrane, where they exhibited Na+-Ca2+ exchange activity. By contrast, the mutants which had more than the signal sequence deleted did not demonstrate any exchange activity. These mutants were, however, still integrated into the membrane and were resistant to alkali extraction. These results show that the signal sequence is not essential for biogenesis of the Na+-Ca2+ exchanger and suggests that the molecule contains one or more internal signal sequences for insertion into the membrane during biosynthesis.
Collapse
Affiliation(s)
- T W Loo
- Department of Medicine, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
85
|
Affiliation(s)
- M Zoratti
- CNR Unit for the Physiology of Mitochondria, Department of Biomedical Sciences, Padova, Italy
| | | |
Collapse
|
86
|
Abstract
This article summarizes the study of anion exchange mechanisms in bacteria. Along with defining at least two different families of anion exchange, an examination of such carrier-mediated antiport reactions has led to techniques that considerably broaden the scope of biochemical methods for examining membrane proteins. Such advances have been exploited to show that anion exchange itself forms the mechanistic base of an entirely new kind of proton pump, one which may shed light on a variety of bacterial events, including methanogenesis. Perhaps most important, the study of exchange provided the final link in a chain of evidence pointing to a structural 'rhythm' that seems to characterize membrane carriers. These three issues--a biochemical tool, a new proton pump, and a common structural rhythm--are briefly examined in the context of their origins in the analysis of bacterial anion exchange.
Collapse
Affiliation(s)
- P C Maloney
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
87
|
Ren X, Li G, Wang H, Guan Y. Study on the Activity and Kinetic Characteristics of Glucoamylase in W/O Microemulsion Systems. J DISPER SCI TECHNOL 1995. [DOI: 10.1080/01932699508943678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
88
|
Hatin I, Jaureguiberry G. Molecular characterisation of the ADP/ATP-transporter cDNA from the human malaria parasite Plasmodium falciparum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 228:86-91. [PMID: 7883016 DOI: 10.1111/j.1432-1033.1995.0086o.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have isolated a cDNA sequence encoding the ADP/ATP transporter in Plasmodium falciparum. The sequence analysis revealed an open reading frame encoding 301 amino acids and showed significant similarities to known eukaryotic translocases such as that of Chlorella (up to 67.2% identity) and the human transporter (61.2%). RNA blot analysis showed the presence of mRNA encoding for a 33.7-kDa ADP/ATP transporter. During the cell cycle of the parasite the expression levels of the transcripts fluctuate. The mitochondrial ADP/ATP transporter could play a role in energy metabolism of P. falciparum and makes this transporter an excellent target for chemotherapy.
Collapse
Affiliation(s)
- I Hatin
- INSERM Unité 13, Paris, France
| | | |
Collapse
|
89
|
Affiliation(s)
- M Klingenberg
- Institute for Physical Biochemistry, University of Munich, Germany
| | | | | |
Collapse
|
90
|
25 Years Gated Pore Mechanism - Where are We Now? ACTA ACUST UNITED AC 1995. [DOI: 10.1016/b978-0-444-82235-2.50015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
91
|
Chapter 6 Effects of temperature on cellular ion regulation and membrane transport systems. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1873-0140(06)80032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
92
|
Schwarz M, Gross A, Steinkamp T, Flügge UI, Wagner R. Ion channel properties of the reconstituted chloroplast triose phosphate/phosphate translocator. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43905-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
93
|
Abstract
The application of electrophysiological techniques to mitochondrial membranes has allowed the observation and partial characterization of several ion channels, including an ATP-sensitive K(+)-selective one, a high-conductance "megachannel", a 107 pS anionic channel and three others studied at alkaline pH's. A reliable correlation with the results of non-electrophysiological studies has been obtained so far only for the first two cases. Activities presumed to be associated with the Ca2+ uniporter and with the adenine nucleotide translocator, as well as the presence of various other conductances have also been reported. The review summarizes the main properties of these pores and their possible relationship to permeation pathways identified in biochemical studies.
Collapse
Affiliation(s)
- M Zoratti
- Department of Biomedical Sciences, University of Padova, Italy
| | | |
Collapse
|
94
|
Hutter P, Karch F. Molecular analysis of a candidate gene for the reproductive isolation between sibling species of Drosophila. EXPERIENTIA 1994; 50:749-62. [PMID: 7520869 DOI: 10.1007/bf01919377] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The X-linked gene Hmr in Drosophila melanogaster, when mutated, rescues otherwise inviable interspecific hybrids from crosses between D. melanogaster and any of its three most closely related species D. simulans, D. mauritiana and D. sechellia. DNA from the site of a breakpoint at the putative locus of the gene has been cloned, and results of transcription and sequence analyses are presented. Three distinct mRNAs are transcribed from this locus, two of which are abundantly expressed throughout life. A third transcript, which is larger but rarer, appears to be disrupted by at least one of the two known mutations of Hmr. The gene encodes a mitochondrial ADP/ATP translocator protein, which plays an essential role in maintaining metabolic energy. Analysis of several cDNAs suggested that the rescue of hybrids may be dependent on mutations in the variable 3' end region of this gene, affecting the level and/or the stability of the largest messenger RNA.
Collapse
Affiliation(s)
- P Hutter
- Laboratoire de Génétique, Université de Genève, Switzerland
| | | |
Collapse
|
95
|
Abstract
Recent experiments in bacterial systems have established an extended database of sequences broadly relevant to all membrane transporters, allowing serious study of evolutionary relationships. The database will be especially useful in integrating conclusions derived from work with proteins in the major facilitator superfamily, because this kinship includes both eukaryotic and prokaryotic model systems. Even among carriers not linked by evolution, clear hints of functional homology have been note. Advances are also evident in the structural analysis of membrane carriers. Site-directed mutagenesis in a bacterial antiporter has shown how the translocation pathway might be identified; this should complement recent progress in preparing two-dimensional crystals of the eukaryotic anion-exchange protein, band 3. Together, these studies could soon verify or reject the idea that the transport pathway lies at the interface between the amino-terminal and carboxy-terminal helical bundles found in the hydrophobic core of most carrier proteins. If verified, the argument might allow construction of informed three-dimensional models in the absence of crystallographic evidence.
Collapse
Affiliation(s)
- P C Maloney
- Department of Physiology, Johns Hopkins Medical School, Baltimore, MD 21205
| |
Collapse
|
96
|
|
97
|
Abstract
The electroneutral exchange of chloride and bicarbonate across the human erythrocyte membrane is facilitated by Band 3, a 911 amino acid glycoprotein. The 43 kDa amino-terminal cytosolic domain binds the cytoskeleton, haemoglobin and glycolytic enzymes. The 52 kDa carboxyl-terminal membrane domain mediates anion transport. The protein is a functional dimer, in which the two subunits probably interact with one another by an allosteric mechanism. It is proposed that the link between the mobile cytoplasmic and the membrane-spanning domains of the protein is flexible, based on recent biochemical, biophysical and structural data. This explains the long-standing puzzle that attachment to the cytoskeletal spectrin and actin does not appear to restrict the rotational movement of the Band 3 protein in the erythrocyte membrane. In the Band 3 isoform from the Southeast Asian Ovalocytes (SAO) this link is altered, resulting a tighter attachment of the cytoskeleton to the plasma membrane and a more rigid red blood cell.
Collapse
Affiliation(s)
- D N Wang
- European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
98
|
Saks VA, Khuchua ZA, Vasilyeva EV, Kuznetsov AV. Metabolic compartmentation and substrate channelling in muscle cells. Role of coupled creatine kinases in in vivo regulation of cellular respiration--a synthesis. Mol Cell Biochem 1994; 133-134:155-92. [PMID: 7808453 DOI: 10.1007/bf01267954] [Citation(s) in RCA: 184] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The published experimental data and existing concepts of cellular regulation of respiration are analyzed. Conventional, simplified considerations of regulatory mechanism by cytoplasmic ADP according to Michaelis-Menten kinetics or by derived parameters such as phosphate potential etc. do not explain relationships between oxygen consumption, workload and metabolic state of the cell. On the other hand, there are abundant data in literature showing microheterogeneity of cytoplasmic space in muscle cells, in particular with respect to ATP (and ADP) due to the structural organization of cell interior, existence of multienzyme complexes and structured water phase. Also very recent experimental data show that the intracellular diffusion of ADP is retarded in cardiomyocytes because of very low permeability of the mitochondrial outer membrane for adenine nucleotides in vivo. Most probably, permeability of the outer mitochondrial membrane porin channels is controlled in the cells in vivo by some intracellular factors which may be connected to cytoskeleton and lost during mitochondrial isolation. All these numerous data show convincingly that cellular metabolism cannot be understood if cell interior is considered as homogenous solution, and it is necessary to use the theories of organized metabolic systems and substrate-product channelling in multienzyme systems to understand metabolic regulation of respiration. One of these systems is the creatine kinase system, which channels high energy phosphates from mitochondria to sites of energy utilization. It is proposed that in muscle cells feed-back signal between contraction and mitochondrial respiration may be conducted by metabolic wave (propagation of oscillations of local concentration of ADP and creatine) through cytoplasmic equilibrium creatine and adenylate kinases and is amplified by coupled creatine kinase reaction in mitochondria. Mitochondrial creatine kinase has experimentally been shown to be a powerful amplifier of regulatory action of weak ADP fluxes due to its coupling to adenine nucleotide translocase. This phenomenon is also carefully analyzed.
Collapse
Affiliation(s)
- V A Saks
- Group of Bioenergetics, Cardiology Research Center, Moscow, Russia
| | | | | | | |
Collapse
|
99
|
Krämer R. Functional principles of solute transport systems: concepts and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1185:1-34. [PMID: 7511415 DOI: 10.1016/0005-2728(94)90189-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- R Krämer
- Institut für Biotechnologie 1, Forschungszentrum Jülich, Germany
| |
Collapse
|
100
|
Fafournoux P, Noël J, Pouysségur J. Evidence that Na+/H+ exchanger isoforms NHE1 and NHE3 exist as stable dimers in membranes with a high degree of specificity for homodimers. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41985-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|