51
|
Featherstone DE. Intercellular glutamate signaling in the nervous system and beyond. ACS Chem Neurosci 2010; 1:4-12. [PMID: 22778802 DOI: 10.1021/cn900006n] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/25/2009] [Indexed: 01/22/2023] Open
Abstract
Most intercellular glutamate signaling in the nervous system occurs at synapses. Some intercellular glutamate signaling occurs outside synapses, however, and even outside the nervous system where high ambient extracellular glutamate might be expected to preclude the effectiveness of glutamate as an intercellular signal. Here, I briefly review the types of intercellular glutamate signaling in the nervous system and beyond, with emphasis on the diversity of signaling mechanisms and fundamental unanswered questions.
Collapse
Affiliation(s)
- David E. Featherstone
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| |
Collapse
|
52
|
Cabezas C, Buño W. BDNF is required for the induction of a presynaptic component of the functional conversion of silent synapses. Hippocampus 2010; 21:374-85. [DOI: 10.1002/hipo.20754] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
53
|
Differential activity-dependent secretion of brain-derived neurotrophic factor from axon and dendrite. J Neurosci 2009; 29:14185-98. [PMID: 19906967 DOI: 10.1523/jneurosci.1863-09.2009] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is essential for neuronal survival and differentiation during development and for synaptic function and plasticity in the mature brain. BDNF-containing vesicles are widely distributed and bidirectionally transported in neurons, and secreted BDNF can act on both presynaptic and postsynaptic cells. Activity-dependent BDNF secretion from neuronal cultures has been reported, but it remains unknown where the primary site of BDNF secretion is and whether neuronal activity can trigger BDNF secretion from axons and dendrites with equal efficacy. Using BDNF fused with pH-sensitive green fluorescent protein to visualize BDNF secretion, we found that BDNF-containing vesicles exhibited markedly different properties of activity-dependent exocytic fusion at the axon and dendrite of cultured hippocampal neurons. Brief spiking activity triggered a transient fusion pore opening, followed by immediate retrieval of vesicles without dilation of the fusion pore, resulting in very little BDNF secretion at the axon. On the contrary, the same brief spiking activity induced "full-collapse" vesicle fusion and substantial BDNF secretion at the dendrite. However, full vesicular fusion with BDNF secretion could occur at the axon when the neuron was stimulated by prolonged high-frequency activity, a condition neurons may encounter during epileptic discharge. Thus, activity-dependent axonal secretion of BDNF is highly restricted as a result of incomplete fusion of BDNF-containing vesicles, and normal neural activity induces BDNF secretion from dendrites, consistent with the BDNF function as a retrograde factor. Our study also revealed a novel mechanism by which differential exocytosis of BDNF-containing vesicles may regulate BDNF-TrkB signaling between connected neurons.
Collapse
|
54
|
Richards DA. Vesicular release mode shapes the postsynaptic response at hippocampal synapses. J Physiol 2009; 587:5073-80. [PMID: 19752123 DOI: 10.1113/jphysiol.2009.175315] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Release of neurotransmitters from synaptic vesicles is a central event in synaptic transmission. Recent evidence suggests that synaptic vesicles fuse with the plasma membrane by multiple routes during exocytosis, but the regulation and physiological implications of this choice are unclear. At hippocampal synapses, two modes of synaptic vesicle exocytosis can be distinguished by virtue of the rate and extent of loss of a fluorescent lipid marker (FM1-43). Here these two modes of exocytosis were investigated with a combination of electrophysiological recording and fluorescence imaging. It is shown that these exocytic modes result in distinct postsynaptic consequences, such that so-called 'kiss-and-run' exocytosis results in negligible activation of AMPA receptors, compared to the robust postsynaptic responses elicited by apparent full fusion. In contrast NMDA receptors are robustly activated by this form of glutamate delivery. Addition of cyclothiazide, which blocks AMPA receptor desensitization, reveals that the relatively slow rate of release of glutamate during kiss-and-run exocytosis shifts the population of AMPA receptors into a desensitized state, rather than simply being insufficient for receptor activation. These findings provide further support for the existence of a fusion pore mediated mode of exocytosis, and demonstrate that these two exocytic modes directly affect the throughput of synaptic transmission.
Collapse
Affiliation(s)
- David A Richards
- Department of Neurology, University of Cincinnati, Vontz Center for Molecular Studies, 3125 Eden Avenue, Cincinnati, OH 45267, USA.
| |
Collapse
|
55
|
Ahmed MS, Siegelbaum SA. Recruitment of N-Type Ca(2+) channels during LTP enhances low release efficacy of hippocampal CA1 perforant path synapses. Neuron 2009; 63:372-85. [PMID: 19679076 DOI: 10.1016/j.neuron.2009.07.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 05/13/2009] [Accepted: 07/07/2009] [Indexed: 01/17/2023]
Abstract
The entorhinal cortex provides both direct and indirect inputs to hippocampal CA1 neurons through the perforant path and Schaffer collateral synapses, respectively. Using both two-photon imaging of synaptic vesicle cycling and electrophysiological recordings, we found that the efficacy of transmitter release at perforant path synapses is lower than at Schaffer collateral inputs. This difference is due to the greater contribution to release by presynaptic N-type voltage-gated Ca(2+) channels at the Schaffer collateral than perforant path synapses. Induction of long-term potentiation that depends on activation of NMDA receptors and L-type voltage-gated Ca(2+) channels enhances the low efficacy of release at perforant path synapses by increasing the contribution of N-type channels to exocytosis. This represents a previously uncharacterized presynaptic mechanism for fine-tuning release properties of distinct classes of synapses onto a common postsynaptic neuron and for regulating synaptic function during long-term synaptic plasticity.
Collapse
Affiliation(s)
- Mohsin S Ahmed
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
56
|
Tajparast M, Glavinović MI. Extrusion of transmitter, water and ions generates forces to close fusion pore. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:993-1008. [PMID: 19366586 DOI: 10.1016/j.bbamem.2009.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Revised: 01/07/2009] [Accepted: 01/30/2009] [Indexed: 11/16/2022]
Abstract
During exocytosis the fusion pore opens rapidly, then dilates gradually, and may subsequently close completely, but what controls its dynamics is not well understood. In this study we focus our attention on forces acting on the pore wall, and which are generated solely by the passage of transmitter, ions and water through the open fusion pore. The transport through the charged cylindrical nano-size pore is simulated using a coupled system of Poisson-Nernst-Planck and Navier-Stokes equations and the forces that act radially on the wall of the fusion pore are then estimated. Four forces are considered: a) inertial force, b) pressure, c) viscotic force, and d) electrostatic force. The inertial and viscotic forces are small, but the electrostatic force and the pressure are typically significant. High vesicular pressure tends to open the fusion pore, but the pressure induced by the transport of charged particles (glutamate, ions), which is predominant when the pore wall charge density is high tends to close the pore. The electrostatic force, which also depends on the charge density on the pore wall, is weakly repulsive before the pore dilates, but becomes attractive and pronounced as the pore dilates. Given that the vesicular concentration of free transmitter can change rapidly due to the release, or owing to the dissociation from the gel matrix, we evaluated how much and how rapidly a change of the vesicular K(+)-glutamate(-) concentration affects the concentration of glutamate(-) and ions in the pore and how such changes alter the radial force on the wall of the fusion pore. A step-like rise of the vesicular K(+)-glutamate(-) concentration leads to a chain of events. Pore concentration (and efflux) of both K(+) and glutamate(-) rise reaching their new steady-state values in less than 100 ns. Interestingly within a similar time interval the pore concentration of Na(+) also rises, whereas that of Cl(-) diminishes, although their extra-cellular concentration does not change. Finally such changes affect also the water movement. Water efflux changes bi-phasically, first increasing before decreasing to a new, but lower steady-state value. Nevertheless, even under such conditions an overall approximate neutrality of the pore is maintained remarkably well, and the electrostatic, but also inertial, viscotic and pressure forces acting on the pore wall remain constant. In conclusion the extrusion of the vesicular content generates forces, primarily the force due to the electro-kinetically induced pressure and electrostatic force (both influenced by the pore radius and even more by the charge density on the pore wall), which tend to close the fusion pore.
Collapse
Affiliation(s)
- M Tajparast
- Department of Civil Engineering, McGill University, Montreal, PQ, Canada
| | | |
Collapse
|
57
|
Silent synapses and the emergence of a postsynaptic mechanism for LTP. Nat Rev Neurosci 2008; 9:813-25. [PMID: 18854855 DOI: 10.1038/nrn2501] [Citation(s) in RCA: 457] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Silent synapses abound in the young brain, representing an early step in the pathway of experience-dependent synaptic development. Discovered amidst the debate over whether long-term potentiation reflects a presynaptic or a postsynaptic modification, silent synapses--which in the hippocampal CA1 subfield are characterized by the presence of NMDA receptors but not AMPA receptors--have stirred some mechanistic controversy of their own. Out of this literature has emerged a model for synapse unsilencing that highlights the central role for postsynaptic AMPA-receptor trafficking in the expression of excitatory synaptic plasticity.
Collapse
|
58
|
Abstract
NMDA-only synapses, called silent synapses, are thought to be the initial step in synapse formation in several systems. However, the underlying mechanism and the role in circuit construction are still a matter of dispute. Using combined morphological and electrophysiological approaches, we searched for silent synapses at the level of the nucleus tractus solitarii (NTS), a brainstem structure that is a gateway for many visceral sensory afferent fibers. Silent synapses were detected at birth by using electrophysiological recordings and minimal stimulation protocols. However, anatomical experiments indicated that nearly all, if not all, NTS synapses had AMPA receptors. Based on EPSC fluctuation measurements and differential blockade by low-affinity competitive and noncompetitive glutamate antagonists, we then demonstrated that NTS silent synapses were better explained by glutamate spillover from neighboring fibers and/or slow dynamic of fusion pore opening. Glutamate spillover at immature NTS synapses may favor crosstalk between active synapses during development when glutamate transporters are weakly expressed and contribute to synaptic processing as well as autonomic circuit formation.
Collapse
|
59
|
Busetto G, Higley MJ, Sabatini BL. Developmental presence and disappearance of postsynaptically silent synapses on dendritic spines of rat layer 2/3 pyramidal neurons. J Physiol 2008; 586:1519-27. [PMID: 18202095 DOI: 10.1113/jphysiol.2007.149336] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Silent synapses are synapses whose activation evokes NMDA-type glutamate receptor (NMDAR) but not AMPA-type glutamate receptor (AMPAR) mediated currents. Silent synapses are prominent early in postnatal development and are thought to play a role in the activity- and sensory-dependent refinement of neuronal circuits. The mechanisms that account for their silent nature have been controversial, and both presynaptic and postsynaptic mechanisms have been proposed. Here, we use two-photon laser uncaging of glutamate to directly activate glutamate receptors and measure AMPAR- and NMDAR-dependent currents on individual dendritic spines of rat somatosensory cortical layer 2/3 pyramidal neurons. We find that dendritic spines lacking functional surface AMPARs are commonly found before postnatal day 12 (P12) but are absent in older animals. Furthermore, AMPAR-lacking spines are contacted by release-competent presynaptic terminals. After P12, the AMPAR/NMDAR current ratio at individual spines continues to increase, consistent with continued addition of AMPARs to postsynaptic terminals. Our results confirm the existence of postsynaptically silent synapses and demonstrate that the morphology of the spine is not strongly predictive of its AMPAR content.
Collapse
Affiliation(s)
- Giuseppe Busetto
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | | | | |
Collapse
|
60
|
Pedroarena CM, Kamphausen S. Glycinergic synaptic currents in the deep cerebellar nuclei. Neuropharmacology 2007; 54:784-95. [PMID: 18234240 DOI: 10.1016/j.neuropharm.2007.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 12/06/2007] [Accepted: 12/07/2007] [Indexed: 10/22/2022]
Abstract
Despite evidence of local glycinergic circuits in the mature cerebellar nuclei the result of their activation remains unknown. Here, using whole cell recordings in rat cerebellar slices we demonstrated that after postnatal day 17 (>P17) glycinergic IPSCs can be readily evoked in large deep cerebellar nuclear neurons (DCNs), in the same way as in neonatal DCNs (P7-P10). Spontaneous glycinergic IPSCs were very rare but direct presynaptic depolarization by superfusion with elevated potassium concentration or application of 4-aminopyridine consistently evoked strychnine sensitive IPSCs. Glycinergic IPSCs showed fast kinetics in >P17 DCNs while were significantly slower in neonatal DCNs. Immuno-histochemical investigations using a specific marker for glycinergic fibers and terminals showed low density of immuno-fluorescent puncta, putative glycinergic boutons surrounding P18-P23 DCNs, in agreement with the rare spontaneous synaptic activity. But putative glycinergic boutons were present in critical areas for the control of spike generation. In contrast to adult and neonatal DCNs, glycinergic IPSCs could not be induced in juvenile DCNs (P13-P17) despite similar perisomatic immuno-staining pattern and expression of glycinergic receptors to >P17 DCNs. The latter results demonstrate substantial postnatal development of glycinergic cerebellar nuclei circuits. The cerebellum is involved in rapidly controlling ongoing movements. For that function, it is thought important the temporal and spatial precision of its output, which is carried to target structures by DCNs. The present study, by demonstrating fast glycinergic IPSCs in mature DCNs, points to the activation of glycinergic microcircuits as one of the possible mechanism involved in the spatio-temporal control of cerebellar output.
Collapse
Affiliation(s)
- Christine M Pedroarena
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried Müller Strasse 27, 72076 Tübingen, Germany.
| | | |
Collapse
|
61
|
Sombers LA, Wittenberg NJ, Maxson MM, Adams KL, Ewing AG. High Osmolarity andL-DOPA Augment Release via the Fusion Pore in PC12 Cells. Chemphyschem 2007; 8:2471-7. [DOI: 10.1002/cphc.200700291] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
62
|
Modes of vesicle retrieval at ribbon synapses, calyx-type synapses, and small central synapses. J Neurosci 2007; 27:11793-802. [PMID: 17978015 DOI: 10.1523/jneurosci.3471-07.2007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
63
|
Abstract
Long-term potentiation (LTP) mediates learning and memory in the mammalian hippocampus. Whether a presynaptic or postsynaptic neuron principally enhances synaptic transmission during LTP remains controversial. Acute hippocampal slices were made from transgenic mouse strains that express synaptopHluorin in neurons. SynaptopHluorin is an indicator of synaptic vesicle recycling; thus, we monitored functional changes in presynaptic boutons of CA3 pyramidal cells by measuring changes in synaptopHluorin fluorescence. Simultaneously, we recorded field excitatory postsynaptic potentials to monitor changes in the strength of excitatory synapses between CA3 and CA1 pyramidal neurons. We found that LTP consists of two components, a slow presynaptic component and a fast postsynaptic component. The presynaptic mechanisms contribute mostly to the late phase of compound LTP, whereas the postsynaptic mechanisms are crucial during the early phase of LTP. We also found that protein kinase A (PKA) and L-type voltage-gated calcium channels are crucial for the expression of the presynaptic component of compound LTP, and NMDA channels are essential for that of the postsynaptic component of LTP. These data are the first direct evidence that presynaptic and postsynaptic components of LTP are temporally and mechanistically distinct.
Collapse
|
64
|
Abstract
Carbon fiber amperometry is a popular method for measuring single exocytotic events; however, the functional interpretation of the data can prove hazardous. For example, changes to vesicle transmitter levels can appear to cause changes in the timing and rate of the fusion process itself. Use of an analytical technique based on differentiation revealed that an increase in dense-core granule catecholamine content by exogenous application of l-DOPA did not affect initial release rates. Changes to the timing and amplitude of amperometric spikes from l-DOPA-treated cells are, then, likely a reflection of the increased quantal size rather than any direct effect on exocytosis itself. Applying this new analysis to individual fusion events from cells expressing Munc-18-1 with various specific point mutations demonstrated that Munc-18-1 functions at a late stage involved in the determination of the initial rate of fusion. Furthermore, a mutation of the protein that inhibits its biochemical interaction with the t-SNARE syntaxin-1 in a closed conformation caused premature termination of the fusion event. Through these two late-stage functions, Munc-18-1 could act as a key protein involved in the presynaptic control of signaling strength and duration.
Collapse
|
65
|
O'Connor DH, Wittenberg GM, Wang SSH. Timing and contributions of pre-synaptic and post-synaptic parameter changes during unitary plasticity events at CA3-CA1 synapses. Synapse 2007; 61:664-78. [PMID: 17503487 DOI: 10.1002/syn.20403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
At individual synapses, post-synaptic responses include a mixture of "successes" and "failures" in which transmitter is released or not released, respectively. Previously we measured synaptic strength at CA3-CA1 synapses averaged over all trials, including both successes and failures, using an induction protocol that allowed us to observe potentiation and depression events as step-like changes. Here we report quantal properties of 15 of the earlier experiments, including 14 potentiation events and eight depression events. In five experiments both potentiation events and depression events were evoked at the same synapse. During potentiation, success rate increased from 0.56 +/- 0.14 (mean +/- SD) to 0.69 +/- 0.12, and during depression, success rate decreased from 0.70 +/- 0.09 to 0.51 +/- 0.10. During potentiation potency increased from 10 +/- 5 to 19 +/- 9 pA, and during depression, potency decreased from 18 +/- 12 to 12 +/- 7 pA. On average, changes in potency accounted for 76% of the change in response size in potentiation events and 60% of the change in depression events. A reduced-assumption spectral analysis method showed evidence for multiple quantal peaks in distributions of post-synaptic current amplitudes. Consistent with the observed changes in potency, estimated quantal size (Q) increased with potentiation and decreased with depression. A change in potency, which is thought to reflect post-synaptic expression mechanisms, was followed within seconds to minutes by a change in success rate, which is thought to reflect pre-synaptic expression mechanisms. Synaptic plasticity events may therefore consist of changes that occur on both sides of a synapse in a temporally coordinated fashion.
Collapse
Affiliation(s)
- Daniel H O'Connor
- Department of Molecular Biology and Program in Neuroscience, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | |
Collapse
|
66
|
Cory SM, Liu Y, Glavinović MI. Interfacial interactions of glutamate, water and ions with carbon nanopore evaluated by molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2319-41. [PMID: 17631857 DOI: 10.1016/j.bbamem.2007.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 05/21/2007] [Accepted: 06/06/2007] [Indexed: 11/23/2022]
Abstract
Molecular dynamics simulations were used to assess the transport of glutamate, water and ions (Na(+) and Cl(-)) in a single wall carbon nanopore. The spatial profiles of Na(+) and Cl(-) ions are largely determined by the pore wall charges. Co-ions are repelled whereas the counter-ions are attracted by the pore charges, but this 'rule' breaks down when the water concentration is set to a level significantly below that in the physiological bulk solution. In such cases water is less able to counteract the ion-wall interactions (electrostatic or non-electrostatic), co-ions are layered near the counter-ions attracted by the wall charges and are thus layered as counter-ions. Glutamate is concentrated near the pore wall even at physiological water concentration, and irrespective of whether the pore wall is neutral or charged (positively or negatively), and its peak levels are up to 40 times above mean values. The glutamate is thus always layered as a counter-ion. Layering of water near the wall is independent of charges on the pore wall, but its peak levels near the wall are 'only' 6-8 times above the pore mean values. However, if the mean concentration of water is significantly below the level in the physiological bulk solution, its layering is enhanced, whereas its concentration in the pore center diminishes to very low levels. Reasons for such a 'paradoxical' behavior of molecules (glutamate and water) are that the non-electrostatic interactions are (except at very short distances) attractive, and electrostatic interactions (between the charged atoms of the glutamate or water and the pore wall) are also attractive overall. Repulsive interactions (between equally charged atoms) exist, and they order the molecules near the wall, whereas in the pore center the glutamate (and water) angles are largely randomly distributed, except in the presence of an external electric field. Diffusion of molecules and ions is complex. The translational diffusion is in general both inhomogeneous and anisotropic. Non-electrostatic interactions (ion-wall, glutamate-wall or water-wall) powerfully influence diffusion. In the neutral nanopore the effective axial diffusion constants of glutamate, water and Na(+) and Cl(-) ions are all <10% of their values in the bulk, and the electrostatic interactions can reduce them further. Diffusion of molecules and ions is further reduced if the water concentration in the pore is low. Glutamate(-) is slowed more than water, and ions are reduced the most especially co-ions. In conclusion the interfacial interactions influence the spatial distribution of glutamate, water and ions, and regulate powerfully, in a complex manner and over a very wide range their transport through nanosize pores.
Collapse
Affiliation(s)
- Sean M Cory
- McGill Center for Bioinformatics, McGill University, Montreal, PQ, Canada
| | | | | |
Collapse
|
67
|
He L, Wu LG. The debate on the kiss-and-run fusion at synapses. Trends Neurosci 2007; 30:447-55. [PMID: 17765328 DOI: 10.1016/j.tins.2007.06.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 06/08/2007] [Accepted: 06/13/2007] [Indexed: 11/17/2022]
Abstract
It has long been proposed that following vesicle fusion, a small pore might open and close rapidly without full dilation. Such 'kiss-and-run' vesicle fusion can in principle result in rapid vesicle recycling and influence the size and the kinetics of the resulting synaptic current. However, the existence of kiss-and-run remains highly controversial, as revealed by recent imaging and electrophysiological studies at several synapses, including hippocampal synapses, neuromuscular junctions and retinal bipolar synapses. Only a minor fraction of fusion events has been shown to be kiss-and-run, as determined using cell-attached capacitance recordings in endocrine cells, pituitary nerve terminals and calyx-type synapses. Further work is needed to determine whether kiss-and-run is a major mode of fusion and has a major role in controlling synaptic strength at synapses.
Collapse
Affiliation(s)
- Liming He
- National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Bldg 35, Rm. 2B-1012, Bethesda, MD 20892, USA
| | | |
Collapse
|
68
|
Lisman JE, Raghavachari S, Tsien RW. The sequence of events that underlie quantal transmission at central glutamatergic synapses. Nat Rev Neurosci 2007; 8:597-609. [PMID: 17637801 DOI: 10.1038/nrn2191] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The properties of synaptic transmission were first elucidated at the neuromuscular junction. More recent work has examined transmission at synapses within the brain. Here we review the remarkable progress in understanding the biophysical and molecular basis of the sequential steps in this process. These steps include the elevation of Ca2+ in microdomains of the presynaptic terminal, the diffusion of transmitter through the fusion pore into the synaptic cleft and the activation of postsynaptic receptors. The results give insight into the factors that control the precision of quantal transmission and provide a framework for understanding synaptic plasticity.
Collapse
Affiliation(s)
- John E Lisman
- Brandeis University, Department of Biology, MS 008, 415 South Street, Waltham, Massachusetts 02454-9110, USA.
| | | | | |
Collapse
|
69
|
Xu J, Peng H, Kang N, Zhao Z, Lin JHC, Stanton PK, Kang J. Glutamate-induced exocytosis of glutamate from astrocytes. J Biol Chem 2007; 282:24185-97. [PMID: 17584743 DOI: 10.1074/jbc.m700452200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies indicate that astrocytes can play a much more active role in neuronal circuits than previously believed, by releasing neurotransmitters such as glutamate and ATP. Here we report that local application of glutamate or glutamine synthetase inhibitors induces astrocytic release of glutamate, which activates a slowly decaying transient inward current (SIC) in CA1 pyramidal neurons and a transient inward current in astrocytes in hippocampal slices. The occurrence of SICs was accompanied by an appearance of large vesicles around the puffing pipette. The frequency of SICs was positively correlated with [glutamate]o. EM imaging of anti-glial fibrillary acid protein-labeled astrocytes showed glutamate-induced large astrocytic vesicles. Imaging of FM 1-43 fluorescence using two-photon laser scanning microscopy detected glutamate-induced formation and fusion of large vesicles identified as FM 1-43-negative structures. Fusion of large vesicles, monitored by collapse of vesicles with a high intensity FM 1-43 stain in the vesicular membrane, coincided with SICs. Glutamate induced two types of large vesicles with high and low intravesicular [Ca2+]. The high [Ca2+] vesicle plays a major role in astrocytic release of glutamate. Vesicular fusion was blocked by infusing the Ca2+ chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, or the SNARE blocker, tetanus toxin, suggesting Ca2+- and SNARE-dependent fusion. Infusion of the vesicular glutamate transport inhibitor, Rose Bengal, reduced astrocytic glutamate release, suggesting the involvement of vesicular glutamate transports in vesicular transport of glutamate. Our results demonstrate that local [glutamate]o increases induce formation and exocytotic fusion of glutamate-containing large astrocytic vesicles. These large vesicles could play important roles in the feedback control of neuronal circuits and epileptic seizures.
Collapse
Affiliation(s)
- Jun Xu
- Center for Basic Neuroscience, Department of Molecular Genetics, and Howard Hughes Medical Institutes, University of Texas Southwestern Medical Center, Dallas Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Schwartz EJ, Blackmer T, Gerachshenko T, Alford S. Presynaptic G-protein-coupled receptors regulate synaptic cleft glutamate via transient vesicle fusion. J Neurosci 2007; 27:5857-68. [PMID: 17537956 PMCID: PMC6672243 DOI: 10.1523/jneurosci.1160-07.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
When synaptic vesicles fuse with the plasma membrane, they may completely collapse or fuse transiently. Transiently fusing vesicles remain structurally intact and therefore have been proposed to represent a form of rapid vesicle recycling. However, the impact of a transient synaptic vesicle fusion event on neurotransmitter release, and therefore on synaptic transmission, has yet to be determined. Recently, the molecular mechanism by which a serotonergic presynaptic G-protein-coupled receptor (GPCR) regulates synaptic vesicle fusion and inhibits synaptic transmission was identified. By making paired electrophysiological recordings in the presence and absence of low-affinity antagonists, we now demonstrate that activation of this presynaptic GPCR lowers the peak synaptic cleft glutamate concentration independently of the probability of vesicle fusion. Furthermore, this change in cleft glutamate concentration differentially inhibits synaptic NMDA and AMPA receptor-mediated currents. We conclude that a presynaptic GPCR regulates the profile of glutamate in the synaptic cleft through altering the mechanism of vesicle fusion leading to qualitative as well as quantitative changes in neural signaling.
Collapse
Affiliation(s)
- Eric J. Schwartz
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Trillium Blackmer
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Tatyana Gerachshenko
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Simon Alford
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| |
Collapse
|
71
|
Kasten MR, Fan Y, Schulz PE. Activation of silent synapses with sustained but not decremental long-term potentiation. Neurosci Lett 2007; 417:84-9. [PMID: 17368720 DOI: 10.1016/j.neulet.2007.02.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 01/26/2007] [Accepted: 02/11/2007] [Indexed: 01/06/2023]
Abstract
Silent synapses display no excitatory post-synaptic currents (EPSCs) at resting potentials, but can conduct at depolarized potentials. In the hippocampal CA1 region of young animals, conversion of silent synapses to functional synapses occurs rapidly after pairing post-synaptic depolarization with 1Hz pre-synaptic stimulation, a protocol that also induces long-term potentiation (LTP). LTP appears to have a decremental phase and a sustained phase. Many studies have shown that decremental LTP can be pharmacologically isolated from sustained LTP, suggesting that they represent two distinct forms, rather than "phases" of LTP that are expressed simultaneously through different mechanisms. We investigated whether silent synapse activation (SSA) is associated specifically with the expression of sustained or decremental LTP. We found that under control conditions, in which sustained and decremental LTP were induced, SSA was observed. However, under conditions in which only decremental LTP was expressed (in the presence of a protein kinase antagonist), SSA did not occur. We conclude that SSA is associated with the expression of sustained LTP, not decremental LTP, and requires protein kinase activation. These findings support the hypothesis that decremental and sustained LTP are expressed through different mechanisms.
Collapse
Affiliation(s)
- Michael R Kasten
- Department of Neurology, Baylor College of Medicine, 6501 Fannin Street, Houston, TX 77030, USA
| | | | | |
Collapse
|
72
|
Uchiyama Y, Maxson MM, Sawada T, Nakano A, Ewing AG. Phospholipid mediated plasticity in exocytosis observed in PC12 cells. Brain Res 2007; 1151:46-54. [PMID: 17408597 PMCID: PMC2034201 DOI: 10.1016/j.brainres.2007.03.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 03/02/2007] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
Membrane composition serves to identify intracellular compartments, signal cell death, as well as to alter a cell's electrical and physical properties. Here we use amperometry to show that supplementation with the phospholipids phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (SM), and phosphatidylserine (PS) can alter several aspects of exocytosis. Changes in the amperometric peak shape derived from individual exocytosing vesicles reveal that PC slows expulsion of neurotransmitter while PE accelerates expulsion of neurotransmitter. Amperometry data reveal a reduced amount of catecholamine released per event from PC-treated cells while electron micrographs indicate the vesicles in these cells are 50% larger than controls, thus providing evidence of pharmacological changes in vesicle concentration. Addition of SM appears to affect the rate of fusion pore expansion, indicated by slower peak rise times, but does not affect decay times or quantal size. Addition of PS results in a 1.7-fold increase in the number of events elicited by high-K(+) depolarization. Electron micrographs of PS-treated cells suggest that increased vesicle recruitment underlies enhanced secretion. We did not observe any effect of phosphatidylinositol (PI) treatment. Together these data suggest that differences in membrane composition affect exocytosis and might be involved in mechanisms of cell function controlling the dynamics of communication via exocytosis.
Collapse
Affiliation(s)
- Yoshiko Uchiyama
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
73
|
Ward B, McGuinness L, Akerman CJ, Fine A, Bliss TVP, Emptage NJ. State-dependent mechanisms of LTP expression revealed by optical quantal analysis. Neuron 2007; 52:649-61. [PMID: 17114049 DOI: 10.1016/j.neuron.2006.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 07/07/2006] [Accepted: 10/09/2006] [Indexed: 10/23/2022]
Abstract
The expression mechanism of long-term potentiation (LTP) remains controversial. Here we combine electrophysiology and Ca(2+) imaging to examine the role of silent synapses in LTP expression. Induction of LTP fails to change p(r) at these synapses but instead mediates an unmasking process that is sensitive to the inhibition of postsynaptic membrane fusion. Once unmasked, however, further potentiation of formerly silent synapses leads to an increase in p(r). The state of the synapse thus determines how LTP is expressed.
Collapse
Affiliation(s)
- Bonnie Ward
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | | | | | | | | | | |
Collapse
|
74
|
Thiagarajan TC, Lindskog M, Malgaroli A, Tsien RW. LTP and adaptation to inactivity: Overlapping mechanisms and implications for metaplasticity. Neuropharmacology 2007; 52:156-75. [PMID: 16949624 DOI: 10.1016/j.neuropharm.2006.07.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 07/20/2006] [Accepted: 07/21/2006] [Indexed: 11/16/2022]
Abstract
LTP and other rapidly induced forms of synaptic modification tune individual synaptic weights, whereas slower forms of plasticity such as adaptation to inactivity are thought to keep neurons within their firing limits and preserve their capability for information processing. Here we describe progress in understanding the relationship between LTP and adaptation to inactivity. A prevailing view is that adaptation to inactivity is purely postsynaptic, scales synaptic strength uniformly across all synapses, and thus preserves relative synaptic weights without interfering with signatures of prior LTP or the relative capacity for future LTP. However, recent evidence in hippocampal neurons indicates that, like LTP, adaptation to AMPA receptor blockade can draw upon a repertoire of synaptic expression mechanisms including enhancement of presynaptic vesicular turnover and increased quantal amplitude mediated by recruitment of homomeric GluR1 AMPA receptors. These pre- and postsynaptic changes appeared coordinated and preferentially expressed at subset of synapses, thereby increasing the variability of miniature EPSCs. In contrast to the NMDA receptor-, Ca2+ entry-dependent induction of LTP, adaptation to inactivity may be mediated by attenuation of voltage-sensitive L-type Ca2+ channel function. The associated intracellular signaling involves elevation of betaCaMKII, which in turn downregulates alphaCaMKII, a key player in LTP. Thus, adaptation to inactivity and LTP are not strictly independent with regard to mechanisms of signaling and expression. Indeed, we and others have found that responses to LTP-inducing stimuli can be sharply altered by prior inactivity, suggesting that the slow adaptation changes the rules of plasticity-an interesting example of "metaplasticity".
Collapse
Affiliation(s)
- Tara C Thiagarajan
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, B105 Beckman Center, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
75
|
Lauri SE, Palmer M, Segerstrale M, Vesikansa A, Taira T, Collingridge GL. Presynaptic mechanisms involved in the expression of STP and LTP at CA1 synapses in the hippocampus. Neuropharmacology 2007; 52:1-11. [PMID: 16919682 DOI: 10.1016/j.neuropharm.2006.06.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 06/22/2006] [Accepted: 06/23/2006] [Indexed: 11/28/2022]
Abstract
The study of long-term potentiation (LTP) has for many years been the centre of a raging debate as to whether the process is expressed by presynaptic or postsynaptic mechanisms. Here we present evidence that two forms of synaptic plasticity at CA3-CA1 synapses in the hippocampus are expressed by presynaptic changes. One form is short-term potentiation (STP) and the other a neonatal form of early-LTP (E-LTP). We review recent experimental data that suggests that this latter form of LTP involves an increase in the probability of neurotransmitter release (Pr). We describe how this is caused by the rapid down-regulation of a high affinity kainate receptor, which otherwise responds to ambient levels of l-glutamate by depressing Pr.
Collapse
Affiliation(s)
- Sari E Lauri
- Neuroscience Center and Department of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
76
|
Biró ÁA, Holderith NB, Nusser Z. Release probability-dependent scaling of the postsynaptic responses at single hippocampal GABAergic synapses. J Neurosci 2006; 26:12487-96. [PMID: 17135411 PMCID: PMC2630420 DOI: 10.1523/jneurosci.3106-06.2006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The amount of neurotransmitter released after the arrival of an action potential affects the strength and the trial-to-trial variability of postsynaptic responses. Most studies examining the dependence of synaptic neurotransmitter concentration on the release probability (P(r)) have focused on glutamatergic synapses. Here we asked whether univesicular or multivesicular release characterizes transmission at hippocampal GABAergic synapses. We used multiple probability functional analysis to derive quantal parameters at inhibitory connections between cannabinoid receptor- and cholecystokinin (CCK)-expressing interneurons and CA3 pyramidal cells. After the recordings, the cells were visualized and reconstructed at the light-microscopic level, and the number of boutons mediating the IPSCs was determined using electron microscopy (EM). The number of active zones (AZs) per CCK-immunopositive bouton was determined from three-dimensional EM reconstructions, thus allowing the calculation of the total number of AZs for each pair. Our results reveal an approximate fivefold discrepancy between the numbers of functionally determined release sites (17.4 +/- 3.2) and structurally identified AZs (3.7 +/- 0.9). Channel modeling predicts that a fivefold to sevenfold increase in the peak synaptic GABA concentration is required for the fivefold enhancement of the postsynaptic responses. Kinetic analysis of the unitary IPSCs indicates that the increase in synaptic GABA concentration is most likely attributable to multivesicular release. This change in the synaptic GABA concentration transient together with extremely low postsynaptic receptor occupancy permits a P(r)-dependent scaling of the postsynaptic response generated at a single hippocampal GABAergic synaptic contact.
Collapse
Affiliation(s)
- Ágota A. Biró
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary
| | - Noémi B. Holderith
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary
| |
Collapse
|
77
|
Krueger S, Fitzsimonds RM. Remodeling the plasticity debate: the presynaptic locus revisited. Physiology (Bethesda) 2006; 21:346-51. [PMID: 16990455 DOI: 10.1152/physiol.00013.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cellular mechanisms contributing to long-term potentiation and activity-induced formation of glutamatergic synapses have been intensely debated. Recent studies have sparked renewed interest in the role of presynaptic components in these processes. Based on the present evidence, it appears likely that long-term plasticity utilizes both pre- and postsynaptic expression mechanisms.
Collapse
Affiliation(s)
- Stefan Krueger
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
78
|
Lisman J, Raghavachari S. A unified model of the presynaptic and postsynaptic changes during LTP at CA1 synapses. ACTA ACUST UNITED AC 2006; 2006:re11. [PMID: 17033044 DOI: 10.1126/stke.3562006re11] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Long-term potentiation (LTP) has been studied extensively at CA1 synapses of the hippocampus, and there is evidence implicating both postsynaptic and presynaptic changes in this process. These changes include (i) addition of AMPA channels to the extrasynaptic membrane and diffusional equilibrium of extrasynaptic receptors with synaptic receptors, (ii) sudden addition of AMPA channels to the synapse in large groups, (iii) a change in the mode of glutamate release (presumably from kiss-and-run to full fusion), and (iv) a delayed increase in the number of vesicles released. However, it remains unclear whether (or how) these changes work together. We have incorporated all of these processes into a structural model of the synapse. We propose that the synapse is composed of transsynaptic modules that function quasi-independently in AMPA-mediated transmission. Under basal conditions, synapses are partially silent; some modules are AMPA-silent (but contribute to NMDA-mediated transmission), whereas others are functional (and contribute to both AMPA- and NMDA-mediated transmission). During LTP, there is both a rapid change in the mode of vesicle fusion and a rapid insertion of a postsynaptic complex (a hyperslot) containing many proteins (slots) capable of binding AMPA channels. The combined effect of these pre- and postsynaptic changes is to convert AMPA-silent modules into functional modules. Slot filling is transiently enhanced by a rapid increase in extrasynaptic GluR1, a form of the AMPA-type receptor. A slower transsynaptic growth process adds AMPA-silent modules to the synapse, enhancing the number of vesicles released and thereby enhancing the NMDA response. This model accounts for a broad range of data, including the LTP-induced changes in quantal parameters. The model also provides a coherent explanation for the diverse effects of GluR1 knockout on basal transmission, LTP, and distance-dependent scaling.
Collapse
Affiliation(s)
- John Lisman
- Department of Biology, Brandeis University, Waltham, MA 02454, USA.
| | | |
Collapse
|
79
|
Ninan I, Liu S, Rabinowitz D, Arancio O. Early presynaptic changes during plasticity in cultured hippocampal neurons. EMBO J 2006; 25:4361-71. [PMID: 16957772 PMCID: PMC1570425 DOI: 10.1038/sj.emboj.7601318] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 08/08/2006] [Indexed: 11/09/2022] Open
Abstract
Long-lasting increase in synaptic strength is thought to underlie learning. An explosion of data has characterized changes in postsynaptic (pstS) AMPA receptor cycling during potentiation. However, changes occurring within the presynaptic (prS) terminal remain largely unknown. We show that appearance of new release sites during potentiation between cultured hippocampal neurons is due to (a) conversion of nonrecycling sites to recycling sites, (b) formation of new releasing sites from areas containing diffuse staining for the prS marker Vesicle-Associated Membrane Protein-2 and (c) budding of new recycling sites from previously existing recycling sites. In addition, potentiation is accompanied by a release probability increase in pre-existing boutons depending upon their individual probability. These prS changes precede and regulate fluorescence increase for pstS GFP-tagged-AMPA-receptor subunit GluR1. These results suggest that potentiation involves early changes in the prS terminal including remodeling and release probability increase of pre-existing synapses.
Collapse
Affiliation(s)
- Ipe Ninan
- Taub Institute and Department of Pathology, Columbia University, New York City, NY, USA
| | - Shumin Liu
- Taub Institute and Department of Pathology, Columbia University, New York City, NY, USA
| | - Daniel Rabinowitz
- Department of Statistics, Columbia University, New York City, NY, USA
| | - Ottavio Arancio
- Taub Institute and Department of Pathology, Columbia University, New York City, NY, USA
- Taub Institute and Department of Pathology, Columbia University, P&S 12-442, 630W, 168th Street, New York City, NY 10032, USA. Tel.: +1 212 342 5527; Fax: +1 212 342 5523; E-mail:
| |
Collapse
|
80
|
Yao J, Qi J, Chen G. Actin-dependent activation of presynaptic silent synapses contributes to long-term synaptic plasticity in developing hippocampal neurons. J Neurosci 2006; 26:8137-47. [PMID: 16885227 PMCID: PMC6673772 DOI: 10.1523/jneurosci.1183-06.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Developing neurons have greater capacity in experience-dependent plasticity than adult neurons but the molecular mechanism is not well understood. Here we report a developmentally regulated long-term synaptic plasticity through actin-dependent activation of presynaptic silent synapses in cultured hippocampal neurons. Live FM 1-43 imaging and retrospective immunocytochemistry revealed that many presynaptic boutons in immature neurons are functionally silent at resting conditions, but can be converted into active ones after repetitive neuronal stimulation. The activation of presynaptic silent synapses is dependent on L-type calcium channels and protein kinase A (PKA)/PKC signaling pathways. Moreover, blocking actin polymerization with latrunculin A and cytochalasin B abolishes long-term increase of presynaptic functional boutons induced by repetitive stimulation, whereas actin polymerizer jasplakinolide increases the number of active boutons in immature neurons. In mature neurons, however, presynaptic boutons are mostly functional and repetitive stimulation did not induce additional enhancement. Quantitative immunostaining with phalloidin revealed a significant increase in axonal F-actin level after repetitive stimulation in immature but not mature neurons. These results suggest that actin-dependent activation of presynaptic silent synapses contributes significantly to the long-term synaptic plasticity during neuronal development.
Collapse
|
81
|
Harata NC, Aravanis AM, Tsien RW. Kiss-and-run and full-collapse fusion as modes of exo-endocytosis in neurosecretion. J Neurochem 2006; 97:1546-70. [PMID: 16805768 DOI: 10.1111/j.1471-4159.2006.03987.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurotransmitters and hormones are released from neurosecretory cells by exocytosis (fusion) of synaptic vesicles, large dense-core vesicles and other types of vesicles or granules. The exocytosis is terminated and followed by endocytosis (retrieval). More than fifty years of research have established full-collapse fusion and clathrin-mediated endocytosis as essential modes of exo-endocytosis. Kiss-and-run and vesicle reuse represent alternative modes, but their prevalence and importance have yet to be elucidated, especially in neurons of the mammalian CNS. Here we examine various modes of exo-endocytosis across a wide range of neurosecretory systems. Full-collapse fusion and kiss-and-run coexist in many systems and play active roles in exocytotic events. In small nerve terminals of CNS, kiss-and-run has an additional role of enabling nerve terminals to conserve scarce vesicular resources and respond to high-frequency inputs. Full-collapse fusion and kiss-and-run will each contribute to maintaining cellular communication over a wide range of frequencies.
Collapse
Affiliation(s)
- Nobutoshi C Harata
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| | | | | |
Collapse
|
82
|
Sjöström PJ, Turrigiano GG, Nelson SB. Multiple forms of long-term plasticity at unitary neocortical layer 5 synapses. Neuropharmacology 2006; 52:176-84. [PMID: 16895733 DOI: 10.1016/j.neuropharm.2006.07.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 07/11/2006] [Accepted: 07/12/2006] [Indexed: 11/19/2022]
Abstract
Long-term potentiation and depression (LTP and LTD) are cellular plasticity phenomena expressed at a variety of central synapses, and are thought to contribute to learning and developmental changes in circuitry. Recurrent neocortical layer-5 synapses are thought to express a presynaptic form of LTP that influences the short-term plasticity of the synapse. Here we show that changes in synaptic strength elicited by pairing high frequency pre- and postsynaptic firing at this synapse result from a mixture of presynaptic and postsynaptic forms of plasticity, as assessed by the analysis of changes in coefficient of variation, short-term plasticity, and NMDA:AMPA current ratios. Pharmacological dissection of this plasticity revealed that block of presynaptic LTD with an endocannabinoid inhibitor enhanced LTP, while the apparently presynaptic component of LTP could be prevented by induction in the presence of blockers of nitric oxide. These data suggest that correlated high-frequency firing at layer-5 synapses simultaneously induces a mixture of presynaptic LTD, presynaptic LTP, and postsynaptic LTP.
Collapse
Affiliation(s)
- Per Jesper Sjöström
- Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | | | | |
Collapse
|
83
|
Ling DSF, Benardo LS, Sacktor TC. Protein kinase Mzeta enhances excitatory synaptic transmission by increasing the number of active postsynaptic AMPA receptors. Hippocampus 2006; 16:443-52. [PMID: 16463388 DOI: 10.1002/hipo.20171] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protein kinase Mzeta (PKMzeta), a constitutively active, atypical PKC isoform, enhances synaptic strength during the maintenance of long-term potentiation (LTP). Here we examine the mechanism by which PKMzeta increases synaptic transmission. Postsynaptic perfusion of PKMzeta during whole-cell recordings of CA1 pyramidal cells strongly potentiated the amplitude of AMPA receptor (AMPAR)-mediated miniature EPSCs (mEPSCs). Nonstationary fluctuation analysis of events recorded before and after PKMzeta enhancement showed that the kinase doubled the number of functional postsynaptic AMPAR channels. After sustained potentiation, application of a PKMzeta inhibitor reversed the increase in functional channel number to basal levels, suggesting that persistent increase of PKMzeta is required to maintain the postsynaptic localization of a mobile subpopulation of receptors. The kinase did not affect other sites of LTP expression, including presynaptic transmitter release, silent synapse conversion, or AMPAR unit conductance. Thus PKMzeta functions specifically to establish and maintain long-term increases in active postsynaptic AMPAR number.
Collapse
Affiliation(s)
- Douglas S F Ling
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York, 11203, USA.
| | | | | |
Collapse
|
84
|
Germain D, Maysinger D, Glavinovic MI. Vesicular roundness and compound release in PC-12 cells. J Neurosci Methods 2006; 153:27-42. [PMID: 16290198 DOI: 10.1016/j.jneumeth.2005.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 09/22/2005] [Accepted: 10/03/2005] [Indexed: 11/18/2022]
Abstract
The principal goals of this study were to establish a quantitative morphological analysis of spatial and regional properties of dense core vesicles, and to use this analysis to assess whether homotypic fusion is prominent in chronically treated PC-12 cells at elevated release levels. Simple computerized image processing of electron-micrographs provided the binary images of vesicular dense cores, whilst the artificial intelligence methods were needed to determine the vesicular membranes. As in the past, the presence of large, highly irregular vesicles, provided the morphological evidence of fused vesicles, but the irregularity of vesicular shape was assessed quantitatively-from its roundness. Free space of each vesicle was determined from the distance to its nearest-neighbor, or from the size of its Voronoi polygon. Within a Voronoi polygon, each point is closer to that vesicle than to any other vesicle. Large vesicles were not less round and did not have larger free space, as expected if they result from fusion of several smaller vesicles. In conclusion, we present a novel and rigorous morphological analysis of spatial and regional properties of dense core vesicles. The results demonstrate that the homotypic fusion is not prominent in PC-12 cells, before or following a chronic treatment that enhances release.
Collapse
Affiliation(s)
- D Germain
- Department of Computer Engineering, McGill University, Montreal, Canada
| | | | | |
Collapse
|
85
|
Lauri SE, Vesikansa A, Segerstråle M, Collingridge GL, Isaac JTR, Taira T. Functional Maturation of CA1 Synapses Involves Activity-Dependent Loss of Tonic Kainate Receptor-Mediated Inhibition of Glutamate Release. Neuron 2006; 50:415-29. [PMID: 16675396 DOI: 10.1016/j.neuron.2006.03.020] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 11/30/2005] [Accepted: 03/13/2006] [Indexed: 12/01/2022]
Abstract
Early in development, excitatory synapses transmit with low efficacy, one mechanism for which is a low probability of transmitter release (Pr). However, little is known about the developmental mechanisms that control activity-dependent maturation of the presynaptic release. Here, we show that during early development, transmission at CA3-CA1 synapses is regulated by a high-affinity, G protein-dependent kainate receptor (KAR), which is endogenously activated by ambient glutamate. By tonically depressing glutamate release, this mechanism sets the dynamic properties of neonatal inputs to favor transmission during high frequency bursts of activity, typical for developing neuronal networks. In response to induction of LTP, the tonic activation of KAR is rapidly down regulated, causing an increase in Pr and profoundly changing the dynamic properties of transmission. Early development of the glutamatergic connectivity thus involves an activity-dependent loss of presynaptic KAR function producing maturation in the mode of excitatory transmission from CA3 to CA1.
Collapse
Affiliation(s)
- Sari E Lauri
- Neuroscience Center and Department of Bio- and Environmental Sciences, P.O. Box 65 (Viikinkaari 1), 00014 University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
86
|
Elhamdani A, Azizi F, Artalejo CR. Double patch clamp reveals that transient fusion (kiss-and-run) is a major mechanism of secretion in calf adrenal chromaffin cells: high calcium shifts the mechanism from kiss-and-run to complete fusion. J Neurosci 2006; 26:3030-6. [PMID: 16540581 PMCID: PMC6673983 DOI: 10.1523/jneurosci.5275-05.2006] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transient fusion ("kiss-and-run") is accepted as a mode of transmitter release both in central neurons and neuroendocrine cells, but the prevalence of this mechanism compared with full fusion is still in doubt. Using a novel double patch-clamp method (whole cell/cell attached), permitting the recording of unitary capacitance events while stimulating under a variety of conditions including action potentials, we show that transient fusion is the predominant (>90%) mode of secretion in calf adrenal chromaffin cells. Raising intracellular Ca2+ concentration ([Ca]i) from 10 to 200 microM increases the incidence of full fusion events at the expense of transient fusion. Blocking rapid endocytosis that normally terminates transient fusion events also promotes full fusion events. Thus, [Ca]i controls the transition between transient and full fusion, each of which is coupled to different modes of endocytosis.
Collapse
Affiliation(s)
- Abdeladim Elhamdani
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
87
|
Mameli M, Carta M, Partridge LD, Valenzuela CF. Neurosteroid-induced plasticity of immature synapses via retrograde modulation of presynaptic NMDA receptors. J Neurosci 2006; 25:2285-94. [PMID: 15745954 PMCID: PMC6726098 DOI: 10.1523/jneurosci.3877-04.2005] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurosteroids are produced de novo in neuronal and glial cells, which begin to express steroidogenic enzymes early in development. Studies suggest that neurosteroids may play important roles in neuronal circuit maturation via autocrine and/or paracrine actions. However, the mechanism of action of these agents is not fully understood. We report here that the excitatory neurosteroid pregnenolone sulfate induces a long-lasting strengthening of AMPA receptor-mediated synaptic transmission in rat hippocampal neurons during a restricted developmental period. Using the acute hippocampal slice preparation and patch-clamp electrophysiological techniques, we found that pregnenolone sulfate increases the frequency of AMPA-mediated miniature excitatory postsynaptic currents in CA1 pyramidal neurons. This effect could not be observed in slices from rats older than postnatal day 5. The mechanism of action of pregnenolone sulfate involved a short-term increase in the probability of glutamate release, and this effect is likely mediated by presynaptic NMDA receptors containing the NR2D subunit, which is transiently expressed in the hippocampus. The increase in glutamate release triggered a long-term enhancement of AMPA receptor function that requires activation of postsynaptic NMDA receptors containing NR2B subunits. Importantly, synaptic strengthening could also be triggered by postsynaptic neuron depolarization, and an anti-pregnenolone sulfate antibody scavenger blocked this effect. This finding indicates that a pregnenolone sulfate-like neurosteroid is a previously unrecognized retrograde messenger that is released in an activity-dependent manner during development.
Collapse
Affiliation(s)
- Manuel Mameli
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | | | | | | |
Collapse
|
88
|
Ting JT, Kelley BG, Sullivan JM. Synaptotagmin IV does not alter excitatory fast synaptic transmission or fusion pore kinetics in mammalian CNS neurons. J Neurosci 2006; 26:372-80. [PMID: 16407532 PMCID: PMC2100427 DOI: 10.1523/jneurosci.3997-05.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptotagmin IV (Syt IV) is a brain-specific isoform of the synaptotagmin family, the levels of which are strongly elevated after seizure activity. The dominant hypothesis of Syt IV function states that Syt IV upregulation is a neuroprotective mechanism for reducing neurotransmitter release. To test this hypothesis in mammalian CNS synapses, Syt IV was overexpressed in cultured mouse hippocampal neurons, and acute effects on fast excitatory neurotransmission were assessed. We found neurotransmission unaltered with respect to basal release probability, Ca2+ dependence of release, short-term plasticity, and fusion pore kinetics. In contrast, expression of a mutant Syt I with diminished Ca2+ affinity (R233Q) reduced release probability and altered the Ca2+ dependence of release, thus demonstrating the sensitivity of the system to changes in neurotransmission resulting from changes to the Ca2+ sensor. Together, these data refute the dominant model that Syt IV functions as an inhibitor of neurotransmitter release in mammalian neurons.
Collapse
Affiliation(s)
- Jonathan T Ting
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
89
|
Groc L, Gustafsson B, Hanse E. AMPA signalling in nascent glutamatergic synapses: there and not there! Trends Neurosci 2006; 29:132-9. [PMID: 16443288 DOI: 10.1016/j.tins.2006.01.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2005] [Revised: 11/24/2005] [Accepted: 01/12/2006] [Indexed: 11/30/2022]
Abstract
Nascent glutamatergic synapses are thought to be equipped with only NMDA receptors and to mature in a stepwise fashion when AMPA receptors are acquired later, through specific patterns of activity. We review recent data suggesting that AMPA receptors are in fact present in the nascent synapse but in a labile state. The nascent synapse can easily switch between AMPA-signalling and AMPA-silent states in a manner not requiring activation of NMDA receptors or metabotropic glutamate receptors. NMDA receptor activation by correlated presynaptic and postsynaptic activity can switch the nascent synapse to a mature, more stable state, in which AMPA receptor signalling is modified only through conventional plasticity processes. Thus, the AMPA receptor silence of nascent glutamatergic synapses depends on the synaptic activation history rather than on the nascent state itself.
Collapse
Affiliation(s)
- Laurent Groc
- Physiologie Cellulaire de la Synapse, CNRS-UMR 5091, Université Bordeaux 2, 33077 Bordeaux, France.
| | | | | |
Collapse
|
90
|
Cabezas C, Buño W. Distinct transmitter release properties determine differences in short-term plasticity at functional and silent synapses. J Neurophysiol 2006; 95:3024-34. [PMID: 16436482 DOI: 10.1152/jn.00739.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent evidence suggests that functional and silent synapses are not only postsynaptically different but also presynaptically distinct. The presynaptic differences may be of functional importance in memory formation because a proposed mechanism for long-term potentiation is the conversion of silent synapses into functional ones. However, there is little direct experimentally evidence of these differences. We have investigated the transmitter release properties of functional and silent Schaffer collateral synapses and show that on the average functional synapses displayed a lower percentage of failures and higher excitatory postsynaptic current (EPSC) amplitudes than silent synapses at +60 mV. Moreover, functional but not silent synapses show paired-pulse facilitation (PPF) at +60 mV and thus presynaptic short-term plasticity will be distinct in the two types of synapse. We examined whether intraterminal endoplasmic reticulum Ca2+ stores influenced the release properties of these synapses. Ryanodine (100 microM) and thapsigargin (1 microM) increased the percentage of failures and decreased both the EPSC amplitude and PPF in functional synapses. Caffeine (10 mM) had the opposite effects. In contrast, silent synapses were insensitive to both ryanodine and caffeine. Hence we have identified differences in the release properties of functional and silent synapses, suggesting that synaptic terminals of functional synapses express regulatory molecular mechanisms that are absent in silent synapses.
Collapse
Affiliation(s)
- Carolina Cabezas
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Av. Dr Arce 37, 28002, Madrid, Spain
| | | |
Collapse
|
91
|
Christie JM, Jahr CE. Multivesicular release at Schaffer collateral-CA1 hippocampal synapses. J Neurosci 2006; 26:210-6. [PMID: 16399689 PMCID: PMC2670931 DOI: 10.1523/jneurosci.4307-05.2006] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 11/07/2005] [Accepted: 11/08/2005] [Indexed: 11/21/2022] Open
Abstract
Whether an individual synapse releases single or multiple vesicles of transmitter per action potential is contentious and probably depends on the type of synapse. One possibility is that multivesicular release (MVR) is determined by the instantaneous release probability (Pr) and therefore can be controlled by activity-dependent changes in Pr. We investigated transmitter release across a range of Pr at synapses between Schaffer collaterals (SCs) and CA1 pyramidal cells in acute hippocampal slices using patch-clamp recordings. The size of the synaptic glutamate transient was estimated by the degree of inhibition of AMPA receptor EPSCs with the rapidly equilibrating antagonist gamma-D-glutamylglycine. The glutamate transient sensed by AMPA receptors depended on Pr but not spillover, indicating that multiple vesicles are essentially simultaneously released from the same presynaptic active zone. Consistent with an enhanced glutamate transient, increasing Pr prolonged NMDA receptor EPSCs when glutamate transporters were inhibited. We suggest that MVR occurs at SC-CA1 synapses when Pr is elevated by facilitation and that MVR may be a phenomenon common to many synapses throughout the CNS.
Collapse
Affiliation(s)
- Jason M Christie
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA.
| | | |
Collapse
|
92
|
Bottjer SW. Silent Synapses in a Thalamo-Cortical Circuit Necessary for Song Learning in Zebra Finches. J Neurophysiol 2005; 94:3698-707. [PMID: 16107531 DOI: 10.1152/jn.00282.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Developmental changes in synaptic properties may act to limit neural and behavioral plasticity associated with sensitive periods. This study characterized synaptic maturation in a glutamatergic thalamo-cortical pathway that is necessary for vocal learning in songbirds. Lesions of the projection from medial dorsolateral nucleus of the thalamus (DLM) to the cortical nucleus lateral magnocellular nucleus of the anterior nidopallium (LMAN) greatly disrupt song behavior in juvenile birds during early stages of vocal learning. However, such lesions lose the ability to disrupt vocal behavior in normal birds at 60–70 days of age, around the time that selective auditory tuning for each bird’s own song (BOS) emerges in LMAN neurons. This pattern has suggested that LMAN is involved in processing song-related information and evaluating the degree to which vocal motor output matches the tutor song to be learned. Analysis of reversed excitatory postsynaptic currents at DLM→LMAN synapses in in vitro slice preparations revealed a pronounced N-methyl-d-aspartate receptor (NMDAR)-mediated component in both juvenile and adult cells with no developmental decrease in the relative contribution of NMDARs to synaptic transmission. However, the synaptic failure rate at DLM→LMAN synapses in juvenile males during the sensitive period for song learning was significantly lower at depolarized potentials than at hyperpolarized potentials. In contrast, the failure rate at DLM→LMAN synapses did not differ at hyper- versus depolarized holding potentials in adult males that had completed the acquisition of a stereotyped song. This pattern indicates that juvenile cells have a higher incidence of silent (NMDAR-only) synapses, which are postsynaptically silent at hyperpolarized potentials due to the voltage-dependent gating of NMDARs. Thus the decreased involvement of the LMAN pathway in vocal behavior is mirrored by a decline in the incidence of silent synapses but not by changes in the relative number of NMDA and AMPA receptors at DLM→LMAN synapses. These findings suggest that a developmental decrease in silent synapses within LMAN may represent a neural correlate of behavioral plasticity during song learning.
Collapse
Affiliation(s)
- Sarah W Bottjer
- Program in Neuroscience, University of Southern California, Los Angeles, 90089, USA.
| |
Collapse
|
93
|
Evans GJO, Barclay JW, Prescott GR, Jo SR, Burgoyne RD, Birnbaum MJ, Morgan A. Protein kinase B/Akt is a novel cysteine string protein kinase that regulates exocytosis release kinetics and quantal size. J Biol Chem 2005; 281:1564-72. [PMID: 16243840 PMCID: PMC2423005 DOI: 10.1074/jbc.m503628200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase B/Akt has been implicated in the insulin-dependent exocytosis of GLUT4-containing vesicles, and, more recently, insulin secretion. To determine if Akt also regulates insulin-independent exocytosis, we used adrenal chromaffin cells, a popular neuronal model. Akt1 was the predominant isoform expressed in chromaffin cells, although lower levels of Akt2 and Akt3 were also found. Secretory stimuli in both intact and permeabilized cells induced Akt phosphorylation on serine 473, and the time course of Ca2+-induced Akt phosphorylation was similar to that of exocytosis in permeabilized cells. To determine if Akt modulated exocytosis, we transfected chromaffin cells with Akt constructs and monitored catecholamine release by amperometry. Wild-type Akt had no effect on the overall number of exocytotic events, but slowed the kinetics of catecholamine release from individual vesicles, resulting in an increased quantal size. This effect was due to phosphorylation by Akt, because it was not seen in cells transfected with kinase-dead mutant Akt. As overexpression of cysteine string protein (CSP) results in a similar alteration in release kinetics and quantal size, we determined if CSP was an Akt substrate. In vitro 32P-phosphorylation studies revealed that Akt phosphorylates CSP on serine 10. Using phospho-Ser10-specific antisera, we found that both transfected and endogenous cellular CSP is phosphorylated by Akt on this residue. Taken together, these findings reveal a novel role for Akt phosphorylation in regulating the late stages of exocytosis and suggest that this is achieved via the phosphorylation of CSP on serine 10.
Collapse
Affiliation(s)
- Gareth J. O. Evans
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Jeff W. Barclay
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Gerald R. Prescott
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Sung-Ro Jo
- Howard Hughes Medical Institute, The Cox Institute, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Robert D. Burgoyne
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Morris J. Birnbaum
- Howard Hughes Medical Institute, The Cox Institute, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Alan Morgan
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, L69 3BX, UK
- Corresponding author: Tel: 0151 794 5333, Fax: 0151 794 5337,
| |
Collapse
|
94
|
Schenk U, Menna E, Kim T, Passafaro M, Chang S, De Camilli P, Matteoli M. A novel pathway for presynaptic mitogen-activated kinase activation via AMPA receptors. J Neurosci 2005; 25:1654-63. [PMID: 15716401 PMCID: PMC6725923 DOI: 10.1523/jneurosci.3074-04.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AMPA-type glutamate receptors play a key role in mediating postsynaptic responses of excitatory neurotransmitters. It is now well accepted that AMPA receptors are also present at the presynapse, where they are thought to modulate neurotransmitter release. However, the mechanisms through which they control synaptic vesicle traffic have remained elusive. We used cultured hippocampal neurons and growth cone particles prepared from fetal rat brain to investigate the functional role of presynaptic AMPA receptors. We show here that stimulation of presynaptic AMPA receptors induces activation of mitogen-activated protein kinase (MAPK) through a nonreceptor tyrosine kinase-dependent and Na+/Ca2+-independent mechanism. This pathway is activated predominantly in axonal growth cones compared with the somatodendritic compartment. After stimulation of presynaptic AMPA receptors, synapsin I is phosphorylated at MAPK-specific sites. These events are paralleled by a prominent increase in evoked synaptic vesicle recycling that is blocked by the specific MAPK inhibitor 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one. Similarly, in synaptosomes isolated from adult brain, AMPA stimulation induces MAPK activation and phosphorylation of synapsin I at MAPK-dependent sites and enhances significantly synaptic vesicle recycling. These results reveal a novel pathway for activation of presynaptic MAPK and suggest a role of this pathway in the regulation of short-term presynaptic plasticity.
Collapse
Affiliation(s)
- Ursula Schenk
- Department of Medical Pharmacology, Consiglio Nazionale delle Ricerche, Institute of Neuroscience, Cellular and Molecular Pharmacology, Center of Excellence on Neurodegenerative Diseases, University of Milan, 20129 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
95
|
Xu J, Kang N, Jiang L, Nedergaard M, Kang J. Activity-dependent long-term potentiation of intrinsic excitability in hippocampal CA1 pyramidal neurons. J Neurosci 2005; 25:1750-60. [PMID: 15716411 PMCID: PMC6725941 DOI: 10.1523/jneurosci.4217-04.2005] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The efficiency of neural circuits is enhanced not only by increasing synaptic strength but also by increasing intrinsic excitability. In contrast to the detailed analysis of long-term potentiation (LTP), less attention has been given to activity-dependent changes in the intrinsic neuronal excitability. By stimulating hippocampal CA1 pyramidal neurons with synaptic inputs correlating with postsynaptic neuronal spikes, we elicited an LTP of intrinsic excitability (LTP-IE) concurring with synaptic LTP. LTP-IE was manifested as a decrease in the action potential threshold that was attributable to a hyperpolarized shift in the activation curve of voltage-gated sodium channels (VGSCs) rather than activity-dependent changes in synaptic inputs or A-type K+ channels. Cell-attached patch recording of VGSC activities indicated such an activity-dependent change in VGSCs. Induction of LTP-IE was blocked by the NMDA receptor antagonist APV, intracellular BAPTA, the CaM kinase inhibitors KN-62 and autocamtide-2-related inhibitory peptide, and the protein synthesis inhibitors emetine and anisomycin. The results suggest that induction of LTP-IE shares a similar signaling pathway with the late phase of synaptic LTP and requires activation of the NMDA glutamate receptor subtype, Ca2+ influx, activity of CaM kinase II, and function of the protein synthesis. This new form of hippocampal neuronal plasticity could be a cellular correlate of learning and memory besides synaptic LTP.
Collapse
Affiliation(s)
- Jun Xu
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | |
Collapse
|
96
|
Abstract
The formation of synapses in the vertebrate central nervous system is a complex process that occurs over a protracted period of development. Recent work has begun to unravel the mysteries of synaptogenesis, demonstrating the existence of multiple molecules that influence not only when and where synapses form but also synaptic specificity and stability. Some of these molecules act at a distance, steering axons to their correct receptive fields and promoting neuronal differentiation and maturation, whereas others act at the time of contact, providing positional information about the appropriateness of targets and/or inductive signals that trigger the cascade of events leading to synapse formation. In addition, correlated synaptic activity provides critical information about the appropriateness of synaptic connections, thereby influencing synapse stability and elimination. Although synapse formation and elimination are hallmarks of early development, these processes are also fundamental to learning, memory, and cognition in the mature brain.
Collapse
Affiliation(s)
- Clarissa L Waites
- Department of Psychiatry and Behavioral Science, Nancy Pritzker Laboratory, Stanford University, Palo Alto, CA 94304-5485, USA.
| | | | | |
Collapse
|
97
|
Sombers LA, Maxson MM, Ewing AG. Loaded dopamine is preferentially stored in the halo portion of PC12 cell dense core vesicles. J Neurochem 2005; 93:1122-31. [PMID: 15934933 DOI: 10.1111/j.1471-4159.2005.03087.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Large dense core vesicles in rat pheochromocytoma cells are morphologically distinct from dense core vesicles in mast and chromaffin cells in that the dense core occupies a much smaller fraction of the vesicular volume, allowing for a much larger vesicular clear space, or halo. In this work, we present evidence indicating that upon treatment with L-DOPA the majority of the dopamine loaded into these vesicles is preferentially compartmentalized into the halo portion of the vesicle. Amperometry was used to monitor release of loaded neurotransmitter from cells in both isotonic and hypertonic extracellular conditions, with the latter condition causing inhibition of dense core dissociation. In combination with this we have used transmission electron microscopy to determine the morphological characteristics of dense core vesicles before and after treatment with L-DOPA in solutions of varied osmolarity. The results provide a more complete understanding of the complex interaction of molecules within dense core vesicles, suggesting that newly loaded dopamine is located in the halo of the vesicle. This finding has fundamental significance for studies of neurotransmitter release from dense core vesicles, as the core appears to have a function involving more than simple storage of neurotransmitter and associated molecules, and the often overlooked vesicular halo appears to be an important storage compartment for neurotransmitter.
Collapse
Affiliation(s)
- L A Sombers
- Department of Chemistry, Chemistry Research Building, The Pennsylvania State University, University Park, Pennsylvania 16802-6300, USA
| | | | | |
Collapse
|
98
|
Daniels RW, Collins CA, Gelfand MV, Dant J, Brooks ES, Krantz DE, DiAntonio A. Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content. J Neurosci 2005; 24:10466-74. [PMID: 15548661 PMCID: PMC6730318 DOI: 10.1523/jneurosci.3001-04.2004] [Citation(s) in RCA: 276] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Quantal size is a fundamental parameter controlling the strength of synaptic transmission. The transmitter content of synaptic vesicles is one mechanism that can affect the physiological response to the release of a single vesicle. At glutamatergic synapses, vesicular glutamate transporters (VGLUTs) are responsible for filling synaptic vesicles with glutamate. To investigate how VGLUT expression can regulate synaptic strength in vivo, we have identified the Drosophila vesicular glutamate transporter, which we name DVGLUT. DVGLUT mRNA is expressed in glutamatergic motoneurons and a large number of interneurons in the Drosophila CNS. DVGLUT protein resides on synaptic vesicles and localizes to the presynaptic terminals of all known glutamatergic neuromuscular junctions as well as to synapses throughout the CNS neuropil. Increasing the expression of DVGLUT in motoneurons leads to an increase in quantal size that is accompanied by an increase in synaptic vesicle volume. At synapses confronted with increased glutamate release from each vesicle, there is a compensatory decrease in the number of synaptic vesicles released that maintains normal levels of synaptic excitation. These results demonstrate that (1) expression of DVGLUT determines the size and glutamate content of synaptic vesicles and (2) homeostatic mechanisms exist to attenuate the excitatory effects of excess glutamate release.
Collapse
Affiliation(s)
- Richard W Daniels
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Richards DA, Bai J, Chapman ER. Two modes of exocytosis at hippocampal synapses revealed by rate of FM1-43 efflux from individual vesicles. ACTA ACUST UNITED AC 2005; 168:929-39. [PMID: 15767463 PMCID: PMC2171786 DOI: 10.1083/jcb.200407148] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have examined the kinetics by which FM1-43 escapes from individual synaptic vesicles during exocytosis at hippocampal boutons. Two populations of exocytic events were observed; small amplitude events that lose dye slowly, which made up more than half of all events, and faster, larger amplitude events with a fluorescence intensity equivalent to single stained synaptic vesicles. These populations of destaining events are distinct in both brightness and kinetics, suggesting that they result from two distinct modes of exocytosis. Small amplitude events show tightly clustered rate constants of dye release, whereas larger events have a more scattered distribution. Kinetic analysis of the association and dissociation of FM1-43 with membranes, in combination with a simple pore permeation model, indicates that the small, slowly destaining events may be mediated by a narrow ∼1-nm fusion pore.
Collapse
Affiliation(s)
- David A Richards
- Department of Physiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
100
|
Evans GJO, Morgan A. Phosphorylation of cysteine string protein in the brain: developmental, regional and synaptic specificity. Eur J Neurosci 2005; 21:2671-80. [PMID: 15926915 DOI: 10.1111/j.1460-9568.2005.04118.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Protein phosphorylation modulates regulated exocytosis in most cells, including neurons. Cysteine string protein (CSP) has been implicated in this process because its phosphorylation on Ser10 alters its interactions with syntaxin and synaptotagmin, and because the effect of CSP overexpression on exocytosis kinetics in chromaffin cells requires phosphorylatable Ser10. To characterize CSP phosphorylation in the brain, we raised phosphospecific antibodies to Ser10. Western blotting revealed that the proportion of phosphorylated CSP (P-CSP) varies between distinct brain regions and also exhibits developmental regulation, with P-CSP highest early in development. Immunohistochemical analysis of the cerebellar cortex revealed a novel pool of P-CSP that did not colocalize with synaptic vesicle markers during early development. Strikingly, in the adult cerebellar granular layer P-CSP was highly enriched in a subset of glutamatergic synapses but undetectable in neighbouring GABA-ergic synapses. In view of the functional consequences of CSP phosphorylation, such differences could contribute to the synapse-specific regulation of neurotransmitter release.
Collapse
Affiliation(s)
- Gareth J O Evans
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | | |
Collapse
|