51
|
Lakshmanan S, Rajendran R, Jayagandhi S, Rajendran R, Palanisamy T, Manimaran V, Janani Marianne A. Expression of Marker PAK1 in Sinonasal Polyposis. Indian J Otolaryngol Head Neck Surg 2022; 74:1694-1700. [PMID: 36452523 PMCID: PMC9702192 DOI: 10.1007/s12070-021-02822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022] Open
Abstract
Introduction Chronic rhinosinusitis with nasal polyposis involves mucosal lining of nose and paranasal sinuses. Numerous studies studied the mechanism leading to sinonasal polyposis. We attempted study the inflammatory mechanisms responsible for the recruitment and activation of leukocytes. Aim To study and compare the expression of the immunohistochemistry marker PAK1 in sinonasal polyposis and normal nasal mucosa. Material and Methods Prospective observational study done by comparing two groups of 30 each with Group A comprises Sinonasal polyposis and Group B comprises normal nasal mucosa. The specimens were subjected to PAK1 immunohistochemical staining. Results Immunihistrochemical staining showed higher intensity stain in sinonasal polyp when compared to normal nasal mucosa. Conclusion The upregulation of PAK1 in sinonasal polyposis when compared to normal nasal mucosa may indicate an increased cellular proliferation and turnover in the background of chronic inflammation.
Collapse
Affiliation(s)
- Somu Lakshmanan
- Department of ENT and Head and Neck Surgery, Sri Ramachandra Medical College and Research Institute, Porur, Chennai, Tamil Nadu India
| | | | - Sathishkumar Jayagandhi
- Department of ENT and Head and Neck Surgery, Sri Ramachandra Medical College and Research Institute, Porur, Chennai, Tamil Nadu India
| | | | - Thirunavukarasu Palanisamy
- Department of ENT and Head and Neck Surgery, Sri Ramachandra Medical College and Research Institute, Porur, Chennai, Tamil Nadu India
| | - Vinoth Manimaran
- Department of ENT and Head and Neck Surgery, Sri Ramachandra Medical College and Research Institute, Porur, Chennai, Tamil Nadu India
| | - A. Janani Marianne
- Department of ENT and Head and Neck Surgery, Sri Ramachandra Medical College and Research Institute, Porur, Chennai, Tamil Nadu India
| |
Collapse
|
52
|
Li X, Li F. p21-Activated Kinase: Role in Gastrointestinal Cancer and Beyond. Cancers (Basel) 2022; 14:cancers14194736. [PMID: 36230657 PMCID: PMC9563254 DOI: 10.3390/cancers14194736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Gastrointestinal tumors are the most common tumors with a high mortality rate worldwide. Numerous protein kinases have been studied in anticipation of finding viable tumor therapeutic targets, including PAK. PAK is a serine/threonine kinase that plays an important role in the malignant phenotype of tumors. The function of PAK in tumors is highlighted in cell proliferation, survival, motility, tumor cell plasticity and the tumor microenvironment, therefore providing a new possible target for clinical tumor therapy. Based on the current research works of PAK, we summarize and analyze the PAK features and signaling pathways in cells, especially the role of PAK in gastrointestinal tumors, thereby hoping to provide a theoretical basis for both the future studies of PAK and potential tumor therapeutic targets. Abstract Gastrointestinal tumors are the most common tumors, and they are leading cause of cancer deaths worldwide, but their mechanisms are still unclear, which need to be clarified to discover therapeutic targets. p21-activating kinase (PAK), a serine/threonine kinase that is downstream of Rho GTPase, plays an important role in cellular signaling networks. According to the structural characteristics and activation mechanisms of them, PAKs are divided into two groups, both of which are involved in the biological processes that are critical to cells, including proliferation, migration, survival, transformation and metabolism. The biological functions of PAKs depend on a large number of interacting proteins and the signaling pathways they participate in. The role of PAKs in tumors is manifested in their abnormality and the consequential changes in the signaling pathways. Once they are overexpressed or overactivated, PAKs lead to tumorigenesis or a malignant phenotype, especially in tumor invasion and metastasis. Recently, the involvement of PAKs in cellular plasticity, stemness and the tumor microenvironment have attracted attention. Here, we summarize the biological characteristics and key signaling pathways of PAKs, and further analyze their mechanisms in gastrointestinal tumors and others, which will reveal new therapeutic targets and a theoretical basis for the clinical treatment of gastrointestinal cancer.
Collapse
|
53
|
Purushotham SS, Reddy NMN, D'Souza MN, Choudhury NR, Ganguly A, Gopalakrishna N, Muddashetty R, Clement JP. A perspective on molecular signalling dysfunction, its clinical relevance and therapeutics in autism spectrum disorder. Exp Brain Res 2022; 240:2525-2567. [PMID: 36063192 DOI: 10.1007/s00221-022-06448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are neurodevelopmental disorders that have become a primary clinical and social concern, with a prevalence of 2-3% in the population. Neuronal function and behaviour undergo significant malleability during the critical period of development that is found to be impaired in ID/ASD. Human genome sequencing studies have revealed many genetic variations associated with ASD/ID that are further verified by many approaches, including many mouse and other models. These models have facilitated the identification of fundamental mechanisms underlying the pathogenesis of ASD/ID, and several studies have proposed converging molecular pathways in ASD/ID. However, linking the mechanisms of the pathogenic genes and their molecular characteristics that lead to ID/ASD has progressed slowly, hampering the development of potential therapeutic strategies. This review discusses the possibility of recognising the common molecular causes for most ASD/ID based on studies from the available models that may enable a better therapeutic strategy to treat ID/ASD. We also reviewed the potential biomarkers to detect ASD/ID at early stages that may aid in diagnosis and initiating medical treatment, the concerns with drug failure in clinical trials, and developing therapeutic strategies that can be applied beyond a particular mutation associated with ASD/ID.
Collapse
Affiliation(s)
- Sushmitha S Purushotham
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Neeharika M N Reddy
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Michelle Ninochka D'Souza
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - Nilpawan Roy Choudhury
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Anusa Ganguly
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Niharika Gopalakrishna
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Ravi Muddashetty
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India.
| |
Collapse
|
54
|
Mehrotra S, Pierce ML, Dravid SM, Murray TF. Stimulation of Neurite Outgrowth in Cerebrocortical Neurons by Sodium Channel Activator Brevetoxin-2 Requires Both N-Methyl-D-aspartate Receptor 2B (GluN2B) and p21 Protein (Cdc42/Rac)-Activated Kinase 1 (PAK1). Mar Drugs 2022; 20:559. [PMID: 36135748 PMCID: PMC9504648 DOI: 10.3390/md20090559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 12/05/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors play a critical role in activity-dependent dendritic arborization, spinogenesis, and synapse formation by stimulating calcium-dependent signaling pathways. Previously, we have shown that brevetoxin 2 (PbTx-2), a voltage-gated sodium channel (VGSC) activator, produces a concentration-dependent increase in intracellular sodium [Na+]I and increases NMDA receptor (NMDAR) open probabilities and NMDA-induced calcium (Ca2+) influxes. The objective of this study is to elucidate the downstream signaling mechanisms by which the sodium channel activator PbTx-2 influences neuronal morphology in murine cerebrocortical neurons. PbTx-2 and NMDA triggered distinct Ca2+-influx pathways, both of which involved the NMDA receptor 2B (GluN2B). PbTx-2-induced neurite outgrowth in day in vitro 1 (DIV-1) neurons required the small Rho GTPase Rac1 and was inhibited by both a PAK1 inhibitor and a PAK1 siRNA. PbTx-2 exposure increased the phosphorylation of PAK1 at Thr-212. At DIV-5, PbTx-2 induced increases in dendritic protrusion density, p-cofilin levels, and F-actin throughout the dendritic arbor and soma. Moreover, PbTx-2 increased miniature excitatory post-synaptic currents (mEPSCs). These data suggest that the stimulation of neurite outgrowth, spinogenesis, and synapse formation produced by PbTx-2 are mediated by GluN2B and PAK1 signaling.
Collapse
Affiliation(s)
- Suneet Mehrotra
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
- Omeros, Seattle, WA 98119, USA
| | - Marsha L. Pierce
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Shashank M. Dravid
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Thomas F. Murray
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
55
|
Li Y, Lu Q, Xie C, Yu Y, Zhang A. Recent advances on development of p21-activated kinase 4 inhibitors as anti-tumor agents. Front Pharmacol 2022; 13:956220. [PMID: 36105226 PMCID: PMC9465411 DOI: 10.3389/fphar.2022.956220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/20/2022] [Indexed: 12/05/2022] Open
Abstract
The p21-activated kinase 4 (PAK4) is a member of the PAKs family. It is overexpressed in multiple tumor tissues. Pharmacological inhibition of PAK4 attenuates proliferation, migration, and invasion of cancer cells. Recent studies revealed that inhibition of PAK4 sensitizes immunotherapy which has been extensively exploited as a new strategy to treat cancer. In the past few years, a large number of PAK4 inhibitors have been reported. Of note, the allosteric inhibitor KPT-9274 has been tested in phase Ⅰ clinic trials. Herein, we provide an update on recent research progress on the PAK4 mediated signaling pathway and highlight the development of the PAK4 small molecular inhibitors in recent 5 years. Meanwhile, challenges, limitations, and future developmental directions will be discussed as well.
Collapse
Affiliation(s)
- Yang Li
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Lu
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Chenghu Xie
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Yu
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ao Zhang
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Ao Zhang,
| |
Collapse
|
56
|
Ma Y, Nikfarjam M, He H. The trilogy of P21 activated kinase, autophagy and immune evasion in pancreatic ductal adenocarcinoma. Cancer Lett 2022; 548:215868. [PMID: 36027997 DOI: 10.1016/j.canlet.2022.215868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/22/2022] [Accepted: 08/06/2022] [Indexed: 11/02/2022]
Abstract
Pancreatic Ductal Adenocarcinoma (PDA) is one of the most lethal types of cancer with a dismal prognosis. KRAS mutation is a commonly identified oncogene in PDA tumorigenesis and P21-activated kinases (PAKs) are its downstream mediator. While PAK1 is more well-studied, PAK4 also attracted increasing interest. In PDA, PAK inhibition not only reduces cancer cell viability but also sensitises it to chemotherapy. While PDA remains resistant to existing immunotherapies, PAK inhibition has been shown to increase cancer immunogenicity of melanoma, glioblastoma and PDA. Furthermore, autophagy plays an important role in PDA immune evasion, and accumulating evidence has pointed to a connection between PAK and cancer cell autophagy. In this literature review, we aim to summarize currently available studies that have assessed the potential connection between PAK, autophagy and immune evasion in PDA biology to guide future research.
Collapse
Affiliation(s)
- Yi Ma
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC, 3084, Australia; Department of Hepatopancreatic-Biliary Surgery, Austin Health, 145 Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Hong He
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
57
|
Mao Y, Han CY, Hao L, Lee Y, Son JB, Choi H, Lee MR, Yang JD, Hong SK, Suh KS, Yu HC, Kim ND, Bae EJ, Park BH. p21-activated kinase 4 inhibition protects against liver ischemia/reperfusion injury: Role of nuclear factor erythroid 2-related factor 2 phosphorylation. Hepatology 2022; 76:345-356. [PMID: 35108418 DOI: 10.1002/hep.32384] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS p21-activated kinase 4 (PAK4), an oncogenic protein, has emerged as a promising target for anticancer drug development. Its role in oxidative stress conditions, however, remains elusive. We investigated the effects of PAK4 signaling on hepatic ischemia/reperfusion (I/R) injury. APPROACH AND RESULTS Hepatocyte- and myeloid-specific Pak4 knockout (KO) mice and their littermate controls were subjected to a partial hepatic I/R (HIR) injury. We manipulated the catalytic activity of PAK4, either through genetic engineering (gene knockout, overexpression of wild-type [WT] or dominant-negative kinase) or pharmacological inhibitor, coupled with a readout of nuclear factor erythroid 2-related factor 2 (Nrf2) activity, to test the potential function of PAK4 on HIR injury. PAK4 expression was markedly up-regulated in liver during HIR injury in mice and humans. Deletion of PAK4 in hepatocytes, but not in myeloid cells, ameliorated liver damages, as demonstrated in the decrease in hepatocellular necrosis and inflammatory responses. Conversely, the forced expression of WT PAK4 aggravated the pathological changes. PAK4 directly phosphorylated Nrf2 at T369, and it led to its nuclear export and proteasomal degradation, all of which impaired antioxidant responses in hepatocytes. Nrf2 silencing in liver abolished the protective effects of PAK4 deficiency. A PAK4 inhibitor protected mice from HIR injury. CONCLUSIONS PAK4 phosphorylates Nrf2 and suppresses its transcriptional activity. Genetic or pharmacological suppression of PAK4 alleviates HIR injury. Thus, PAK4 inhibition may represent a promising intervention against I/R-induced liver injury.
Collapse
Affiliation(s)
- Yuancheng Mao
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Chang Yeob Han
- School of Pharmacy, Jeonbuk National University, Jeonju, Republic of Korea
| | - Lihua Hao
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | | | | | | | - Mi Rin Lee
- Department of Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jae Do Yang
- Department of Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Suk Kyun Hong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Suk Suh
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Chul Yu
- Department of Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | | | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
58
|
Paes de Faria J, Vale-Silva RS, Fässler R, Werner HB, Relvas JB. Pinch2 regulates myelination in the mouse central nervous system. Development 2022; 149:275524. [DOI: 10.1242/dev.200597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The extensive morphological changes of oligodendrocytes during axon ensheathment and myelination involve assembly of the Ilk-Parvin-Pinch (IPP) heterotrimeric complex of proteins to relay essential mechanical and biochemical signals between integrins and the actin cytoskeleton. Binding of Pinch1 and Pinch2 isoforms to Ilk is mutually exclusive and allows the formation of distinct IPP complexes with specific signaling properties. Using tissue-specific conditional gene ablation in mice, we reveal an essential role for Pinch2 during central nervous system myelination. Unlike Pinch1 gene ablation, loss of Pinch2 in oligodendrocytes results in hypermyelination and in the formation of pathological myelin outfoldings in white matter regions. These structural changes concur with inhibition of Rho GTPase RhoA and Cdc42 activities and phenocopy aspects of myelin pathology observed in corresponding mouse mutants. We propose a dual role for Pinch2 in preventing an excess of myelin wraps through RhoA-dependent control of membrane growth and in fostering myelin stability via Cdc42-dependent organization of cytoskeletal septins. Together, these findings indicate that IPP complexes containing Pinch2 act as a crucial cell-autonomous molecular hub ensuring synchronous control of key signaling networks during developmental myelination.
Collapse
Affiliation(s)
- Joana Paes de Faria
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto 1 , 4200-135 Porto , Portugal
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto 2 , 4200-135 Porto , Portugal
| | - Raquel S. Vale-Silva
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto 1 , 4200-135 Porto , Portugal
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto 2 , 4200-135 Porto , Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto 3 , 4050-313 Porto , Portugal
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry 4 , 82152 Martinsried , Germany
| | - Hauke B. Werner
- Max Planck Institute of Experimental Medicine 5 Department of Neurogenetics , , D-37075 Gottingen , Germany
| | - João B. Relvas
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto 1 , 4200-135 Porto , Portugal
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto 2 , 4200-135 Porto , Portugal
- Faculty of Medicine, Universidade do Porto 6 Department of Biomedicine , , 4200-319 Porto , Portugal
| |
Collapse
|
59
|
Chen S, Shu L, Zhao R, Zhao Y. Molecular dynamics simulations reveal the activation mechanism of mutations G12V and Q61L of Cdc42. Proteins 2022; 90:1376-1389. [PMID: 35152498 DOI: 10.1002/prot.26320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
Abstract
Cell division control protein 42 homolog (Cdc42), which contributes to multiple cellular processes including cell proliferation and migration, is a potential target for cancer therapy, especially in the intervention of tumor migration. Cdc42's mutants G12V and Q61L are discovered constitutively active, and the overexpression of them exhibits oncogenic activities. Here, using molecular dynamics (MD) simulations and dynamic analysis, we illustrated the activation mechanism of Cdc42G12V and Cdc42Q61L . Without GAP, the two mutations differently elicited state transition from the wild-type's open "inactive" state 1 to the closed "active" state 2, induced by the introduction of a newly formed water-mediated T35-γ-phosphate hydrogen bond in G12V system and the additional hydrophobic interactions between L61 and T35 together with the direct T35-γ-phosphate hydrogen bond in Q61L system. When binding with GAP, both mutations weakened the hydrogen bond interactions between Cdc42-GTP and GAP's finger loop, and disturbed the catalytically competent organizations of GAP's catalytic R305/R306 and Cdc42's Q61, thereby impairing the GAP-mediated GTP hydrolysis. Our findings first reveal the activation mechanism of Cdc42's G12V and Q61L mutants on a molecular basis, which provide new insights into the structural and dynamical characteristics of Cdc42 and its mutants and can be exploited in the further development of novel therapies targeting Cdc42-related cancers.
Collapse
Affiliation(s)
- Shiyao Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Shu
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Zhao
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxue Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
60
|
Shailes H, Tse WY, Freitas MO, Silver A, Martin SA. Statin Treatment as a Targeted Therapy for APC-Mutated Colorectal Cancer. Front Oncol 2022; 12:880552. [PMID: 35712511 PMCID: PMC9197185 DOI: 10.3389/fonc.2022.880552] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background Mutations in the tumor suppressor gene Adenomatous Polyposis Coli (APC) are found in 80% of sporadic colorectal cancer (CRC) tumors and are also responsible for the inherited form of CRC, Familial adenomatous polyposis (FAP). Methods To identify novel therapeutic strategies for the treatment of APC mutated CRC, we generated a drug screening platform that incorporates a human cellular model of APC mutant CRC using CRISPR-cas9 gene editing and performed an FDA-approved drug screen targeting over 1000 compounds. Results We have identified the group of HMG-CoA Reductase (HMGCR) inhibitors known as statins, which cause a significantly greater loss in cell viability in the APC mutated cell lines and in in vivo APC mutated patient derived xenograft (PDX) models, compared to wild-type APC cells. Mechanistically, our data reveals this new synthetic lethal relationship is a consequence of decreased Wnt signalling and, ultimately, a reduction in the level of expression of the anti-apoptotic protein Survivin, upon statin treatment in the APC-mutant cells only. This mechanism acts via a Rac1 mediated control of beta-catenin. Conclusion Significantly, we have identified a novel synthetic lethal dependence between APC mutations and statin treatment, which could potentially be exploited for the treatment of APC mutated cancers.
Collapse
Affiliation(s)
- Hannah Shailes
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Wai Yiu Tse
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Marta O. Freitas
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Andrew Silver
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sarah A. Martin
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- *Correspondence: Sarah A. Martin,
| |
Collapse
|
61
|
Hardin WR, Alas GCM, Taparia N, Thomas EB, Steele-Ogus MC, Hvorecny KL, Halpern AR, Tůmová P, Kollman JM, Vaughan JC, Sniadecki NJ, Paredez AR. The Giardia ventrolateral flange is a lamellar membrane protrusion that supports attachment. PLoS Pathog 2022; 18:e1010496. [PMID: 35482847 PMCID: PMC9089883 DOI: 10.1371/journal.ppat.1010496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/10/2022] [Accepted: 04/04/2022] [Indexed: 12/01/2022] Open
Abstract
Attachment to the intestinal epithelium is critical to the lifestyle of the ubiquitous parasite Giardia lamblia. The ventrolateral flange is a sheet-like membrane protrusion at the interface between parasites and attached surfaces. This structure has been implicated in attachment, but its role has been poorly defined. Here, we identified a novel actin associated protein with putative WH2-like actin binding domains we named Flangin. Flangin complexes with Giardia actin (GlActin) and is enriched in the ventrolateral flange making it a valuable marker for studying the flanges' role in Giardia biology. Live imaging revealed that the flange grows to around 1 μm in width after cytokinesis, then remains uniform in size during interphase, grows in mitosis, and is resorbed during cytokinesis. A flangin truncation mutant stabilizes the flange and blocks cytokinesis, indicating that flange disassembly is necessary for rapid myosin-independent cytokinesis in Giardia. Rho family GTPases are important regulators of membrane protrusions and GlRac, the sole Rho family GTPase in Giardia, was localized to the flange. Knockdown of Flangin, GlActin, and GlRac result in flange formation defects. This indicates a conserved role for GlRac and GlActin in forming membrane protrusions, despite the absence of canonical actin binding proteins that link Rho GTPase signaling to lamellipodia formation. Flangin-depleted parasites had reduced surface contact and when challenged with fluid shear force in flow chambers they had a reduced ability to remain attached, confirming a role for the flange in attachment. This secondary attachment mechanism complements the microtubule based adhesive ventral disc, a feature that may be particularly important during mitosis when the parental ventral disc disassembles in preparation for cytokinesis. This work supports the emerging view that Giardia's unconventional actin cytoskeleton has an important role in supporting parasite attachment.
Collapse
Affiliation(s)
- William R. Hardin
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Germain C. M. Alas
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Nikita Taparia
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Elizabeth B. Thomas
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Melissa C. Steele-Ogus
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Kelli L. Hvorecny
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Aaron R. Halpern
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Pavla Tůmová
- Institute of Immunology and Microbiology, 1 Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Justin M. Kollman
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
- Bioengineering, University of Washington, Seattle, Washington, United States of America
- Lab Medicine & Pathology, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Alexander R. Paredez
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
62
|
de Torres-Jurado A, Manzanero-Ortiz S, Carmena A. Glial-secreted Netrins regulate Robo1/Rac1-Cdc42 signaling threshold levels during Drosophila asymmetric neural stem/progenitor cell division. Curr Biol 2022; 32:2174-2188.e3. [DOI: 10.1016/j.cub.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 02/21/2022] [Accepted: 04/01/2022] [Indexed: 01/14/2023]
|
63
|
miR-142-3p Suppresses Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Infection by Directly Targeting Rac1. Vet Microbiol 2022; 269:109434. [DOI: 10.1016/j.vetmic.2022.109434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/23/2022] [Accepted: 04/10/2022] [Indexed: 11/20/2022]
|
64
|
Umarao P, Rath PP, Gourinath S. Cdc42/Rac Interactive Binding Containing Effector Proteins in Unicellular Protozoans With Reference to Human Host: Locks of the Rho Signaling. Front Genet 2022; 13:781885. [PMID: 35186026 PMCID: PMC8847673 DOI: 10.3389/fgene.2022.781885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
Small GTPases are the key to actin cytoskeleton signaling, which opens the lock of effector proteins to forward the signal downstream in several cellular pathways. Actin cytoskeleton assembly is associated with cell polarity, adhesion, movement and other functions in eukaryotic cells. Rho proteins, specifically Cdc42 and Rac, are the primary regulators of actin cytoskeleton dynamics in higher and lower eukaryotes. Effector proteins, present in an inactive state gets activated after binding to the GTP bound Cdc42/Rac to relay a signal downstream. Cdc42/Rac interactive binding (CRIB) motif is an essential conserved sequence found in effector proteins to interact with Cdc42 or Rac. A diverse range of Cdc42/Rac and their effector proteins have evolved from lower to higher eukaryotes. The present study has identified and further classified CRIB containing effector proteins in lower eukaryotes, focusing on parasitic protozoans causing neglected tropical diseases and taking human proteins as a reference point to the highest evolved organism in the evolutionary trait. Lower eukaryotes’ CRIB containing proteins fall into conventional effector molecules, PAKs (p21 activated kinase), Wiskoit-Aldrich Syndrome proteins family, and some have unique domain combinations unlike any known proteins. We also highlight the correlation between the effector protein isoforms and their selective specificity for Cdc42 or Rac proteins during evolution. Here, we report CRIB containing effector proteins; ten in Dictyostelium and Entamoeba, fourteen in Acanthamoeba, one in Trypanosoma and Giardia. CRIB containing effector proteins that have been studied so far in humans are potential candidates for drug targets in cancer, neurological disorders, and others. Conventional CRIB containing proteins from protozoan parasites remain largely elusive and our data provides their identification and classification for further in-depth functional validations. The tropical diseases caused by protozoan parasites lack combinatorial drug targets as effective paradigms. Targeting signaling mechanisms operative in these pathogens can provide greater molecules in combatting their infections.
Collapse
Affiliation(s)
- Preeti Umarao
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pragyan Parimita Rath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Samudrala Gourinath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
65
|
p21-Activated kinases as promising therapeutic targets in hematological malignancies. Leukemia 2022; 36:315-326. [PMID: 34697424 DOI: 10.1038/s41375-021-01451-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 01/12/2023]
Abstract
The p21-Activated Kinases (PAKs) are a family of six serine/threonine kinases that were originally identified as downstream effectors of the Rho GTPases Cdc42 and Rac. Since the first PAK was discovered in 1994, studies have revealed their fundamental and biological importance in the development of physiological systems. Within the cell, PAKs also play significant roles in regulating essential cellular processes such as cytoskeletal dynamics, gene expression, cell survival, and cell cycle progression. These processes are often deregulated in numerous cancers when different PAKs are overexpressed or amplified at the chromosomal level. Furthermore, PAKs modulate multiple oncogenic signaling pathways which facilitate apoptosis escape, uncontrolled proliferation, and drug resistance. There is growing insight into the critical roles of PAKs in regulating steady-state hematopoiesis, including the properties of hematopoietic stem cells (HSC), and the initiation and progression of hematological malignancies. This review will focus on the most recent studies that provide experimental evidence showing how specific PAKs regulate the properties of leukemic stem cells (LSCs) and drug-resistant cells to initiate and maintain hematological malignancies. The current understanding of the molecular and cellular mechanisms by which the PAKs operate in specific human leukemia or lymphomas will be discussed. From a translational point of view, PAKs have been suggested to be critical therapeutic targets and potential prognosis markers; thus, this review will also discuss current therapeutic strategies against hematological malignancies using existing small-molecule PAK inhibitors, as well as promising combination treatments, to sensitize drug-resistant cells to conventional therapies. The challenges of toxicity and non-specific targeting associated with some PAK inhibitors, as well as how future approaches for PAK inhibition to overcome these limitations, will also be addressed.
Collapse
|
66
|
Khalil MI, Singh V, King J, De Benedetti A. TLK1-mediated MK5-S354 phosphorylation drives prostate cancer cell motility and may signify distinct pathologies. Mol Oncol 2022; 16:2537-2557. [PMID: 35064619 PMCID: PMC9251878 DOI: 10.1002/1878-0261.13183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/06/2021] [Accepted: 01/19/2022] [Indexed: 12/02/2022] Open
Abstract
Metastases account for the majority of prostate cancer (PCa) deaths, and targeting them is a major goal of systemic therapy. We identified a novel interaction between two kinases: tousled‐like kinase 1 (TLK1) and MAP kinase‐activated protein kinase 5 (MK5) that promotes PCa spread. In PCa progression, TLK1–MK5 signalling appears to increase following antiandrogen treatment and in metastatic castration‐resistant prostate cancer (mCRPC) patients. Determinations of motility rates (2D and 3D) of different TLK1‐ and MK5‐perturbed cells, including knockout (KO) and knockdown (KD), as well as the use of specific inhibitors, showed the importance of these two proteins for in vitro dissemination. We established that TLK1 phosphorylates MK5 on three residues (S160, S354 and S386), resulting in MK5 activation, and additionally, mobility shifts of MK5 also supported its phosphorylation by TLK1 in transfected HEK 293 cells. Expression of MK5‐S354A or kinase‐dead MK5 in MK5‐depleted mouse embryonic fibroblast (MEF) cells failed to restore their motility compared with that of wild‐type (WT) MK5‐rescued MK5−/− MEF cells. A pMK5‐S354 antiserum was used to establish this site as an authentic TLK1 target in androgen‐sensitive human prostate adenocarcinoma (LNCaP) cells, and was used in immunohistochemistry (IHC) studies of age‐related PCa sections from TRAMP (transgenic adenocarcinoma of the mouse prostate) mice and to probe a human tissue microarray (TMA), which revealed pMK5‐S354 level is correlated with disease progression (Gleason score and nodal metastases). In addition, The Cancer Genome Atlas (TCGA) analyses of PCa expression and genome‐wide association study (GWAS) relations identify TLK1 and MK5 as potential drivers of advanced PCa and as markers of mCRPC. Our work suggests that TLK1–MK5 signalling is functionally involved in driving PCa cell motility and clinical features of aggressiveness; hence, disruption of this axis may inhibit the metastatic spread of PCa.
Collapse
Affiliation(s)
| | - Vibha Singh
- Department of Biochemistry and Molecular Biology
| | - Judy King
- Deparment of Pathology and Translational Pathobiology, LSU Health Sciences Center, Shreveport, USA
| | | |
Collapse
|
67
|
Spatiotemporally Orchestrated Interactions between Viral and Cellular Proteins Involved in the Entry of African Swine Fever Virus. Viruses 2021; 13:v13122495. [PMID: 34960765 PMCID: PMC8703583 DOI: 10.3390/v13122495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/27/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
African swine fever (ASF) is a highly contagious hemorrhagic disease in domestic pigs and wild boars with a mortality of up to 100%. The causative agent, African swine fever virus (ASFV), is a member of the Asfarviridae family of the nucleocytoplasmic large DNA viruses. The genome size of ASFV ranges from 170 to 194 kb, encoding more than 50 structural and 100 nonstructural proteins. ASFV virions are 260–300 nm in diameter and composed of complex multilayered structures, leading to an intricate internalization pathway to enter host cells. Currently, no commercial vaccines or antivirals are available, due to the insufficient knowledge of the viral receptor(s), the molecular events of ASFV entry into host cells, and the functions of virulence-associated genes. During the early stage of ASFV infection, the fundamental aspects of virus-host interactions, including virus internalization, intracellular transport through the endolysosomal system, and membrane fusion with endosome, are precisely regulated and orchestrated via a series of molecular events. In this review, we summarize the currently available knowledge on the pathways of ASFV entry into host cells and the functions of viral proteins involved in virus entry. Furthermore, we conclude with future perspectives and highlight areas that require further investigation. This review is expected to provide unique insights for further understanding ASFV entry and facilitate the development of vaccines and antivirals.
Collapse
|
68
|
Longatti A, Ponzoni L, Moretto E, Giansante G, Lattuada N, Colombo MN, Francolini M, Sala M, Murru L, Passafaro M. Arhgap22 Disruption Leads to RAC1 Hyperactivity Affecting Hippocampal Glutamatergic Synapses and Cognition in Mice. Mol Neurobiol 2021; 58:6092-6110. [PMID: 34455539 PMCID: PMC8639580 DOI: 10.1007/s12035-021-02502-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 07/15/2021] [Indexed: 11/03/2022]
Abstract
Rho GTPases are a class of G-proteins involved in several aspects of cellular biology, including the regulation of actin cytoskeleton. The most studied members of this family are RHOA and RAC1 that act in concert to regulate actin dynamics. Recently, Rho GTPases gained much attention as synaptic regulators in the mammalian central nervous system (CNS). In this context, ARHGAP22 protein has been previously shown to specifically inhibit RAC1 activity thus standing as critical cytoskeleton regulator in cancer cell models; however, whether this function is maintained in neurons in the CNS is unknown. Here, we generated a knockout animal model for arhgap22 and provided evidence of its role in the hippocampus. Specifically, we found that ARHGAP22 absence leads to RAC1 hyperactivity and to an increase in dendritic spine density with defects in synaptic structure, molecular composition, and plasticity. Furthermore, arhgap22 silencing causes impairment in cognition and a reduction in anxiety-like behavior in mice. We also found that inhibiting RAC1 restored synaptic plasticity in ARHGAP22 KO mice. All together, these results shed light on the specific role of ARHGAP22 in hippocampal excitatory synapse formation and function as well as in learning and memory behaviors.
Collapse
Affiliation(s)
- Anna Longatti
- Institute of Neuroscience, CNR, Milan, 20129, Italy
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, 20133, Milan, Italy
| | | | - Edoardo Moretto
- Institute of Neuroscience, CNR, Milan, 20129, Italy
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy
| | - Giorgia Giansante
- Institute of Neuroscience, CNR, Milan, 20129, Italy
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy
| | - Norma Lattuada
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi Di Milano, 20129, Milan, Italy
| | - Maria Nicol Colombo
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi Di Milano, 20129, Milan, Italy
| | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi Di Milano, 20129, Milan, Italy
| | - Mariaelvina Sala
- Institute of Neuroscience, CNR, Milan, 20129, Italy
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy
| | - Luca Murru
- Institute of Neuroscience, CNR, Milan, 20129, Italy.
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy.
| | - Maria Passafaro
- Institute of Neuroscience, CNR, Milan, 20129, Italy.
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy.
| |
Collapse
|
69
|
Fan M, Luo Y, Zhang B, Wang J, Chen T, Liu B, Sun Y, Nan Y, Hiscox JA, Zhao Q, Zhou EM. Cell Division Control Protein 42 Interacts With Hepatitis E Virus Capsid Protein and Participates in Hepatitis E Virus Infection. Front Microbiol 2021; 12:775083. [PMID: 34790187 PMCID: PMC8591454 DOI: 10.3389/fmicb.2021.775083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022] Open
Abstract
Hepatitis E Virus (HEV) causes viral hepatitis in humans worldwide, while a subset of HEV species, avian HEV, causes hepatitis-splenomegaly syndrome in chickens. To date, there are few reports on the host proteins interacting with HEV and being involved in viral infection. Previous pull-down assay combining mass spectrometry indicated that cell division control protein 42 (CDC42), a member belonging to the Rho GTPase family, was pulled down by avian HEV capsid protein. We confirmed the direct interaction between CDC42 and avian and mammalian HEV capsid proteins. The interaction can increase the amount of active guanosine triphosphate binding CDC42 state (GTP-CDC42). Subsequently, we determined that the expression and activity of CDC42 were positively correlated with HEV infection in the host cells. Using the different inhibitors of CDC42 downstream signaling pathways, we found that CDC42-MRCK (a CDC42-binding kinase)-non-myosin IIA (NMIIA) pathway is involved in naked avian and mammalian HEV infection, CDC42-associated p21-activated kinase 1 (PAK1)-NMIIA/Cofilin pathway is involved in quasi-enveloped mammalian HEV infection and CDC42-neural Wiskott-Aldrich syndrome protein-actin-polymerizing protein Arp2/3 pathway (CDC42-(N-)WASP-Arp2/3) pathway participates in naked and quasi-enveloped mammalian HEV infection. Collectively, these results demonstrated for the first time that HEV capsid protein can directly bind to CDC42, and non- and quasi-enveloped HEV use different CDC42 downstream signaling pathways to participate in viral infection. The study provided some new insights to understand the life cycle of HEV in host cells and a new target of drug design for combating HEV infection.
Collapse
Affiliation(s)
- Mengnan Fan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yuhang Luo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Beibei Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jiaxi Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Tianxiang Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Julian A Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
70
|
Rodríguez-Fdez S, Bustelo XR. Rho GTPases in Skeletal Muscle Development and Homeostasis. Cells 2021; 10:cells10112984. [PMID: 34831205 PMCID: PMC8616218 DOI: 10.3390/cells10112984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Rho guanosine triphosphate hydrolases (GTPases) are molecular switches that cycle between an inactive guanosine diphosphate (GDP)-bound and an active guanosine triphosphate (GTP)-bound state during signal transduction. As such, they regulate a wide range of both cellular and physiological processes. In this review, we will summarize recent work on the role of Rho GTPase-regulated pathways in skeletal muscle development, regeneration, tissue mass homeostatic balance, and metabolism. In addition, we will present current evidence that links the dysregulation of these GTPases with diseases caused by skeletal muscle dysfunction. Overall, this information underscores the critical role of a number of members of the Rho GTPase subfamily in muscle development and the overall metabolic balance of mammalian species.
Collapse
Affiliation(s)
- Sonia Rodríguez-Fdez
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
- Wellcome-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence: or
| | - Xosé R. Bustelo
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
71
|
p21-Activated kinase 1 (PAK1) in aging and longevity: An overview. Ageing Res Rev 2021; 71:101443. [PMID: 34390849 DOI: 10.1016/j.arr.2021.101443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
The p21-activated kinases (PAKs) belong to serine/threonine kinases family, regulated by ∼21 kDa small signaling G proteins RAC1 and CDC42. The mammalian PAK family comprises six members (PAK1-6) that are classified into two groups (I and II) based on their domain architecture and regulatory mechanisms. PAKs are implicated in a wide range of cellular functions. PAK1 has recently attracted increasing attention owing to its involvement in oncogenesis, tumor progression, and metastasis as well as several life-limiting diseases and pathological conditions. In Caenorhabditis elegans, PAK1 functions limit the lifespan under basal conditions by inhibiting forkhead transcription factor DAF-16. Interestingly, PAK depletion extended longevity and attenuated the onset of age-related phenotypes in a premature-aging mouse model and delayed senescence in mammalian fibroblasts. These observations implicate PAKs as not only oncogenic but also aging kinases. Therefore, PAK-targeting genetic and/or pharmacological interventions, particularly PAK1-targeting, could be a viable strategy for developing cancer therapies with relatively no side effects and promoting healthy longevity. This review describes PAK family proteins, their biological functions, and their role in regulating aging and longevity using C. elegans. Moreover, we discuss the effect of small-molecule PAK1 inhibitors on the lifespan and healthspan of C. elegans.
Collapse
|
72
|
Lee CF, Carley RE, Butler CA, Morrison AR. Rac GTPase Signaling in Immune-Mediated Mechanisms of Atherosclerosis. Cells 2021; 10:2808. [PMID: 34831028 PMCID: PMC8616135 DOI: 10.3390/cells10112808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 11/17/2022] Open
Abstract
Coronary artery disease caused by atherosclerosis is a major cause of morbidity and mortality around the world. Data from preclinical and clinical studies support the belief that atherosclerosis is an inflammatory disease that is mediated by innate and adaptive immune signaling mechanisms. This review sought to highlight the role of Rac-mediated inflammatory signaling in the mechanisms driving atherosclerotic calcification. In addition, current clinical treatment strategies that are related to targeting hypercholesterolemia as a critical risk factor for atherosclerotic vascular disease are addressed in relation to the effects on Rac immune signaling and the implications for the future of targeting immune responses in the treatment of calcific atherosclerosis.
Collapse
Affiliation(s)
- Cadence F. Lee
- Ocean State Research Institute, Inc., Providence VA Medical Center, Research (151), 830 Chalkstone Avenue, Providence, RI 02908, USA; (C.F.L.); (R.E.C.); (C.A.B.)
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Rachel E. Carley
- Ocean State Research Institute, Inc., Providence VA Medical Center, Research (151), 830 Chalkstone Avenue, Providence, RI 02908, USA; (C.F.L.); (R.E.C.); (C.A.B.)
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Celia A. Butler
- Ocean State Research Institute, Inc., Providence VA Medical Center, Research (151), 830 Chalkstone Avenue, Providence, RI 02908, USA; (C.F.L.); (R.E.C.); (C.A.B.)
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Alan R. Morrison
- Ocean State Research Institute, Inc., Providence VA Medical Center, Research (151), 830 Chalkstone Avenue, Providence, RI 02908, USA; (C.F.L.); (R.E.C.); (C.A.B.)
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| |
Collapse
|
73
|
Mpilla GB, Uddin MH, Al-Hallak MN, Aboukameel A, Li Y, Kim SH, Beydoun R, Dyson G, Baloglu E, Senapedis WT, Landesman Y, Wagner KU, Viola NT, El-Rayes BF, Philip PA, Mohammad RM, Azmi AS. PAK4-NAMPT Dual Inhibition Sensitizes Pancreatic Neuroendocrine Tumors to Everolimus. Mol Cancer Ther 2021; 20:1836-1845. [PMID: 34253597 PMCID: PMC8492493 DOI: 10.1158/1535-7163.mct-20-1105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/12/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
Metastatic pancreatic neuroendocrine tumors (PNET) remain an unmet clinical problem. Chronologic treatment in PNETs includes observation (watchful protocol), surgery, targeted therapy, and chemotherapy. However, increasing evidence illustrates that the outcomes of targeted therapeutic options for the treatment of advanced PNETs show minimal response. The FDA-approved mTOR inhibitor everolimus does not shrink these tumors. It only delays disease progression in a subset of patients, while a significant fraction acquires resistance and shows disease progression. Thus, there is a need for more effective targeted approaches to sensitize PNETs to everolimus for better treatment outcomes. Previously, we showed that mTOR regulator p21 activated kinase 4 (PAK4) and nicotinamide adenine dinucleotide biosynthesis enzyme nicotinamide phosphoribosyl transferase (NAMPT) were aberrantly expressed in PNET tissue and promoted everolimus resistance. In this report, we demonstrate that PAK4-NAMPT dual inhibitor KPT-9274 can synergize with everolimus (growth inhibition, colony suppression, and glucose uptake assays). KPT-9274-everolimus disrupted spheroid formation in multiple PNET models. Molecular analysis showed alteration of mTORC2 through downregulation of RICTOR as a mechanism supporting synergy with everolimus in vitro KPT-9274 suppressed β-catenin activity via inhibition of PAK4, highlighting the cross-talk between Rho GTPases and Wnt signaling in PNETs. KPT-9274, given at 150 mg/kg in combination with sub-MTD everolimus (2.5 mg/kg), significantly suppressed two PNET-derived xenografts. These studies bring forward a well-grounded strategy for advanced PNETs that fail to respond to single-agent everolimus.
Collapse
Affiliation(s)
- Gabriel B Mpilla
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Md Hafiz Uddin
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Mohammed N Al-Hallak
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Amro Aboukameel
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Yiwei Li
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Steve H Kim
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Rafic Beydoun
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Gregory Dyson
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | | | | | | | - Kay-Uwe Wagner
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Nerissa T Viola
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | | | - Philip A Philip
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Ramzi M Mohammad
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Asfar S Azmi
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan.
| |
Collapse
|
74
|
Regulation of Rac1 Activation in Choroidal Endothelial Cells: Insights into Mechanisms in Age-Related Macular Degeneration. Cells 2021; 10:cells10092414. [PMID: 34572063 PMCID: PMC8469925 DOI: 10.3390/cells10092414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of blindness worldwide. Vision loss from the neovascular form is associated with the invasion of choroidal endothelial cells into the neural retina to form vision-threatening macular neovascularization (MNV). Anti-angiogenic agents are the current standard of care but are effective in only ~50% of AMD cases. The molecular mechanisms involved in invasive MNV point to the importance of regulating signaling pathways that lead to pathologic biologic outcomes. In studies testing the effects of AMD-related stresses, activation of the Rho GTPase, Rac1, was found to be important for the choroidal endothelial cell invasion into the neural retina. However, current approaches to prevent Rac1 activation are inefficient and less effective. We summarize active Rac1-mediated mechanisms that regulate choroidal endothelial cell migration. Specifically, we discuss our work regarding the role of a multidomain protein, IQ motif containing GTPase activating protein 1 (IQGAP1), in sustaining pathologic Rac1 activation and a mechanism by which active Rap1, a Ras-like GTPase, may prevent active Rac1-mediated choroidal endothelial cell migration.
Collapse
|
75
|
Ramella M, Ribolla LM, de Curtis I. Liquid-Liquid Phase Separation at the Plasma Membrane-Cytosol Interface: Common Players in Adhesion, Motility, and Synaptic Function. J Mol Biol 2021; 434:167228. [PMID: 34487789 DOI: 10.1016/j.jmb.2021.167228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/09/2023]
Abstract
Networks of scaffold proteins and enzymes assemble at the interface between the cytosol and specific sites of the plasma membrane, where these networks guide distinct cellular functions. Some of these plasma membrane-associated platforms (PMAPs) include shared core components that are able to establish specific protein-protein interactions, to produce distinct supramolecular assemblies regulating dynamic processes as diverse as cell adhesion and motility, or the formation and function of neuronal synapses. How cells organize such dynamic networks is still an open question. In this review we introduce molecular networks assembling at the edge of migrating cells, and at pre- and postsynaptic sites, which share molecular players that can drive the assembly of biomolecular condensates. Very recent experimental evidence has highlighted the emerging role of some of these multidomain/scaffold proteins belonging to the GIT, liprin-α and ELKS/ERC families as drivers of liquid-liquid phase separation (LLPS). The data point to an important role of LLPS: (i) in the formation of PMAPs at the edge of migrating cells, where LLPS appears to be involved in promoting protrusion and the turnover of integrin-mediated adhesions, to allow forward cell translocation; (ii) in the assembly of the presynaptic active zone and of the postsynaptic density deputed to the release and reception of neurotransmitter signals, respectively. The recent results indicate that LLPS at cytosol-membrane interfaces is suitable not only for the regulation of active cellular processes, but also for the continuous spatial rearrangements of the molecular interactions involved in these dynamic processes.
Collapse
Affiliation(s)
- Martina Ramella
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Via Olgettina, 58, 20132 Milano, Italy.
| | - Lucrezia Maria Ribolla
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Via Olgettina, 58, 20132 Milano, Italy.
| | - Ivan de Curtis
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Via Olgettina, 58, 20132 Milano, Italy.
| |
Collapse
|
76
|
Naїja A, Merhi M, Inchakalody V, Fernandes Q, Mestiri S, Prabhu KS, Uddin S, Dermime S. The role of PAK4 in the immune system and its potential implication in cancer immunotherapy. Cell Immunol 2021; 367:104408. [PMID: 34246086 DOI: 10.1016/j.cellimm.2021.104408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/06/2023]
Abstract
The p21 activated kinases (PAKs) are known to play a role in the regulation of cell morphology and functions. Among the various members of PAKs family, only the PAK4 protein has been shown to be overexpressed in cancer cells and its upregulation was associated with tumor development. Indeed, several studies have shown that PAK4 overexpression is implicated in carcinogenesis by different mechanisms including promotion of cell proliferation, invasion and migration, protection of cells from apoptosis, stimulation of the tumor-specific anchorage-independent cell growth and regulation of the cytoskeletal organisation and adhesion. Moreover, high PAK4 protein levels have been observed in several solid tumors and have been shown able to enhance cancer cell resistance to many treatments especially chemotherapy. Interestingly, it has been recently demonstrated that PAK4 downregulation can inhibit the PD-1/PD-L1 immune regulatory pathway. Taken together, these findings not only implicate PAK4 in oncogenic transformation and in prediction of tumor response to treatment but also suggest its role as an attractive target for immunotherapy. In the current review we will summarize the different mechanisms of PAK4 implication in tumor development, describe its role as a regulator of the immune response and as a potential novel target for cancer immunotherapy.
Collapse
Affiliation(s)
- Azza Naїja
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Queenie Fernandes
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Sarra Mestiri
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic health system, Hamad medical Corporation, Doha, Qatar
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
77
|
Wu CT, Lidsky PV, Xiao Y, Lee IT, Cheng R, Nakayama T, Jiang S, Demeter J, Bevacqua RJ, Chang CA, Whitener RL, Stalder AK, Zhu B, Chen H, Goltsev Y, Tzankov A, Nayak JV, Nolan GP, Matter MS, Andino R, Jackson PK. SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. Cell Metab 2021; 33:1565-1576.e5. [PMID: 34081912 PMCID: PMC8130512 DOI: 10.1016/j.cmet.2021.05.013] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/01/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023]
Abstract
Emerging evidence points toward an intricate relationship between the pandemic of coronavirus disease 2019 (COVID-19) and diabetes. While preexisting diabetes is associated with severe COVID-19, it is unclear whether COVID-19 severity is a cause or consequence of diabetes. To mechanistically link COVID-19 to diabetes, we tested whether insulin-producing pancreatic β cells can be infected by SARS-CoV-2 and cause β cell depletion. We found that the SARS-CoV-2 receptor, ACE2, and related entry factors (TMPRSS2, NRP1, and TRFC) are expressed in β cells, with selectively high expression of NRP1. We discovered that SARS-CoV-2 infects human pancreatic β cells in patients who succumbed to COVID-19 and selectively infects human islet β cells in vitro. We demonstrated that SARS-CoV-2 infection attenuates pancreatic insulin levels and secretion and induces β cell apoptosis, each rescued by NRP1 inhibition. Phosphoproteomic pathway analysis of infected islets indicates apoptotic β cell signaling, similar to that observed in type 1 diabetes (T1D). In summary, our study shows SARS-CoV-2 can directly induce β cell killing.
Collapse
Affiliation(s)
- Chien-Ting Wu
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter V Lidsky
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ivan T Lee
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ran Cheng
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA, USA
| | - Tsuguhisa Nakayama
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Sizun Jiang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Romina J Bevacqua
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Charles A Chang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Robert L Whitener
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anna K Stalder
- Institute of Pathology, University of Basel, Schönbeinstrasse 40, 4003 Basel, Switzerland
| | - Bokai Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Han Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yury Goltsev
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexandar Tzankov
- Institute of Pathology, University of Basel, Schönbeinstrasse 40, 4003 Basel, Switzerland
| | - Jayakar V Nayak
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthias S Matter
- Institute of Pathology, University of Basel, Schönbeinstrasse 40, 4003 Basel, Switzerland.
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
78
|
Davidson A, Tyler J, Hume P, Singh V, Koronakis V. A kinase-independent function of PAK is crucial for pathogen-mediated actin remodelling. PLoS Pathog 2021; 17:e1009902. [PMID: 34460869 PMCID: PMC8432889 DOI: 10.1371/journal.ppat.1009902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/10/2021] [Accepted: 08/17/2021] [Indexed: 02/02/2023] Open
Abstract
The p21-activated kinase (PAK) family regulate a multitude of cellular processes, including actin cytoskeleton remodelling. Numerous bacterial pathogens usurp host signalling pathways that regulate actin reorganisation in order to promote Infection. Salmonella and pathogenic Escherichia coli drive actin-dependent forced uptake and intimate attachment respectively. We demonstrate that the pathogen-driven generation of both these distinct actin structures relies on the recruitment and activation of PAK. We show that the PAK kinase domain is dispensable for this actin remodelling, which instead requires the GTPase-binding CRIB and the central poly-proline rich region. PAK interacts with and inhibits the guanine nucleotide exchange factor β-PIX, preventing it from exerting a negative effect on cytoskeleton reorganisation. This kinase-independent function of PAK may be usurped by other pathogens that modify host cytoskeleton signalling and helps us better understand how PAK functions in normal and diseased eukaryotic cells.
Collapse
Affiliation(s)
- Anthony Davidson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Joe Tyler
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Peter Hume
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Vikash Singh
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Vassilis Koronakis
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
79
|
Abstract
Heamatang (HMT) is a classic medicinal formula used in traditional Chinese and Korean medicine; it contains seven distinct components, mainly of herbal origin. HMT is used as an antiaging remedy, treating urinary disorders and increasing energy and vitality. However, the therapeutic applications of this formula have not been evaluated with evidence-based science. Therefore, we assessed HMT through various in vitro methods, including cell viability assay, fluorescence-activated cell sorting assay (FACS), Western blotting, migration assay, three-dimensional (3D) cell culture, siRNA-mediated PAK-1 knockdown, and crystal violet assays. HMT decreased PAK-1 expression in PC-3 cells and inhibited cell viability, growth, and motility. The inhibition of cell motility by HMT was correlated with PAK-1-mediated inhibition of Lim domain kinase (LIMK) and cofilin. HMT induced G1 arrest and apoptosis through the transcriptional regulation of cell cycle regulatory proteins and apoptosis-related proteins (increase in c-cas3 and inhibition of PARP and BCL-2). Moreover, HMT suppressed PAK-1 expression, leading to the inhibition of AKT activities. Finally, we showed that decursin was the active ingredient involved in the inhibitory effect of HMT on PAK-1. Our findings demonstrated that HMT exerts its anticancer influence through the inhibition of PAK-1. The HMT formula could be applied in various fields, including functional health food and pharmaceutical development.
Collapse
|
80
|
Wright GM, Gimbrone NT, Sarcar B, Percy TR, Gordián ER, Kinose F, Sumi NJ, Rix U, Cress WD. CDK4/6 inhibition synergizes with inhibition of P21-Activated Kinases (PAKs) in lung cancer cell lines. PLoS One 2021; 16:e0252927. [PMID: 34138895 PMCID: PMC8211232 DOI: 10.1371/journal.pone.0252927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Theoretically, small molecule CDK4/6 inhibitors (CDK4/6is) represent a logical therapeutic option in non-small cell lung cancers since most of these malignancies have wildtype RB, the key target of CDKs and master regulator of the cell cycle. Unfortunately, CDK4/6is are found to have limited clinical activity as single agents in non-small cell lung cancer. To address this problem and to identify effective CDK4/6i combinations, we screened a library of targeted agents for efficacy in four non-small cell lung cancer lines treated with CDK4/6 inhibitors Palbociclib or Abemaciclib. The pan-PAK (p21-activated kinase) inhibitor PF03758309 emerged as a promising candidate with viability ratios indicating synergy in all 4 cell lines and for both CDK4/6is. It is noteworthy that the PAKs are downstream effectors of small GTPases Rac1 and Cdc42 and are overexpressed in a wide variety of cancers. Individually the compounds primarily induced cell cycle arrest; however, the synergistic combination induced apoptosis, accounting for the synergy. Surprisingly, while the pan-PAK inhibitor PF03758309 synergizes with CDK4/6is, no synergy occurs with group I PAK inhibitors FRAX486 or FRAX597. Cell lines treated only with Ribociclib, FRAX486 or FRAX597 underwent G1/G0 arrest, whereas combination treatment with these compounds predominantly resulted in autophagy. Combining high concentrations of FRAX486, which weakly inhibits PAK4, and Ribociclib, mimics the autophagy and apoptotic effect of PF03758309 combined with Ribociclib. FRAX597, a PAKi that does not inhibit PAK4 did not reduce autophagy in combination with Ribociclib. Our results suggest that a unique combination of PAKs plays a crucial role in the synergy of PAK inhibitors with CDK4/6i. Targeting this unique PAK combination, could greatly improve the efficacy of CDK4/6i and broaden the spectrum of cancer treatment.
Collapse
Affiliation(s)
- Gabriela M. Wright
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Nick T. Gimbrone
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Bhaswati Sarcar
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Trent R. Percy
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Edna R. Gordián
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Fumi Kinose
- Department of Thoracic Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Natália J. Sumi
- Department of Drug Discovery, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- Cancer Biology PhD Program, University of South Florida, Tampa, Florida, United States of America
| | - Uwe Rix
- Department of Drug Discovery, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - W. Douglas Cress
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
81
|
Seefelder M, Kochanek S. A meta-analysis of transcriptomic profiles of Huntington's disease patients. PLoS One 2021; 16:e0253037. [PMID: 34111223 PMCID: PMC8191979 DOI: 10.1371/journal.pone.0253037] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022] Open
Abstract
Description of robust transcriptomic alterations in Huntington’s disease is essential to identify targets for biochemical studies and drug development. We analysed publicly available transcriptome data from the brain and blood of 220 HD patients and 241 healthy controls and identified 737 and 661 genes with robustly altered mRNA levels in the brain and blood of HD patients, respectively. In the brain, a subnetwork of 320 genes strongly correlated with HD and was enriched in transport-related genes. Bioinformatical analysis of this subnetwork highlighted CDC42, PAK1, YWHAH, NFY, DLX1, HMGN3, and PRMT3. Moreover, we found that CREB1 can regulate 78.0% of genes whose mRNA levels correlated with HD in the blood of patients. Alterations in protein transport, metabolism, transcriptional regulation, and CDC42-mediated functions are likely central features of HD. Further our data substantiate the role of transcriptional regulators that have not been reported in the context of HD (e.g. DLX1, HMGN3 and PRMT3) and strongly suggest dysregulation of NFY and its target genes across tissues. A large proportion of the identified genes such as CDC42 were also altered in Parkinson’s (PD) and Alzheimer’s disease (AD). The observed dysregulation of CDC42 and YWHAH in samples from HD, AD and PD patients indicates that those genes and their upstream regulators may be interesting therapeutic targets.
Collapse
Affiliation(s)
- Manuel Seefelder
- Department of Gene Therapy, Ulm University, Ulm, Germany
- * E-mail:
| | | |
Collapse
|
82
|
Liaci C, Camera M, Caslini G, Rando S, Contino S, Romano V, Merlo GR. Neuronal Cytoskeleton in Intellectual Disability: From Systems Biology and Modeling to Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22116167. [PMID: 34200511 PMCID: PMC8201358 DOI: 10.3390/ijms22116167] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Intellectual disability (ID) is a pathological condition characterized by limited intellectual functioning and adaptive behaviors. It affects 1–3% of the worldwide population, and no pharmacological therapies are currently available. More than 1000 genes have been found mutated in ID patients pointing out that, despite the common phenotype, the genetic bases are highly heterogeneous and apparently unrelated. Bibliomic analysis reveals that ID genes converge onto a few biological modules, including cytoskeleton dynamics, whose regulation depends on Rho GTPases transduction. Genetic variants exert their effects at different levels in a hierarchical arrangement, starting from the molecular level and moving toward higher levels of organization, i.e., cell compartment and functions, circuits, cognition, and behavior. Thus, cytoskeleton alterations that have an impact on cell processes such as neuronal migration, neuritogenesis, and synaptic plasticity rebound on the overall establishment of an effective network and consequently on the cognitive phenotype. Systems biology (SB) approaches are more focused on the overall interconnected network rather than on individual genes, thus encouraging the design of therapies that aim to correct common dysregulated biological processes. This review summarizes current knowledge about cytoskeleton control in neurons and its relevance for the ID pathogenesis, exploiting in silico modeling and translating the implications of those findings into biomedical research.
Collapse
Affiliation(s)
- Carla Liaci
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Mattia Camera
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Giovanni Caslini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Simona Rando
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Salvatore Contino
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 8, 90128 Palermo, Italy;
| | - Valentino Romano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy;
| | - Giorgio R. Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
- Correspondence: ; Tel.: +39-0116706449; Fax: +39-0116706432
| |
Collapse
|
83
|
Misra S, Ghatak S, Moreno-Rodriguez RA, Norris RA, Hascall VC, Markwald RR. Periostin/Filamin-A: A Candidate Central Regulatory Axis for Valve Fibrogenesis and Matrix Compaction. Front Cell Dev Biol 2021; 9:649862. [PMID: 34150753 PMCID: PMC8209548 DOI: 10.3389/fcell.2021.649862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Discoveries in the identification of transcription factors, growth factors and extracellular signaling molecules have led to the detection of downstream targets that modulate valvular tissue organization that occurs during development, aging, or disease. Among these, matricellular protein, periostin, and cytoskeletal protein filamin A are highly expressed in developing heart valves. The phenotype of periostin null indicates that periostin promotes migration, survival, and differentiation of valve interstitial cushion cells into fibroblastic lineages necessary for postnatal valve remodeling/maturation. Genetically inhibiting filamin A expression in valve interstitial cushion cells mirrored the phenotype of periostin nulls, suggesting a molecular interaction between these two proteins resulted in poorly remodeled valve leaflets that might be prone to myxomatous over time. We examined whether filamin A has a cross-talk with periostin/signaling that promotes remodeling of postnatal heart valves into mature leaflets. RESULTS We have previously shown that periostin/integrin-β1 regulates Pak1 activation; here, we revealed that the strong interaction between Pak1 and filamin A proteins was only observed after stimulation of VICs with periostin; suggesting that periostin/integrin-β-mediated interaction between FLNA and Pak1 may have a functional role in vivo. We found that FLNA phosphorylation (S2152) is activated by Pak1, and this interaction was observed after stimulation with periostin/integrin-β1/Cdc42/Rac1 signaling; consequently, FLNA binding to Pak1 stimulates its kinase activity. Patients with floppy and/or prolapsed mitral valves, when genetically screened, were found to have point mutations in the filamin A gene at P637Q and G288R. Expression of either of these filamin A mutants failed to increase the magnitude of filamin A (S2152) expression, Pak1-kinase activity, actin polymerization, and differentiation of VICs into mature mitral valve leaflets in response to periostin signaling. CONCLUSION PN-stimulated bidirectional interaction between activated FLNA and Pak1 is essential for actin cytoskeletal reorganization and the differentiation of immature VICs into mature valve leaflets.
Collapse
Affiliation(s)
- Suniti Misra
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Shibnath Ghatak
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Ricardo A. Moreno-Rodriguez
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Vincent C. Hascall
- Department of Biomedical Engineering/ND20, Cleveland Clinic, Cleveland, OH, United States
| | - Roger R. Markwald
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
84
|
Romano R, Calcagnile M, Margiotta A, Franci L, Chiariello M, Alifano P, Bucci C. RAB7A Regulates Vimentin Phosphorylation through AKT and PAK. Cancers (Basel) 2021; 13:cancers13092220. [PMID: 34066419 PMCID: PMC8125308 DOI: 10.3390/cancers13092220] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary RAB7A (RAs-related in Brain 7A) is a master regulator of intracellular traffic controlling transport to late endosomes and lysosomes, two organelles of the endocytic pathway important for degradation. Thanks to this function, RAB7A is also involved in cellular processes linked to cancer, such as apoptosis, cytoskeletal reorganization, and cell migration. Therefore, the interest in the role of RAB7A in cancer progression is increasing. Previously, we demonstrated that RAB7A regulates phosphorylation and assembly of vimentin, a cytoskeletal intermediate filament protein, which is also an important mesenchymal marker of cancer cells. The aim of the present study is the identification of the kinases responsible for vimentin phosphorylation whose activity is affected by the modulation of RAB7A expression. We found that RAB7A is able to regulate AKT (also called protein kinase B or PKB) and PAK1 (P21-Activated Kinase 1) and several of their downstream effectors, which control proliferation, apoptosis, survival, migration, and invasion. These data suggest that RAB7A could have a key role in cancer development. Abstract RAB7A is a small GTPase that controls the late endocytic pathway but also cell migration through RAC1 (Ras-related C3 botulinum toxin substrate 1) and vimentin. In fact, RAB7A regulates vimentin phosphorylation at different sites and vimentin assembly, and, in this study, we identified vimentin domains interacting with RAB7A. As several kinases could be responsible for vimentin phosphorylation, we investigated whether modulation of RAB7A expression affects the activity of these kinases. We discovered that RAB7A regulates AKT and PAK1, and we demonstrated that increased vimentin phosphorylation at Ser38 (Serine 38), observed upon RAB7A overexpression, is due to AKT activity. As AKT and PAK1 are key regulators of several cellular events, we investigated if RAB7A could have a role in these processes by modulating AKT and PAK1 activity. We found that RAB7A protein levels affected beta-catenin and caspase 9 expression. We also observed the downregulation of cofilin-1 and decreased matrix metalloproteinase 2 (MMP2) activity upon RAB7A silencing. Altogether these results demonstrate that RAB7A regulates AKT and PAK1 kinases, affecting their downstream effectors and the processes they regulate, suggesting that RAB7A could have a role in a number of cancer hallmarks.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (R.R.); (M.C.); (A.M.); (P.A.)
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (R.R.); (M.C.); (A.M.); (P.A.)
| | - Azzurra Margiotta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (R.R.); (M.C.); (A.M.); (P.A.)
| | - Lorenzo Franci
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), 53100 Siena, Italy; (L.F.); (M.C.)
- Core Research Laboratory (CRL), Istituto per lo Studio, La Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Mario Chiariello
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), 53100 Siena, Italy; (L.F.); (M.C.)
- Core Research Laboratory (CRL), Istituto per lo Studio, La Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (R.R.); (M.C.); (A.M.); (P.A.)
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (R.R.); (M.C.); (A.M.); (P.A.)
- Correspondence: ; Tel.: +39-0832-298900
| |
Collapse
|
85
|
Kastian RF, Minegishi T, Baba K, Saneyoshi T, Katsuno-Kambe H, Saranpal S, Hayashi Y, Inagaki N. Shootin1a-mediated actin-adhesion coupling generates force to trigger structural plasticity of dendritic spines. Cell Rep 2021; 35:109130. [PMID: 34010643 DOI: 10.1016/j.celrep.2021.109130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/09/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Dendritic spines constitute the major compartments of excitatory post-synapses. They undergo activity-dependent enlargement, which is thought to increase the synaptic efficacy underlying learning and memory. The activity-dependent spine enlargement requires activation of signaling pathways leading to promotion of actin polymerization within the spines. However, the molecular machinery that suffices for that structural plasticity remains unclear. Here, we demonstrate that shootin1a links polymerizing actin filaments in spines with the cell-adhesion molecules N-cadherin and L1-CAM, thereby mechanically coupling the filaments to the extracellular environment. Synaptic activation enhances shootin1a-mediated actin-adhesion coupling in spines. Promotion of actin polymerization is insufficient for the plasticity; the enhanced actin-adhesion coupling is required for polymerizing actin filaments to push against the membrane for spine enlargement. By integrating cell signaling, cell adhesion, and force generation into the current model of actin-based machinery, we propose molecular machinery that is sufficient to trigger the activity-dependent spine structural plasticity.
Collapse
Affiliation(s)
- Ria Fajarwati Kastian
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takunori Minegishi
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kentarou Baba
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takeo Saneyoshi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Hiroko Katsuno-Kambe
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Singh Saranpal
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Naoyuki Inagaki
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
86
|
Thomas EB, Sutanto R, Johnson RS, Shih HW, Alas GCM, Krtková J, MacCoss MJ, Paredez AR. Staging Encystation Progression in Giardia lamblia Using Encystation-Specific Vesicle Morphology and Associating Molecular Markers. Front Cell Dev Biol 2021; 9:662945. [PMID: 33987184 PMCID: PMC8111296 DOI: 10.3389/fcell.2021.662945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 01/24/2023] Open
Abstract
Differentiation into environmentally resistant cysts is required for transmission of the ubiquitous intestinal parasite Giardia lamblia. Encystation in Giardia requires the production, processing and transport of Cyst Wall Proteins (CWPs) in developmentally induced, Golgi-like, Encystation Specific Vesicles (ESVs). Progress through this trafficking pathway can be followed by tracking CWP localization over time. However, there is no recognized system to distinguish the advancing stages of this process which can complete at variable rates depending on how encystation is induced. Here, we propose a staging system for encysting Giardia based on the morphology of CWP1-stained ESVs. We demonstrate the molecular distinctiveness of maturing ESVs at these stages by following GlRab GTPases through encystation. Previously, we established that Giardia’s sole Rho family GTPase, GlRac, associates with ESVs and has a role in regulating their maturation and the secretion of their cargo. As a proof of principle, we delineate the relationship between GlRac and ESV stages. Through proteomic studies, we identify putative interactors of GlRac that could be used as additional ESV stage markers. This staging system provides a common descriptor of ESV maturation regardless of the source of encysting cells. Furthermore, the identified set of molecular markers for ESV stages will be a powerful tool for characterizing trafficking mutants that impair ESV maturation and morphology.
Collapse
Affiliation(s)
- Elizabeth B Thomas
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Renaldo Sutanto
- Department of Biology, University of Washington, Seattle, WA, United States.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Richard S Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Han-Wei Shih
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Germain C M Alas
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Jana Krtková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | | |
Collapse
|
87
|
Disruption of the autism-related gene Pak1 causes stereocilia disorganization, hair cell loss, and deafness in mice. J Genet Genomics 2021; 48:324-332. [PMID: 34049799 DOI: 10.1016/j.jgg.2021.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/18/2021] [Accepted: 03/12/2021] [Indexed: 01/06/2023]
Abstract
Several clinical studies have reported that hearing loss is correlated with autism in children. However, little is known about the underlying mechanism between hearing loss and autism. p21-activated kinases (PAKs) are a family of serine/threonine kinases that can be activated by multiple signaling molecules, particularly the Rho family of small GTPases. Previous studies have shown that Pak1 mutations are associated with autism. In the present study, we take advantage of Pak1 knockout (Pak1-/-) mice to investigate the role of PAK1 in hearing function. We find that PAK1 is highly expressed in the postnatal mouse cochlea and that PAK1 deficiency leads to hair cell (HC) apoptosis and severe hearing loss. Further investigation indicates that PAK1 deficiency downregulates the phosphorylation of cofilin and ezrin-radixin-moesin and the expression of βII-spectrin, which further decreases the HC synapse density in the basal turn of cochlea and disorganized the HC stereocilia in all three turns of cochlea in Pak1-/- mice. Overall, our work demonstrates that the autism-related gene Pak1 plays a crucial role in hearing function. As the first candidate gene linking autism and hearing loss, Pak1 may serve as a potential target for the clinical diagnosis of autism-related hearing loss.
Collapse
|
88
|
Huang WK, Chen Y, Su H, Chen TY, Gao J, Liu Y, Yeh CN, Li S. ARHGAP25 Inhibits Pancreatic Adenocarcinoma Growth by Suppressing Glycolysis via AKT/mTOR Pathway. Int J Biol Sci 2021; 17:1808-1820. [PMID: 33994864 PMCID: PMC8120455 DOI: 10.7150/ijbs.55919] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
Increasing evidence reveals that the Rho GTPase-activating protein is a crucial negative regulator of Rho family GTPase involved in tumorigenesis. The Rho GTPase-activating protein 25 (ARHGAP25) has been shown to specifically inactivate the Rho family GTPase Rac1, which plays an important role in pancreatic adenocarcinoma (PAAD) progression. Therefore, here we aimed to clarify the expression and functional role of ARHGAP25 in PAAD. The ARHGAP25 expression was lower in PAAD tissues than that in normal pancreatic tissues based on bioinformatics analysis and immunohistochemistry staining. Overexpression of ARHGAP25 inhibited cell growth of AsPC-1 human pancreatic cancer cells in vitro, while opposite results were observed in BxPC-3 human pancreatic cancer cells with ARHGAP25 knockdown. Consistently, in vivo tumorigenicity assays also confirmed that ARHGAP25 overexpression suppressed tumor growth. Mechanically, overexpression of ARHGAP25 inactivated AKT/mTOR signaling pathway by regulating Rac1/PAK1 signaling, which was in line with the results from the Gene set enrichment analysis on The Cancer Genome Atlas dataset. Furthermore, we found that ARHGAP25 reduced HIF-1α-mediated glycolysis in PAAD cells. Treatment with PF-04691502, a dual PI3K/mTOR inhibitor, hampered the increased cell growth and glycolysis due to ARHGAP25 knockdown in PAAD cells. Altogether, these results conclude that ARHGAP25 acts as a tumor suppressor by inhibiting the AKT/mTOR signaling pathway, which might provide a therapeutic target for PAAD.
Collapse
Affiliation(s)
- Wen-Kuan Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou; Chang Gung University College of Medicine, 333, Taoyuan, Taiwan.,Department of Oncology-Pathology, Karolinska Institutet, BioClinicum J6:30, Karolinska University Hospital, SE-17164 Solna, Sweden
| | - Yi Chen
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum J6:30, Karolinska University Hospital, SE-17164 Solna, Sweden
| | - Huafang Su
- Department of Radiation and Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou 325000, Zhejiang, China
| | - Tung-Ying Chen
- Department of Pathology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Jiwei Gao
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum J6:30, Karolinska University Hospital, SE-17164 Solna, Sweden
| | - Yaxuan Liu
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum J6:30, Karolinska University Hospital, SE-17164 Solna, Sweden
| | - Chun-Nan Yeh
- Department of Surgery and Pancreatic Cancer Team, Chang Gung Memorial Hospital, Linkou; Chang Gung University College of Medicine, 333, Taoyuan, Taiwan
| | - Shuijie Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| |
Collapse
|
89
|
Gene Expression of Putative Pathogenicity-Related Genes in Verticillium dahliae in Response to Elicitation with Potato Extracts and during Infection Using Quantitative Real-Time PCR. Pathogens 2021; 10:pathogens10050510. [PMID: 33922492 PMCID: PMC8146963 DOI: 10.3390/pathogens10050510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Quantitative real-time PCR was used to monitor the expression of 15 Verticillium dahliae's genes, putatively involved in pathogenicity, highly (HAV) and weakly aggressive (WAV) V. dahliae isolates after either (i) elicitation with potato leaf, stem, or root extracts, or (ii) inoculation of potato detached petioles. These genes, i.e., coding for Ras-GAP-like protein, serine/threonine protein kinase, Ubiquitin-conjugating enzyme variant-MMS2, NADH-ubiquinone oxidoreductase, Thioredoxin, Pyruvate dehydrogenase E1 VdPDHB, myo-inositol 2-dehydrogenase, and HAD-superfamily hydrolase, showed differential upregulation in the HAV versus WAV isolate in response to plant extracts or after inoculation of potato leaf petioles. This suggests their potential involvement in the observed differential aggressiveness between isolates. However, other genes like glucan endo-1,3-alpha-glucosidase and nuc-1 negative regulatory protein VdPREG showed higher activity in the WAV than in the HAV in response to potato extracts and/or during infection. This, in contrast, may suggest a role in their lower aggressiveness. These findings, along with future functional analysis of selected genes, will contribute to improving our understanding of V. dahliae's pathogenesis. For example, expression of VdPREG negatively regulates phosphorus-acquisition enzymes, which may indicate a lower phosphorus acquisition activity in the WAV. Therefore, integrating the knowledge about the activity of both genes enhancing pathogenicity and those restraining it will provide a guild line for further functional characterization of the most critical genes, thus driving new ideas towards better Verticillium wilt management.
Collapse
|
90
|
Machin PA, Tsonou E, Hornigold DC, Welch HCE. Rho Family GTPases and Rho GEFs in Glucose Homeostasis. Cells 2021; 10:cells10040915. [PMID: 33923452 PMCID: PMC8074089 DOI: 10.3390/cells10040915] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Dysregulation of glucose homeostasis leading to metabolic syndrome and type 2 diabetes is the cause of an increasing world health crisis. New intriguing roles have emerged for Rho family GTPases and their Rho guanine nucleotide exchange factor (GEF) activators in the regulation of glucose homeostasis. This review summates the current knowledge, focusing in particular on the roles of Rho GEFs in the processes of glucose-stimulated insulin secretion by pancreatic β cells and insulin-stimulated glucose uptake into skeletal muscle and adipose tissues. We discuss the ten Rho GEFs that are known so far to regulate glucose homeostasis, nine of which are in mammals, and one is in yeast. Among the mammalian Rho GEFs, P-Rex1, Vav2, Vav3, Tiam1, Kalirin and Plekhg4 were shown to mediate the insulin-stimulated translocation of the glucose transporter GLUT4 to the plasma membrane and/or insulin-stimulated glucose uptake in skeletal muscle or adipose tissue. The Rho GEFs P-Rex1, Vav2, Tiam1 and β-PIX were found to control the glucose-stimulated release of insulin by pancreatic β cells. In vivo studies demonstrated the involvement of the Rho GEFs P-Rex2, Vav2, Vav3 and PDZ-RhoGEF in glucose tolerance and/or insulin sensitivity, with deletion of these GEFs either contributing to the development of metabolic syndrome or protecting from it. This research is in its infancy. Considering that over 80 Rho GEFs exist, it is likely that future research will identify more roles for Rho GEFs in glucose homeostasis.
Collapse
Affiliation(s)
- Polly A. Machin
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; (P.A.M.); (E.T.)
| | - Elpida Tsonou
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; (P.A.M.); (E.T.)
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge CB22 3AT, UK;
| | - David C. Hornigold
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge CB22 3AT, UK;
| | - Heidi C. E. Welch
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; (P.A.M.); (E.T.)
- Correspondence: ; Tel.: +44-(0)1223-496-596
| |
Collapse
|
91
|
Articular Chondrocyte Phenotype Regulation through the Cytoskeleton and the Signaling Processes That Originate from or Converge on the Cytoskeleton: Towards a Novel Understanding of the Intersection between Actin Dynamics and Chondrogenic Function. Int J Mol Sci 2021; 22:ijms22063279. [PMID: 33807043 PMCID: PMC8004672 DOI: 10.3390/ijms22063279] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
Numerous studies have assembled a complex picture, in which extracellular stimuli and intracellular signaling pathways modulate the chondrocyte phenotype. Because many diseases are mechanobiology-related, this review asked to what extent phenotype regulators control chondrocyte function through the cytoskeleton and cytoskeleton-regulating signaling processes. Such information would generate leverage for advanced articular cartilage repair. Serial passaging, pro-inflammatory cytokine signaling (TNF-α, IL-1α, IL-1β, IL-6, and IL-8), growth factors (TGF-α), and osteoarthritis not only induce dedifferentiation but also converge on RhoA/ROCK/Rac1/mDia1/mDia2/Cdc42 to promote actin polymerization/crosslinking for stress fiber (SF) formation. SF formation takes center stage in phenotype control, as both SF formation and SOX9 phosphorylation for COL2 expression are ROCK activity-dependent. Explaining how it is molecularly possible that dedifferentiation induces low COL2 expression but high SF formation, this review theorized that, in chondrocyte SOX9, phosphorylation by ROCK might effectively be sidelined in favor of other SF-promoting ROCK substrates, based on a differential ROCK affinity. In turn, actin depolymerization for redifferentiation would “free-up” ROCK to increase COL2 expression. Moreover, the actin cytoskeleton regulates COL1 expression, modulates COL2/aggrecan fragment generation, and mediates a fibrogenic/catabolic expression profile, highlighting that actin dynamics-regulating processes decisively control the chondrocyte phenotype. This suggests modulating the balance between actin polymerization/depolymerization for therapeutically controlling the chondrocyte phenotype.
Collapse
|
92
|
Bensen R, Brognard J. New Therapeutic Opportunities for the Treatment of Squamous Cell Carcinomas: A Focus on Novel Driver Kinases. Int J Mol Sci 2021; 22:2831. [PMID: 33799513 PMCID: PMC7999493 DOI: 10.3390/ijms22062831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Squamous cell carcinomas of the lung, head and neck, esophagus, and cervix account for more than two million cases of cancer per year worldwide with very few targetable therapies available and minimal clinical improvement in the past three decades. Although these carcinomas are differentiated anatomically, their genetic landscape shares numerous common genetic alterations. Amplification of the third chromosome's distal portion (3q) is a distinguishing genetic alteration in most of these carcinomas and leads to copy-number gain and amplification of numerous oncogenic proteins. This area of the chromosome harbors known oncogenes involved in squamous cell fate decisions and differentiation, including TP63, SOX2, ECT2, and PIK3CA. Furthermore, novel targetable oncogenic kinases within this amplicon include PRKCI, PAK2, MAP3K13, and TNIK. TCGA analysis of these genes identified amplification in more than 20% of clinical squamous cell carcinoma samples, correlating with a significant decrease in overall patient survival. Alteration of these genes frequently co-occurs and is dependent on 3q-chromosome amplification. The dependency of cancer cells on these amplified kinases provides a route toward personalized medicine in squamous cell carcinoma patients through development of small-molecules targeting these kinases.
Collapse
Affiliation(s)
| | - John Brognard
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| |
Collapse
|
93
|
Antonarakis SE, Holoubek A, Rapti M, Rademaker J, Meylan J, Iwaszkiewicz J, Zoete V, Wilson C, Taylor J, Ansar M, Borel C, Menzel O, Kuželová K, Santoni FA. Dominant monoallelic variant in the PAK2 gene causes Knobloch syndrome type 2. Hum Mol Genet 2021; 31:1-9. [PMID: 33693784 DOI: 10.1093/hmg/ddab026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/11/2021] [Accepted: 01/31/2021] [Indexed: 11/12/2022] Open
Abstract
Knobloch syndrome is an autosomal recessive phenotype mainly characterized by retinal detachment and encephalocele caused by biallelic pathogenic variants in the COL18A1 gene. However, there are patients clinically diagnosed as Knobloch syndrome with unknown molecular etiology not linked to COL18A1. We studied an historical pedigree (published in 1998) designated as KNO2 (Knobloch type 2 syndrome with intellectual disability, autistic behavior, retinal degeneration, encephalocele). Whole exome sequencing of the two affected siblings and the normal parents resulted in the identification of a PAK2 non-synonymous substitution p.(Glu435Lys) as a causative variant. The variant was monoallelic and apparently de novo in both siblings indicating a likely germline mosaicism in one of the parents; the mosaicism however could not be observed after deep sequencing of blood parental DNA. PAK2 encodes a member of a small group of serine/threonine kinases; these P21-activating kinases (PAKs) are essential in signal transduction and cellular regulation (cytoskeletal dynamics, cell motility, death and survival signaling, and cell cycle progression). Structural analysis of the PAK2 p.(Glu435Lys) variant which is located in the kinase domain of the protein predicts a possible compromise in the kinase activity. Functional analysis of the p.(Glu435Lys) PAK2 variant in transfected HEK293T cells results in a partial loss of the kinase activity. PAK2 has been previously suggested as an autism related gene. Our results show that PAK2 induced phenotypic spectrum is broad and not fully understood. We conclude that the KNO2 syndrome in the studied family is dominant and caused by a deleterious variant in the PAK2 gene.
Collapse
Affiliation(s)
- Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva 1211, Switzerland.,iGE3 Institute of Genetics and Genomics of Geneva, Geneva 1211, Switzerland
| | - Ales Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Melivoia Rapti
- Department of Endocrinology Diabetes and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Jesse Rademaker
- Department of Endocrinology Diabetes and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Jenny Meylan
- Department of Endocrinology Diabetes and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Justyna Iwaszkiewicz
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland.,Department of Fundamental Oncology, Ludwig Institute for Cancer Research, Lausanne University, Epalinges 1066, Switzerland
| | - Callum Wilson
- National Metabolic Service, Starship Children's Hospital, Auckland 1142, New Zealand
| | - Juliet Taylor
- National Metabolic Service, Starship Children's Hospital, Auckland 1142, New Zealand
| | - Muhammad Ansar
- Institute of Molecular and Clinical Ophthalmology, Basel 4031, Switzerland
| | - Christelle Borel
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva 1211, Switzerland
| | - Olivier Menzel
- Health 2030 Genome Center, Foundation Campus Biotech Geneva Foundation, Geneva 1202, Switzerland
| | - Kateřina Kuželová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Federico A Santoni
- Department of Endocrinology Diabetes and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1011, Switzerland
| |
Collapse
|
94
|
Gavriljuk K, Scocozza B, Ghasemalizadeh F, Seidel H, Nandan AP, Campos-Medina M, Schmick M, Koseska A, Bastiaens PIH. A self-organized synthetic morphogenic liposome responds with shape changes to local light cues. Nat Commun 2021; 12:1548. [PMID: 33750780 PMCID: PMC7943604 DOI: 10.1038/s41467-021-21679-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/29/2021] [Indexed: 12/02/2022] Open
Abstract
Reconstituting artificial proto-cells capable of transducing extracellular signals into cytoskeletal changes can reveal fundamental principles of how non-equilibrium phenomena in cellular signal transduction affect morphogenesis. Here, we generated a Synthetic Morphogenic Membrane System (SynMMS) by encapsulating a dynamic microtubule (MT) aster and a light-inducible signaling system driven by GTP/ATP chemical potential into cell-sized liposomes. Responding to light cues in analogy to morphogens, this biomimetic design embodies basic principles of localized Rho-GTPase signal transduction that generate an intracellular MT-regulator signaling gradient. Light-induced signaling promotes membrane-deforming growth of MT-filaments by dynamically elevating the membrane-proximal tubulin concentration. The resulting membrane deformations enable recursive coupling of the MT-aster with the signaling system, which generates global self-organized morphologies that reorganize towards local external cues in dependence on prior shape. SynMMS thereby signifies a step towards bio-inspired engineering of self-organized cellular morphogenesis. The authors generated a Synthetic Morphogenic Membrane System by encapsulating a dynamic microtubule aster and a light-inducible signaling system driven by GTP/ATP chemical potential into cell-sized liposomes. This reconstitution of artificial proto-cells reveals how non-equilibrium phenomena affect cellular information processing in morphogenesis.
Collapse
Affiliation(s)
- Konstantin Gavriljuk
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Bruno Scocozza
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Farid Ghasemalizadeh
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Hans Seidel
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Akhilesh P Nandan
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany.,Cellular Computations and Learning, Center of Advanced European Studies and Research (caesar), Bonn, Germany
| | - Manuel Campos-Medina
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Malte Schmick
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Aneta Koseska
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany.,Cellular Computations and Learning, Center of Advanced European Studies and Research (caesar), Bonn, Germany
| | - Philippe I H Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany. .,Faculty of Chemistry and Chemical Biology, TU Dortmund, Dortmund, Germany.
| |
Collapse
|
95
|
Acuner SE, Sumbul F, Torun H, Haliloglu T. Oncogenic mutations on Rac1 affect global intrinsic dynamics underlying GTP and PAK1 binding. Biophys J 2021; 120:866-876. [PMID: 33515600 PMCID: PMC8008323 DOI: 10.1016/j.bpj.2021.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 12/31/2022] Open
Abstract
Rac1 is a small member of the Rho GTPase family. One of the most important downstream effectors of Rac1 is a serine/threonine kinase, p21-activated kinase 1 (PAK1). Mutational activation of PAK1 by Rac1 has oncogenic signaling effects. Here, although we focus on Rac1-PAK1 interaction by atomic-force-microscopy-based single-molecule force spectroscopy experiments, we explore the effect of active mutations on the intrinsic dynamics and binding interactions of Rac1 by Gaussian network model analysis and molecular dynamics simulations. We observe that Rac1 oncogenic mutations are at the hinges of three global modes of motion, suggesting the mechanical changes as potential markers of oncogenicity. Indeed, the dissociation of wild-type Rac1-PAK1 complex shows two distinct unbinding dynamic states that are reduced to one with constitutively active Q61L and oncogenic Y72C mutant Rac1, as revealed by single-molecule force spectroscopy experiments. Q61L and Y72C mutations change the mechanics of the Rac1-PAK1 complex by increasing the elasticity of the protein and slowing down the transition to the unbound state. On the other hand, Rac1's intrinsic dynamics reveal more flexible GTP and PAK1-binding residues on switches I and II with Q61L, Y72C, oncogenic P29S and Q61R, and negative T17N mutations. The cooperativity in the fluctuations of GTP-binding sites around the p-loop and switch I decreases in all mutants, mostly in Q61L, whereas some PAK1-binding residues display enhanced coupling with GTP-binding sites in Q61L and Y72C and within each other in P29S. The predicted binding free energies of the modeled Rac1-PAK1 complexes show that the change in the dynamic behavior likely means a more favorable PAK1 interaction. Overall, these findings suggest that the active mutations affect intrinsic functional dynamic events and alter the mechanics underlying the binding of Rac1 to GTP and upstream and downstream partners including PAK1.
Collapse
Affiliation(s)
- Saliha Ece Acuner
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey
| | - Fidan Sumbul
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey
| | - Hamdi Torun
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle, United Kingdom.
| | - Turkan Haliloglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey.
| |
Collapse
|
96
|
Batra A, Warren CM, Ke Y, McCann M, Halas M, Capote AE, Liew CW, Solaro RJ, Rosas PC. Deletion of P21-activated kinase-1 induces age-dependent increased visceral adiposity and cardiac dysfunction in female mice. Mol Cell Biochem 2021; 476:1337-1349. [PMID: 33389497 PMCID: PMC7925422 DOI: 10.1007/s11010-020-03993-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
It is known that there is an age-related progression in diastolic dysfunction, especially prevalent in postmenopausal women, who develop heart failure with preserved ejection fraction (HFpEF, EF > 50%). Mechanisms and therapies are poorly understood, but there are strong correlations between obesity and HFpEF. We have tested the hypothesis that P21-activated kinase-1 (PAK1) preserves cardiac function and adipose tissue homeostasis during aging in female mice. Previous demonstrations in male mice by our lab that PAK1 activity confers cardio-protection against different stresses formed the rationale for this hypothesis. Our studies compared young (3-6 months) and middle-aged (12-15 months) female and male PAK1 knock-out mice (PAK1-/-) and wild-type (WT) equivalent. Female WT mice exhibited increased cardiac PAK1 abundance during aging. By echocardiography, compared to young WT female mice, middle-aged WT female mice showed enlargement of the left atrium as well as thickening of posterior wall and increased left ventricular mass; however, all contraction and relaxation parameters were preserved during aging. Compared to WT controls, middle-aged PAK1-/- female mice demonstrated worsening of cardiac function involving a greater enlargement of the left atrium, ventricular hypertrophy, and diastolic dysfunction. Moreover, with aging PAK1-/- female mice, unlike male PAK1-/- mice, exhibited increased adiposity with increased accumulation of visceral adipose tissue. Our data provide evidence for the significance of PAK1 signaling as an element in the preservation of cardiac function and adipose tissue homeostasis in females during aging.
Collapse
Affiliation(s)
- Ashley Batra
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Chad M Warren
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Yunbo Ke
- Department of Anesthesiology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Maximilian McCann
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Monika Halas
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Andrielle E Capote
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Chong Wee Liew
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | - R John Solaro
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Paola C Rosas
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
97
|
Dufies O, Doye A, Courjon J, Torre C, Michel G, Loubatier C, Jacquel A, Chaintreuil P, Majoor A, Guinamard RR, Gallerand A, Saavedra PHV, Verhoeyen E, Rey A, Marchetti S, Ruimy R, Czerucka D, Lamkanfi M, Py BF, Munro P, Visvikis O, Boyer L. Escherichia coli Rho GTPase-activating toxin CNF1 mediates NLRP3 inflammasome activation via p21-activated kinases-1/2 during bacteraemia in mice. Nat Microbiol 2021; 6:401-412. [PMID: 33432150 PMCID: PMC7116836 DOI: 10.1038/s41564-020-00832-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/13/2020] [Indexed: 12/27/2022]
Abstract
Inflammasomes are signalling platforms that are assembled in response to infection or sterile inflammation by cytosolic pattern recognition receptors. The consequent inflammasome-triggered caspase-1 activation is critical for the host defence against pathogens. During infection, NLRP3, which is a pattern recognition receptor that is also known as cryopyrin, triggers the assembly of the inflammasome-activating caspase-1 through the recruitment of ASC and Nek7. The activation of the NLRP3 inflammasome is tightly controlled both transcriptionally and post-translationally. Despite the importance of the NLRP3 inflammasome regulation in autoinflammatory and infectious diseases, little is known about the mechanism controlling the activation of NLRP3 and the upstream signalling that regulates the NLRP3 inflammasome assembly. We have previously shown that the Rho-GTPase-activating toxin from Escherichia coli cytotoxic necrotizing factor-1 (CNF1) activates caspase-1, but the upstream mechanism is unclear. Here, we provide evidence of the role of the NLRP3 inflammasome in sensing the activity of bacterial toxins and virulence factors that activate host Rho GTPases. We demonstrate that this activation relies on the monitoring of the toxin's activity on the Rho GTPase Rac2. We also show that the NLRP3 inflammasome is activated by a signalling cascade that involves the p21-activated kinases 1 and 2 (Pak1/2) and the Pak1-mediated phosphorylation of Thr 659 of NLRP3, which is necessary for the NLRP3-Nek7 interaction, inflammasome activation and IL-1β cytokine maturation. Furthermore, inhibition of the Pak-NLRP3 axis decreases the bacterial clearance of CNF1-expressing UTI89 E. coli during bacteraemia in mice. Taken together, our results establish that Pak1 and Pak2 are critical regulators of the NLRP3 inflammasome and reveal the role of the Pak-NLRP3 signalling axis in vivo during bacteraemia in mice.
Collapse
Affiliation(s)
| | - Anne Doye
- Université Côte d'Azur, Inserm, C3M, Nice, France
| | - Johan Courjon
- Université Côte d'Azur, Inserm, C3M, Nice, France
- Université Côte d'Azur, CHU Nice, Nice, France
| | - Cédric Torre
- Université Côte d'Azur, Inserm, C3M, Nice, France
| | | | | | | | | | | | | | | | - Pedro H V Saavedra
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Els Verhoeyen
- Université Côte d'Azur, Inserm, C3M, Nice, France
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Amaury Rey
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | | | - Raymond Ruimy
- Université Côte d'Azur, Inserm, C3M, Nice, France
- Université Côte d'Azur, CHU Nice, Nice, France
| | - Dorota Czerucka
- Centre Scientifique de Monaco, Monaco, Monaco
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur, Centre Scientifique de Monaco, Nice, France
| | - Mohamed Lamkanfi
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bénédicte F Py
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | | | | | - Laurent Boyer
- Université Côte d'Azur, Inserm, C3M, Nice, France.
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur, Centre Scientifique de Monaco, Nice, France.
| |
Collapse
|
98
|
p21-activated kinases as viable therapeutic targets for the treatment of high-risk Ewing sarcoma. Oncogene 2021; 40:1176-1190. [PMID: 33414491 DOI: 10.1038/s41388-020-01600-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 01/04/2023]
Abstract
Ewing sarcoma (ES) is the second most common bone tumor in children and young adults. Unfortunately, there have been minimal recent advancements in improving patient outcomes, especially in metastatic and recurrent diseases. In this study, we investigated the biological role of p21-activated kinases (PAKs) in ES, and the ability to therapeutically target them in high-risk disease. Via informatics analysis, we established the inverse association of PAK1 and PAK4 expression with clinical stage and outcome in ES patients. Through expression knockdown and small-molecule inhibition of PAKs, utilizing FRAX-597, KPT-9274, and PF-3758309 in multiple ES cell lines and patient-derived xenograft models, we further explored the role of PAKs in ES tumor growth and metastatic capabilities. In vitro studies in several ES cell lines indicated that diminishing PAK1 and PAK4 expression reduces tumor cell viability, migratory, and invasive properties. In vivo studies using PAK4 inhibitors, KPT-9274 and PF-3758309 demonstrated significant inhibition of primary and metastatic tumor formation, while transcriptomic analysis of PAK4-inhibitor-treated tumors identified concomitant suppression of Notch, β-catenin, and hypoxia-mediated signatures. In addition, the analysis showed enrichment of anti-tumor immune regulatory mechanisms, including interferon (IFN)-ɣ and IFN-α responses. Altogether, our molecular and pre-clinical studies are the first to establish a critical role for PAKs in ES development and progression, and consequently as viable therapeutic targets for the treatment of high-risk ES in the near future.
Collapse
|
99
|
Signaling cross-talk during development: Context-specific networking of Notch, NF-κB and JNK signaling pathways in Drosophila. Cell Signal 2021; 82:109937. [PMID: 33529757 DOI: 10.1016/j.cellsig.2021.109937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023]
Abstract
Multicellular organisms depend on a handful of core signaling pathways that regulate a variety of cell fate choices. Often these relatively simple signals integrate to form a large and complex signaling network to achieve a distinct developmental fate in a context-specific manner. Various pathway-dependent and independent events control the assembly of signaling complexes. Notch pathway is one such conserved signaling mechanism that integrates with other signaling pathways to exhibit a context-dependent pleiotropic output. To understand how Notch signaling provides a spectrum of distinct outputs, it is important to understand various regulatory switches involved in mediating signaling cross-talk of Notch with other pathways. Here, we review our current understanding as to how Notch signal integrates with JNK and NF-κB signaling pathways in Drosophila to regulate various developmental events such as sensory organ precursor formation, innate immunity, dorsal closure, establishment of planar cell polarity as well as during proliferation and tumor progression. We highlight the importance of conserved signaling molecules during these cross-talks and debate further possibilities of novel switches that may be involved in mediating these cross-talk events.
Collapse
|
100
|
PAK1 Positively Regulates Oligodendrocyte Morphology and Myelination. J Neurosci 2021; 41:1864-1877. [PMID: 33478987 DOI: 10.1523/jneurosci.0229-20.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
The actin cytoskeleton is crucial for oligodendrocyte differentiation and myelination. Here we show that p21-activated kinase 1 (PAK1), a well-known actin regulator, promotes oligodendrocyte morphologic change and myelin production in the CNS. A combination of in vitro and in vivo models demonstrated that PAK1 is expressed throughout the oligodendrocyte lineage with highest expression in differentiated oligodendrocytes. Inhibiting PAK1 early in oligodendrocyte development decreased oligodendrocyte morphologic complexity and altered F-actin spreading at the tips of oligodendrocyte progenitor cell processes. Constitutively activating AKT in oligodendrocytes in male and female mice, which leads to excessive myelin wrapping, increased PAK1 expression, suggesting an impact of PAK1 during active myelin wrapping. Furthermore, constitutively activating PAK1 in oligodendrocytes in zebrafish led to an increase in myelin internode length while inhibiting PAK1 during active myelination decreased internode length. As myelin parameters influence conduction velocity, these data suggest that PAK1 may influence communication within the CNS. These data support a model in which PAK1 is a positive regulator of CNS myelination.SIGNIFICANCE STATEMENT Myelin is a critical component of the CNS that provides metabolic support to neurons and also facilitates communication between cells in the CNS. Recent data demonstrate that actin dynamics drives myelin wrapping, but how actin is regulated during myelin wrapping is unknown. The authors investigate the role of the cytoskeletal modulator PAK1 during differentiation and myelination by oligodendrocytes, the myelinating cells of the CNS. They demonstrate that PAK1 promotes oligodendrocyte differentiation and myelination by modulating the cytoskeleton and thereby internode length, thus playing a critical role in the function of the CNS.
Collapse
|